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Abstract: The advances of high-throughput experimentation technology and chemometrics have 

revolutionized the pace of scientific progress and enabled previously inconceivable discoveries, in 

particular when used in tandem. Here we show that the combination of chirality sensing based on 

small-molecule optical probes that bind to amines and amino alcohols via dynamic covalent or click 

chemistries and powerful chemometric tools that achieve orthogonal data fusion and spectral 

deconvolution yields a streamlined multi-modal sensing protocol that allows analysis of the 

absolute configuration, enantiomeric composition and concentration of structurally analogous - and 

therefore particularly challenging – chiral target compounds without laborious and time-consuming 

physical separation. The practicality, high accuracy, and speed of this approach are demonstrated 

with complicated quaternary and octonary mixtures of varying chemical and chiral compositions. 

The advantages over chiral chromatography and other classical methods include operational 

simplicity, increased speed, reduced waste production, low cost, and compatibility with multiwell 

plate technology if high-throughput analysis of hundreds of samples is desired. 

 

 

Introduction 

Chiral compounds are ubiquitous in nature and play essential roles in the chemical, environmental, 

materials and health sciences. Paradigm-shifting advances with asymmetric synthesis of chiral 

compounds have become possible with the aid of artificial intelligence but there has been little 

impact at the forefront of enantioselective analysis.1-6 Nonracemic mixtures containing both 

enantiomers sometimes in vastly varying ratios are frequently encountered in natural samples or 

during chemical development and need to be analyzed both accurately and quickly. The 

determination of the total amount and enantiomeric composition of chiral compounds has therefore 

become a recurring but often challenging task in literally countless R&D projects. This can entail a 



2 

 

prohibitively laborious and time-consuming process, in particular when the sample is a mixture of 

several compounds – a fairly common scenario. To circumvent the daunting complexity of 

enantioselective multicomponent analysis, each chiral analyte is typically first isolated to determine 

its amount and the enantiomeric ratio (er) is then uncovered in a separate experiment by 

chromatography on a chiral stationary phase or by NMR spectroscopy with a chiral derivatizing or 

solvating agent. The limitations of classical enantioselective analysis become increasingly apparent 

when many samples consisting of several chiral analytes in varying concentrations and 

enantiomeric compositions need to be examined. To date, chiral chromatography, which is 

intrinsically serial because one can only run one sample at a time, remains the workhorse and is 

widely considered the gold standard. Despite the development of fast and two-dimensional 

chromatographic methods, a general solution amenable to high-throughput experimentation and 

parallel chiral multicomponent analysis is not in sight.  

During the last decade, many chiroptical sensing methods that are compatible with automation, 

multiwell plate technology and parallel data acquisition have been introduced to address the 

shortcomings of classical techniques and to improve throughput, time-efficiency and sensitivity at 

reduced cost, waste production and energy consumption.7-9 Molecular and supramolecular sensor 

arrays mimicking chemical nose detection have been used for qualitative analysis of chiral 

compound mixtures.10-12 The potential of quantitative enantioselective optical sensing is 

exemplified by several case studies in which both the er and the concentration of a single analyte 

were determined with carefully designed UV, fluorescence and circular dichroism (CD) probes.13-19 

Alternatively, single compound er determination has been accomplished with linear discriminant 

analysis, artificial neural network and principal component analysis.20-23 Recently, chiroptical er/dr 

sensing methods have been reported and applied to quantitative analysis of stereoisomeric mixtures 

of amino alcohols with two chiral centers.24,25 We hypothesized that merging state-of-the-art 

chiroptical sensing methodology and artificial intelligence for spectral deconvolution would 

overcome long-standing difficulties and limitations of traditional chromatography based approaches 

and provide a solution toward comprehensive (determination of absolute configuration, 

enantiomeric ratio and total concentration) in situ analysis of complicated multicomponent mixtures 

without physical separation. To this end, major obstacles originate from the difficulty with 

quantitative deconvolution of a massive amount of spectroscopic data that would be generated by 

simultaneous sensing of several chiral analytes and the low resolution of inherently broad and 

largely overlapping CD and UV absorption bands. We envisioned that this can be addressed by 
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integrating robust, broadly applicable chiroptical sensing technology and chemometric tools capable 

of deciphering highly convoluted, multi-modal spectral information.  

Herein we show that simultaneous analysis of individual concentrations and er‘s of 

complicated multinary chiral compound mixtures is possible by using UV and circular dichroism 

data obtained by organic reaction based optical sensing with a single achiral probe. The 

demonstrated practicality and speed of chemometric analysis based data fusion and spectral 

deconvolution of quaternary and octonary samples are expected to largely alter how chiral 

compound development and analysis tasks are solved and bears potential to streamline the 

workflow in numerous academic and industrial laboratories.  

Results and Discussion 

Organic reaction based chirality sensing  

At the onset of this study, we selected 1-phenylethylamine (PEA), 1-(pyrrolidin-2-

ylmethyl)pyrrolidine (PMP), phenylglycinol (PGL) and 2-amino-1-phenylpropan-1-ol (PPA) to 

structurally represent frequently encountered chiral amine and amino alcohol drugs, auxiliaries and 

synthetic building blocks. Another important selection criterion was to assemble a challenging 

mixture of similar compounds exhibiting the same functionalities and identical or closely related 

carbon scaffolds that either contain small aromatic moieties or are purely aliphatic (Fig. 3a). These 

chiral analytes are difficult to detect and quantify, even in enantiopure form. In fact, we observed 

negligible UV and CD signals at low wavelengths when 0.083-0.125 mM solutions in 1,2-

dichlorethane (DCE) were analyzed. To enable chiroptical sensing we therefore screened five 

probes that operate on the principles of irreversible covalent chemistry (ICC) or dynamic covalent 

chemistry (DCC). The 4-chloro-3-nitrocoumarin (A) and N-(5-fluoro-2,4-dinitrophenyl)benzamide 

(B) belong to the first group while 2,4-dinitrobenzaldehyde (C), salicylaldehyde (D) and ninhydrin 

(E) undergo reversible Schiff base or acetal formation.26-29 Regardless of their operational mode, all 

five probes react quickly with the target compounds at room temperature and thus introduce a 

strong chromophore close to the chiral center (Fig. 3B). This allows optical visualization through an 

operationally simple mixing protocol that does not require any precautions as exposure to air and 

moisture does not interfere with the sensing chemistry. Another noteworthy feature is that these 

probes do not generate a new chiral center which avoids increasing molecular and analytical 

complexity that would arise from the formation of diastereomeric species. The suitability of these 

probes for the daunting task of combined concentration and er analysis with multinary compound 

mixtures was first assessed individually with (S)-PEA, (S)-PMP, (S)-PGL and (1R,2S)-PPA, 
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respectively (Fig 3B and SI). We found that the coumarin probe A generates distinct CD signals 

with all four analytes and particularly strong Cotton effects with the amines PEA and PMP. The 

substrate binding to A also produces characteristic UV changes that in all cases are quite different 

from the original UV signature of this sensor. The optical sensing with the other probes showed less 

promise due to striking similarities and in some cases considerable signal overlapping across the 

whole spectral range from 250 to 450 nm. For example, optical visualization of PEA, PGL and 

PPA with B gave essentially identical UV spectra. The CD effects were also unsatisfactory. While 

we measured strong CD signals upon binding of (S)-PMP, the signal induction for (1R,2S)-PPA 

was very weak, and (S)-PEA and (R)-PGL, which only differ by the presence of the terminal 

alcohol group but otherwise share the same 3D carbon scaffold, gave superimposable spectra.30 

Similar problems, i.e. considerable spectral overlap across the 250 to 450 nm region, were 

encountered with probes C, D and E which underscores the difficulty of the molecular and chirality 

recognition tasks with the selected amines and amino alcohols. In fact, the aromatic aldehyde 

sensors C and D are only applicable to analytes with a primary amino group and fail to generate a 

CD signal with the enantiomers of PMP which cannot form a Schiff base. Altogether, this clearly 

pointed towards coumarin A as the optimal chiroptical sensor choice. In order to validate the utility 

of this probe, we applied it to each enantiomer under identical conditions (Fig. 3c). As expected, we 

obtained opposite induced CD (ICD) signals for the enantiomeric pairs which we anticipated can be 

used for the determination of the enantiomeric ratio (er). The individual UV changes described 

above were predicted to correlate with the total concentration of each target compound because this 

optical response is essentially the same for either enantiomer and independent of the er.  
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Figure 1. a) Structures of the target compounds with inherently negligible optical activity. CD and 

UV spectra of (S)-PEA, (S)-PMP, (S)-PGL and (1R,2S)-PPA were recorded in 1,2-dichloroethane 
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(DCE) at 0.125 mM and 0.083 mM, respectively. Chiroptical sensing agents operating based on 

irreversible covalent chemistry (ICC type) and dynamic covalent chemistry (DCC).  b) Molecular 

recognition principles and induced UV and CD spectra. Sensing with A: UV 0.094 mM, CD at 

0.042 mM in DCE; B: UV 0.083 mM, CD at 0.021 mM in CHCl3; D: UV 0.062 mM, CD at 0.125 

mM in DMSO. c) ICD sensing with all enantiomeric pairs using A, all measurements were taken at 

0.094 mM in DCE. d) Sensing of equimolar mixtures containing nonracemic PEA and PMP with 

A. The reactions were performed at 12.5 mM in DCE and CD measurements were taken at 0.075 

mM in the same solvent.  

 

Quantitative chirality sensing based on complementary CD induction  

Our first inspection of the CD responses generated by sensing with A revealed that the spectra 

produced with the four analytes would largely overlap with the exception of PEA and PMP, at least 

at two wavelengths (Figure 1d). The ICDs of the enantiomeric PMP-A adducts display x-axis 

intercepts at 340 nm, a wavelength at which the PEA-A enantiomers show relatively strong CD 

responses. By contrast, the enantiomeric PEA-A adducts are CD-silent at 400 nm which is close to 

a local ICD maximum produced by coumarin sensing of (R)- or (S)-PMP. We envisioned that this 

should present a rare opportunity for concomitant er sensing of these two amines in a single sample 

unless there is interference with the derivatization step or the chiroptical amplification.31 We 

prepared ten mixtures containing equimolar amounts of PEA and PMP in largely varying 

enantiomeric compositions for sensing with A. The CD responses of this probe at 340 and 400 nm 

in the corresponding spectra were then used for linear regression analysis. We found perfectly linear 

correlations between the ICD amplitudes generated by A and the enantiomeric compositions of the 

two amines which allowed accurate er analysis while the absolute configuration of the major 

enantiomer was determined by comparison of the (+/-)-sign of the ICD with a reference sample. For 

example, the er’s of a sample containing the (R)- and (S)-enantiomers of PMP and PEA in 

70.0:30.0 and 100.0:0.0 ratios, respectively, were determined as 70.4:29.6 and 97.3:2.7 (Fig. 1d, 

Table entry 3). In another case, the sensing of a sample composed of 20.0:80.0 and 80.0:20.0 of the 

(R)- and (S)-enantiomers of PMP and PEA gave 20.4:79.6 and 83.8:16.2 (entry 5). All chiroptical 

sensing results are within a relatively small absolute error margin of less than 4% which is generally 

acceptable, in particular in high-throughput screening applications where error margins of 5-10% 

have been considered satisfactory.9,32 These initial studies demonstrated to us the suitability of the 

coumarin probe A for sensing of the absolute configuration and er of mixtures of PEA and PMP. 

This chiroptical assay is very practical, fast (it is complete within 15 minutes), yields strong ICD 

effects that increase linearly with the analyte er, and it does not show any chemical interferences. A 

scenario in which complementary CD responses at carefully selected wavelengths are generated 
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during sensing of two analytes as depicted above, however, is rare and the traditional chiroptical 

data handling applied is not suitable for samples of which the enantiomeric compositions and 

analyte concentrations are unknown because both affect the observable CD induction. We therefore 

resorted to investigating chemometric tools for such a task.33 

 

Figure 2. a) Multidimensional complexity of a quaternary mixture of the individual enantiomers of 

PEA and PMP in varying concentration and enantiomeric composition. The dependence of the 

induced CD signal on the sample concentration and enantiopurity is shown exemplarily for PMP in 
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a 3D plot. The convoluted UV and CD spectra of five samples and the reconstituted spectra were 

subjected to PCA analysis; A is the m x n matrix. U is the Eigenvector of ATA. VT is the 

Eigenvector of AAT. Σ contains the square roots of the Eigenvalues. b) Heat map for the 16 training 

sets and the 5 samples: Color corresponds to the absolute error of predicted [mM] versus actual 

[mM]. The sensing-chemometrics analysis results are compared to the actual data in the stacked 

column chart. 

 

Chemometric concentration and enantiomeric ratio determination with quaternary mixtures 

Traditional univariate CD sensing of chiral compounds allows quantification of the enantiomeric 

sample composition if the total concentration is known or experimentally determined with a 

separate technique. This can, for example, be achieved with UV spectroscopic analysis as is often 

the case when chiroptical methods are used because modern circular dichroism spectrophotometers 

generate CD and UV spectra in parallel. When the analyte concentration, i.e. the total amount of 

both enantiomers, is known the measured CD amplitude at a given wavelength - preferentially 

where the CD spectrum has a maximum - can be directly correlated to the enantiomeric ratio (er) 

with the help of a calibration curve. In special cases, complementary pairs of induced CD spectra 

are obtained during sensing of mixtures of two chiral compounds as shown above. If the total 

concentrations of the chiral targets are known one can use the CD values at carefully selected 

wavelengths where only one of the analytes contributes to the chiroptical sensor response to 

quantify the enantiomeric ratios of each compound step-by-step. A more typical analytical scenario, 

however, is that compound concentrations and enantiomeric ratios vary and need to be determined. 

To this end, it is important to take into consideration that sensing of two samples with different 

concentration (or enantiomeric ratio) but the same enantiomeric ratio (or concentration) are likely to 

yield completely different CD outputs. In addition, spectra of compound mixtures are often highly 

convoluted which precludes univariate analysis. Because both the er and the concentration affect 

the CD signals induced by the sensor the chiroptical analysis becomes a complicated multivariate 

problem with substantially overlapping spectra that cannot be solved by traditional approaches (Fig. 

2a). Univariate optical sensing also suffers from other drawbacks that limit its utility. The restriction 

to single wavelength analysis discards most information contained in the spectrum. For example, if 

an induced CD spectrum consists of 250 data points, using only a single wavelength for linear 

regression analysis exploits just 0.4% of the whole spectral information while the remaining 99.6% 

are literally ignored, which makes it more susceptible to chemical and optical interferences.  

Since the absolute configuration, enantiomeric ratio and concentration of chiral compound 

mixtures that generate highly convoluted chiroptical spectra cannot be comprehensively determined 

by single-wavelength analysis, we resorted to chemometric tools which have become increasingly 
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popular for processing of large data sets that overwhelm traditional data handling approaches.34 In 

multivariate analysis multiple independent variables are considered to minimize information loss 

and possible interference from spectral noise. We therefore decided to apply multivariate 

chemometric sensing to quaternary mixtures containing the enantiomers of PEA and PMP in 

varying concentrations and enantiomeric ratios (Fig. 2a). In full spectrum analysis, the number of 

independent variables (the number of CD and UV data points included, e.g. the whole range from 

250 to 450 nm) is typically larger than the number of dependent variables (how many samples are in 

a training set), and simple ordinary least square methods without prior dimensionality reduction 

cannot be used.  A useful approach to full spectrum analysis is Latent Variable Multivariate 

Regression (LVMR), where the dimensionality of the data is reduced and regression is then applied 

to model the relationship between the dependent and independent variables.  When data are reduced 

to a lower dimension, one concern is information loss. To examine this with quaternary chiral 

compound mixtures, we applied principal component analysis (PCA) to the convoluted UV and CD 

spectra obtained with our coumarin sensing assay. PCA is an unsupervised dimensionality reduction 

technique that projects large data sets into smaller ones, called principal component (PC), in a way 

that maximizes the variance, i.e. the overall variability of the data. Figure 2 contains an illustration 

of how PCA can transform a 2D plot with correlated data points into one dimension. PCA is very 

useful for large, collinear data sets, like those obtained in UV and CD spectroscopy, where the 

independent variables are continuous and therefore highly correlated. Using PCA, we were able to 

reduce the convoluted CD and UV spectra obtained by our chiroptical sensing assay to four PCs and 

then reconstructed the spectra via inverse transformation (Fig. 2a and SI). Plotting of the original 

and the reconstructed spectra revealed almost perfect overlap, demonstrating that there is minimal 

information loss after reducing the dimensionality of the original spectral data. In other words, most 

of the information contained across the whole spectrum range is conserved in the PC.  

One simple yet powerful LVMR method is Principal Component Regression (PCR), which is a 

multivariate calibration technique that combines PCA with Ordinary Least Squares (OLS) 

principles. We constructed a regression model using PCR with 16 training sets and 5 test sets (Fig. 

2b). First, PCA treatment of the UV and CD spectra allowed us to reduce the dimensionality into 4 

PCs, and then OLS was applied to model the analyte concentrations using the PCs as independent 

variables. Cross-validation was performed on the training sets to evaluate how well the model can 

be applied to new data (SI). The heatmap in Fig. 2b displays how accurately the algorithm predicts 

the quaternary sample compositions. The actual millimolar concentrations of the enantiomers of 
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PEA and PMP are given in each box while the colors correspond to the sensing accuracy. The 

green color indicates a relatively small absolute deviation of less than 0.5 mM that increases up to 

1.5 mM represented by yellow coloring. The PCR algorithm used shows excellent overall 

performance (averaged R2=0.94 and RMSE=0.52 during cross-validation; averaged R2=0.99 and 

RMSE=0.17 for the test sets, see SI for details), and the successful correlation between all actual 

and predicted concentration values as depicted in the scatterplot in Fig. 2b underscores the general 

utility. We like to point out that with a trained model in hand the PCR test sample analysis, 

programmed in Python or another programming language (R, Matlab, etc), is completed within 

seconds using a simple desktop computer. A detailed comparison between the actual and the 

predicted individual concentrations of the four chiral compounds in the five test sets is visualized in 

the stacked column chart which shows that the results obtained with our chemometric coumarin 

sensing analysis are very close to the original sample compositions. Altogether, this demonstrates 

reliable determination of absolute configuration, er and concentration of complicated quaternary 

mixtures by a straightforward chemometric sensing protocol. For example, the concentrations of the 

PEA and PMP enantiomers in the test sample #4 were 3.75 mM for (R)-PEA, 1.25 mM for (S)-

PEA, 11.25 mM for (R)-PMP and 3.75 mM for (S)-PMP, which compares well with the 

chemometrically predicted concentrations of 3.82 mM, 1.32 mM, 11.35 mM and 3.51 mM, 

respectively. As expected, the error of chemometric chirality sensing of samples with low 

enantiomeric ratios or even racemates is increased due to weaker induced CD signals with higher 

signal-to-noise ratio. This is exemplified by the training set #13 containing equimolar amounts of 

both enantiomers of PEA and PMP at 5.50 and 4.50 mM, respectively. The absolute errors were 

determined as 1.65 mM for (R)-PEA, 1.13 mM for (S)-PEA, 0.51 mM for (R)-PMP, and 1.04 mM 

for (S)-PMP as indicated by the light green to yellow colors in the heat map. This contrasts with the 

training set #16 containing enantiopure (R)-PEA and (R)-PMP at 7.00 and 13.00 mM, respectively, 

and thus producing relatively strong ICD signals upon reaction with the coumarin probe. In this 

case, the absolute errors are only 0.08 mM for (R)-PEA, 0.29 mM for (S)-PEA, 0.28 mM for (R)-

PMP and 0.00 mM for (S)-PMP. 

 

Multi-modal optical chirality sensing of octonary samples 

Finally, we decided to attempt chemometric sensing of octonary chiral compound mixtures by 

exploiting multi-modal analysis tools that are capable of processing multivariate data sets from 

complementary measurements. As explained above, we anticipated highly convoluted spectra 
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because of the structural similarity of PEA, PMP, PGL and PPA, which were intentionally chosen 

to allow evaluation of the capabilities, limitations and robustness of chemometric organic reaction 

based chiroptical sensing. We realized early on that this increasingly complicated task could not be 

adequately performed by traditional methods and would instead require adaptation of multiblock 

chemometrics which, for example, have been successfully used to integrate Raman and IR spectral 

data sets for comprehensive materials characterization.35,36 To obtain multi-modal data we favored a 

practical solution that is based on essentially the same chiroptical sensing procedure with coumarin 

A described above but in different solvents. The CD and UV sensing spectra of octonary mixtures 

of the enantiomers of PEA, PPA, PGL and PMP were collected in dichloroethane and methanol, 

respectively, with the expectation that these solvent choices would induce distinguishable 

chiroptical coumarin responses due to variance in intramolecular hydrogen bonding and altered 

conformational equilibria (Fig. 3a). Our initial optical sensing analysis proved very promising and 

showed that this can indeed increase spectral information. For example, we observed very similar 

UV spectra by coumarin sensing of PEA and PPA in MeOH which turned strikingly different when 

dichloroethane was used as solvent. As expected, the ICD spectra obtained with PMP in these two 

solvents are very similar, presumably because PMP-A does not exhibit an intramolecular hydrogen 

bond which largely reduces the solvent dependence of the CD readout. By contrast, the coumarin 

derivatives of the other compounds, in particular PEA-A and PPA-A, display significant ICD 

modifications as the solvent is changed (Fig. 3a and SI).  

First, octonary mixtures were subjected to coumarin sensing and traditional PCA and PLS 

modeling. Reconstruction of the UV and CD spectra showed minimal data loss (Fig. 3b and SI). We 

then used two multiblock algorithms, MBPCA and MBPLS, for regression analysis of the octonary 

mixtures. MBPCA and MBPLS are the multiblock versions of PCA and PLS, respectively, and both 

algorithms aim to increase interpretability of multivariate models. For both cases, the 

interpretability is exemplified by the block loadings that inform how much individual wavelengths 

contribute to the latent variable/principal components LV1-4 or PC1-4 (Fig. 3b and SI). 

Interestingly, both algorithms select similar wavelength intervals with the strongest contributions 

for the first LV and PC, respectively, i.e. 270-320 nm and 360-430 nm for CD; 270-330 nm and 

400-450 nm for UV. Evaluation of the block importance in MBPLS analysis of (R)-PEA revealed 

that the CD data contribute 64% to LV1, a general trend also observed with the other compounds 

(see pie charts in Fig. 3b and SI). For the first and second latent variable, the strongest contributions 

come from CD data in MeOH and DCE while the third and fourth latent variable largely depend on 
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UV data obtained in DCE. In order to maximize accuracy and minimize overfitting at the same 

time, the optimal number of latent variables/principal components having the smallest RMSE was 

determined by leave-one-out cross-validation (LOOCV). For example, three and four LVs were 

used for the analysis of (S)-PMP and (R)-PEA, respectively (Fig. 3b and SI). We were pleased to 

find that the results obtained by multiblock chemometric analysis of six randomly prepared 

octonary chiral mixtures were in excellent agreement with the actual sample compositions. 

Averaged R2 and RMSE values for all set samples were determined as 0.96 and 0.26-0.28, 

respectively (see Fig. 3b and SI). For example, the test set #1 contained 4.13 mM (R)-PMP, 1.38 

mM (S)-PMP, 3.38 mM (R)-PEA, 1.13 mM (S)-PEA, 3.38 mM (1R, 2S)-PPA, 1.13 mM (1S, 2R)-

PPA, 4.13 mM (R)-PGL, and 1.38 mM (S)-PGL. As shown in the Table, MBPLS analysis of the 

coumarin sensing data predicted 4.06 mM (R)-PMP, 1.29 mM (S)-PMP, 3.30 mM (R)-PEA, 1.29 

mM (S)-PEA, 3.30 mM (1R, 2S)-PPA, 1.33 mM (1S, 2R)-PPA, 4.07 mM (R)-PGL, and 1.30 mM 

(S)-PGL. Meanwhile, MBPCA + OLS predicted 3.98 mM (R)-PMP, 1.40 mM (S)-PMP, 3.62 mM 

(R)-PEA, 1.00 mM (S)-PEA, 3.62 mM (1R, 2S)-PPA, 1.00 mM (1S, 2R)-PPA, 3.98 mM (R)-PGL, 

1.40 mM (S)-PGL (see SI). As an alternative to multiblock analysis, we also investigated a 

combination of Least Absolute Shrinkage and Selection Operator (LASSO) which allows variable 

selection and traditional chemometric PCR and PLS regression. The benefit of this approach is that 

variable selection can improve performance and interpretability of the model as irrelevant and noisy 

spectroscopic data are removed (see SI for details including optimization of lambda values for each 

analyte).37 Although this proved quite successful, a closer inspection of the overall performance of 

all chemometric tools developed herein shows that the multiblock methods give superior results. 

Finally, we compared the effects of different scaling methods. We found that unit variance and 

multiblock scaling give results that generally have comparable error margins. The chemometric data 

obtained with unit variance scaling are shown in Figure 3 and are discussed above. The results 

acquired with hard and soft block scaling using either LASSO+PCR or MBPLS for the regression 

analysis are provided in the SI. 
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Figure 3. a) Representation of a complex octonary chiral compound mixture and individual 

coumarin UV/CD responses for each chiral analyte in MeOH and DCE. b) Top: The convoluted UV 

and CD spectra of five samples were subjected to PCA and PLS analysis and the reconstituted 

spectra were generated using inverse transformation. Results with two samples are shown, see SI 

for all samples. Middle: Representative MBPCA and MBPLS block loadings for CD and UV 

spectra in DCE for (R)-PEA. Bottom: Averaged LOOCV RMSE of the training sets vs. number of 

latent variables for (R)-PEA and (S)-PMP. The pie charts display the MBPLS block importance of 
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4 latent variables for (R)-PEA. The table shows the comparison of the octonary sensing results 

obtained with MBPLS for six test samples and the actual concentrations.  

 

Conclusion 

In summary, we have introduced organic reaction based multi-modal optical chirality sensing 

methodology and chemometric tools capable of orthogonal data fusion and spectral deconvolution 

to achieve stereochemical analysis of complicated mixtures of structurally analogous and therefore 

particularly challenging chiral target compounds. Reduction of the sensing data dimensionality 

coincides with minimal information loss as verified by accurate reconstruction of the original 

spectra thus setting the stage for efficient multiblock regression analysis. The practicality and speed 

of this approach were demonstrated with the determination of the absolute configuration, 

enantiomeric ratios and individual concentrations of quaternary and octonary samples with 

drastically varying chemical and chiral compositions. The successful development of 

straightforward chemometric in situ chirality sensing methodology using a simple achiral probe and 

an optimized MBPLS algorithm described herein overcomes major obstacles originating from the 

difficulty with quantitative deconvolution of a massive amount of spectroscopic data that are 

generated by simultaneous detection of several chiral analytes and the low resolution of inherently 

broad and largely overlapping CD and UV absorption bands, a complexity that has not been solved 

previously. In the future, it seems likely that the integration of chiroptical sensing and chemometric 

technologies will supersede traditional chirality analysis workflows and drastically accelerate the 

discovery pace in numerous academic and industrial settings.  
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