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We study the electronic phase diagram of the excitonic insulator candidates Ta2Ni(Se1−xSx )5 (x = 0, . . . , 1)
using polarization resolved Raman spectroscopy. Critical excitonic fluctuations are observed that diminish with
x and ultimately shift to high energies, characteristic of a quantum phase transition. Nonetheless, a symmetry-
breaking transition at finite temperatures is detected for all x, exposing a cooperating lattice instability that takes
over for large x. Our study reveals a failed excitonic quantum phase transition, masked by a preemptive structural
order.
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Introduction. One of the fascinating manifestations of in-
teractions between electrons in solids is the emergence of
electronic orders. The fluctuations close to the respective
quantum critical points are also believed to be the drivers of a
wealth of yet unexplained behaviors, including strange metal-
licity and high-Tc superconductivity [1–4]. In many cases
(such as, e.g., nematic [5,6] or density-wave [7,8] orders)
electronic order breaks the symmetries of the crystalline lat-
tice and the corresponding transitions can be, symmetry-wise,
identical to structural ones. This raises the question of the
role of the interplay between electronic and lattice degrees
of freedom in the ordering. Even in cases where the lattice
only weakly responds to the transition [9,10], the critical tem-
peratures [11,12] and quantum critical properties [13] can be
strongly modified. Moreover, in a number of cases the origin
of the order is still under debate [14–16], as the lattice may
develop an instability of its own.

The electronic-lattice dichotomy has recently come to the
fore in studies of Ta2NiSe5 [17–19]—one of the few candidate
materials for the excitonic insulator (EI) phase [16,20–24].
The EI results from a proliferation of excitons driven by
Coulomb attraction between electrons and holes in a semi-
conductor or a semimetal [25–29]. Ta2NiSe5 exhibits a phase
transition at Tc = 328 K; while the pronounced changes in
band structure [18], transport [19], and optical [30] properties
are consistent with the ones expected for an EI, they allow
an alternative interpretation in terms of a purely structural
phase transition [31–34]. Indeed, the EI state in Ta2NiSe5 is
expected to break mirror symmetries of the lattice due to the
distinct symmetries of the electron and hole states forming
the exciton [35], similar to a structural transition [31]. Intrigu-
ingly, substitution of Se with S has been shown to suppress
Tc in transport experiments to zero [19], suggesting a possible
quantum phase transition (QPT) at x = xc in Ta2Ni(Se1−xSx )5.
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Increasing x enhances the band gap in the electronic structure
[36], which is known to suppress the EI [27,28], consistent
with an EI QPT. On the other hand, the lattice degrees of
freedom also evolve with x making it imperative to separately
assess the roles of electronic and lattice degrees of freedom
throughout the phase diagram of Ta2Ni(Se1−xSx )5.

Experimentally, this is a challenging task. As transitions
caused by the lattice and electronic degrees of freedom break
the same symmetries [31,35], their signatures may appear
identical in thermodynamic (e.g., specific heat [19]) and
symmetry-sensitive (x-ray diffraction [17]) probes, as well as
in the single-electron spectra [18,32]. Probing the collective
dynamics out of equilibrium could provide more information
[33,34,37], but raises the question of whether the nonequilib-
rium state preserves the interaction between the structural and
electronic modes intact [38]. Finally, due to the even-parity
nature of the critical mode [39], the dipole selection rules
forbid direct observation of the order parameter response in
optical absorption [30]. A promising technique to address the
near-equilibrium collective dynamics is polarization-resolved
Raman scattering [39–41] that also allows us to detect sym-
metry breaking independently [42–44]. Furthermore, analysis
of the Raman data [38,39] enables us to deduce the individual
contributions of the lattice and electronic modes to the transi-
tion, making this technique unique in its scope.

In this Letter we use polarization-resolved Raman scatter-
ing to study the dynamics of electronic excitations throughout
the phase diagram of Ta2Ni(Se1−xSx )5. We reveal the presence
of low-energy excitonic modes that soften on cooling towards
Tc(x). This softening indicates that in the absence of lattice
effects, a purely excitonic transition would have taken place
at Tex(x), which we deduce to be smaller than Tc(x). On
increasing sulfur content x, Tex(x) is suppressed to negative
values and for x = 1 low-energy excitons are no longer ob-
served, as expected for an excitonic insulator quantum phase
transition. However, the actual Tc(x) remains finite for all
x, implying the presence of a cooperating lattice instability,
obscuring the suppression of the excitonic order. The study
thus reveals a “failed” excitonic quantum phase transition in
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FIG. 1. Overview of the polarization-resolved Raman response χ ′′(ω,T ) in Ta2Ni(Se1−xSx )5. (a)–(d) Response in aa polarization geometry
corresponding to fully symmetric (Ag) excitations above (red) and below (blue) Tc for x = 0–1. Shading highlights the bare electronic
contribution to the response. (e) and (f) Same for ac geometry, probing the excitations with the symmetry of the order parameter (B2g) for
T > Tc (red). Unlike aa geometry, phonons show an extremely anisotropic Fano line shape (hatching), indicating their strong interaction with
the electronic continuum (red shading). For T < Tc (blue) excitations observed in aa geometry above Tc appear (arrow) due to symmetry
breaking. (i)–(l) Temperature dependence of χ ′′

ac(ω,T ); an enhancement at low energies near Tc (arrow) is observed for x = 0, 0.25, 0.67. For
x = 1 no low-energy response is present. (m)–(p) Details of χ ′′

ac(ω,T ) for regions marked by dashed lines in (i)–(k). (m)–(o) Fano line shape
of low-energy phonons due to interaction with electronic continuum. (p) High-energy peak due to an uncondensed exciton in Ta2NiS5.

Ta2Ni(Se1−xSx )5 masked by a preemptive structural order that
takes over as the electronic instability is suppressed.

Experiment. We performed Raman scattering experiments
on single crystals Ta2Ni(Se1−xSx )5 with varying Se/S con-
tent, grown using the chemical vapor transport (CVT) method
[38,45]. The measurements were performed in a quasi-back-
scattering geometry on samples cleaved to expose the ac
crystallographic plane with the 647 nm line from a Kr+

ion laser excitation, details presented in Ref. [38]. The se-
lection rules in the high-temperature orthorhombic (point
group D2h) phase imply that ac polarization geometry probes
excitations with B2g symmetry (same as that of the order
parameter), while aa geometry probes the fully symmetric Ag

ones [38–41]. Below Tc, the point group symmetry is reduced
to C2h and the two irreducible representations merge, such
that excitations from ac geometry above Tc may appear in
aa geometry and vice versa. Their appearance allows us to
determine Tc from the Raman spectra.

Data overview. Summarized temperature dependence of
the Raman susceptibility χ ′′(ω,T ) is presented in Fig. 1.
The samples with x = 0, 0.25, 0.67 show qualitatively similar
spectra. At low energies, phonon peaks are observed on top of
a smooth background, which we attribute to electronic exci-
tations. On cooling, a pronounced redistribution of electronic
intensity in a wide range of energies is observed, leading to a
formation of a gaplike suppression followed by a high-energy
feature, Figs. 1(a)–1(c). This feature at 380 meV for Ta2NiSe5

has been attributed to the coherence factors at the gap edge of
an EI [39]. In ac geometry, a pronounced enhancement at low
energies is evident close to Tc, consistent with critical mode
softening near a second-order phase transition, Figs. 1(i)–
1(k). In the same temperature region, the line shapes of the
low-energy phonons show strongly asymmetric Fano form
[Figs. 1(m)–1(o)]—a known signature of interaction with
an electronic excitation continuum [38,39,46]. This indicates
the presence of low-energy symmetry-breaking electronic
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FIG. 2. The parameters deduced from the Raman response data,
Fig. 1. (a) Integrated “leakage” intensity into ac scattering geome-
tries of the lowest-energy Ag phonon mode labeled in Figs. 1(e)–1(h),
normalized by the intensity in the dominant aa geometry. The mode’s
appearance in the ac scattering geometry below Tc implies the onset
of symmetry breaking. (b) Excitonic energy �e(T ), Eq. (1), obtained
from the Fano fits to the line shapes in Fig. 1. Lines represent linear
fits to the points.

excitations that soften close to Tc. At low temperatures, the
asymmetry disappears [Figs. 1(e)–1(g)], a behavior consistent
with a gap opening in an EI. On increasing sulfur content x,
the temperature where the strongest low-energy enhancement
is observed progressively lowers [Figs. 1(i)–1(k)], and the Ag-
symmetry feature at about 380 meV moves slightly to lower
energy and becomes less pronounced.

The signatures for Ta2NiS5 (x = 1) are rather different: in
the ac geometry, low-energy electronic excitations are absent
at all temperatures, indicating the presence of a direct gap.
This implies that between x = 0.67 and x = 1 the electronic
structure undergoes a Lifschitz transition from a semimetallic
to an insulating one. The intensity in the aa geometry at
low energies is also pronouncedly smaller than for the other
samples and no broad high-energy peak is observed at low
temperatures. On the contrary, a sharp feature at about 0.3 eV
emerges in ac geometry on cooling below 100 K.

Symmetry-breaking transition. We address first the pres-
ence of a phase transition by studying the appearance
of new modes in the broken-symmetry phase, as outlined
above. In Fig. 2(a) we show the temperature dependence
of such a “leakage” phonon intensity marked by arrow in

Figs. 1(e)–1(h). One can see the appearance of the leaked
intensity below Tc in the pure Se case, as well as the decrease
of Tc with S doping. Leakages of other modes appear below
the same temperature Tc [38,45]. At low x the obtained values
of Tc agree with the ones deduced from transport and spe-
cific heat measurements [19,38], Fig. 3. However, in contrast
to the transport data reported in Ref. [19], we find that the
symmetry-breaking transition persists for all compositions,
although the leakage intensity is strongly suppressed with
higher x. The latter suggests that the phase transition sig-
natures in thermodynamic and transport measurements may
become too weak to be observed at large x, especially since
the system becomes more insulating with x. The structural
signatures, e.g., the deviation of the monoclinic angle β from
90◦, should be also strongly suppressed, being already weak
at x = 0 [17].

The phase transition for x = 1, where no low-energy soft-
ening is observed [Fig. 1(l)], indicates a different transition
mechanism. Below we analyze our data to elucidate the origin
of the transition as a function of x.

Electronic contribution to the phase transition. We in-
vestigate first the soft-mode behavior observed for x � 0.67
[Figs. 1(i)–1(k)]. In particular, we analyze the asymmetric
line shapes of the low-energy part of χ ′′

ac(ω,T ) around Tc
[Figs. 1(m)–1(o)] using an extended Fano model [38,39]. The
model assumes three phononic oscillators (which is the num-
ber of B2g modes in the orthorhombic phase) interacting with
a continuum of excitonic origin. The latter is expected to arise
from the excitonic fluctuations in a semimetal, overdamped
due to the allowed decay into particle-hole pairs. Close to the
transition, the dynamics of the excitonic mode is governed by
the time-dependent Landau equations [47–50]. Together with
the standard oscillator dynamics of the phonons the system is
described by

{∂t + �e(T )}ϕ +
3∑

i=1

ṽiηi = 0,

{
∂2
t + 2γi(T )∂t + ω2

pi(T )
}
ηi + ṽiϕ = 0, (1)

where ηi=1,2,3 and ϕ are the collective coordinates (order
parameters) of the optical phonons and excitons, respectively.
�e(T ) is the characteristic energy of the excitonic fluctu-
ations, ωpi(T ) and γi(T ) are the phonon frequencies and
scattering rates, and a bilinear exciton phonon-coupling ṽi is
assumed. The linear response of the system Eq. (1) deter-
mines the Raman susceptibility. The resulting model [45] is
a generalization of the standard Fano model [46] for Raman
scattering in metals to the case of three phonons and the con-
tinuum response determined from the Landau theory, Eq. (1).
The purely excitonic part of the response has then the form
of a broad continuum χ ′′

cont(ω,T ) ∝ ω
�2

e (T )+ω2 , in contrast to
the Lorentzian phonon peaks. The interaction between the
phonons and the excitonic continuum leads to an asymmet-
ric broadening of the peaks [38], allowing us to capture the
observed line shapes in great detail [38,39,45].

We now discuss the parameters deduced from the Fano
model fits. The phonon frequencies ωpi(T ) do not soften near
Tc [38], ruling out a zone-center phonon instability [31]. On
the other hand, �e(T ) [Fig. 2(b), solid lines] consistently
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FIG. 3. Phase diagram of Ta2Ni(Se1−xSx )5. Orange points: The
symmetry-breaking transition temperature Tc(x) obtained from the
onset of phonon intensity leakage, Fig. 2(a). Red points and crosses:
T ρ
c (x) adapted from transport studies [19,38]. For low sulfur con-

centration x, the soft excitonic mode [Fig. 2(b)] would drive the
transition at temperature Tex(x) (blue points) that is enhanced to
Tcomb(x) by coupling to inert optical phonons (green points), and is
further enhanced to T str

comb(x) by coupling to the B2g strain (purple
triangles). For large x, the excitonic softening is suppressed, while
a ferroelastic instability leads to a finite T FE

comb(x) (black squares).
In the absence of the lattice instability, a lattice-shifted electronic
QPT would have occurred at xc (dashed purple line). Additionally,
in the same proximity, the band structure undergoes semimetal-to-
semiconductor Lifschitz transition (see text).

softens above Tc for all semimetallic samples. The linear tem-
perature dependence �e(T ) ∼ T − Tex implies that a purely
electronic transition would have taken place at Tex < Tc for
x = 0, 0.25 (Fig. 3, blue symbols). The strongly negative Tex

for x = 0.67 indicates that the exciton softening alone would
not have led to a transition at this sulfur concentration.

The suppression of the excitonic instability with x is even
more evident in Ta2NiS5 [Figs. 1(d), 1(h) and 1(l)], where
the low-energy electronic response is altogether absent due
to a direct band gap [36]. Instead, we observe a sharp B2g-
symmetry mode at 0.3 eV [Fig. 1(p)], consistent with an
in-gap exciton. It is followed by a weaker feature at 0.325 eV
and an intensity “tail” at higher energies up to around 0.4 eV.
The natural interpretation of the second peak is the second
state of the Rydberg series (i.e., 2S exciton), while the high-
energy intensity tail can be attributed, in analogy with optical
absorption spectroscopy, to the Rydberg states of higher order
and interband transitions [51,52] with possible contributions
from phonon-assisted exciton transitions [53,54]. A leakage
of the exciton features is also observed in aa geometry due to
symmetry breaking, Fig. 1(d) [45]. On heating, all the features
broaden and eventually smear out above 100 K. The increase
of the linewidth of the excitonic features can be attributed to
the interaction with acoustic and optical phonons [55].

Ferroelastic transition in Ta2NiSe5. The presented obser-
vations show that the excitonic instability on its own cannot
explain the occurrence of a transition for samples with large x,
calling for a more careful consideration of the lattice effects.
The most vivid is the case of Ta2NiS5, where the excitonic
response is confined to high energies [Fig. 1(p)]. Three B2g

optical phonon modes [Fig. 1(l)], on the other hand, exhibit
some (around 15% maximum) softening on cooling. How-
ever, their energies never soften below 6.5 meV, nor exhibit
anomaly at the transition temperature 120 K. We note that the
number of B2g modes is restricted to three by the space group
of the orthorhombic Ta2NiS5, implying the absence of any
other B2g optical modes beyond those shown in Fig. 1(l). Con-
sequently, an instability of zone center phonons in Ta2NiS5

[56] is ruled out by the data.
The only remaining option for the transition origin in

Ta2NiS5 is an instability of the acoustic modes, i.e., ferroe-
lasticity [57,58], driven by softening of the B2g shear modulus
Cac(T ). Indeed, the acoustic modes are not observed directly
in Raman due to their extremely low energies and weak cou-
pling to light [38,59]. However, we will show now that the
effects of the ferroelastic instability can be observed at x < 1
via its coupling to the low-energy excitons.

Electronic-structural phase diagram. We will now demon-
strate that the entire phase diagram of Ta2Ni(Se1−xSx )5 can
be understood by including the interaction between excitonic
and lattice modes. As has been noted above, the bare excitonic
transition temperature Tex (Fig. 3, blue line) is significantly
lower than the actual Tc. However, even the coupling of ex-
citons with the otherwise inert optical phonons can affect
the transition temperature. For a coupled excitonic-optical
phonon system, the transition temperature Tcomb(x) corre-
sponds to the appearance of a zero-energy solution of Eq. (1)
deduced from [45]:

�e[x,Tcomb(x)] −
∑

i

ṽ2
i

ω2
pi[x,Tcomb(x)]

= 0, (2)

where all the parameters of this equation are deduced from the
Fano analysis of the Raman data, Figs. 1(m)–1(o), following
Ref. [38]. The resulting temperature Tcomb(x) is shown in
Fig. 3 (green line). While higher than Tex(x), there is still
discrepancy with Tc: for example, Tcomb(x = 0.67) is negative,
while the actual Tc(x = 0.67) is 170 K.

We now include the effects of coupling of the excitonic
order parameter ϕ to the B2g strain εac (acoustic modes).
A linear coupling between the two is allowed by symmetry
[11,12,39] and leads to a further modified equation for the
transition temperature [39,45]:

�e
[
x,T FE

comb(x)
] −

∑

i

ṽ2
i

ω2
pi[x,T

FE
comb(x)]

− λ2/

[
2Cac

(
T FE

comb

)] = 0, (3)

where λ and Cac(T ) is the strain-exciton coupling constant
and the B2g is shear modulus, respectively. To capture the
ferroelastic instability at x = 1, we assume a Curie-Weiss
behavior of the shear modulus C−1

ac (T ) = C−1
ac(0) + a

T−120 K .
Using λ2C−1

ac(0) and λ2a as fitting parameters, the observed
Tc(x) can be captured very accurately, see the black line
in Fig. 3. Importantly, the effects of the ferroelastic soft-
ening become noticeable well before x = 1. The purple
dashed line T str

comb(x) in Fig. 3 shows the transition tem-
perature T str

comb(x) obtained ignoring ferroelastic softening
[i.e., taking C−1

ac (T ) = C−1
ac(0) in Eq. (3)]. The result deviates

strongly from actual Tc(x) already at x = 0.67. Continuing the
trend further suggests a complete suppression of ordering at
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xc ≈ 0.8 in the absence of ferroelasticity. At the same time,
for low x, T str

comb(x) and T FE
comb(x) are almost indistinguish-

able, suggesting that ferroelasticity does not play a role in
that case.

This picture bears important consequences for the physics
of Ta2Ni(Se1−xSx )5. At low x, the transition is driven, to a
good approximation, only by the excitonic softening. On in-
creasing x, the lattice softening becomes more important, and
for x = 1 the transition is purely ferroelastic. In the absence
of ferroelasticity, an electronic QPT would have occurred at
xc ≈ 0.8. We remind that the excitonic and lattice orders break
the same symmetries in Ta2Ni(Se1−xSx )5. Consequently, no
change in symmetry occurs as a function of x at low temper-
atures and a true QPT at T = 0 is avoided (unlike the case
of superconductivity emerging near quantum critical points).
However, this does not preclude critical electronic fluctua-
tions, associated with the “failed” QPT at xc ≈ 0.8 to be
observed at sufficiently high temperatures (higher than the
bare lattice transition temperature of 120 K) [13].

The presence of quantum critical fluctuations due to a
failed excitonic QPT lends a natural explanation to the
signatures of strong correlations observed in Ta2NiSe5. In par-
ticular, a filling-in, rather then closing of the gap in aa Raman
spectra has recently been connected to strong electronic corre-
lations [39]; moreover, ARPES studies [60] suggest the pres-
ence of “preformed excitons” well above Tc also characteristic
of a correlated regime. Similar temperature evolution of aa
spectra is also observed for the doped samples, Figs. 1(b) and
1(c). Interestingly, while the intensity of the coherent aa peak
is suppressed with doping, as is expected from mean-field
theory [61], the position of the peak changes only weakly. The
latter behavior indicates strong correlations which get a natu-
ral explanation in terms of the quantum critical fluctuations
from the failed QPT. Finally, ferroelasticity may be sup-
pressed by strain [62] or pressure [19] raising the possibility to
reveal the bare EI QPT at low temperatures. For a semimetal-
lic band structure, the EI QPT has been predicted to lead to
non-Fermi liquid behavior [63], mass enhancement [64], or

emergence of superconductivity [65]. Interestingly, a super-
conducting dome near the end point of the monoclinic phase
has been recently reported in Ta2NiSe5 under pressure [66].

Conclusions. In this work we used polarized Raman scat-
tering to study the phase diagram of the excitonic insulator
candidates Ta2Ni(Se1−xSx )5, disentangling the roles of struc-
tural and electronic ordering. We revealed a failed excitonic
insulator quantum phase transition at xc ≈ 0.8, avoided due to
a lattice instability below 120 K. At low sulfur content x we
observed a soft excitonic mode driving the transition, while
at large x this mode ultimately transforms into a high-energy
exciton, unable to drive the transition. We further exclude
the instability of optical phonons and demonstrate that a
ferroelastic instability yields an explanation of the observed
symmetry-breaking transition. While the excitonic quantum
phase transition is avoided due to the low-temperature lat-
tice instability, the associated critical fluctuations can still be
present at high temperatures [13], explaining the correlation
effects in Ta2NiSe5. Furthermore, selective control of the
structural and excitonic instability by strain [62] or pressure
[19] can turn Ta2Ni(Se1−xSx )5 into a platform to study the
excitonic QPT at low temperatures as well as quantum critical
ferroelasticity [67].
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