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Abstract—This article develops a physics-guided data-driven
model for the height evolution of parts printed in droplet-based
additive manufacturing. The proposed model is a convolutional
recurrent neural network (ConvRNN) whose structure is derived
based on the physical understanding of mass conservation dur-
ing the height evolution. Because of this physics-guided model
structure, the model parameters obtained are invariant to the
geometry of the printed part and thus portable from one
geometry to another, the conditions on physical stability of the
evolution translate directly to training stability of the neural
network, and the data required to train this model are much less
compared to a pure black-box model. These aspects of the model
are validated experimentally on an inkjet 3-D printing setup. The
proposed model outperforms a black-box off-the-shelf multilayer
perceptron (neural network) by using about two orders of
magnitude less data for training, at the same time delivering
1.7x smaller rms error on test data. The proposed model is also
compared with a state-of-the-art reduced order linear model and
shows 1.4x smaller rms error on test data. Finally, experimental
results also underline that the model parameters learned are
geometry invariant, that is, the model parameters trained on
one geometry can be used to predict the height map evolution
for other geometries without relearning.

Index Terms— Additive manufacturing (AM), neural network,
stability.

I. INTRODUCTION

ANY additive manufacturing (AM) processes—such as

inkjet 3-D printing, liquid metal jetting, and binderjet
3-D printing—involve the ejection of droplets (onto a sub-
strate) that solidify to produce the desired part. These droplet-
based AM processes enable the manufacture of intricate parts
for applications in organic electronics, sensors and detectors,
soft robots, and other biomedical articles [1]-[4]. In applica-
tions that require high precision and repeatability, it is critical
to develop control-oriented models, which can be used for
suitable feedforward input patterns and designing feedback
control algorithms [5].
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Prior modeling studies on inkjet printing have focused
on the physical dynamics of a single droplet or a few
contacting droplets and have shown surface tension, inertia,
fluid viscosity, and contact line motion to influence droplet
deposition geometry and behavior [6]-[9]. However, these
physics-based models are not suitable for applications that
involve thousands of droplets deposited sequentially to create
3-D parts. This is because, given the complexity associated
with modeling a single or few droplets, it is computationally
very expensive to simulate dynamics at the part’s geometry
level from the first principles characterization of the fluid prop-
erties (including viscosity and surface tension). Furthermore,
Thompson et al. [10] and Wu and Chiu [11] suggested that the
bulk fluid behavior may vary with the number of droplets and
time scale of deposition, and as a result, it may not be accurate
to generalize such purely physics-based model for arbitrary
printing tasks. Finally, while the models in these studies can be
useful for predicting the printing outcome (geometry and bulk
part properties), they are mostly unsuitable for feedforward
and feedback control design.

In contrast with physics-based models, purely data-driven
methods have also been used to determine the relationship
between controllable process inputs and measurable output
part quality for a variety of AM processes [12]. These methods
are helpful for the selection of suitable process parameters,
as well as in-process monitoring and control [4], [13], [14].
Moreover, they circumvent the characterization of fluid proper-
ties and the complexity of the physical dynamics and are rela-
tively inexpensive computationally to implement. However, the
data-driven methods have been mostly restricted to qualitative
tasks, such as tuning printing parameters for satisfactory
droplet size. Furthermore, these data-driven models (such as
neural networks) lack interpretability (in terms of explaining
the data representation inside the network) since no physical
principles of the process are built into their formulation [15].
Consequently, large amounts of data are required to train
a model capable of prediction under various scenarios and
geometries.

Some prior work has addressed feedback control in droplet-
based AM by using reduced order dynamic models [16]-[20].
The simplifications in these models enable closed-loop control
at the geometry level of the part. Here, the entire geometry’s
height distribution is modeled as a superposition of the linear
preceding distribution and current droplet(s) deposition. This
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Fig. 1. Inkjet 3-D printing system setup for data generation. The setup comprises four subsystems: 1) a motion subsystem consisting of a building plate

mounted upon high-precision linear stages and driven by a motion stage actuator; 2) a jetting subsystem that includes piezoelectric nozzles and their driver,
as well as a pressure and temperature regulator; 3) curing components including UV light spot-curing unit and an enclosed lightguide that beams the light
onto the substrate; and 4) a sensing apparatus consisting of a 2-D height profile laser sensor and its controller.

modeling approach incorporates just the basic physics of the
AM process. Hence, they only require limited experimen-
tal data for the identification of (physically interpretable)
parameters. However, these models have not been shown to
perform well when the pattern of printing involves overlapping
depositions and nonlinear effects, such as surface tension, are
significant.

Physics-guided learning-based modeling holds promise for
capturing nonlinear behavior without requiring big datasets
or physically complex models by combining the comple-
mentary advantages of physics-based models and learning
methods [21]. In the literature, this approach has been mainly
employed through the formulation of a cost function and con-
straints or in the initialization of model parameters for neural
networks [22], [23]. However, given basic knowledge of the
process, physical insight may be incorporated into the network
architecture itself by formulating, for example, weights and
activation functions that are specific to the process. Indeed,
this is the motivation for the model developed for inkjet
3-D printing in this article.

Inyang-Udoh and Mishra [24] formulated such a learning-
based model structure, termed constrained-flow model, for
inkjet 3-D printing and demonstrated that the recurrent neural
network (RNN) model structure is amenable for feedback
control. The spatial effect of droplet deposition was captured
by a convolution and an activation function was proposed to
determine the spatiotemporal evolution of the height profile.
We build on this above work in the following ways: 1) post-
deposition layer height shrinkage (due to curing, evaporation,
and so on) is incorporated into the RNN model paradigm;
2) given the physical insight tied into the network’s design,
analytical results regarding the open-loop stability of the
model are derived; 3) the performance of the proposed model
is experimentally validated and compared against a shallow

multilayer neural network and a linear dynamic model in [20];
and 4) moreover, it is shown that this learned (data-driven)
model can predict fluid behavior under varying experimental
(or process) conditions invariant to geometry, that is, the
trained model parameters can be used to predict the height
profile of unseen geometries. This is achieved by using a graph
structure that may be transformed depending on the geometry
input.

This article is organized as follows. In Section II,
we describe the experimental setup and state the modeling
problem and form of the model function to be developed.
In Section III, previously developed reduced order models
are previewed as context for the RNN model presented in
Section IV. Section V presents the stability analysis for the
model as well as discusses a gradient-based approach for
learning the model. Results from training and validation of
the model are presented in Section VI. Section VII presents
the conclusions.

II. INKJET 3-D PRINTING: PROBLEM DESCRIPTION
A. System Setup

We motivate the modeling discussion with a brief descrip-
tion of the system setup shown in Fig. 1, a microscale
inkjet 3-D printer comprising of four subsystems: jetting,
motion, curing, and sensing. The jetting components include
MicroFab™ MJ-ABL-01 piezoelectric nozzle heads and
drivers, an air pump for regulating nozzle backpressure, and
a nozzle heater. The motion subsystem is an Aerotech”
ANTI180-L 3-axis linear position stage. The motion stage
translates the substrate horizontally in the xy plane and moves
the nozzle vertically (z-direction). The curing subsystem
comprises a Dymax™ ultraviolet (UV) light spot-curing unit
and an enclosed lightguide. Finally, a Keyence LIJ-G030
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Fig. 2. 3-D inkjet printing scheme. For each layer, a reference profile based
on the desired part geometry is fed to a controller, which generates suitable
input sequence.

2-D laser sensor is used for sensing the height profile after
each layer.

To print a part, first, the 3-D model of the part is sliced
horizontally into layers and an associated motion path for the
nozzle is generated along with droplet deposition locations.
Motion stages move the build substrate, while the nozzle
deposits droplets according to the input pattern. When all
depositions for a layer are complete, the part is cured under
UV light. Then, the laser sensor measures the height profile
for the layer for feedback control. The process is repeated until
all the layers are printed.

From a control standpoint, a layer, L, is resolved into an
R™>" orid space to obtain the discretized reference height
profile R € R™*" The pattern of droplets U%) € R™*™s
is the input to this system. The output YX) e R™*™ (see
Fig. 2) is measured after each layer is cured. A typical
feedback control strategy is shown in Fig. 2. To implement
such a control strategy, a model of the height profile evolution
[i.e., a relationship between U and Y ")-E+D] is needed.

B. Problem Statement

The goal of this article is to learn the height evolution
relationship from input—output data. Furthermore, this model
must be formulated in such a way that the parameters are
time and geometry agnostic and thus can be identified for
any printed geometry, irrespective of printing area or droplet
pattern. Given the model as Y+ = @@, Y, UD)) where
6 denotes all parameters of the model, YE+D is the model
output of the next layer, and Y& is the current actual output,
we shall determine a suitable structure for ® and find 6%
that minimizes the error ||Y ¢+D — IA’(L“)(H)H; using the data
obtained from printing. Furthermore, the parameters of 8* to
be learned should be explainable [15] and as frugal (small in
number) as possible. Finally, given the spatiotemporal aspects
of printing each layer, the evolution of the height profile should
be modeled as a time sequence in the height profile space.

III. PRIOR WORK: MODELING APPROACHES FOR
DROPLET-BASED AM

As highlighted in Section I, several reduced-order models
for droplet-based AM processes have been developed to enable

topology evolution as a superposition of the individual droplets
height distributions [17], [20]. Assuming that the distribution
is constant, this may be written as Y &+D = Y1) 4 p 5 U@,
which is a 2-D convolution of b € R?*?, the impulse response
due to a unit droplet input, over the input space U®). This
impulse response may be assumed Gaussian [17], spheri-
cal [16], [20], or the average of actual sample droplets [25]
or may be identified from a high-fidelity simulation of the
printing process [19].

B. Droplet Interaction and Flow

Other models incorporate the effect of the liquid material
flow. With this outlook, flow between neighboring grid points
is characterized as a function of relative heights between the
points [20], [26]. Let H, € R™*"> be the height profile at time
t in the printing process and 7, € R",n = n, x n,, be the
corresponding vector, and then, the change in height at point
(or node) i due to flow from neighboring nodes is given by [15]

Ah (i) == D" Kij(h (D) = () + Bi(@Du, (1)
JEN;

where — Zje./\f,- K;j(h,(i)—h,(j)) represents the height change
due to flow from all other nodes j in the neighborhood N;
of node i, K;; > 0 is the flowability parameter that describes
how much the liquid will flow based on the neighbors’ height
differences, and u, is the droplet volume at time ¢. B;(i)
is the corresponding height increase at node i caused by a
unit size droplet, that is, B, € R" is a vector containing a
unit droplet’s shape and location. In state-space notation, the
evolution is written as

iy = Ahy + Bu;. (2)

A, = (I — DK,DT) is the state matrix that captures
the effect of liquid flow from higher to lower grid points,
D e R™ being the incidence matrix for the grid with n; links
(see Fig. 4), and K € R™*™ a diagonal positive (semi)definite
matrix containing flowability parameters determined empiri-
cally. K denotes how much flow would occur in one time step
due to a unit height difference. K, is used since the matrix
must be continuously updated from time step to time step
to dissociate links active with flow from those with no flow.
As will be discussed in Section IV, the flowability parameter
and incidence matrix are utilized in the model presented in
this article.

IV. RNN MODELING WITH PHYSICS-GUIDED STRUCTURE

In this section, a convolutional recurrent neural net-
work (ConvRNN) model that is based on physical knowledge
of the printing process is developed. We begin by discussing
the basics of an RNN and show how physical understanding
of the ink-jetting process can be used to construct the network.
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Fig. 3. RNN as parameterized in (3).

The result is a so-called constrained-flow model for the
printing process that is time-invariant, whose parameters are
geometry independent and thus can be used for different layer
patterns.

A. Recurrent Neural Network

RNNs are neural network models used for modeling time-
series dynamical models [27], [28] for a variety of applica-
tions. A general formulation of the network can be written
as

hy = f(htfl; utfl,el)
yi = g(hs, 62) (3)

where u,_; and h,_; are input and state of the system at time
step t — 1, respectively, y, is the output at time step 7, and
{60:,0,} = 0 is the set of the model parameters (see Fig. 3).
Note that the input and state are time-dependent, while the
parameters are time-invariant.

RNNSs are typically parameterized as

hy = Wyt (hi—1) + Wyu—1 4+ wo
i = G2(Wy1(y) + o) 4)

where W, is the recurrent or state weight matrix, W, is the
input matrix, wo is the state bias, and W, and vy are the
output weight and bias, all elements of the parameter set 6,
respectively. ¢; and ¢, are elementwise nonlinear function
typically termed activation functions. € is unknown and thus
must be learned or identified from input—output data pairs
{us, yi}i=1—n. A cost function (loss function) measures the
performance of the network on some given regression or
classification task. The parameters are learned to minimize
this cost.

B. Mapping Inkjet Process Dynamics to ConvRNNs

The printing process involves jetting droplets one after the
other; the part’s height evolves as the droplets are deposited.
Hence, the process can be described as a time series and an
RNN is suitable for modeling it. The generic RNN formulation
can be tailored, guided by the physics of the printing process,
as follows.

1) The droplet position and volume at instant 7 constitute
the input to the time series. Moreover, instead of mul-
tiplication by an input matrix as in (3), we convolve
a weight matrix about the input space based on the
interpretation presented [17]. This isolates the spatial
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Fig. 4. Incidence matrix D transforms the height profile at grid points (or
nodes) into height differences (links). Each node is linked to its immediate
neighbors.

property of the input from the input weight parameter
and reduces its dimension.

2) The nonlinear activation function ¢; is chosen to incor-
porate intuition about the basic dynamics that influence
height evolution. First, the height profile at each time
step is extrapolated to a higher dimensional space. In this
space, the heights at grid points are transformed into
height differences between neighboring grid points using
an incidence matrix (see Fig. 4). Furthermore, because
of surface tension, a minimum threshold of height dif-
ference is needed to initiate flow. Hence, an element-
wise function is applied to embody this flow threshold.
Finally, the output of the function is returned projected)
to the original space.

3) In many droplet-based AM systems, it is difficult to
make measurements during the in-layer deposition. The
profiles are only measured after deposition. This means
that the output data for the network are only available
after the last time step in a layer. Hence, the output in (3)
is only computed at t = L x N, where L is the layer
number. Furthermore, another activation function ¢, is
used to model the reduction in part volume due to curing
or evaporation.

The result of this formulation is a ConvRNN [29] where the
following conditions hold.

1) The spatial dynamics of the process is captured by a
2-D convolution over the input.

2) The temporal dynamics is captured by the nonlinear state
evolution.

3) The effect of postprocessing after each layer (curing)
on the height profile is captured by a nonlinear output
function.

C. ConvRNN Model

Following the reasoning above, the height evolution for
layer L can be written as:

h; = le(htfl) + Wyu, -y,

B = gy (¢1(hn,) + v0)
ho = $*D 5)

t€[l,N]

where i, € R" and u;, € R™, m = m, x m,, are the network’s
internal state (or height) and input. The function ¢ (h,) reflects
the height change at time step ¢

¢1(ht) £ hy — DO'(KDTht)- (6)
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Note that D € R"*™ transforms the height profile vector
into height differences across links (Fig. 4). These differences
are then weighted by K. In general, K is a diagonal matrix
whose entries correspond to the flowability associated with
each link, K;;, as described in (1). Therefore, together,
KDTh, is the effective flow across links at time ¢ due to
height differences across each link, DTh,.

o thresholds the minimum effective height difference
needed across a link to cause flow (capturing some of the
surface tension effects). Fig. 5 shows the potential thresholding
functions. The soft threshold of Fig. 5(b) is preferred to the
function of Fig. 5(a) as it is continuous and holds a threshold
value explicitly in its formulation. Yet, as is highlighted in
Section V, identifying the model parameters by gradient-
based methods requires the stability of the function’s gradient
[30], [31]. The function of Fig. 5(c), which we term leaky soft
threshold, allows for gradient stability over long time steps
and hence is used in this work. Denoting K D" h, by I,, the
activation function can be written as

LG) — (1 —d)a, iflL(i)> «a
oL (i), if —o <L(i)<a
L)+ (1 = a, ifl,3) < —a

a(l:(i)) = )

where « is the threshold below which height differences cause
no flow; 6 > O ensures that the gradient of the activation
function is not zero. Unlike with the graph-based model
mentioned in [20], K no longer needs to be updated with time.
Since parts are cured only at the end of each layer, we assume
that the flow is isotropic and write K = x 1. Note that ¢, (h;)
ensures conservation of mass, that is, 1T¢1(h,) =17h,.
W,u,_; corresponds to the height profile increment caused
by input droplet deposition at time step t. U, € R™*"»,
t € [0, N, — 1] is the admissible inputs at time step .
u, is the vectorized form of this input. Note that U; is
sparse, holding only a nonzero entry at (x, y) positions (x €
{1,...,n.},y € {l1,...,n,}) where depositions occur at ¢, that
is, >N U, = UD). W, is the Toeplitz matrix corresponding
to kernel b € R”*? in the 2-D convolution, b * U,, that is,
W,u, = vec (b * U,). Hence, we may equivalently implement
a sparse 2-D convolution and vectorize the resulting matrix.
Again, unlike the time-dependent input matrix in (2), W, is
time-invariant. It is well known that the volume of the part
shrinks after curing [15]. We make provision for this shrinkage
in the model in the output step. A negative scalar bias vg is
added elementwise to the height profile output after the last
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Fig. 6. Illustration of time step to time step height evolution model as an
RNN. (a) Height evolution as a recursion. At each time step, the kernel w, is
convolved over the current input space, which holds entry only at the current
deposition spot (yellow spot in the figure), and the result is added to the
evolving height distribution. (b) Height evolution unrolled as an RNN.

time step, and then, the following generic softplus function is
applied as shown:

¢ (W'D (i) £ log(y + exph™(i)). (8)

The softplus function is parameterized by y, which is
nonnegative. Note that this function also ensures that the
output profile is nonnegative. The ConvRNN-based inkjet
printing model is summarized in Fig. 6.

Note: First, while the ConvRNN model follows the ink-
jetting paradigm of droplets deposition in sequence, the time
step of the model need not correspond to that of actual
deposition. For example, if the input space exceeds the output
space, then we may sample (or coarsen) the input grid space
such that the total number of model time steps is only a
fraction of actual printing time steps. As such, the input
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convolution kernel b, here, is to only embody the droplets’
behavior in the context of the final resulting height profile,
rather than the shape of a single deposited droplet (or a droplet
impulse response).

Second, in addition to time invariance, this model is inde-
pendent of the geometry or printing trajectory being followed:
as such, the model is left only to learn the fluid behavior that
affects the height evolution. This makes the model versatile
and allows for little training data. Furthermore, the model may
be employed for cases with either single or multiple ink-jetting
nozzles.

V. MODEL ANALYSIS

Since the height evolution model in (6) is structured based
on conservation of mass, we expect it to be input—output stable
in continuous time. In this section, a formal discrete-time
stability analysis for the height evolution ConvRNN model is
presented. In addition, analytical expressions of gradients for
training the network through backpropagation are presented.
As shown in [24], providing analytical gradient expressions
to the solver expedites online learning and control. Moreover,
with these expressions, we can draw connections between the
physical structure of the height evolution and the training
of the network. Indeed, we show that the same sufficiency
condition for the stability in the height evolution holds for the
stability of the ConvRNN training.

A. Stability Analysis
Assuming zero input in (5), the height evolution becomes:
hy = ¢1(h,—1). Note that the function ¢; can be written as
¢1(h) = (I = DK;s(h) D", ©)

where Ks5(h,) = diag(ks) and each diagonal element is defined
as

K(l—(l—&)a/l,(i)), if (i) > a

ok, if —a <L@{)<a (10)
x(l—}-(l—&)a/l,(i)), if ,(i) < —a.

Stability Lemma. First, let p(DDT) be the spectral radius of

the Laplacian DDT, and the height evolution dynamics in (5)
is stable (i.s.L) about the equilibrium origin &, = constant if

0<x <2/p(DDT). (11)

Second, furthermore, for a (gridded) graph of the form
shown in Fig. 4

ks(i) =

0<x <1/6. (12)

Proof: First, consider the autonomous evolution, /,,; =
¢1(h;). Define the Lyapunov function V (h,) = hl h,
V(hiyr) — V(h)
= h! (I-DK;(h))D")" (I — DKs(h,)D") — I)h,
= —h, ((2I — DKs(h,)D") DK;(h,)D")h,. (13)
We now show that (2 — DKs(h,)DT) DKs(h,)DT > 0.

Consider DKs(h;)DT: from (10) and (11), ks(i) > dx > OV i;
hence,

DKs(h,)DT = 0. (14)

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Next, let Q = 21 — kDD". Each eigenvalue 1(Q) = 2 —
kA(DDT). From (11), k <2/p(DDT), hence, all 2(Q) > 0.
By definition (10), ks5(i) < x V i; thus,

21 — DKs(h,)DT = Q > 0. (15)

Since 21 — DK5(h,)D” and DKs(h;)D"T are symmetric and
commute, (21 — DKs(h,)D") DKs(h;)DT > 0; therefore,
V(hiy1) — V(h) <0, V hy # 0 as required for stability.

Second, it is shown in [33] that the Laplacian is conserva-
tively bounded as follows:

p(DD") < max{d; +d; — |INi NN

c1<i<j<n, (h(),h())) € E} (16)

where d; is the degree of h(i), N; is the set of neighbors of
h(i), and E is the edge (or node) set (which has n; elements)
of the graph. For the graph (as connected in Fig. 4) with any
number of nodes n, the bound implies p(DDT) < 12, and
hence, given (11)

0<x <1/6.

B. Analytical Gradients for Training the ConvRNN Model

We now derive analytical expressions of the gradients
needed for training the ConvRNN and demonstrate that the
criteria for open-loop stability in (11) is indeed the same for
guaranteeing stability in training the network. Fig. 6 shows the
model recursion and how it may be unrolled as an RNN with
output only at the network’s final time step. Each measured
layer provides additional data for training the RNN. For
learning the optimal parameter set § = {a, b, k, y, 0o}, the
2-norm of model error at the Lth layer is minimized, i.e.,

) . 2
f* = arg;n1n||y(L) — y(L)(e)”z

S.t. emin < 0 g emax (17)

where y&) is the vectorized measured height profile of the
Lth layer and $®)(#) is the corresponding computed height
of the RNN’s forward pass; Gnin and On,x are, respectively,
the maximum and minimum values the parameters of § may
assume. Let the 2-norm of model error ||y®) — &) (9)||§ be
denoted by E(), and the gradient of E(") with respect to the
variable 6 € {a, x} over P preceding layers is

oE®D 0E® 691 oh,

- X 2 HT a0

L-P<i<L 1<t<N,

(18)

Here,
=5 =200 =50y
o9 o9 ohy, 29D ohy,
oh;, — dhy, 09XV dhy ok,
where
op® .
= diag(1/(1 + y explog — hy,))
6th.
Ohw _ I1 (I—D diag(cr’(l-))KDT)
oh, /

Ni—1>j>t

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 03,2022 at 14:56:03 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

INYANG-UDOH AND MISHRA: PHYSICS-GUIDED NEURAL NETWORK DYNAMICAL MODEL 7
and Hidden
ohy . , Input ; Layer
oK = —Ddiag(o (ltfl))DTh;,1 e Wel,ciht ‘x(@}
oh -
M _ _Ddiag(o’ (- 1))o" (@) ()
oa
1, ifl;(i) > «a L»E @
') =196, if —a <L(i)<a ul) e R I
1, if46) < —a
[6—1, if,(i) > a 2
a'(a) = 10, if —a <L(i)<a 2, Nodes
[ 1—0, if /() < —a.

Similarly, the gradient of E) with respect to 6 € {y, vo}
is

oEWL)  pEW@ o9 @ 5@
0T ayA@ aye (19
R s
where
o9 09" ohy, ohu,.,
o9 dhy, 09E=D""""" 55
9@
Y = 1/(y +exphy, — 10p)
ay
29 @)
Y = —1/(1 47y explog — hn,).
61)0

The gradient of the error with respect to the kernel b is

oEW z Z . oEW a)s(L)
= vec -
ob o9 oh,

L—-P<i<L1<i<N,

#rotigo(Us)  (20)

where vec™! denotes the vector matricization and rot;go

denotes a 180° rotation. Given the gradient directions, the
constrained optimization in (17) may be implemented with
a barrier function method as the interior point method [34].
Bounds on 6 are necessary for the parameters «, x, and y: o
and y must be nonnegative and x must satisfy (11).

Relationship Between Training and Physical Stabil-
ity: One major consideration in training an RNN is
the possibility of exploding gradients [35]. In particu-
lar, the term (0hy,/0h;) may explode as N, becomes
large. Since /—D diag(a’(l;))K DT is symmetric, (8hy, /0h;)
is kept from exploding (or stable) if spectral radius
p(I—Ddiag(c'(l;))KD") < 1. Interestingly, this condition
for stability automatically holds given (11), 0 < x <
2/p(DDT), that is, the stability of the height evolution dynam-
ics. This implies that training stability of the model structure
translates to physical stability of the evolution dynamics.

Remark [: Note also that, the network never “dies”
[30], [36], i.e., it never becomes a constant function
as o'(l;) > 0 Vt.

V1. EXPERIMENTAL RESULTS

This section presents the experimental validation of the pro-
posed physics-guided ConvRNN model. First, the performance
of the proposed ConvRNN model trained on a small dataset is

Fig. 7. Structure of the Zp—Z;—Z, MLP NN used for regression.

TABLE I
DETAILS OF PRINTED GEOMETRIES AND MLP NETWORK

Detail

(™, g5 pairs

I,U,r,L,n, T, - C, + ]

216 data points (of all but two of the above
geometries); augmented to 864 by rotation
36 data points (of T and U geometries)
W, € R8><256; W, € R256><8

256-8-256

arctan sigmoid

Mean Squared Error

Item

Data Points (Layers)
Printed geometries
Training data size

Test data size
Weights

Layers

Activation function
Loss function

compared to that of a shallow neural network trained using a
much larger dataset. Comparison is also made with the linear
model discussed in Section III. Next, the ConvRNN is trained
and validated under different printing scenarios, to ascertain
that despite the printing method, the features captured by the
model are geometrically independent. Significant improvement
in accuracy on both the training and test data in all printing
cases is demonstrated. Furthermore, the physics-guided model
requires far less training data compared to a shallow (black-
box) neural network model.

A. Performance Comparison of ConvRNN Model With
Multilayer Perceptron Neural Network and Linear
Dynamical Model

We evaluate the performance of the proposed ConvRNN
model in comparison to an off-the-shelf shallow multilayer
perceptron (MLP) network [37] (see Fig. 7) as well as the
linear model of (2) for context. We printed 84 parts with five
or six layers of various dimensions of simple geometric shapes.
Each part was printed as a frustum such that though all the
layers have the same cross-sectional geometry, each layer is
dimensionally smaller than the preceding one. Layer heights
ranged between 30 and 45 um, printed with droplets in the
volume range of 0.4-0.6 nL. Geometries and details of the
training/test data used are given in Table I. We set aside 12 of
the parts (having either a “T” or “U” shape) for testing and the
rest for training. Three layers of height measurements of each
part were selected as output data points, and the corresponding
input pattern was used as the network’s input: 36 layers in
total for testing and 216 layers for training. These are used as
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follows for the MLP, linear model, and proposed ConvRNN
model.

1) MLP Model: Each of the 216 training data points (each
data point corresponds to a dataset from an entire layer)
is rotated in three orthogonal directions to augment the
dataset to 864 for training the MLP. The augmentation
is to emphasize the spatial correlation between the
input and output data pairs. Each data pair is on a
64 x 64 grid. We downsample each pair by 2-D linear
interpolation so that the length of the vector is 256.
This keeps the dimensionality of the data lower than
the data size. In addition to saving computational cost,
this helps us learn only the overall liquid material
behavior and remove details that may only be unique to
a particular printing session. The training was carried out
by backpropagation on MATLAB with the hyperparame-
ters summarized in Table I. The network performance is
evaluated using the 36 (downsampled) test data points
(layers).

2) Linear Dynamic Model: All 216 data points (data
from 216 layers) are used for system identification of
the linear model in (2). The reader is referred to [20] for
details. The identified model is then used for prediction
on the test datasets.

3) ConvRNN Model: The proposed ConvRNN model is
trained on only three data points (three layers) from
the same training dataset (see Table II for detail) but

"Mesh grid used here is for graphical esthetics and does not represent the
actual grid resolution.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Linear Dynamics MLP NN

AR

x (mm)

Comparison of sections of a sample part from the training dataset of the proposed ConvRNN model, MLP NN, and linear dynamical model.!

MLP NN

Linear Dynamics

Comparison of sections from the predictions of the trained proposed ConvRNN model, linear model, and a trained MLP NN on a sample test part.

TABLE 11
DETAILS FOR CONVRNN

Detail
{u),y()} pairs
3 data points (of the + and n geometries

Item
Data Points (Layers)
Training data size

above)
Test data size 36 data points (as in Table I above)
Parameters a,b, K,v,vg
TABLE III

EVALUATION OF PERFORMANCE (BASED ON RMS ERROR) ON DATASET
WITH MLP NEURAL NETWORK, LINEAR MODEL OF (2), AND THE
PROPOSED CONVRNN MODEL

Method Data Size (Layers) | RMS Error (pm)
Training Test Training Test
MLP NN 216 (x4) 36 19.4 342
Linear Model 216 36 31.6 27.9
ConvRNN 3 36 10.4 18.2
(64x64 grid) 3 36 13.4 19.2

evaluated for performance using all 36 downsampled test
data points.

Results from the training are summarized in Table III.
Observe that on the training dataset, the MLP performs much
better than the linear model. Fig. 8 shows one of the training
data points a five-layered cross-shaped part. Note that this
data point is common to all three models, that is, it is one
of the three data points used to train the convRNN. The
middle x— and y— cross sections of this sample part are
shown in Fig. 10(a). These figures demonstrate that while
the linear model yields a uniform surface profile, the MLP
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Fig. 10. Cross sections of cross-shaped part used for training and T-shaped part for testing. (a) Middle cross sections in both x- and y-directions. (b) Middle
cross section in the x-direction and cross section through the left arm through the y-direction.
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Fig. 11. TIllustration of strategies used for printing a cross-shaped section
on an ny, x ny = 7 x 7 grid. The blue dots represent deposition; darker
blue colors imply the deposition has been cured. (a) Top: printing trajectory
follows a raster path; the distance between lines of the raster, that is, LS is
equal to the grid resolution and the interval at which droplets are deposited
(DS, Spacing A). Bottom: droplets are deposited at intervals (DS) one-half
the grid resolution. (b) Each layer is built in four steps following the same
raster trajectory (Spacing B). The section is cured after each step. LS and DS
are twice grid resolution at individual sublayers.

captures the outward curvature. However, with the MLP, the
geometrical structure is lost (the distinct cross arms are lost).
The ConvRNN model, on the other hand, is able to capture
the outer curvature while also retaining geometric fidelity.
Furthermore, because the learned MLP network weights
(while capturing nonlinearities) are not geometrically indepen-
dent, the improved rms error® on the training data does not
translate to the test data; in fact, the performance is poorer
than that of the linear model (Table III). This indicates that
although the multilayer perceptron neural network (MLP NN)
learns to accurately map the input to the output on the training
part, the mapping is overfit. The overfitting problem is not
simply resolved by using a relatively small number of nodes
in the hidden layer. Notice that the hidden layer of the MLP
contains only eight nodes in contrast to the 256 in the input

2The rms error is calculated over the entire grid space.

200 200+ 200
€t
=
=100 100 100
0 0 0
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
y (mm) y (mm) y (mm)
DS 1 DS I
@ (b)

Fig. 12. Comparison of output profile shapes for printing Spacings A and B.
The liquid material assumes different profiles. (a) Bell-shape bulge and
parabolic shape under DSs I and II, respectively (Spacing A). (b) Concave
shape for Spacing B.

and output layers. Decreasing the number of hidden nodes
would only render the network ineffective for the complexity
of the regression problem [38]. Rather, improved performance
of the NN calls for increased nodes and, consequently, needs
a much larger amount of data for training.

On the other hand, from Table III, it can be noted that
even with such small training dataset, the ConvRNN model
performs as well on the test dataset as the shallow NN
does on its training dataset. A sample from the test dataset
is shown in Fig. 9 with cross sections in Fig. 10(b). The
sample is a four-layer U-shape part. This figure highlights how
qualitatively well the proposed model predicts the actual print.
Furthermore, it is key to note that the NN is unable to predict
the part’s distinctive features. The linear model traces the
shape distinctively, but it is unable to capture the characteristic
bulging artifact of the print.

Remark 2: In this section, the 64 x 64 data pairs were
treated as images and downsampled to 16 x 16 to keep the
data dimensionality lower than the data size for the MLP NN.
For comparison, the downsampled input and output pairs were
assumed true input and output for the linear model and the
convRNN. For the 16 x 16 data pairs, a 5 x 5 b matrix is used
for the convRNN. Though downsampling is important for the
MLP NN, in downsampling the original 64 x 64 grid space,
the input resolution is lost. Hence, the convRNN training
was repeated for the original 64 x 64 with a larger b matrix
(13 x 13) and yielded similar test errors (shown in Table III).
In Section VI-B, we use the original grid resolution for
training.
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B. Performance Under Different Printing Scenarios

Fig. 11(a)-I shows the manner in which the parts in
Section VI-A were printed. The printing is carried out in a
raster manner and the spacing between droplets is equal to
the spacing between the raster lines. We explore other printing
spacing scenarios that may alter a height profile. One is
decreasing the droplet spacing (DS), as shown in Fig. 11(a)-II.
Here, the DS is half the line spacing (LS), but each droplet has
the same volume. Obviously, this increases the total volume
of each layer. However, it also alters the shape of the height
profile for a cross-shaped part printed in this manner. The
additional volume allows for a smoother height distribution
(less surface unevenness as there tends to be better droplet
coalescence all across the layer). The resulting difference in
height profile is highlighted in Fig. 12. The figure shows
the cross-sectional profiles of three-layer cross-shape parts
printed, as shown in Fig. 11. It can be observed that the bell-
shaped profile of the part with DS I becomes parabolic with
DS II.

Fig. 11(b) shows another printing scenario that results in a
flatter height profile. The input resolution here is the same as
that of Fig. 11(a)-I, but now, curing is carried out at instances
within a layer. The LS and DS before each curing instance (or
sublayer) is twice that of Fig. 11(a)-I. This strategy, though
more time-consuming, tends to produce a more distinct and
accurate height profile. The droplets are better spaced out and
nearly isolated before the first curing step. However, as more
droplets fill in the grid spots, surface-tension-driven droplet
interaction occurs and the overall section profile becomes
concave [Fig. 12(b)]. We evaluate the performance on these
printing scenarios that result in markedly different height
profiles to show that the geometry independence is, in fact,
separately kept for each of these printing conditions.

Remark 3: The grid resolution is determined by the fineness
of the output profile. Meanwhile, the LS and DS determine the
input resolution. In practice, the output resolution is limited
by the height profile sensor, while the LS and DS are limited
by the resolution of the motion stages.

1) Change in DS: We verify that we can capture the
height profile behavior while printing with the reduced DS as
shown in Fig. 11(a)-II with a significant level of geometric
independence. We train on only one data point, the four-
layered cross-shaped part shown in Fig. 13. The part is printed
with an LS of 125 yum and DS of 62.5 um. Given that
the droplets are deposited in between grid spots (of the grid
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ConvRNN
RMS Error =10 um

Comparison between the linear dynamic model and the proposed model for cross-shaped part used for training with reduced DS [DS 1II in Fig. 11(a)].
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Fig. 14. Section of cross-shaped part used for training.

resolution), the kernel learned captures the effect of those two
adjacent droplets at each grid point. On self-validation, the
identified parameters yield an rms error of 10 um on the
cross-shaped frustum, an improvement in accuracy of 71.4%
over the prediction of the linear dynamic model (Fig. 13).
Furthermore, we observe that the identified parameters of the
ConvRNN model reflect the elevation of interior observed in
the experiment, while the linear model does not (Fig. 14).
Note that the linear model in both cases has identical volume
with the printed part only that it fails to capture the inner
elevation. We use the identified parameters to predict the
height profiles for a four-layered T-shaped frustum and four-
layer L-shaped part in Fig. 15, both on an 8§ mm x 8 mm
base. The shapes were printed with the same droplet and LS.
The ConvRNN prediction yields an rms error of 16 um for
both parts. This corresponds to an accuracy improvement of
54.3% and 44.8% over the prediction of the linear model.
It is remarkable that percentage increases in accuracy are
comparable to that obtained on self-validation. The cross-
sectional views in Fig. 16 show that the convRNN model
captures the interior elevations observed in the actual parts.
The linear model does not.

2) Difference in Print/Cure Cycle: Using only one data
point for learning, we examine that the parameters learned in
the extreme case of Fig. 11(b) are geometrically independent.
For training, we use a four-layered (16 sublayers) cross-shaped
part. On self-validation, the identified parameters yield an rms
error of 9.7 yum on the printed frustum, an improvement in
accuracy of 47.7% over the prediction of the linear dynamic
model with the second printing case (Fig. 17). Furthermore,
we observe that the identified parameters of the constrained-
flow model reflect the contraction of the interior observed in
the experiment, while the linear model does not [Fig. 19(a)].
Note that the linear model in both cases has identical volume
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Fig. 15. Performance of proposed model on test parts printed with reduced DS [DS II in Fig. 11(a)]. Observe how the prediction of the proposed model
significantly reduces the rms error.
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Fig. 16. Sections of (a) T-shaped and (b) L-shaped part used for testing, both printed with reduced DS. Middle cross sections in both x- and y-directions.
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Fig. 17. Comparison between the linear dynamic model and the proposed model for cross-shaped part used for training under the printing scenario in
Fig. 11(b).

with the printed part only that it fails to capture the inner C. Discussion
elevation. Many machine learning architectures for (especially nonlin-
The identified parameters are used to predict the height pro-  ear) 2-D or 3-D dynamic systems lack geometry (or boundary)
files for a four-layered T-shaped frustum (Fig. 18). A marked generalizability [39]. This implies that trained model para-
improvement over the prediction of the linear model of up meters will not predict behavior well when tested on unseen
to 30.9% is observed. The cross-sectional views in Fig. 19(b) data having a different geometry or boundary. The foregoing
show that the convRNN model prediction captures the edge results in this section indicate that the model parameters
elevations observed in the actual part. here generalize well across geometries suggesting that the
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Fig. 18. Comparison between the linear dynamic model and the proposed model for T-shaped part used for testing under the printing scenario in Fig. 11(b).
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Fig. 11(b).

parameters learned are largely invariant to the geometries
used for training. This geometry invariance is enabled by the
following:

1) learning a 2-D input convolution kernel rather than an
unstructured input matrix;

2) using a graph structure over the entire printing domain
and applying activation functions directly over the link
this graph.

3) the output activation function for the entire print domain
that ensures nonnegativity.

VII. CONCLUSION AND FUTURE WORK

We have developed a conv-RNN model structure for captur-
ing the height evolution during a droplet-based AM process,
inkjet 3-D printing, based on physical insight into the print-
ing process. We established the conditions for stability of
training the model and how such conditions translate to the
physical stability of the height evolution. We experimentally
validated the model and showed it to outperform a trained
MLP with much less data. The model was also examined
under contrasting printing scenarios and proved to require only
a little data to learn geometry generalizable parameters in all
scenarios. These results not only suggest that the model lends
itself to in-process learning (i.e., online refinement as printing
data grow), but the structure (or architecture) used here may
be extended to multimaterial inkjet 3-D printing and other
droplet-based AM processes.

Experiment has shown that the proposed model requires
only as much data for training as would be collected in
the first few layers of a printing session to be geometrically

250 250
200 200
5150 /.“.’. §150
< 100 < 100
= E xperiment
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ConvRNN
0 =S l ————— W= 0

0 2 4 6 8 0
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Section of (a) cross-shaped part used for training (Fig. 15) and (b) T-shaped part for testing (Fig. 14), both printed under the printing scenario in

independent. This implies that the model may be pretrained
on a part’s geometry and used to predict and control the
height map evolution for another geometry. However, this
also suggests that the model structure is amenable for update
during the printing process. Hence, future work will aim to
demonstrate online learning and geometry-level control with
the inkjet 3-D printing process. This calls for an efficient
adaptive control scheme with the proposed model structure
in which feedback is used to update the model parameters
and find suitable input pattern for subsequent layer(s) as the
printing progresses [24].
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