
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. OPTIM. © 2021 Society for Industrial and Applied Mathematics
Vol. 31, No. 4, pp. 2586--2613

A NEWTON ALGORITHM FOR SEMIDISCRETE OPTIMAL
TRANSPORT WITH STORAGE FEES\ast 

MOHIT BANSIL\dagger AND JUN KITAGAWA\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We introduce and prove convergence of a damped Newton algorithm to approximate
solutions of the semidiscrete optimal transport problem with storage fees, corresponding to a problem
with hard capacity constraints. This is a variant of the optimal transport problem arising in queue
penalization problems and has applications to data clustering. Our result is novel, as it is the
first numerical method with proven convergence for this variant problem; additionally, the algorithm
applies to the classical semidiscrete optimal transport problem but does not require any connectedness
assumptions on the support of the source measure, in contrast with existing results. Furthermore we
find some stability results of the associated Laguerre cells. All of our results come with quantitative
rates. We also present some numerical examples.
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1. Introduction.

1.1. Semidiscrete optimal transport with storage fees. In this paper, we
deal with the following problem. Let X \subset \BbbR n, n \geq 2, be compact and Y := \{ yi\} Ni=1 \subset 
\BbbR n be a finite collection of fixed points, along with a cost function c : X\times Y \rightarrow \BbbR and
a storage fee function F : \BbbR N \rightarrow \BbbR . We also fix a Borel probability measure \mu with
spt\mu \subset X and assume \mu is absolutely continuous with respect to Lebesgue measure.
The semidiscrete optimal transport with storage fees is then to find a pair (T, \lambda ) with

\lambda = (\lambda 1, . . . , \lambda N ) \in \BbbR N and T : X \rightarrow Y measurable satisfying T\#\mu =
\sum N
i=1 \lambda 

i\delta yi ,
such that\int 

X

c(x, T (x))d\mu + F (\lambda ) = min
\~\lambda \in \BbbR N , \~T\#\mu =

\sum N
i=1

\~\lambda i\delta yi

\int 
X

c(x, \~T (x))d\mu + F (\~\lambda ).(1.1)

In [BK19], the authors have shown under appropriate conditions the existence of
solutions to the problem with storage fees, along with a dual problem with strong
duality, and a characterization of dual maximizers and primal minimizers. It is not
difficult to see that an optimal T can be constructed via a \mu -a.e. partition of the
domain X which is induced by a maximizing dual potential. The cells forming such
a partition are known as Laguerre cells (see Definition 2.3).

To contrast, the classical (semidiscrete) optimal transport problem would be to fix
a discrete probability measure \nu supported on Y , and to find a measurable mapping
T : X \rightarrow Y such that T\#\mu (E) := \mu (T - 1(E)) = \nu (E) for any measurable E \subset Y , and
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NEWTON FOR OPTIMAL TRANSPORT WITH STORAGE FEES 2587

T satisfies \int 
X

c(x, T (x))d\mu = min
\~T\#\mu =\nu 

\int 
X

c(x, \~T (x))d\mu ,(1.2)

and it is easy to see that the classical problem is a special case of the problem with
storage fees above (see the paragraph below).

In this paper, we propose and show convergence of a damped Newton algorithm,
when the storage fee function is of the form

F (\lambda ) = Fw(\lambda ) :=

\Biggl\{ 
0, \lambda \in 

\prod N
i=1[0, w

i],

+\infty else,
(1.3)

where w = (w1, . . . , wN ) \in \BbbR N is some fixed vector with nonnegative components.
The minimization (1.1) with this choice of F corresponds to a problem where the ith
target point has a hard capacity constraint given by wi with no other associated cost
of storage. It is clear that if w satisfies

\sum N
i=1 w

i = 1, the solution of the problem
with storage fees solves the classical optimal transport problem with target measure
\nu =

\sum N
i=1 w

i\delta yi , and hence this variant includes the classical case.

1.2. Contributions of the paper. The major novelties of our algorithm are
mainly the following three aspects. First, this is the first algorithm available for
problems with storage fees. Second, our method applies to classical optimal transport
where the source measure does not satisfy a Poincar\'e--Wirtinger inequality, which is
a crucial condition in existing results such as [KMT19]. Third, we give explicit errors
on the geometric structures arising in the approximations generated by our algorithm.

We introduce some preliminary notions in section 2 to state our damped Newton
algorithm; as such, we defer the precise statements of our main theorems to section
2, along with the outline for the remainder of the paper. In Theorem 2.6, we show
that the above-mentioned damped Newton algorithm has global linear convergence
and local superlinear convergence. The algorithm applies to a relaxed version of the
original problem depending on two parameters h and \epsilon > 0. We note that the rates
of convergence and basin of attraction for the local superlinear convergence depend
on these parameters and degenerate as they approach 0. In Theorems 2.11 and 2.14,
we utilize the results of [BK20] to show explicit convergence rates for the Laguerre
cells in terms of both the \mu symmetric difference and the Hausdorff distance. This
convergence is shown in terms of these parameters h and \epsilon . Our result is a significant
improvement over [KMT19] by the second author, in that the algorithm applies to
the wider class of problems with storage fees, but also because the convergence of the
algorithm is shown without a connectedness assumption on the support of the source
measure (see Remark 2.13 below). It should also be noted that the convergence proof
is not a straightforward application of the analysis in [KMT19].

1.3. Literature analysis. Optimal transport with storage fees first appears
in [CJP09] in urban planning related to the queue penalization problem. The problem
also corresponds to the ``lower level problem"" in the bilevel location problem which is
well studied in logistics and operations research; see, for example, [WZZ06, LOE12,
MPdN17]. This interpretation is also related to a problem of monopolistic pricing
analyzed in [CM18]. Additionally, the ``lower level problem"" can be seen as a toy
model for data clustering, where the set of data is very large and approximated by
an absolutely continuous measure, and each cluster has a hard upper bound on size.
These are a few of the potential applications of the optimal transport problem with
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2588 MOHIT BANSIL AND JUN KITAGAWA

storage fees, and we emphasize that this paper provides the first numerical method
for this problem.

For the classical optimal transport problem (see [PC19] for an excellent over-
view), there are now many numerical methods. We briefly mention three popular
approaches: entropic regularization, discretization schemes for solving the Monge--
Amp\`ere equation with the second boundary value condition, or approximation of a
semidiscrete problem.

Entropic regularization is accomplished by adding the relative (Shannon) entropy
with respect to the tensor product of the source and target measures to the objective
functional in the measure valued (Kantorovich) problem, to act as a regularizing term.
Numerically, the problem can be solved using the Sinkhorn algorithm (first done for
optimal transport by Cuturi [Cut13]). This is generally a fast and parallelizable
method: when transporting between two discrete measures supported on N points
each, the Sinkhorn algorithm finds approximations with total transport cost within

\epsilon of the true value in O(N
2 logN
\epsilon 3 ) operations (see [AWR17]). However, the entropic

regularization method has the disadvantage that solutions of the regularized problem
are only known to converge in a weak sense to the true solution (weak convergence of
measures; see [CDPS17]) with no explicit convergence rates. Although our proposed
method here differs in the exact mechanism, it shares a kindred spirit with entropic
regularization in the following sense: both methods are based on adding a barrier
term to the original functional, which turns the problem into a strictly convex one
and simultaneously adds a constraint shrinking the feasible domain for the objective
functional. In the case of entropic regularization, transport plans that are singular
with respect to the reference measure are forbidden, while in our case, plans where
the second marginal exceeds some bound on the mass are forbidden.

For absolutely continuous source and target measures, the solution of the optimal
transport problem can be constructed by solving a PDE of Monge--Amp\`ere type with
the second boundary value condition. Finite difference schemes for the Monge--Amp\`ere
operator with these boundary conditions have been investigated by Benamou, Froese,
and Oberman; in [Obe08, FO11a, FO11b, BFO14], they show that various schemes
are monotone, stable, and consistent, and hence approximations converge uniformly
to a viscosity solution of the PDE (via Barles and Souganidis [BS91]). This approach
applies to problems with absolutely continuous measures, and some of the schemes
mentioned are robust for singular solutions of the PDE. However, no explicit conver-
gence rates are available for these methods in the optimal transport case ([NZ19] gives
quantitative rates for the Dirichlet problem assuming higher regularity of solutions).
Also, stencils need to be modified near the boundary for these schemes, which is dif-
ficult for complicated geometries. Last, convexity of solutions is essential, and hence
these schemes are limited to the ``classical"" Monge--Amp\`ere case, c(x, y) = \| x - y\| 2.

The method we use is based on the duality theory for semidiscrete transport prob-
lems. By Brenier's theorem [Bre91], solutions of the semidiscrete optimal transport
problem can be constructed from a finite envelope of a certain family of functions de-
pending on the cost (when c(x, y) = \| x - y\| 2, the family is affine functions). For the
classical Monge--Amp\`ere equation, this construction goes back to Aleksandrov [Ale05].
The papers [CKO99, Kit14, AG17] propose a non-Newton type iterative method, the
last result being applicable to generated Jacobian equations, a class more general than
optimal transport. These results give an upper bound on the number of iterations

necessary but are slower with a bound of O(N
4

\epsilon ) steps for an error \epsilon > 0 with target
measure supported on N points.
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NEWTON FOR OPTIMAL TRANSPORT WITH STORAGE FEES 2589

The first use of a Newton method with this envelope construction appears to
be [OP88] for a semidiscrete Monge--Amp\`ere equation with a Dirichlet boundary con-
dition; there, local convergence is proved, and global convergence was later shown
in [Mir15], their setting is for weak solutions of Aleksandrov type, generally different
from optimal transport solutions. For the classical optimal transport problem, the
authors of [AHA98] observed that finding the optimal map is equivalent to extremiz-
ing the so-called Kantorovich functional; [M\'er11] observed good empirical behavior of
Newton type methods for this problem (but without convergence proofs). A damped
Newton method is used for the quadratic cost on the torus in [LR05, SAK15] with
proofs of convergence based on regularity theory of the Monge--Amp\`ere equation due
to Caffarelli [Caf92]. In [KMT19], a damped Newton algorithm is proposed that
applies to a wider class of cost functions, and global linear and local superlinear con-
vergence for H\"older continuous source measures is proved. A key assumption is that
the source measure satisfies a Poincar\'e--Wirtinger inequality, a quantitative connec-
tivity assumption on the support (see also [MMT18]). Advantages of the semidiscrete
approach is that it produces exact solutions to some transport problem, and some
methods can be applied to a wide variety of cost functions other than the quadratic
distance cost. Additionally, directly solving a semidiscrete problem has one advan-
tage over considering a sequence of purely discrete approximations, as it is currently
not well known how much error is introduced in optimal transport problems by dis-
cretization of the source measure. It is true that Newton based methods generally
require the computation of associated Laguerre cells (see Definition 2.3), which is a
computationally difficult problem. In the case when c(x, y) = \| x  - y\| 2, there are
efficient methods available (see, for example, [L\'ev15]). Outside of this quadratic cost
function, the choice of cost c(x, y) =  - log(1 - \langle x, y\rangle ) on \BbbS 2 \times \BbbS 2 yields Laguerre cells
which are intersections of quadratic cells with the unit sphere, and hence the method
of [L\'ev15] can also be used to efficiently calculate the associated Laguerre cells; this
cost function satisfies the structural conditions (Reg), (Twist), and (QC), which are
crucial for proving convergence of Newton methods, and arises when modeling the
far-field reflector problem in geometric optics [Wan04].

Finally, we mention that there is some relation to the unbalanced optimal trans-
port problem first introduced in [KMV16, LMS16, CPSV18b]. In [CPSV18a, Corol-
lary 5.9], a formulation of the unbalanced optimal transport metric is given which has
some resemblance to the optimal transport problem with storage fees, where essen-
tially the storage fee function is replaced by the Kullback--Leibler divergence of the
marginals of the coupling under consideration against the source and target measures.
See also [LMS18].

1.4. Strategy of proof and obstacles. For our algorithm, we first replace
the storage fee Fw by a uniformly convex regularization. Then we apply a damped
Newton method to a function that is related to (but not exactly equal to) the gradient
of the associated dual problem. One reason that we do not apply Newton directly to
the gradient of the dual problem is to keep better track of the error introduced by
our regularization; see Remarks 2.7 and 2.15 for more details.

We try here to explain how we originally arrived at this formulation. There are
a number of difficulties that prevent a direct translation of the damped Newton al-
gorithm from [KMT19] to the problem with storage fees. First, in the classical case

one fixes a discrete target measure \nu =
\sum N
i=1 \lambda 

i\delta yi , and the Newton algorithm is used
to approximate the weight vector \lambda = (\lambda 1, . . . , \lambda N ). However, in our problem with
storage fees, the weight vector \lambda itself must be chosen as part of the minimization and
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2590 MOHIT BANSIL AND JUN KITAGAWA

hence is not fixed, and thus it is not even a priori clear what quantity to approximate
with a Newton algorithm. Additionally, unlike the classical problem, it is possible
that \lambda i = 0 for one or more of the entries in an optimal choice for the weight vector,
but the algorithm from [KMT19] uses the assumption that all \lambda i have strictly posi-
tive lower bounds in a crucial way to obtain the convergence. To remedy these issues,
we will first approximate the storage function Fw: we will use the characterization
for solutions found in [BK19] to find approximating storage functions \~Fw, along with
minimizers of the problem (1.1) with F = \~Fw. However, a second difficulty arises
as the functions of the form Fw have both highly singular behavior in their subdif-
ferentials at the boundary of their effective domains, while being nonstrictly convex
everywhere. Thus, we will further replace functions of this form with uniformly con-
vex, smooth approximations. This procedure turns out to have a regularizing effect
on the problem, which allows us to obtain convergence without the aforementioned
connectedness assumption as in [KMT19] (see also Remark 2.7). At this point, we
found that fixing one particular regularization, we were unable to control the error
introduced by the magnitude of the regularization. However, we discovered that we
can also keep track of this error by allowing the regularization itself to vary and be
updated over the course of our Newton method, which led to the final incarnation of
Algorithm 1.

Concerning the proof of the convergence of the Laguerre cells, we first prove
Lemma A.1 on the strong convexity of a functional associated to the semidiscrete
optimal transport problem. We note that the lemma does not require any connectivity
assumption on the support of the source measure. This lemma is then used to control
the difference of the Laguerre cells of the problems associated to \~Fw and those of our
uniformly convex, smooth approximations. From here we are able to apply the results
of [BK20] to obtain the desired convergence.

2. Setup.

2.1. Notation and conventions. Here we gather notation and conventions to
be used in the remainder of the paper. As mentioned above, we fix positive integers N
and n and a collection Y := \{ yi\} Ni=1 \subset \BbbR n. The standard N -simplex will be denoted
by

\Lambda :=

\Biggl\{ 
\lambda \in \BbbR N | 

N\sum 
i=1

\lambda i = 1, \lambda i \geq 0

\Biggr\} 
,

and to any vector \lambda \in \Lambda we associate the discrete measure \nu \lambda :=
\sum N
i=1 \lambda 

i\delta yi . The
notation 1 will refer to the vector in \BbbR N whose components are all 1. We also reserve

the notation \| V \| :=
\sqrt{} \sum N

i=1 | V i| 
2
for the Euclidean (\ell 2) norm of a vector V \in \BbbR N ,

while \| V \| 1 :=
\sum N
i=1

\bigm| \bigm| V i\bigm| \bigm| and \| V \| \infty := maxi\in \{ 1,...,N\} 
\bigm| \bigm| V i\bigm| \bigm| will respectively stand for

the \ell 1 and \ell \infty norms. We also write \| M\| for the operator norm of a matrix M . The
distinction from the Euclidean norm of a vector should be clear from the context.

Given any set A, we write

\delta (\lambda | A) :=

\Biggl\{ 
0, \lambda \in A,
+\infty , \lambda \not \in A,

for the indicator function of the set A, and for any vector w \in \BbbR N with nonnegative
entries, we denote Fw(\lambda ) :=

\sum N
i=1 \delta (\lambda 

i | [0, wi]) = \delta (\lambda | 
\prod N
i=1[0, w

i]). We will also
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NEWTON FOR OPTIMAL TRANSPORT WITH STORAGE FEES 2591

use \scrL to denote the n-dimensional Lebesgue measure and \scrH k for the k-dimensional
Hausdorff measure.

Regarding the cost function c, we will generally assume the following standard
conditions from optimal transport theory:

c(\cdot , yi) \in C2(X) \forall i \in \{ 1, . . . , N\} ,(Reg)

\nabla xc(x, yi) \not = \nabla xc(x, yk) \forall x \in X, i \not = k.(Twist)

We also assume the following condition, originally studied by Loeper in [Loe09].

Definition 2.1. We say c satisfies Loeper's condition if for each i \in \{ 1, . . . , N\} 
there exist a convex set Xi \subset \BbbR n and a C2 diffeomorphism expci (\cdot ) : Xi \rightarrow X such
that

\forall t \in \BbbR , 1 \leq k, i \leq N, \{ p \in Xi |  - c(expci (p), yk) + c(expci (p), yi) \leq t\} is convex.
(QC)

See Remark 2.4 below for a discussion of these conditions.
We also say that a set \~X \subset X is c-convex with respect to Y if (expci )

 - 1( \~X) is a
convex set for every i \in \{ 1, . . . , N\} .

It will be convenient to also introduce c-convex functions and the c- and c\ast -
transforms. In the semidiscrete case, the c\ast -transform of a function defined on X will
be a vector in \BbbR N , while the c-transform of a vector in \BbbR N will be a function whose
domain is X.

Definition 2.2. If \varphi : X \rightarrow \BbbR \cup \{ +\infty \} (\varphi \not \equiv +\infty ) and \psi \in \BbbR N , their c- and
c\ast -transforms are a vector \varphi c \in \BbbR N and a function \psi c

\ast 
: X \rightarrow \BbbR \cup \{ +\infty \} , respectively,

defined by

(\varphi c)i := sup
x\in X

( - c(x, yi) - \varphi (x)), (\psi c
\ast 
)(x) := max

i\in \{ 1,...,N\} 
( - c(x, yi) - \psi i).

If \varphi : X \rightarrow \BbbR \cup \{ +\infty \} is the c\ast -transform of some vector in \BbbR N , we say \varphi is a c-convex
function. A pair (\varphi ,\psi ) with \varphi : X \rightarrow \BbbR \cup \{ +\infty \} and \psi \in \BbbR N is a c-conjugate pair if
\varphi = \psi c

\ast 
and \psi = \varphi c.

Definition 2.3. For any \psi \in \BbbR N and i \in \{ 1, . . . , N\} , we define the ith Laguerre
cell associated to \psi as the set

Lagi(\psi ) := \{ x \in X |  - c(x, yi) - \psi i = \psi c
\ast 
(x)\} .

We also define the function G : \BbbR N \rightarrow \Lambda and the set \scrK \epsilon for any \epsilon \geq 0 by

G(\psi ) : = (G1(\psi ), . . . , GN (\psi )) = (\mu (Lag1(\psi )), . . . , \mu (LagN (\psi ))),

\scrK \epsilon : = \{ \psi \in \BbbR N | Gi(\psi ) > \epsilon \forall i \in \{ 1, . . . , N\} \} .

Remark 2.4. The above conditions (Reg), (Twist), and (QC) are the same ones
assumed in [KMT19]. As also mentioned there, (Reg) and (Twist) are standard in the
existence theory of optimal transport, while (QC) holds if Y is a finite set sampled
from a continuous space, and c is a C4 cost function satisfying what is known as the
Ma--Trudinger--Wang condition (along with an additional convexity assumption on
the domain of c, which we do not detail here). In such a setting, the maps expci (\cdot )
from (QC) can be taken as the inverses of the mappings x \mapsto \rightarrow  - \nabla xc(x, yi). The strong
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2592 MOHIT BANSIL AND JUN KITAGAWA

Ma--Trudinger--Wang condition was first introduced in [MTW05] and in [TW09] in a
weaker form. The condition is also necessary for the regularity theory of the Monge--
Amp\`ere type equation arising in optimal transport; see [Loe09]. The Ma--Trudinger--
Wang condition is known to hold for a relatively large class of cost functions, which
include \| x - y\| 2 and, as mentioned above, the cost  - log(1 - \langle x, y\rangle ) appearing in the
far-field reflector problem. For more examples, see [MTW05, section 6] and [TW09,
section 8].

If \mu is absolutely continuous with respect to Lebesgue measure, under (Twist)
the Laguerre cells associated to different indices are disjoint up to sets of \mu -measure
zero. Then by the generalized Brenier's theorem [Vil09, Theorem 10.28], for any
vector \psi \in \BbbR N it is known that the \mu -a.e. single valued map T\psi : X \rightarrow Y defined by
T\psi (x) = yi whenever x \in Lagi(\psi ) is a minimizer in the classical optimal transport
problem (1.2), where the source measure is \mu and the target measure is defined by
\nu = \nu G(\psi ).

In order to introduce the damped Newton algorithm, we will analyze our problem
(1.1). We must introduce a few more pieces of notation. The motivations for g and
wih,\epsilon will be explained in detail in the following section; the set \scrW \epsilon 0 is to ensure
nondegeneracy of the derivative Dwh,\epsilon , while \Sigma w,h,\epsilon is a normalization to obtain
compactness of our parameter space. These two are related to the fact that the map
G is invariant under translation by multiples of 1 while the map wh,\epsilon as defined below
is not.

Definition 2.5. For h > 0 and \epsilon \geq 0, define g : \BbbR \rightarrow \BbbR and wh,\epsilon : \BbbR N \rightarrow \BbbR N by

g(t) : = 2
\Bigl( 
1 + t2  - t

\sqrt{} 
1 + t2

\Bigr) 
, wih,\epsilon (\psi ) := (Gi(\psi ) - \epsilon )g

\biggl( 
\psi i

h

\biggr) 
.

Also, we write for any \epsilon 0 > 0 and w \in \BbbR N with nonnegative entries,

\scrW \epsilon 0 := \{ \psi \in \BbbR N | wih,\epsilon (\psi ) \geq \epsilon 0 \forall i \in \{ 1, . . . , N\} \} ,

\Sigma w,h,\epsilon :=

\Biggl\{ 
\psi \in \scrK \epsilon | 

N\sum 
i=1

wi =

N\sum 
i=1

wih,\epsilon (\psi )

\Biggr\} 
.

Algorithm 1 Damped Newton's algorithm.

Parameters Fix h, \epsilon > 0, and w \in \BbbR N such that
\sum N
i=1 w

i \geq 1, wi \in [0, 1].
Input A tolerance \zeta > 0 and an initial \psi 0 \in \BbbR N such that

(2.1) \epsilon 0 :=
1

2
min

\Bigl[ 
min
i
wih,\epsilon (\psi 0), min

i
wi
\Bigr] 
> 0.

While \| wh,\epsilon (\psi k) - w\| \geq \zeta 
Step 1 Compute \vec{}dk =  - [Dwh,\epsilon (\psi k)] - 1(wh,\epsilon (\psi k) - w).
Step 2 For each \ell \in \BbbN , let r\ell \in \BbbR be such that \psi k+1,\ell := \psi k + 2 - \ell \vec{}dk + r\ell 1

satisfies \psi k+1,\ell \in \Sigma w,h,\epsilon .
Step 3 Determine the minimum \ell \in \BbbN such that \psi k+1,\ell satisfies\Biggl\{ 

min
i
wih,\epsilon (\psi k+1,\ell ) \geq \epsilon 0,

\| wh,\epsilon (\psi k+1,\ell ) - w\| \leq (1 - 2 - (\ell +1))\| wh,\epsilon (\psi k) - w\| .

Step 4 Set \psi k+1 = \psi k + 2 - \ell \vec{}dk + r\ell 1 and k \leftarrow k + 1.
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We now use the above notation to propose the following damped Newton algo-
rithm to approximate solutions of (1.1). Note that below we do not lose any generality
in assuming wi \leq 1 for each i, as \mu is a probability measure.

We note that there is a unique choice of number r\ell in Step 2 above (see Proposition
4.1). In the implementation that we have used to demonstrate examples in section 6,
we use a bisection method on the function \Phi (\psi , \cdot ) appearing in the proof of Proposition
4.1 to determine r\ell .

We now give some heuristics on our algorithm. For h, \epsilon \geq 0 fixed, define for any
t0 \geq 0 the function \sigma t0,h : \BbbR \rightarrow \BbbR by

\sigma t0,h(t) =

\Biggl\{ 
 - h
\sqrt{} 
t(t0  - t) if t \in [0, t0],

+\infty else
(2.2)

and for any w \in \BbbR N , wi \geq 0, the function Fw,h,\epsilon : \BbbR N \rightarrow \BbbR \cup \{ +\infty \} by

Fw,h,\epsilon (\lambda ) =

N\sum 
i=1

\sigma wi,h(\lambda 
i  - \epsilon ) + \delta (\lambda | \Lambda )(2.3)

=

\left\{      - h
N\sum 
i=1

\sqrt{} 
(\lambda i  - \epsilon )(wi  - \lambda i + \epsilon ), \lambda \in \Lambda \cap 

\prod N
i=1[\epsilon , w

i + \epsilon ],

+\infty else.

It can be seen that Fw,h,\epsilon is a uniformly convex approximation to Fw = Fw,0,0 when
h, \epsilon > 0. Detailed calculations will be deferred to Proposition 3.2 in the following
section, but if \psi \in \BbbR N is a vector such that wh,\epsilon (\psi ) = w, using the results of [BK19]
it can be seen for the map T\psi defined as in Remark 2.4 that the pair (T\psi , G(\psi ))
is the unique solution to the minimization problem (1.1) with storage fee function
given by Fw,h,\epsilon . Thus the algorithm generates a vector \psi and a storage fee function
\~F approximating the original Fw, such that (T\psi , G(\psi )) solves the optimal transport

problem with storage fee \~F . The normalization \psi \in \Sigma w,h,\epsilon at each step in Algorithm
1 is necessary in order to ensure that the magnitude of the error vector wh,\epsilon (\psi k) - w
will actually go to zero.

The main theorem of our paper is the following on convergence of the above
algorithm. Also, see Definition 2.8 below for the notion of a universal constant.

Theorem 2.6. Suppose c satisfies (Reg), (Twist), and (QC). Also suppose X is
a bounded set that is c-convex with respect to Y , \mu = \rho dx for some density \rho \in C0,\alpha (X)

for some \alpha \in (0, 1], and spt\mu \subset X. Then if h \in (0, 1], \epsilon \in (0, 1
2N ), and

\sum N
i=1 w

i \geq 1,
Algorithm 1 converges globally with a linear rate and locally with superlinear rate
1 + \alpha 2.

Specifically, the iterates of Algorithm 1 satisfy

\| wh,\epsilon (\psi k+1) - w\| \leq (1 - \tau k/2)\| wh,\epsilon (\psi k) - w\| ,

where

\tau k := min

\left(  \epsilon 
1

\alpha 2

0 \kappa 
1+\alpha 

\alpha 2

(6N3/2L\~L1+\alpha )
1

\alpha 2 \| wh,\epsilon (\psi k) - w\| N
1

\alpha 2

, 1

\right)  ,

where L and \kappa are as in Proposition 3.3, and \~L \leq C
h18\epsilon 9 for some universal constant

C.
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2594 MOHIT BANSIL AND JUN KITAGAWA

In addition, as soon as \tau k = 1 we have

\| wh,\epsilon (\psi k+1) - w\| \leq 
2L\~L1+\alpha 

\surd 
N\| wh,\epsilon (\psi k) - w\| 1+\alpha 

2

\kappa 1+\alpha 2 .

Remark 2.7. In [KMT19], the goal is to find a root of the mapping G - \beta which
is in fact the gradient of the concave dual functional in the Kantorovich problem. In
contrast, our mapping wh,\epsilon  - w is not the gradient of any scalar function (seen easily,
as Dwh,\epsilon is not symmetric). However, there is a connection between the choice of
wh,\epsilon and the dual problem of our optimal transport problem with storage fees. The
authors have shown in [BK19] that a natural dual problem for (1.1) is to maximize

\BbbR N \ni \psi \mapsto \rightarrow  - 
\int 
X

max
i

( - c(x, yi) - \psi i)d\mu (x) - F \ast (\psi ),(2.4)

where F \ast is the Legendre transform of F . This function is convex, and using [KMT19,
Theorem 1,1], formally the first order condition for a maximum reads as G(\psi ) \in 
\partial F \ast (\psi ), or equivalently \psi \in \partial F (G(\psi )). Under mild conditions, this first order condi-
tion actually characterizes optimality; see [BK19, Theorem 4.7]. This choice of wh,\epsilon is
exactly what guarantees that a root of wh,\epsilon  - w satisfies this first order condition when
F = Fw,h,\epsilon (see Proposition 3.2). See also Remark 2.15 below for further comments
related to this dual problem.

In what follows, it will be possible in theory to obtain the exact dependence of
constants on various quantities involving the storage fee function, the cost function,
the domain, and the density of the source measure by tracing these bounds through
the results of [KMT19]. However, we are most interested in the dependencies on the
parameters h and \epsilon , and thus in the interest of brevity we will introduce the following
terminology. The constants below are the same as those introduced in [KMT19,
Remark 4.1].

Definition 2.8. Suppose c satisfies (Reg) and (Twist), X is a bounded set, c-
convex with respect to Y , \mu = \rho dx for some density \rho \in C0,\alpha (X) for some \alpha \in (0, 1],
and spt\mu \subset X. Then we will say that a positive, finite constant is universal if it has
bounds away from zero and infinity depending only on the following quantities: \alpha , n,
N , \| \rho \| C0,\alpha (X), \scrH n - 1(\partial X), maxi\in \{ 1,...,N\} \| c(\cdot , yi)\| C2(X), and

\epsilon tw := min
x\in X

min
i,j\in \{ 1,...,N\} ,i\not =j

\| \nabla xc(x, yi) - \nabla xc(x, yj)\| ,

C\nabla := max
x\in X,i\in \{ 1,...,N\} 

\| \nabla xc(x, yi)\| 

Cexp := max
i\in \{ 1,...,N\} 

max
\Bigl\{ 
\| expci\| C0,1((expci )

 - 1(X)), \| (expci ) - 1\| C0,1(X)

\Bigr\} 
,

Ccond := max
i\in \{ 1,...,N\} 

max
p\in (expci )

 - 1(X)
cond(D expci (p)),

Cdet := max
i\in \{ 1,...,N\} 

\| det(D expci )\| C0,1((expci )
 - 1(X)),

where cond is the condition number of a linear transformation.

Remark 2.9. Apart from sections 3 and 4, we have written all estimates to keep
as explicit track of N as possible. However, in these two sections doing so is a tedious
exercise; in particular, it would require careful book-keeping of exactly what norms are
being used. We comment that if the collection \{ y1, . . . , yN\} is constructed by sampling
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from a continuous domain Y , and c is a cost function on X \times Y satisfying (Reg),
(Twist), and the Ma--Trudinger--Wang condition (along with appropriate convexity
conditions onX and Y , which we will not detail here), then of the constants introduced
in Definition 2.8, only \epsilon tw will depend on N . In particular, if this is the case, the
dependencies of all universal constants that arise in the paper (apart from that of \epsilon tw)
can be seen to be polynomial in N .

Since Algorithm 1 only produces solutions to an approximating problem, we are
concerned with how close these solutions might be to the solutions of our original
problem. The second and third theorems of our paper show that solutions of (1.1)
with the choice F = F \~w,h,\epsilon are in fact close to the solution of the problem with Fw if
\~w = wh,\epsilon (\psi ) for some dual variable \psi , \~w is close to w, and h, \epsilon are small.

Definition 2.10. If A, B \subset \BbbR n are Borel sets, the \mu -symmetric distance between
them is

\Delta \mu (A,B) := \mu (A\Delta B) = \mu ((A \setminus B) \cup (B \setminus A)).(2.5)

The following theorem gives quantified closeness for Laguerre cells of the ap-
proximating problems to those of the original problem in terms of the \mu -symmetric
distance.

Theorem 2.11. Suppose c satisfies (Reg) and (Twist) and that \mu is absolutely

continuous. Also suppose h > 0, \epsilon \in (0, 1
2N ), and w \in \BbbR N with

\sum N
i=1 w

i \geq 1, wi \geq 0.
Then if \psi h,\epsilon \in \scrK \epsilon and (T, \lambda ) is a pair minimizing (1.1) with the storage fee function
Fw,

\| G(\psi h,\epsilon ) - \lambda \| 1 \leq 2(N\epsilon + \| wh,\epsilon (\psi h,\epsilon ) - w\| 1 + 2N
\sqrt{} 

2CLh)(2.6)

and

N\sum 
i=1

\Delta \mu (Lagi(\psi h,\epsilon ), T
 - 1(\{ yi\} )) \leq 8N(N\epsilon + \| wh,\epsilon (\psi h,\epsilon ) - w\| 1 + 2N

\sqrt{} 
2CLh),(2.7)

where CL > 0 is the universal constant from Lemma A.1.

The above theorem shows the \mu -symmetric distance between the Laguerre cells
generated along the iterates of our algorithm and those of the true, unregularized
problem is controlled by h, \epsilon , and the error \| wh,\epsilon (\psi h,\epsilon ) - w\| 1 which is being minimized
in Algorithm 1.

The final theorem below shows that when a Laguerre cell associated to the prob-
lem with the unregularized problem has nonzero Lebesgue measure, the above close-
ness can be measured in the Hausdorff distance, under an additional connectedness
assumption. Before stating this result, we recall the following definition.

Definition 2.12. If 1 \leq q \leq \infty , a probability measure \mu on X satisfies a (q, 1)-
Poincar\'e--Wirtinger (PW) inequality if there is a constant Cpw > 0 such that for any
f \in C1(X), \bigm\| \bigm\| \bigm\| \bigm\| f  - \int 

X

fd\mu 

\bigm\| \bigm\| \bigm\| \bigm\| 
Lq(\mu )

\leq Cpw\| \nabla f\| L1(\mu ).

We will say ``\mu satisfies a (q, 1)-PW inequality.""
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Remark 2.13. Recall that some kind of connectedness condition on spt\mu is nec-
essary in order to obtain invertibility of the derivative of the map G in nontrivial
directions (see the discussion immediately preceding [KMT19, Definition 1.3]), and a
Poincar\'e--Wirtinger inequality can be viewed as a quantitatively strengthened version
of connectivity which is sufficient for our purposes. In particular, if spt\mu is not con-
nected, \mu cannot satisfy a PW inequality of any kind, and thus the removal of this
condition in Theorem 2.6 represents a significant expansion of admissible measures
compared to [KMT19].

If \rho is bounded away from zero on spt \rho and the support is connected, it satisfies
an ( n

n - 1 , 1)-PW inequality. By scaling, q = n
n - 1 is the largest possible value of q.

We will only use the case of q > 1 in order to obtain quantitative bounds on the
Hausdorff convergence of Laguerre cells, namely for Theorem 2.14. We also remark
that in Theorem 2.14, we can make do with q = 1 if all of the Laguerre cells of the
limit problem have nonzero measure. Below, d\scrH is the Hausdorff distance between
subsets of \BbbR n.

Theorem 2.14. Suppose that c and \mu satisfy the same conditions as Theorem 2.6
and that \mu satisfies a (q, 1)-PW inequality for some q \geq 1. Also suppose h > 0, \epsilon \in 
(0, 1

2N ), and w \in \BbbR N with
\sum N
i=1 w

i > 1, wi \geq 0, and (T, \lambda ) being a pair minimizing
(1.1) with the storage fee function Fw, and \psi \in \BbbR N is such that T\psi = T \mu -a.e.:

1. If \{ hk\} \infty k=1, \{ \epsilon k\} \infty k=1 \subset \BbbR >0, \{ \psi k\} \infty k=1, \psi k \in \scrK \epsilon k , are sequences such that
whk,\epsilon k(\psi k)\rightarrow w, hk \searrow 0, \epsilon k \searrow 0 as k \rightarrow \infty , and \scrL (Lagi(\psi )) > 0, then

lim
k\rightarrow 0

d\scrH (Lagi(\psi k),Lagi(\psi )) = 0.

2. If q > 1, \psi h,\epsilon \in \scrK \epsilon , there are universal constants C1, C2 > 0 such that

d\scrH (Lagi(\psi h,\epsilon ),Lagi(\psi ))
n \leq C1CpwN

5q(N\epsilon + \| wh,\epsilon (\psi h,\epsilon ) - w\| 1 + 2N
\surd 
2CLh)

\epsilon 1/q(q  - 1) (arccos(1 - C2\scrL (Lagi(\psi ))2))
n - 1 ,

as long as

N5C\Delta C\nabla Cpwq(N\epsilon + \| wh,\epsilon (\psi h,\epsilon ) - w\| 1 + 2N
\surd 
2CLh)

\epsilon 1/q(q  - 1)
< \scrL (Lagi(\psi )),(2.8)

where C\Delta and CL are the universal constants defined in [BK20, Lemma 5.5]
and Lemma A.1, respectively.

Remark 2.15. Another possible numerical approach could be to take F = Fw,h,\epsilon 
for some fixed h and \epsilon in the dual problem (2.4) (which would yield a strictly concave
function in \psi ) and then apply a Newton method to its gradient in order to find the
maximizer. The main reason we have elected to take a different approach is to be
able to obtain Theorems 2.11 and 2.14 above: again it is crucial to know how much
error the regularization process itself introduces. Suppose one were to take the above
route and obtain a sequence of dual variables \psi k along the iteration, which in turn
induce maps T\psi k

as in Remark 2.4. The sequence of mass vectors G(\psi k) of each
induced target measure (T\psi k

)\#\mu will converge to the optimal mass of the particular
regularization chosen, but it is unclear how close this is to the unregularized problem
with F = Fw; this error is crucial in understanding how close the associated Laguerre
cells over the course of the iteration are to the true cells for the unregularized problem.
With our Algorithm 1, we are able to control this error through the estimate (2.6).
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2.2. Outline of the paper. In section 3, we give some useful properties of the
mapping wh,\epsilon . In section 4, we prove Theorem 2.6 on the convergence rate of our
Algorithm 1. We also give a crude estimate on the number of iterations necessary to
get within a desired error in terms of the parameters h, \epsilon , and N . In section 5, we
prove Theorems 2.11 and 2.14 on the convergence of the Laguerre cells. In section
6, we present some numerical examples. These examples will include a comparison
of performance with the algorithm from [KMT19] and cases which are outside of the
scope of this previous work. Appendix A contains a short result on strong convexity
of the transport cost as a function of the dual variables \psi , needed for Theorem 2.14.

3. Properties of the mapping \bfitw \bfith ,\bfitepsilon . In this section, we gather some properties
and estimates on the mapping wh,\epsilon which will be crucial in the proofs of all of our
main theorems. For the remainder of the paper, we assume that c satisfies (Reg) and
(Twist) and that \mu is absolutely continuous. In this section and the following, we also
assume c satisfies (QC), \mu = \rho dx for some density \rho \in C0,\alpha (X), for some \alpha \in (0, 1],
and X is a bounded set, c-convex with respect to Y such that spt\mu \subset X.

3.1. Solutions of the approximating problem with \bfitF \bfitw ,\bfith ,\bfitepsilon . We will begin
by justifying the remarks following Algorithm 1.

Definition 3.1. The subdifferential of a convex function F : \BbbR N \rightarrow \BbbR \cup \{ +\infty \} 
at any point x is defined by the set

\partial F (x) := \{ p \in \BbbR N | F (y) \geq F (x) + \langle p, y  - x\rangle \forall y \in \BbbR N\} .

Proposition 3.2. Fix h, \epsilon > 0, and w \in \BbbR N with wi \geq 0,
\sum N
i=1 w

i \geq 1. Then
if \psi \in \BbbR N is such that wh,\epsilon (\psi ) = w, the pair (T\psi , G(\psi )) is the unique solution to
the minimization problem (1.1) with the storage fee function given by Fw,h,\epsilon (with T\psi 
defined as in Remark 2.4).

Proof. We first calculate that for any t0 \geq 0 and t \in (\epsilon , t0 + \epsilon ), d
dt\sigma t0,h(t  - \epsilon ) =

h 2(t - \epsilon ) - t0
2
\surd 

(t - \epsilon )(t0 - t+\epsilon )
. Thus, for any t and t1 \geq 0, if we take the choice

t0 = 2(t - \epsilon )

\left(  1 +

\biggl( 
t1
h

\biggr) 2

 - t1
h

\sqrt{} 
1 +

\biggl( 
t1
h

\biggr) 2
\right)  = (t - \epsilon )g

\biggl( 
t1
h

\biggr) 
,

we obtain

d

dt
\sigma t0,h(t - \epsilon ) = h

2(t - \epsilon ) - (2(t - \epsilon )(1 + ( t1h )
2  - t1

h

\sqrt{} 
1 + ( t1h )

2))

2

\sqrt{} 
(t - \epsilon )((2(t - \epsilon )(1 + ( t1h )

2  - t1
h

\sqrt{} 
1 + ( t1h )

2)) - (t - \epsilon ))

= t1

\sqrt{} 
1 + ( t1h )

2  - t1
h\sqrt{} \biggl( \sqrt{} 

1 + ( t1h )
2  - t1

h

\biggr) 2
= t1.

Thus, taking t = G(\psi ) and t1 = \psi i, t0 = (wh,\epsilon (\psi ))
i for each i in the calculation

above, we see that if wh,\epsilon (\psi ) = w, we will have \psi \in \partial Fw,h,\epsilon (G(\psi )). Since Fw,h,\epsilon is
a proper, convex function that is +\infty outside the set \Lambda , by [BK19, Theorem 4.7] we
obtain that the pair (T\psi , G(\psi )) is the unique minimizing pair in the problem (1.1)
with storage fee function Fw,h,\epsilon .
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3.2. Estimates on \bfitw \bfith ,\bfitepsilon . Next we will obtain invertibility of Dwh,\epsilon on the set
\Sigma w,h,\epsilon . This normalization will be critical in obtaining the necessary estimates to
justify convergence of our Newton algorithm; since the masses G(\psi ) are invariant
under the addition of multiples of 1, the normalization \psi \in \Sigma w,h,\epsilon is not guaranteed
for an optimizer and must be enforced. For the remainder of this section and the
following section 4, we will not be as explicit in terms of the dependence of various
quantities on N . Related to this, for any vector valued map \Phi : \Omega \rightarrow \BbbR N on any
domain \Omega \subset \BbbR N , we will write associated \alpha -H\"older seminorms as

[\Phi ]C0,\alpha (\Omega ) : = sup
x \not =y\in \Omega 

\| \Phi (x) - \Phi (y)\| 
\| x - y\| \alpha 

\leq 
\surd 
N max

1\leq i\leq N
sup

x \not =y\in \Omega 

\bigm| \bigm| \Phi i(x) - \Phi i(y)
\bigm| \bigm| 

\| x - y\| \alpha 
,

[D\Phi ]C0,\alpha (\Omega ) : = sup
x \not =y\in \Omega 

\| D\Phi (x) - D\Phi (y)\| 
\| x - y\| \alpha 

\leq N max
1\leq i,j\leq N

sup
x \not =y\in \Omega 

\bigm| \bigm| Dj\Phi 
i(x) - Dj\Phi 

i(y)
\bigm| \bigm| 

\| x - y\| \alpha 
,

and

\| \Phi \| C1(\Omega ) : = sup
x\in \Omega 
\| \Phi (x)\| + sup

x\in \Omega 
\| D\Phi (x)\| , \| \Phi \| C1,\alpha (\Omega ) := \| \Phi \| C1(\Omega ) + [D\Phi ]C0,\alpha (\Omega ),

where \| D\Phi (x)\| is the operator norm. In particular, for universal constants C > 0
(that only depend on N) we obtain \| \Phi (\psi 1) - \Phi (\psi 2)\| \leq C[\Phi ]C0,\alpha (\Omega )\| \psi 1  - \psi 2\| \alpha , and
similarly for D\Phi .

Proposition 3.3. Fix h > 0, \epsilon \in (0, 1
2N ), \epsilon 0 > 0, and w \in \BbbR N with

\sum N
i=1 w

i \geq 1,
wi \geq 0, and suppose c, X, and \mu satisfy the same conditions as Theorem 2.6. Then
the following hold:

1. \Sigma w,h,\epsilon is bounded and nonempty.
2. wh,\epsilon is differentiable on \scrK \epsilon .
3. Dwh,\epsilon (\psi ) is invertible whenever \psi \in \Sigma w,h,\epsilon \cap \scrW \epsilon 0 .

Moreover, if h \leq 1, there exists a universal constant C > 0 such that

diam(\Sigma w,h,\epsilon ) \leq C\epsilon  - 
1
2 ,(3.1)

\| wh,\epsilon \| C1,\alpha (\Sigma w,h,\epsilon )
=: L \leq Cmax

\Bigl( 
h - 2\epsilon  - 2, h - 3\epsilon  - 

1
2

\Bigr) 
,(3.2)

sup
\psi \in \Sigma w,h,\epsilon \cap \scrW \epsilon 0

\| Dwh,\epsilon (\psi ) - 1\| =: \kappa  - 1 \leq C\epsilon  - 1
0 h - 6\epsilon  - 

3
2 .(3.3)

Proof of Proposition 3.3. Throughout the proof, C > 0 will denote a universal
constant whose value may change from line to line.

We first calculate

g\prime (t) = 2

\biggl( 
2t - 

\sqrt{} 
1 + t2  - t2\surd 

1 + t2

\biggr) 
=

2(2t
\surd 
1 + t2  - 1 - t2  - t2)\surd 

1 + t2
=  - 2(t - 

\surd 
1 + t2)2\surd 

1 + t2
< 0.

In particular, g is continuous and strictly decreasing on \BbbR , and it is easily seen that
limt\rightarrow  - \infty g = +\infty and limt\rightarrow +\infty = 1. Now notice there exists at least one vector
\psi \in \scrK \epsilon ; for such a \psi , Gi(\psi ) - \epsilon > 0 for all i. Since adding a multiple of 1 to \psi does

not change the value of G(\psi ) and
\sum N
i=1(G

i(\psi )  - \epsilon ) < 1 \leq 
\sum N
i=1 w

i, we can see that

there exists some r \in \BbbR such that
\sum N
i=1 w

i
h,\epsilon (\psi +r1) =

\sum N
i=1(G

i(\psi +r1) - \epsilon )g(\psi 
i+r
h ) =\sum N

i=1 w
i, i.e., \Sigma w,h,\epsilon is nonempty.

D
ow

nl
oa

de
d 

11
/1

1/
21

 to
 7

3.
14

5.
14

4.
18

3 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEWTON FOR OPTIMAL TRANSPORT WITH STORAGE FEES 2599

Next we show the boundedness of \Sigma w,h,\epsilon . If \psi \in \Sigma w,h,\epsilon , we calculate

N\sum 
i=1

wi =

N\sum 
i=1

(Gi(\psi ) - \epsilon )g

\biggl( 
\psi i

h

\biggr) 
\leq 

N\sum 
i=1

(Gi(\psi ) - \epsilon )max
j
g

\biggl( 
\psi j

h

\biggr) 
= max

j
g

\biggl( 
\psi j

h

\biggr) 
(1 - N\epsilon ).

Hence maxj g(
\psi j

h ) \geq 
\sum N

i=1 w
i

1 - N\epsilon \geq 
1

1 - N\epsilon > 1. In particular, we must have an upper

bound on some component \psi k, i.e., \psi k \leq \~M1, where \~M1 := hg - 1( 1
1 - N\epsilon ) < +\infty . Now

since X is compact, there exist constantsM1 and m1 such that m1 < c(\cdot , yi) < M1 for
all i \in \{ 1, . . . , N\} . If, for any i, \psi i > \~M1+M1 - m1, then we would have Lagi(\psi ) = \emptyset ,
contradicting \psi \in \scrK \epsilon .

A similar calculation yields the bound minj g(
\psi j

h ) \leq 
\sum N

i=1 w
i

1 - N\epsilon \leq 
N

1 - N\epsilon \leq 2N , and
thus by an analogous argument we obtain the uniform bounds

\~m \leq \psi i \leq \~M \forall \psi \in \Sigma w,h,\epsilon , i \in \{ 1, . . . , N\} ,

\~M : = \~M1 +M1  - m1 = hg - 1

\biggl( 
1

1 - N\epsilon 

\biggr) 
+M1  - m1 > 0,

\~m : = \~M2  - M1 +m1 := hg - 1(2N) - M1 +m1 < 0.(3.4)

We now calculate bounds on \~M and \~m in terms of N and \epsilon . If g(t) = a for some
value a > 1, we find

a

2
= 1 + t2  - t

\sqrt{} 
1 + t2 = 1 + t(t - 

\sqrt{} 
1 + t2) = 1 + t

\biggl( 
 - 1

t+
\surd 
1 + t2

\biggr) 
=

\surd 
1 + t2

t+
\surd 
1 + t2

,

and hence

\biggl( 
1 - a

2

\biggr) \sqrt{} 
1 + t2 =

at

2
=\Rightarrow 

\biggl( 
1 - a

2

\biggr) 2

= t2
\biggl( 
a2

4
 - 
\biggl( 
1 - a

2

\biggr) 2\biggr) 
=\Rightarrow t2 =

(2 - a)2

4a - 4
.

(3.5)

Now if a = 1
1 - N\epsilon < 2, we have t = g - 1(a) > 0, and hence by (3.5),

0 < \~M \leq C

\left(  1 + h
2 - 1

1 - N\epsilon 

2
\sqrt{} 

1
1 - N\epsilon  - 1

\right)  \leq C \Biggl( 1 + h
1

2
\sqrt{} 
N\epsilon (1 - N\epsilon )

\Biggr) 
\leq C\surd 

2N\epsilon 
,(3.6)

where we have used that \epsilon < 1
2N . Similarly, for a = 2N > 2, t = g - 1(a) < 0, and

hence using (3.5) again yields

0 > \~m =  - C
\biggl( 
1 + h

2N  - 2

2
\surd 
2N  - 1

\biggr) 
\geq  - C

\biggl( 
1 +

hN\surd 
N

\biggr) 
\geq  - C

\surd 
N.(3.7)

Combining this with (3.6) immediately gives (3.1).
We will also have use for some estimates on g and g\prime . We calculate
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g\prime 
\biggl( \~M

h

\biggr) 
=  - 

2

\biggl( 
\~M
h  - 

\sqrt{} 
1 +

\Bigl( 
\~M
h

\Bigr) 2\biggr) 2

\sqrt{} 
1 +

\Bigl( 
\~M
h

\Bigr) 2 =  - 2( \~M  - 
\sqrt{} 
h2 + \~M2)2

h
\sqrt{} 
h2 + \~M2

=  - 2h3\sqrt{} 
h2 + \~M2( \~M +

\sqrt{} 
h2 + \~M2)2

\leq  - h3

2(h2 + \~M2)3/2

\leq  - h3

2( 2N\epsilon h
2+C

2N\epsilon )3/2
\leq  - Ch3N 3

2 \epsilon 
3
2 ,

where we have used (3.6) in the last line. At the same time,

g\prime 
\biggl( 

\~m

h

\biggr) 
=  - 2( \~m - 

\surd 
h2 + \~m2)2

h
\surd 
h2 + \~m2

\geq  - CN
h2

.

Since g\prime is monotone and negative, we have for any \psi \in \Sigma w,h,\epsilon and index i the
estimates

Ch3N
3
2 \epsilon 

3
2 \leq 

\bigm| \bigm| \bigm| \bigm| g\prime \biggl( \psi ih
\biggr) \bigm| \bigm| \bigm| \bigm| \leq CN

h2
.(3.8)

Additionally using (3.7) and that h \leq 1, for any \psi \in \Sigma w,h,\epsilon and index i we have
(recall \~m could be negative here)

1 \leq g
\biggl( 
\psi i

h

\biggr) 
\leq g
\biggl( 

\~m

h

\biggr) 
= 2

\left(  1 +

\biggl( 
\~m

h

\biggr) 2

 - \~m

h

\sqrt{} 
1 +

\biggl( 
\~m

h

\biggr) 2
\right)  

=
2
\surd 
h2 + \~m2

h2

\Bigl( \sqrt{} 
h2 + \~m2  - \~m

\Bigr) 
\leq C \~m2

h2
\leq CN

h2
.(3.9)

Under the current assumptions, we see by [KMT19, Theorem 4.1] that G is uni-
formly C1,\alpha on \Sigma w,h,\epsilon \subset \scrK \epsilon . We then calculate the derivative of wh,\epsilon as

Dwh,\epsilon (\psi ) = diag

\biggl( 
g

\biggl( 
\psi i

h

\biggr) \biggr) 
DG(\psi ) +

1

h
diag

\biggl( \biggl( 
Gi(\psi ) - \epsilon 

\biggr) 
g\prime 
\biggl( 
\psi i

h

\biggr) \biggr) 
= diag

\biggl( 
g

\biggl( 
\psi i

h

\biggr) \biggr) \Biggl( 
1

h
diag

\Biggl( 
(Gi(\psi ) - \epsilon )g\prime (\psi 

i

h )

g(\psi 
i

h )

\Biggr) 
+DG(\psi )

\Biggr) 
,(3.10)

where diag of a vector in \BbbR N is the N \times N diagonal matrix with the entries of the

vector on the diagonal. Since g \geq 1 on \BbbR , we see that diag(g(\psi 
i

h )) is invertible with
all eigenvalues larger than 1. For any unit vector V \in \BbbR N we have\Biggl\langle 

1

h
diag

\Biggl( 
(Gi(\psi ) - \epsilon )g\prime (\psi 

i

h )

g(\psi 
i

h )

\Biggr) 
V , V

\Biggr\rangle 
+ \langle DG(\psi )V, V \rangle 

=
1

h

N\sum 
i=1

(Gi(\psi ) - \epsilon )g\prime (\psi 
i

h )

g(\psi 
i

h )
(V i)2 + \langle DG(\psi )V, V \rangle =: A+B.

By [KMT19, Theorems 1.1 and 1.3], DG is symmetric, every off diagonal entry is
nonnegative, and each row sums to zero, and hence B \leq 0. We also calculate
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A \leq 1

h
max
j

(Gj(\psi ) - \epsilon )g\prime (\psi 
j

h )

g(\psi 
j

h )

N\sum 
i=1

(V i)2 =
1

h
max
j

(Gj(\psi ) - \epsilon )g\prime (\psi 
j

h )

g(\psi 
j

h )

=
1

h
max
j

wjh,\epsilon (\psi )g
\prime (\psi 

j

h )

g(\psi 
j

h )2
\leq  - C\epsilon 0h6N - 1

2 \epsilon 
3
2 ,

where we use (3.9) and that \psi \in \scrW \epsilon 0 , and hence Dwh,\epsilon (\psi ) is invertible and we obtain
(3.3).

Finally, since \Sigma w,h,\epsilon is bounded by above and g\prime is clearly a C1 function on
\BbbR , we can again use [KMT19, Theorem 4.1] to conclude that wh,\epsilon is actually C1,\alpha 

on \Sigma w,h,\epsilon . The only thing left is to verify the dependencies of L > 0 from (3.2).
Since g is decreasing on \BbbR , by (3.9) we immediately see that \| wh,\epsilon \| L\infty (\Sigma w,h,\epsilon ) \leq CN

h2 .
Also calculating using (3.8), (3.10), (3.9), and that \| G\| C1(\scrK \epsilon ) \leq CN from [KMT19,

Theorem 1.3], we see that \| wh,\epsilon \| C1(\Sigma w,h,\epsilon ) \leq C(N2h - 2 +Nh - 2) \leq CN2

h2 .
For the remainder of the proof, we will not keep explicit track of the dependencies

on N . Finally, note that

[Dwh,\epsilon ]C0,\alpha \leq C
\biggl( 
\| g( \cdot 

h
)\| L\infty [DG]C0,\alpha + [g(

\cdot 
h
)]C0,\alpha \| DG\| L\infty 

+
1

h
([G - \epsilon 1]C0,\alpha \| g\prime ( \cdot 

h
)\| L\infty + \| G - \epsilon 1\| L\infty [g\prime (

\cdot 
h
)]C0,\alpha )

\biggr) 
\leq C

\biggl( 
\| g( \cdot 

h
)\| L\infty [DG]C0,\alpha + diam(\Sigma w,h,\epsilon )\| g\prime (

\cdot 
h
)\| L\infty \| DG\| L\infty 

+
diam(\Sigma w,h,\epsilon )

h
(\| DG\| L\infty \| g\prime ( \cdot 

h
)\| L\infty + \| G - \epsilon 1\| L\infty [g\prime (

\cdot 
h
)]C0,1)

\biggr) 
,(3.11)

where all norms and seminorms of g and g\prime are over [ \~m, \~M ] and the remainder over
\Sigma w,h,\epsilon .

Fixing an index i, for any \psi 1 \not = \psi 2 \in \Sigma w,h,\epsilon we have\bigm| \bigm| \bigm| \bigm| g\prime \biggl( \psi i1h
\biggr) 
 - g\prime 

\biggl( 
\psi i2
h

\biggr) \bigm| \bigm| \bigm| \bigm| \leq sup
t\in [ \~m, \~M ]

\bigm| \bigm| \bigm| \bigm| g\prime \prime \biggl( th
\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \psi i1h  - \psi i2

h

\bigm| \bigm| \bigm| \bigm| \leq C\| \psi 1  - \psi 2\| 
h

,(3.12)

since by direct computation we see that

g\prime \prime (t) =
 - 4t3 + 4(1 + t2)3/2  - 6t

(1 + t2)3/2
= 4 - 2

2t3 + 3t

(1 + t2)3/2
= 4 - 4

t

(1 + t2)1/2
 - 2

t

(1 + t2)3/2
,

and so

| g\prime \prime (t)| \leq 4 + 4

\bigm| \bigm| \bigm| \bigm| t

(1 + t2)1/2

\bigm| \bigm| \bigm| \bigm| + 2

\bigm| \bigm| \bigm| \bigm| t

(1 + t2)3/2

\bigm| \bigm| \bigm| \bigm| \leq 4 + 4 + 2min(| t| , | t|  - 2
) \leq 10.

At the same time using (3.8),\bigm| \bigm| \bigm| \bigm| g\biggl( \psi i1h
\biggr) 
 - g
\biggl( 
\psi i2
h

\biggr) \bigm| \bigm| \bigm| \bigm| \leq sup
t\in [ \~m, \~M ]

\bigm| \bigm| \bigm| \bigm| g\prime \biggl( th
\biggr) \bigm| \bigm| \bigm| \bigm| 2 \bigm| \bigm| \bigm| \bigm| \psi i1h  - \psi i2

h

\bigm| \bigm| \bigm| \bigm| \leq C

h5
\| \psi 1  - \psi 2\| .(3.13)

Finally, carefully tracing through the proofs leading to [KMT19, Theorem 4.1] yields
that

[DG]C0,\alpha (\scrK \epsilon ) \leq 
C

\epsilon 2
.(3.14)
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Combining with (3.8), (3.9), (3.13), (3.12), and that \| G\| C1(\scrK \epsilon ) \leq CN in (3.11), we
obtain

[Dwh,\epsilon ]C0,\alpha (\Sigma w,h,\epsilon ) \leq Cmax
\Bigl( 
h - 2\epsilon  - 2, h - 3\epsilon  - 

1
2

\Bigr) 
.

4. Convergence of Algorithm 1. Here we provide the proof of our first main
theorem on global linear and locally superlinear convergence of Algorithm 1. We
remark that the proof below also shows that \Sigma w,h,\epsilon is locally a C1 manifold of codi-
mension 1 in \BbbR n. Again, we will not track explicit dependencies on N .

Proposition 4.1. There is a function r \in C1,\alpha (\scrK \epsilon ) such that for any \psi \in \BbbR N ,
r(\psi ) is the unique number such that \pi (\psi ) := \psi  - r(\psi )1 \in \Sigma w,h,\epsilon . Moreover, for some
universal C > 0,

\| D\pi \| C0,\alpha (\scrK \epsilon ;\BbbR N ) \leq 
C

h18\epsilon 9
.

Proof. First we carry out some preliminary analysis. Again, C > 0 will denote a
suitable universal constant throughout the proof. Define \BbbR N\times \BbbR \ni (\psi , r)\rightarrow \Phi (\psi , r) \in 
\BbbR by

\Phi (\psi , r) =

N\sum 
i=1

wih,\epsilon (\psi  - r1) - wi =
N\sum 
i=1

(Gi(\psi  - r1) - \epsilon )g
\biggl( 
\psi i  - r
h

\biggr) 
 - 

N\sum 
i=1

wi

=

N\sum 
i=1

(Gi(\psi ) - \epsilon )g
\biggl( 
\psi i  - r
h

\biggr) 
 - 

N\sum 
i=1

wi.

Note that for any \psi \in \BbbR N such that wih,\epsilon (\psi ) \geq 0 for all i \in \{ 1, . . . , N\} , we must have

Gi(\psi ) \geq \epsilon , and hence \psi \in \scrK \epsilon for such \psi . A quick calculation yields that if (\psi , r) are
such that \psi \in \scrK \epsilon and \psi  - r1 \in \Sigma w,h,\epsilon , we have, using the calculation immediately
preceding (3.8),

\partial 

\partial r
\Phi (\psi , r) =  - 1

h

N\sum 
i=1

(Gi(\psi ) - \epsilon )g\prime 
\biggl( 
\psi i  - r
h

\biggr) 
\geq Ch3N 3

2 \epsilon 
3
2 (1 - N\epsilon ) > 0.

Now the strict monotonicity of g along with the fact that
\sum N
i=1 w

i \geq 1 >
\sum N
i=1(G

i(\psi ) - 
\epsilon ) and g(\BbbR ) = (1,\infty ) implies that for any \psi \in \BbbR N , there exists a unique r(\psi ) \in \BbbR 
such that \Phi (\psi , r(\psi )) = 0, and thus the function \psi \mapsto \rightarrow r(\psi ) is well-defined. By the
above calculation and the implicit function theorem, we have that this function r is
differentiable near any \psi \in \scrK \epsilon . Differentiating the expression \Phi (\psi , r(\psi )) = 0 with
respect to \psi j at such a \psi , we find that
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0 =

N\sum 
i=1

\biggl( 
DjG

i(\psi )g

\biggl( 
\psi i  - r(\psi )

h

\biggr) 
+ (Gi(\psi ) - \epsilon )g\prime 

\biggl( 
\psi i  - r(\psi )

h

\biggr) 
\delta ij  - Djr(\psi )

h

\biggr) 

=\Rightarrow Djr(\psi ) =

\sum N
i=1 hDjG

i(\psi )g(\psi 
i - r(\psi )
h

) + \delta ij(G
i(\psi ) - \epsilon )g\prime (\psi 

i - r(\psi )
h

)\sum N
i=1(G

i(\psi ) - \epsilon )g\prime (\psi 
i - r(\psi )
h

)

=
(Gj(\psi ) - \epsilon )g\prime (\psi 

j - r(\psi )
h

) + h
\sum N
i=1DjG

i(\psi )g(\psi 
i - r(\psi )
h

)\sum N
i=1(G

i(\psi ) - \epsilon )g\prime (\psi 
i - r(\psi )
h

)
.(4.1)

We can see that \| Dr\| is uniformly bounded on \scrK \epsilon : we calculate

\| Djr\| L\infty (\scrK \epsilon ) \leq 1 +

\bigm| \bigm| \bigm| \sum N
i=1DjG

i(\psi )g(\psi 
i - r(\psi )
h

)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1h\sum N

i=1(G
i(\psi ) - \epsilon )g\prime (\psi 

i - r(\psi )
h

)
\bigm| \bigm| \bigm| 

\leq 1 +
g( \~m

h
)
\sum N
i=1

\bigm| \bigm| DjGi(\psi )\bigm| \bigm| 
h3\epsilon 3/2

h
(1 - N\epsilon )

\leq 1 +
C( 1

h2 )

h2\epsilon 3/2(1 - N\epsilon )
\leq C

h4\epsilon 
3
2

,(4.2)

where we have used \| G\| C1(\scrK \epsilon ) \leq C from [KMT19, Theorem 1.3], (3.8), (3.9), and

that \epsilon < 1
2N .

Since \scrK \epsilon =
\bigcap N
i=1(G

i) - 1((\epsilon ,\infty )), the implicit function theorem combined with
[KMT19, Theorem 5.1] along with the fact that \partial X is locally Lipschitz shows that
\partial \scrK \epsilon is locally Lipschitz. Thus W 1,\infty (\scrK \epsilon ) = C0,1(\scrK \epsilon ), and hence r is uniformly
Lipschitz continuous on \scrK \epsilon .

We will now show a H\"older bound onDr. Note that for each j, we can writeDjr =
H1

H2
, where H1(\psi ) :=

1
h (G

j(\psi ) - \epsilon )g\prime (\psi 
j - r(\psi )
h ) +

\sum N
i=1DjG

i(\psi )g(\psi 
i - r(\psi )
h ) belongs to

C0,\alpha (\scrK \epsilon ) (using [KMT19, Theorem 4.1]) and H2(\psi ) :=
1
h

\sum N
i=1(G

i(\psi ) - \epsilon )g\prime (\psi 
i - r(\psi )
h )

belongs to C0,1(\scrK \epsilon ), with H2 \leq  - Ch
3N3/2

h (1 - N\epsilon ) < 0 uniformly. Note that

H2(\pi (\psi )) =
1

h

N\sum 
i=1

(Gi(\psi  - r(\psi )1) - \epsilon )g\prime 
\biggl( 
(\psi  - r(\psi )1)i  - r(\psi  - r(\psi )1)

h

\biggr) 

=
1

h

N\sum 
i=1

(Gi(\psi ) - \epsilon )g\prime 
\biggl( 
(\psi  - r(\psi )1)i

h

\biggr) 
= H2(\psi ).

Thus for \psi 1 \not = \psi 2 \in \scrK \epsilon , using (3.8),

| Djr(\psi 1) - Djr(\psi 2)| =
\bigm| \bigm| \bigm| \bigm| H1(\psi 1)

H2(\psi 1)
 - H1(\psi 2)

H2(\psi 2)

\bigm| \bigm| \bigm| \bigm| 
\leq 
\bigm| \bigm| \bigm| \bigm| H1(\psi 1) - H1(\psi 2)

H2(\psi 1)

\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| H1(\psi 2)(H2(\psi 2) - H2(\psi 1))

H2(\psi 1)H2(\psi 2)

\bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| H1(\psi 1) - H1(\psi 2)

H2(\psi 1)

\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| H1(\psi 2)(H2(\pi (\psi 2)) - H2(\pi (\psi 1)))

H2(\psi 1)H2(\psi 2)

\bigm| \bigm| \bigm| \bigm| 
\leq 

[H1]C0,\alpha (\scrK \epsilon )\| \psi 1  - \psi 2\| \alpha 

Ch3N
3
2

h (1 - N\epsilon )
+
\| H1\| L\infty (\scrK \epsilon )[H2]C0,1(\scrK \epsilon )\| \pi (\psi 2) - \pi (\psi 1)\| 

(Ch
3N

3
2

h (1 - N\epsilon ))2

\leq C
\biggl( 

[H1]C0,\alpha (\scrK \epsilon )

h2N
3
2 (1 - N\epsilon )

+
\| H1\| L\infty (\scrK \epsilon )[H2]C0,1(\scrK \epsilon )\| \pi (\psi 2) - \pi (\psi 1)\| 1 - \alpha [\pi ]\alpha C0,1(\scrK \epsilon )

(h2N
3
2 (1 - N\epsilon ))2

\biggr) 
\| \psi 1  - \psi 2\| \alpha ,(4.3)
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2604 MOHIT BANSIL AND JUN KITAGAWA

and henceDjr is uniformly C0,\alpha on \scrK \epsilon . Our next task will be to estimate [Dr]C0,\alpha (\scrK \epsilon ).
In order to do this, we estimate each of the terms in the above expression.

A quick calculation yields

\| H1\| L\infty (\scrK \epsilon ) \leq C
\biggl( 

1

h3
+

1

h2

\biggr) 
\leq C

h3
,(4.4)

and since \pi (\psi ) \in \Sigma w,h,\epsilon , by (3.1) we have

\| \pi (\psi 2) - \pi (\psi 1)\| \leq diam(\Sigma w,h,\epsilon ) \leq 
C

\epsilon 
1
2

.(4.5)

To estimate [H2]C0,1(\scrK \epsilon ), let H3,i(\psi ) := (Gi(\psi ) - \epsilon )g\prime (\psi 
i

h ) so that

H2(\psi ) =
1

h

\sum 
i

H3,i(\pi (\psi )).

Just as we estimated the final two terms in (3.11), we see that [H3,i]C0,1(\Sigma w,h,\epsilon ) \leq C
h2

by using the bound \| G\| C1(\scrK \epsilon ) \leq C with (3.8) and (3.12). Furthermore, since \pi (\psi ) =

\psi  - r(\psi )1,

[\pi ]C0,1(\scrK \epsilon ) \leq 1 +N1/2[r]C0,1(\scrK \epsilon ) \leq 
C

h4\epsilon 3/2
(4.6)

by (4.2). Hence

[H2]C0,1(\scrK \epsilon ) \leq 
1

h

N\sum 
i=1

[H3,i \circ \pi ]C0,1(\scrK \epsilon ) \leq 
1

h

N\sum 
i=1

[H3,i]C0,1(\Sigma w,h,\epsilon )[\pi ]C0,1(\scrK \epsilon ) \leq 
C

h7\epsilon 
3
2

.

(4.7)

Finally, we bound [H1]C0,\alpha (\scrK \epsilon ). Let H4,i(\psi ) := DjG
i(\psi )g(\psi 

i

h ) so that H1(\psi ) =

(Gj(\psi ) - \epsilon )g\prime (\psi 
j - r(\psi )
h ) +

\sum 
iH4,i(\pi (\psi )). For \psi 1, \psi 2 \in \scrK \epsilon , we have

| H4,i(\pi (\psi 1)) - H4,i(\pi (\psi 2))| 

=

\bigm| \bigm| \bigm| \bigm| (DjG
i(\psi 1) - DjG

i(\psi 2))g

\biggl( 
\pi (\psi 1)

i

h

\biggr) 
 - DjG

i(\psi 2)

\biggl( 
g

\biggl( 
\pi (\psi 1)

i

h

\biggr) 
 - g
\biggl( 
\pi (\psi 2)

i

h

\biggr) \biggr) \bigm| \bigm| \bigm| \bigm| 
\leq [DG]C0,\alpha (\scrK \epsilon )g

\biggl( 
\~m

h

\biggr) 
\| \psi 1  - \psi 2\| \alpha + \| G\| C1(\scrK \epsilon ) sup

s\in [ \~m, \~M ]

\bigm| \bigm| \bigm| \bigm| g\prime \biggl( sh
\biggr) \bigm| \bigm| \bigm| \bigm| \| \pi (\psi 1) - \pi (\psi 2)\| 

h

\leq 
\biggl( 
[DG]C0,\alpha (\scrK \epsilon )g

\biggl( 
\~m

h

\biggr) 
+
C

h3
\| \pi (\psi 1) - \pi (\psi 2)\| 1 - \alpha [\pi ]\alpha C0,1(\scrK \epsilon )

\biggr) 
\| \psi 1  - \psi 2\| \alpha 

\leq C
\biggl( 

1

h2\epsilon 2
+

1

h3+4\alpha \epsilon 
1
2+\alpha 

\biggr) 
\| \psi 1  - \psi 2\| \alpha \leq 

C

h7\epsilon 2
\| \psi 1  - \psi 2\| \alpha ,

where we have used (3.8) to estimate g\prime , (3.9) to estimate g( \~m
h ), [KMT19, Theorem

1.3] to estimate \| G\| C1(\scrK \epsilon ), (3.14) for [DG]C0,\alpha (\scrK \epsilon ) \leq 
C
\epsilon 2 , and (4.5). Hence we see,

using (4.6), that
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[H1]C0,\alpha (\scrK \epsilon )

\leq C
\biggl( 
diam(\Sigma w,h,\epsilon )[G

j ]C0,1(\Sigma w,h,\epsilon )\| g
\prime (
\cdot 
h
)\| L\infty ([ \~m, \~M ])

+ ( \~M  - \~m)\| Gj\| L\infty (\scrK \epsilon )[g
\prime (
\cdot 
h
)]C0,1([ \~m, \~M ])

+

N\sum 
i=1

[H4,i]C0,\alpha (\Sigma w,h,\epsilon )

\biggr) 
[\pi ]C0,1(\scrK \epsilon )

\leq C
\biggl( 

1

h2\epsilon 
1
2

+
1

h\epsilon 
1
2

+
1

h7\epsilon 2

\biggr) 
1

h4\epsilon 
3
2

\leq C

h11\epsilon 
7
2

.

Putting the above together with (4.3), (4.4), (4.5), and (4.7), we get

[Dr]C0,\alpha (\scrK \epsilon ) \leq C

\Biggl( 
[H1]C0,\alpha (\scrK \epsilon )

h2N
3
2 (1 - N\epsilon )

+
\| H1\| L\infty (\scrK \epsilon )[H2]C0,1(\scrK \epsilon )\| \pi (\psi 2) - \pi (\psi 1)\| 1 - \alpha [\pi ]\alpha C0,1(\scrK \epsilon )

(h2N
3
2 (1 - N\epsilon ))2

\Biggr) 

\leq C

\left(  1

h11\epsilon 
7
2

h2\epsilon 
3
2

+

1
h3 \cdot 1

h7\epsilon 
3
2
\cdot 1

\epsilon 
1
2
(1 - \alpha )

\cdot 1

h4\alpha \epsilon 
3\alpha 
2

h4\epsilon 3

\right)  
= C

\biggl( 
1

h13\epsilon 5
+

1

h14+4\alpha \epsilon 5+4\alpha 

\biggr) 
\leq C

h18\epsilon 9
.

Finally,

\| D\pi \| C0,\alpha (\scrK \epsilon ;\BbbR N ) \leq C(1 + \| Dr\| L\infty (\scrK \epsilon ) + [Dr]C0,\alpha (\scrK \epsilon )) \leq 
C

h18\epsilon 9

by the calculation above combined with (4.2).

With the above estimate, we can now prove linear convergence and locally super-
linear convergence of our algorithm. This is done essentially as in [KMT19].

Proof of Theorem 2.6. Let \=\psi := \psi k be the vector chosen at the kth step of Al-
gorithm 1, \=v := (Dwh,\epsilon ( \=\psi ))

 - 1(wh,\epsilon ( \=\psi )  - w), and define the curve \=\psi (t) := \pi ( \=\psi  - t\=v)
(where \pi is defined in Proposition 4.1). We also take \~L := max(1, \| D\pi \| C0,\alpha (\scrK \epsilon ;\BbbR N )),
which has the bound claimed in the statement of the theorem by Proposition 4.1.
As noted above, \=\psi \in \scrK \epsilon \cap \scrW \epsilon 0 , and hence by Proposition 3.3 we have the estimates
(3.2) and (3.3). Let \tau 1 := inf\{ t \geq 0 | \=\psi (t) \not \in \scrW 

\epsilon 0
2 \} ; then wjh,\epsilon ( \=\psi (\tau 1)) =

\epsilon 0
2 for some

1 \leq j \leq N , and thus (using that \=\psi \in \Sigma w,h,\epsilon so \pi ( \=\psi ) = \=\psi and \| \=v\| \leq \| wh,\epsilon ( \=\psi ) - w\| 
\kappa ) we

calculate

\epsilon 0
2
\leq \| wh,\epsilon ( \=\psi (\tau 1)) - wh,\epsilon ( \=\psi )\| \leq L\| \=\psi (\tau 1) - \=\psi \| 

= L\| \pi ( \=\psi  - \tau 1\=v) - \pi ( \=\psi )\| \leq L\~L\tau 1\| \=v\| \leq 
L\~L\tau 1\| wh,\epsilon ( \=\psi ) - w\| 

\kappa 
.

The above gives a lower bound of \kappa \epsilon 0
2L\~L\| wh,\epsilon ( \=\psi ) - w\| on the first exit time \tau 1, and wh,\epsilon is

uniformly C1,\alpha on the image \=\psi ([0, \tau 1]) while \pi remains uniformly C1,\alpha on the segment
[ \=\psi , \=\psi  - \tau 1\=v]. We will now Taylor expand in t. Note that

d

dt

\bigm| \bigm| \bigm| \bigm| 
t=0

wh,\epsilon ( \=\psi (t)) =  - Dwh,\epsilon ( \=\psi (t))\=v + \langle Dr( \=\psi (t)), \=v\rangle Dwh,\epsilon ( \=\psi (t))1
\bigm| \bigm| 
t=0

=  - (wh,\epsilon ( \=\psi ) - w) + \langle Dr( \=\psi ), \=v\rangle Dwh,\epsilon ( \=\psi )1.
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2606 MOHIT BANSIL AND JUN KITAGAWA

Using (4.1) and that \=\psi \in \Sigma w,h,\epsilon , we obtain

\langle Dr( \=\psi ), \=v\rangle = \langle Dwh,\epsilon (
\=\psi )T1, Dwh,\epsilon ( \=\psi )

 - 1(wh,\epsilon ( \=\psi ) - w)\rangle 
\langle Dwh,\epsilon ( \=\psi )1,1\rangle 

=
\langle 1, wh,\epsilon ( \=\psi ) - w\rangle 
\langle Dwh,\epsilon ( \=\psi )1,1\rangle 

= 0.

Now Taylor expanding we obtain

wh,\epsilon ( \=\psi (t)) = wh,\epsilon ( \=\psi (0)) +

\biggl( 
d

du

\bigm| \bigm| \bigm| \bigm| 
u=0

wh,\epsilon ( \=\psi (u))

\biggr) 
t

+

\int t

0

\biggl( 
d

du

\bigm| \bigm| \bigm| \bigm| 
u=s

wh,\epsilon ( \=\psi (u)) - 
d

du

\bigm| \bigm| \bigm| \bigm| 
u=0

wh,\epsilon ( \=\psi (u))

\biggr) 
ds

=: (1 - t)wh,\epsilon ( \=\psi ) + tw +R(t).(4.8)

We see that

Ri(t) =

\int t

0

\Bigl( 
\langle \nabla wih,\epsilon ( \=\psi (s)), \.\=\psi (s)\rangle  - \langle \nabla wih,\epsilon ( \=\psi (0)), \.\=\psi (0)\rangle 

\Bigr) 
ds

=

\int t

0

\Bigl( 
\langle \nabla wih,\epsilon ( \=\psi (s)) - \nabla wih,\epsilon ( \=\psi (0)), \.\=\psi (s)\rangle + \langle \nabla wih,\epsilon ( \=\psi (0)), \.\=\psi (s) - \.\=\psi (0)\rangle 

\Bigr) 
ds.

We will examine the two inner products separately. For t \in [0, \tau 1], we have\bigm| \bigm| \bigm| \bigm| \int t

0

\langle \nabla wih,\epsilon ( \=\psi (s)) - \nabla wih,\epsilon ( \=\psi (0)), \.\=\psi (s)\rangle ds
\bigm| \bigm| \bigm| \bigm| \leq \int t

0

\| \nabla wih,\epsilon ( \=\psi (s)) - \nabla wih,\epsilon ( \=\psi (0))\| \| \.\=\psi (s)\| ds

\leq 
\int t

0

([Dwh,\epsilon ]C0,\alpha (\Sigma w,h,\epsilon )\| \=\psi (s) - \=\psi (0)\| \alpha )(\| D\pi ( \=\psi  - s\=v)\| \| \=v\| )ds

\leq 
\int t

0

([Dwh,\epsilon ]C0,\alpha (\Sigma w,h,\epsilon )\| D\pi \| 
\alpha 
C0,\alpha (\scrK \epsilon )

\| s\=v\| \alpha 
2

)(\| D\pi ( \=\psi  - s\=v)\| \| \=v\| )ds

\leq L\~L1+\alpha \| \=v\| \alpha 2+1

\alpha 2 + 1
t\alpha 

2+1

and\bigm| \bigm| \bigm| \bigm| \int t

0

\langle \nabla wih,\epsilon ( \=\psi (0)), \.\=\psi (s) - \.\=\psi (0)\rangle ds
\bigm| \bigm| \bigm| \bigm| \leq \int t

0

\| \nabla wih,\epsilon ( \=\psi (0))\| \| \.\=\psi (s) - \.\=\psi (0)\| ds

\leq 
\int t

0

\| Dwh,\epsilon ( \=\psi (0))\| \| (D\pi ( \=\psi ) - D\pi ( \=\psi  - s\=v))\=v\| ds

\leq 
\int t

0

\| Dwh,\epsilon ( \=\psi (0))\| \| D\pi \| C0,\alpha (\scrK \epsilon )\| s\=v\| 
\alpha \| \=v\| ds

=
L\~L\| \=v\| 1+\alpha 

\alpha + 1
t\alpha +1 \leq L\~L1+\alpha \| \=v\| 1+\alpha 

\alpha 2 + 1
t\alpha 

2+1,

where we have used \.\=\psi (s) =  - (D\pi ( \=\psi  - s\=v))(\=v). Note that since
\sum N
i=1 wh,\epsilon (

\=\psi )i =\sum N
i=1 w

i, we have the bound

\| wh,\epsilon ( \=\psi ) - w\| \leq 2

N\sum 
i=1

wi \leq 2N.
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Hence for t \in [0, \tau 1] we obtain the bound on the remainder term R above as

\| R(t)\| \leq (1 + \| \=v\| \alpha  - \alpha 2

)L\~L1+\alpha 
\surd 
N\| \=v\| 1+\alpha 2

\alpha 2 + 1
t\alpha 

2+1

\leq 
(1 +

\bigl( 
2N
\kappa 

\bigr) \alpha  - \alpha 2

)L\~L1+\alpha 
\surd 
N\| wh,\epsilon ( \=\psi ) - w\| 1+\alpha 

2

\kappa 1+\alpha 2 t\alpha 
2+1

\leq 3NL\~L1+\alpha 
\surd 
N\| wh,\epsilon ( \=\psi ) - w\| 1+\alpha 

2

\kappa 1+\alpha 
t\alpha 

2+1.

At this point, the remainder of the proof proceeds exactly as that of [KMT19, Propo-
sition 6.1], following equation (6.3) there, with wh,\epsilon replacing the map G and \alpha 2

instead of \alpha . For the convenience of the reader, we give the analogous expressions for
\tau i, which are

\tau 1 \geq 
\kappa \epsilon 0

2L\~L\| wh,\epsilon ( \=\psi ) - w\| 
,

\tau 2 = min

\Biggl( 
\tau 1,

\kappa 
1+\alpha 

\alpha 2 \epsilon 
1

\alpha 2

0

(3N3/2L\~L1+\alpha )
1

\alpha 2 \| wh,\epsilon ( \=\psi ) - w\| 1+
1

\alpha 2

\Biggr) 
,

\tau 3 = min

\Biggl( 
\tau 2,

\kappa 
1+\alpha 

\alpha 2

(6N3/2L\~L1+\alpha )
1

\alpha 2 \| wh,\epsilon ( \=\psi ) - w\| 
, 1

\Biggr) 
.

With these expressions, we can calculate

\tau k \leq \tau 3.

Then global linear and local superlinear convergence follow as in [KMT19, Proposition
6.1].

We conclude by using the above estimate Proposition 4.1 to give a crude estimate
on the number of iterations necessary to obtain an approximation of a solution to
within an error of \zeta . Note that Corollary 4.2 is far from tight, as it does not take into
account that our rate derived in Proposition 4.1 goes to zero or that we have locally
1 + \alpha 2-superlinear convergence, but still serves as a starting point.

Corollary 4.2. There exists a universal constant C > 0 so that for every \zeta > 0,
and \epsilon 0, h, \epsilon sufficiently small depending on universal quantities, Algorithm 1 termi-

nates in at most
log \zeta 

2N

log(1 - \eta ) steps, where \eta = C\epsilon 
2+\alpha 

\alpha 2

0 h
24
\alpha + 27

\alpha 2 \epsilon 
21
2\alpha + 25

2\alpha 2 .

Proof. If \tau k \not = 1, we have

\tau k =
\epsilon 

1
\alpha 2

0 \kappa 
1+\alpha 

\alpha 2

(6N3/2L\~L1+\alpha )
1

\alpha 2 \| wh,\epsilon ( \=\psi k) - w\| N
1

\alpha 2

\geq C \epsilon 
1

\alpha 2

0 (\epsilon 0h
6\epsilon 

3
2 )

1+\alpha 

\alpha 2

((h - 18\epsilon  - 9)1+\alpha max(h - 2\epsilon  - 2, h - 3\epsilon  - 
1
2 ))

1
\alpha 2

\geq C \epsilon 
1

\alpha 2

0 (\epsilon 0h
6\epsilon 

3
2 )

1+\alpha 

\alpha 2

((h - 18\epsilon  - 9)1+\alpha (h - 3\epsilon  - 2))
1

\alpha 2

= C\epsilon 
2+\alpha 

\alpha 2

0 h
24
\alpha + 27

\alpha 2 \epsilon 
21
2\alpha + 25

2\alpha 2 ,
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2608 MOHIT BANSIL AND JUN KITAGAWA

and we may assume h, \epsilon 0, \epsilon are sufficiently small so that 1 - C\epsilon 
2+\alpha 

\alpha 2
0 h

24
\alpha 

+ 27
\alpha 2 \epsilon 

21
2\alpha 

+ 25
2\alpha 2

2 \geq 1
2 .

Hence regardless of which value \tau k takes at each iteration, after \ell iterations we have

\| w(\psi \ell ) - w\| \leq (1 - \eta )\ell \| w(\psi 0) - w\| \leq 2N(1 - \eta )\ell ,

where \eta = C\epsilon 
2+\alpha 

\alpha 2

0 h
24
\alpha + 27

\alpha 2 \epsilon 
21
2\alpha + 25

2\alpha 2 . Solving (1 - \eta )\ell \| w(\psi 0) - w\| \leq 2N(1 - \eta )\ell \leq \zeta for

\ell , we see that it suffices to take \ell \geq log \zeta 
2N

log(1 - \eta ) .

5. Stability of Laguerre cells. In this section, we prove that the convergence
in our algorithm can be seen in terms of the Laguerre cells themselves instead of just
in terms of the w(\psi k).

5.1. Proof of Theorem 2.11. We first prove \mu -symmetric convergence of La-
guerre cells. For use in this proof, we define

\scrC (\~\lambda ) = min
S\#\mu =\nu \~\lambda 

\int 
c(x, S(x))d\mu = sup

\psi \in \BbbR N

\biggl( 
 - 
\int 
\psi c

\ast 
d\mu  - \langle \psi , \~\lambda \rangle 

\biggr) 
.(5.1)

Proof of Theorem 2.11. Let w \in \BbbR N with
\sum N
i=1 w

i \geq 1, wi \geq 0, and \psi h,\epsilon \in \scrK \epsilon ,
and let (T, \lambda ) be a pair minimizing (1.1) with the storage fee function Fw. Then if we
define \lambda h,\epsilon := G(\psi h,\epsilon ) and w := wh,\epsilon (\psi h,\epsilon ), by Proposition 3.2, the pair (T\psi h,\epsilon 

, \lambda h,\epsilon )
minimizes (1.1) with a storage fee equal to Fw,h,\epsilon . By [BK19, Theorem 4.7], there
also exists a pair (Tw,\epsilon , \lambda w,\epsilon ) which minimizes (1.1) with storage fee Fw,0,\epsilon . Since

\scrC (\lambda h,\epsilon ) + Fw,h,\epsilon (\lambda h,\epsilon ) = min\~\lambda \in \Lambda (\scrC (\~\lambda ) + Fw,h,\epsilon (\~\lambda )) \leq \scrC (\lambda w,\epsilon ) + Fw,h,\epsilon (\lambda w,\epsilon ), we have

\scrC (\lambda h,\epsilon ) - \scrC (\lambda w,\epsilon ) \leq Fw,h,\epsilon (\lambda w,\epsilon ) - Fw,h,\epsilon (\lambda h,\epsilon ) \leq  - Fw,h,\epsilon (\lambda h,\epsilon ) \leq h.

Next by Corollary A.2 from Appendix A, we have 1
32CLN

\| \lambda h,\epsilon  - \lambda w,\epsilon \| 2 \leq \scrC (\lambda h,\epsilon )  - 
\scrC (\lambda w,\epsilon ) \leq h, as \lambda w,\epsilon is the minimizer of \scrC on the convex set

\prod N
i=1[\epsilon , w

i + \epsilon ], which

can be seen from Fw,0,\epsilon = \delta (\cdot | 
\prod N
i=1[\epsilon , w

i + \epsilon ]).
Since the l1 and l2 norms on \BbbR N are comparable,

\| \lambda h,\epsilon  - \lambda w,\epsilon \| 1 \leq 
\surd 
N\| \lambda h,\epsilon  - \lambda w,\epsilon \| \leq 4N

\sqrt{} 
2CLh.

Since (T, \lambda ) minimizes (1.1) with storage fee \delta (\cdot | 
\prod N
i=1[0, w

i]), by [BK20, Theorem
2.6], we obtain \| \lambda w,\epsilon  - \lambda \| 1 \leq 2N\epsilon + 2\| w  - w\| 1. By the triangle inequality,

\| G(\psi h,\epsilon ) - \lambda \| 1 = \| \lambda h,\epsilon  - \lambda \| 1 \leq 2(N\epsilon + \| w  - w\| 1 + 2N
\sqrt{} 
2CLh),

proving (2.6), and then [BK20, Corollary 2.8] gives

N\sum 
i=1

\Delta \mu (Lagi(\psi h,\epsilon ), T
 - 1(\{ yi\} )) \leq 8N(N\epsilon + \| w  - w\| 1 + 2N

\sqrt{} 
2CLh),

proving (2.7).

5.2. Proof of Theorem 2.14. Next we prove convergence in terms of Hausdorff
distance.

Proof of Theorem 2.14. We begin with statement (1). By [BK19, Proposition 3.5,
Proposition 4.4, Corollary 4.5], there exists some \psi \in \BbbR N such that T = T\psi \mu -a.e.
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(a) Algorithm 1: Iter= 0. (b) Algorithm 1: Iter= 50. (c) Algorithm 1: Iter= 74.

(d) [KMT19]: Iter= 62.

Fig. 1. Laguerre cells of Example 6.1.

and \lambda = G(\psi ). Under the hypotheses of (1), by (2.6) in Theorem 2.11, we see that
\| G(\psi k)  - \lambda \| \rightarrow 0 as k \rightarrow \infty . Then since minimizers of (1.1) are minimizers of a
classical optimal transport problem once the weight \lambda is known, we can apply [BK20,
Corollary 1.11], which gives the claim in (1). Claim (2) also follows from [BK20,
section 5], since we know \| G(\psi h,\epsilon ) - \lambda \| 1 \leq 2(N\epsilon + \| w  - w\| 1 + 2N

\surd 
2CLh) by (2.6)

in Theorem 2.11.

6. Numerical examples. In this section, we present some numerical examples
produced by an implementation of Algorithm 1. In each example, the source measure
\mu is supported on the 2D square [0, 3]2, and the finite set Y is a 30\times 30 uniform grid
of points with a random perturbation added, contained in the square [0, 1]2. Each
example was calculated to an error of 10 - 10, with parameters h = 1

2 and \epsilon = 10 - 6;
each figure below shows the boundaries of the associated Laguerre cells after various
numbers of iterations. The code is based on a modification of the PyMongeAmpere
interface developed by Quentin M\'erigot.1

Example 6.1. In this example, the source measure \mu has density identically zero
on the square [1, 2]2, identically equals a positive constant on the boundary of [0, 3]2,
and is linearly interpolated over a triangulation of [0, 3]2 using 18 triangles (see the
figure in [KMT19, section 6.3] for the triangulation; this measure is the same as what
appears in that section) and then normalized to unit mass. By a small modification
of [KMT19, Appendix A], this \mu satisfies a Poincar\'e--Wirtinger inequality. The weights
w are randomly generated, and taken to sum to one, so this example is a classical
optimal transport problem.

Algorithm 1 reaches the specified error in 74 iterations, while the algorithm of
[KMT19] takes 62 iterations, and hence the two have comparable performance for
classical optimal transport with source satisfying a Poincar\'e--Wirtinger inequality.
The final diagram of Laguerre cells for both algorithms is presented in Figure 1 (seeded

1M\'erigot's original code is available online from https://github.com/mrgt/PyMongeAmpere.
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with the same random values).

Example 6.2. In this example, the source measure \mu is the same as in Example
6.1, and the vector w associated to the storage fee is randomly generated. Since\sum N
i=1 w

i > 1, this is not a classical optimal transport problem but is an optimal
transport problem with storage fees.

Algorithm 1 reaches the specified error tolerance in 57 iterations. Attempting to
run the algorithm from [KMT19] with a target measure given by the weights w fails to
reduce the error beyond 2 \cdot 10 - 2 and produces dual vectors leading to clearly incorrect
Laguerre cells. This is to be expected, as this example is not a classical optimal
transport problem. The final Laguerre cells for Algorithm 1 are given in Figure 2.

(a) Algorithm 1: Iter= 0. (b) Algorithm 1: Iter= 25. (c) Algorithm 1: Iter= 57.

Fig. 2. Laguerre cells of Example 6.2.

Example 6.3. In this final example, the source measure \mu is taken to have density
identically zero on the strip [1, 2] \times [0, 3], equal to a positive constant on the edges
\{ 0, 1\} \times [0, 3], and then is linearly interpolated over the same triangulation as in
Example 6.1 (and again normalized to unit mass). In particular, as spt\mu is not
connected, this measure does not satisfy a (q, 1)-Poincar\'e--Wirtinger inequality for
any q \geq 1. The weights w are taken with random weights summing to one, and hence
this corresponds to a classical optimal transport problem.

Algorithm 1 reaches the error tolerance in 123 iterations, while the algorithm
from [KMT19] fails to produce any reduction of error from the initial state. This is
due to the lack of a Poincar\'e--Wirtinger inequality for \mu . The final Laguerre cells for
Algorithm 1 are given in Figure 3.

(a) Algorithm 1: Iter= 0. (b) Algorithm 1: Iter= 50. (c) Algorithm 1: Iter= 123.

Fig. 3. Laguerre cells of Example 6.3.
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Appendix A. Strong convexity of \bfscrC .
Lemma A.1. \scrC as defined by (5.1) is strongly convex. In particular,

t\scrC (x) + (1 - t)\scrC (y) \geq \scrC (tx+ (1 - t)y) + 1

8CLN
t(1 - t)\| y  - x\| 2,

where [G]C0,1(\BbbR N ) \leq CLN , and CL > 0 is universal.

Proof. Let B(\psi ) =
\int 
\psi c

\ast 
d\mu . We see that \scrC (\lambda ) = B\ast ( - \lambda ); also by [AG17], B is

C1,1, \nabla B =  - G, and B is convex (see [KMT19, Theorem 1.1], which does not require
\mu to satisfy a Poincar\'e--Wirtinger inequality). By [AG17, Theorem 5.1], we see that
the Lipschitz constant of G is bounded from above by CLN , where CL > 0 is some
universal constant. Now

0 \leq tB(x) + (1 - t)B(y) - B(tx+ (1 - t)y)

= tB(x) + (1 - t)
\biggl( 
B(x) + \langle y  - x,\nabla B(x)\rangle 

+

\int 1

0

\langle \nabla B((1 - s)x+ sy) - \nabla B(x), y  - x\rangle ds
\biggr) 

 - 
\biggl( 
B(x) + \langle tx+ (1 - t)y  - x,\nabla B(x)\rangle 

+ (1 - t)
\int 1

0

\langle \nabla B((1 - s(1 - t))x+ s(1 - t)y) - \nabla B(x), y  - x\rangle ds
\biggr) 

\leq (1 - t)
\int 1

0

\| \nabla B((1 - s)x+ sy) - \nabla B(x)\| \| y  - x\| ds

+ (1 - t)
\int 1

0

\| \nabla B((1 - s(1 - t))x+ s(1 - t)y) - \nabla B(x)\| \| y  - x\| ds

\leq CLN(1 - t)
\biggl( \int 1

0

s\| y  - x\| 2ds+ (1 - t)
\int 1

0

s\| y  - x\| 2ds
\biggr) 

\leq (1 - t)CLN\| y  - x\| 2.

By repeating a similar argument, we get tB(x) + (1  - t)B(y)  - B(tx + (1  - t)y) \leq 
tCLN\| y - x\| 2. Hence tB(x)+(1 - t)B(y) - B(tx+(1 - t)y) \leq 2CLNt(1 - t)\| y - x\| 2.

In the terminology of [AP95, Definition 1], we have shown that B is \sigma -smooth,
where \sigma (x) := 2CLNx

2. Since it is well known that \sigma \ast (z) = 1
8CLN

z2, by [AP95,
Proposition 2.6] we see that \scrC is \sigma \ast -convex, i.e., t\scrC (x) + (1  - t)\scrC (y) \geq \scrC (tx + (1  - 
t)y) + 1

8CLN
t(1 - t)\| y  - x\| 2, finishing the proof.

Corollary A.2. Let K be a convex subset of the domain of \scrC . Let \lambda min be
the minimizer of \scrC on K, and let \lambda \in K be arbitrary. Then \scrC (\lambda )  - \scrC (\lambda min) \geq 

1
32CLN

\| \lambda  - \lambda min\| 2.

Proof. By choice of \lambda min, we have
1
2\scrC (\lambda ) \geq 

1
2\scrC (\lambda min) and  - \scrC (\lambda min) \geq  - \scrC (

1
2 (\lambda +

\lambda min)). Hence by the above lemma we have \scrC (\lambda )  - \scrC (\lambda min) \geq 1
2 (\scrC (\lambda ) + \scrC (\lambda min))  - 

\scrC ( 12 (\lambda + \lambda min)) \geq 1
32CLN

\| \lambda  - \lambda min\| 2.
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