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This paper studies Distributionally robust Fair transit Resource Allocation model (DrFRAM) under the
Wasserstein ambiguity set to optimize the public transit resource allocation during a pandemic. We show
that the proposed DrFRAM is highly nonconvex and nonlinear and is NP-hard in general. Fortunately,
we show that DrFRAM can be reformulated as a mixed-integer linear programming (MILP) by leveraging
the equivalent representation of distributionally robust optimization and monotonicity properties, binarizing
integer variables, and linearizing nonconvex terms. To improve the proposed MILP formulation, we derive
stronger ones and develop valid inequalities by exploiting the model structures. Besides, we develop scenario
decomposition methods using different MILP formulations to solve the scenario subproblems and introduce
a simple yet effective No-one-left based approximation algorithm with a provable approximation guarantee
to solve the model to near optimality. Finally, we numerically demonstrate the effectiveness of the proposed

approaches and apply them to real-world data provided by the Blacksburg Transit.
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History:

1. Introduction

The recent outbreak of the SARS-CoV-2 (i.e., COVID-19 disease) has been profoundly influencing
society. Many schools have been shut down and turned to online; many restaurants and shopping
malls have either been closed or significantly reduced capacity; many firms have required employees
to work from home. On the other hand, as the vaccination process has been accelerated and the
promise of the vaccines, the number of COVID-19 infection cases in the U.S. has been decreasing
since January 2021. Therefore, many states are now re-opening the business as well as schools; for
example, the Commonwealth of Virginia’s public schools have been re-opened since March 2021.
Starting from August 2021, as the viruses are constantly evolving into new variants which may
be more infectious than the original ones, many states restart the mask mandates in public con-
veyances and indoor activities. Undoubtedly, these policies have tremendously influenced people’s

daily activities, which causes a significant demand uncertainty for public transit. Besides demand
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uncertainty, to keep passengers safe and prevent transmission of the coronaviruses, it is of vital
importance to observe the social distancing within the public transit, which in turn will reduce the
capacity of transit vehicles (e.g., buses) and thus affect the entire operations of the public transit
systems. This paper is trying to solve this issue. The results in this paper are also useful for another
wave of COVID-19 outbreaks or preparing for a future pandemic.

The authors collaborate with local Blacksburg Transit, a daily outdoor transportation tool used
by many students and residents at the Town of Blacksburg. Since the training of employees and
installation of bus stops can cause much longer delays and aggravate the under-staffing issue, the
transit operators in Blacksburg Transit would like to keep the current routes and stops as they
are but to optimize the transit resources, i.e., bus allocation, to maximize their utilization rates
as well as social equity. This motivates us to study the fair transit resource allocation problem.
As Blacksburg Transit shares us the passenger alighting and boarding data, we are able to build a

data-driven optimization model to leverage these available data to account for future uncertainties.

1.1. Literature Reviews
Transit system design and optimization have been widely studied in the literature (see, e.g.,
Daganzo and Ouyang 2010, Ceder 2016, and references therein). The works in transit are mainly on
optimal scheduling and routing to serve the public better. For example, Chien and Schonfeld (1997)
incorporated spatial characteristics and demand patterns of urban areas into their optimization
model. Other important earlier works can be found in De Cea and Fernandez (1993), Quadrifoglio
et al. (2006), Guan et al. (2006), Jeihani et al. (2013) or in the review papers (Guihaire and Hao
2008, Horcher and Tirachini 2021). Recently, Nourbakhsh and Ouyang (2012) focused on the flexible
transit design in the low-demand areas, and Ouyang et al. (2014) proposed a continuum approx-
imation approach for bus design under heterogeneous demand. Chen and Nie (2017) attempted
to integrate an e-hailing system with public transit. Iliopoulou and Kepaptsoglou (2019) jointly
optimized network design and charging infrastructure locations for the electric buses. Abdolmaleki
et al. (2020) built a new model for synchronizing timetables in a transit network that minimizes
the total transfer waiting time. Other interesting works can be found in Romén-De la Sancha et al.
(2018), Matisziw et al. (2006), Jin et al. (2016), Agarwal and Ergun (2008), Mahéo et al. (2019),
among many others. Different from these works, we focus on transit resource allocation given the
predetermined routes.

Recent advances in stochastic and robust optimization provide tools for the transit design under
uncertainty (see, e.g., Li et al. 2009, Fernandes et al. 2018, Li et al. 2008, Fu and Lam 2014, Ham-
douch et al. 2014, Hadas and Shnaiderman 2012 for the earlier interesting works). For example,

Kulshrestha et al. (2014) developed a robust model for bus dispatching for evacuations to optimize
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the total travel time under demand uncertainty. An and Lo (2016) studied transit system design
under demand uncertainty using two-stage stochastic programming. Liang et al. (2019) proposed
a two-step modeling framework for the bus transit network design considering an existing metro
network and demand uncertainty. In Yoon and Chow (2020), the authors provided a sequential
learning framework to address the demand uncertainty when designing lines and routes in the tran-
sit system. Shehadeh (2020) studied two distributionally robust models to address the randomness
in demands for a mobile facility routing and scheduling problem. Different from existing ones, our
modeling framework is data-driven without any knowledge of the underlying distribution, which
uses real-world data from a transit system. Besides, to fulfill the requirements of transit operators,
our proposed model does not alter the existing lines and routes.

The study of transit design during a pandemic, especially the COVID-19 pandemic, is rather
limited. As shown in Liu et al. (2020), the COVID-19 pandemic caused a major transit demand
decline for many public transit systems in the United States due to the fear of contracting the
disease, practicing social distancing, and lockdown policy, which has also been observed by many
social workers. Mo et al. (2021) studied the epidemic spreading model in the time-varying transit
network. Chen et al. (2020) redesigned the campus bus systems by shortening the routes and
enforcing social distancing. The most relevant to our research are Gkiotsalitis and Cats (2021) and
Yang and Nie (2020), which optimized metro service frequency during the COVID-19 pandemic.
Different from Gkiotsalitis and Cats (2021), and Yang and Nie (2020), we not only optimize the
number of buses assigned to different routes but also try to stick to one type of bus per route to
avoid drivers’ unnecessary confusion. More importantly, we incorporate both demand uncertainty
and alighting rate uncertainty, and thus our proposed model is more flexible and data-driven. The
scope of our model is also different from Gkiotsalitis and Cats (2021), Chen et al. (2020). Instead
of minimizing the operation costs or maximizing the profits, we focus on optimizing social equity

for each route and minimizing the passenger abandon rate due to capacity restrictions.

1.2. Summary of Main Contributions

The objective of this study, motivated by Blacksburg Transit, is to determine optimal transit
resource allocation to minimize the highest bus utilization rate and the largest passenger abandon
rate with limited bus operation data given to achieve better social equity under stochastic passenger
arrival and alighting rates and overcome the future uncertainties as much as we can to serve
the passengers better. This gives rise to Distributionally robust Fair transit Resource Allocation
model (DrFRAM) under a data-driven ambiguity set. The main contributions of DrFRAM are

summarized as below:
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(i) We study DrFRAM under type-oo Wasserstein ambiguity set. As far as we are concerned,
our DrFRAM model is the first one focusing on fair multi-type transit resource allocation
under passenger arrival and alighting rates uncertainty. We prove that DrFRAM cannot be
solved in polynomial time unless P = N P even when the problem is deterministic, and there
are only two types of buses.

(ii) We derive the monotonicity properties of the DrFRAM, using which we can significantly
simplify the DrFRAM and linearize the nonlinear components in the objective of DrEFRAM.

(iii) We propose a mixed-integer linear programming (MILP) formulation for DrFRAM by bina-
rizing integer variables and linearizing the nonlinear functions using McCormick inequalities.
To strengthen the MILP formulation, we derive stronger ones and develop valid inequalities
by exploiting the model structures. These formulations allow us to design efficient scenario
decomposition methods.

(iv) Besides these exact methods, we develop an approximate scenario decomposition method
using objective cuts to speed up the convergence and No-one-left based approximation algo-
rithm for solving DrFRAM to near-optimality. Both approaches come with theoretical approx-
imation guarantees, demonstrating the strengths of these approaches.

(v) We numerically demonstrate the effectiveness of the proposed approaches, outperforming the
sampling average approximation method, and apply them to solve the real-world instances
using the data provided by Blacksburg Transit.

Notation. The following notation is used throughout the paper. We use bold letters (e.g., x, A) to
denote vectors and matrices and use corresponding non-bold letters to denote their components.

Given a vector or matrix x, its zero norm |z, denotes the number of its nonzero elements. We let

e be the vector or matrix of all ones and let e; be the i¢th standard basis vector. Given an integer
n, we let [n]:={1,2,...,n}, and use R :={x € R": x; > 0,Vi € [n]}. Given a real number ¢, we let

(t); :=max{t,0}. Given a finite set I, we let |I| denote its cardinality. We let € denote a random

vector and denote its realizations by &. We use superscript k& € [IN] to denote the index of scenario

k. For a matrix A, we let A, denote ith row of A and A.; denote jth column of A. Additional

notations will be introduced as needed.

Organization. The remainder of the paper is organized as follows. In Section 2, we introduce the

model formulation. Sections 3 and 4 show model properties and derive an equivalent mixed-integer
linear programming formulation. Section 5 shows the convexification of two substructures and
derivation of strong valid inequalities, and Section 6 develops approximation algorithms. Finally,
Section 7 numerically demonstrates the effectiveness of the proposed solution approaches, and

Section 8 concludes this paper.



Luying Sun, Weijun Xie, Tim Witten: Distributionally Robust Fair Transit Resource Allocation

2. Model Formulation

We collaborate with Blacksburg Transit in this research. Since March 2020, Blacksburg Transit
has been making efforts to prevent the spread of the pandemic and reduce the risk of exposure to
COVID-19 in order to support the town better. In particular, they are curious about the optimal
plan of bus resource allocation to minimize the highest bus utilization rate during the pandemic.
They are willing to provide us with recent transit sensor data about passenger’s arrival and alighting
information to support our research. However, due to various reasons, such as sensor malfunction-
ing, only a small subset of the data provided to us can be useful in our research. Besides, the transit
operators have little knowledge of underlying probability distribution nor moment information of
the passenger arrival or alighting rates, especially during the pandemic. Therefore, motivated by
Blacksburg Transit, we plan to formulate the problem as a Distributionally robust Fair transit
Resource Allocation model (DrFRAM) using a data-driven ambiguity set, which allows us to lever-
age the collected dataset to its maximum extent and account for non-stationary uncertainties in
the near future.

For the strategic planning purpose as well as considering the intrinsic problem structure of
DrFRAM that passenger’s arrival and alighting data are available, we adopt the modeling of a
transit system based on the seminal work in Hadas and Shnaiderman (2012) using aggregate arrival
and alighting rates and not relying on the user-specific origin-destination data, since the former
is easy to obtain and the latter is difficult to get access to in the transit data available to us.
In DrFRAM, there are K different types of buses, where each bears a nominal capacity c¢; for
each k € [K], and there are 7, type-k buses. Note that during a pandemic, to observe the social
distancing strictly, the bus capacities will be decreased proportionally and strictly enforced to keep
passengers safe and sound. Thus, we let a pandemic factor d;, € [0,1] denote the percent of a type
k bus capacity that allows being operated. That is, only |dxci | passengers will be allowed onto the
bus during a pandemic. Suppose that there are I distinct bus routes, and for each bus route i € [i],
there are J; bus stops. Since passengers can alight and depart a bus at any bus stop for each ¢ € [I]
and j € [J;], we let the random parameter a,; € [0, 1] denote the proportion of passengers alighting
from the bus and let the random variable S\ij € Z., represent the passenger arrival rate during a
unit time interval, i.e., the number of passengers arriving during that time. Note that a, X are both
random since they can vary over time and change with severeness of the pandemic. For notational
convenience, we let é = (d,j\). Since the historical data are available to us, in DrFRAM, we use
the Wasserstein distance to characterize the random parameters, which can both ensure the model
to data-driven and robust (see, e.g., Kuhn et al. 2019).

The transit operators would like to know that given the predetermined routes (so they should

not re-train their employees), what is the fairest way to allocate buses so that the passengers will
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be the best serviced and the safety policies should be strictly enforced? To help them make a better
decision, we let the integer variable n;, € Z, denote the number of type k € [K] buses allocated to
the ¢ € [I|th route. Due to consistency and for ease of management, the transit operators would
like to ensure that each route is subject to the same type of bus whenever possible. Thus, we let
the binary variable x;;, € {0, 1} denote whether type k buses will be assigned to route i € [I] or not.
Using this notation, we see that Zkem Tk | Oxcr | represents the bus capacity at route i € [I]. In
our model, given a realization & of the random parameters £, we let L;;(&) denote the number of
passengers remaining on a bus right after the jth stop at route i € [I]. Due to its physical meaning
and the fact that the arrival rates can be quite low during the pandemic, we keep the variable
L;;(€) as an integer'. To achieve social equity, we define the bus utilization rate as the ratio of the
number of passengers on the bus to the bus capacity, and the passenger abandon rate as the ratio
of the number of passengers who cannot get on board due to limited bus capacity to the number
of passengers arrived. The operation managers would like to know an optimal way to allocate the
buses, which is fair to passengers from different routes. That is, they want to ensure that both the
highest bus utilization rate and the largest passenger abandon rate due to limited bus capacity
among all the routes are low.

In DrFRAM, as passenger arrival and alighting rates are often subject to change over time, and
their joint probability distribution is difficult to estimate, these two parameters are supposed to
be random. Besides, we assume that

(i) the bus routes are predetermined;

(ii) each route is subject to the same type of bus;
(iii) traffic conditions (for example, congestion and interaction with pedestrians and other vehi-
cles), staffing are not considered in our model; and
(iv) limited passenger arrival and alighting data are available.
After talking to Blacksburg Transit operators, we were informed that these assumptions are con-
sistent with the daily operations in Blacksburg Transit during the COVID-19 pandemic. With the

notation introduced above, we are ready to present the mathematical formulation of DrFRAM as

below:
(DrFRAM) v* = minsup Ep [Q (n,az,é)} , (1la)
na pep
st Y mgp=1Vielll], (1b)
kE[K]
N < Meix, Vi € [I],Vk € [K], (1c)

! Our numerical result in Appendix B shows that relaxing the integrality of L;;(£) can cause a much smaller objective
value and may even lead to a misleading conclusion.
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> na <mi,Vk € [K], (1d)
i€[I]
> na>1Viell), (1e)
ke[K]
zi € {0,1},ny € Z*, Vi € [I],Vk € [K]. (1f)

In DrFRAM (1), the objective is to minimize the worst-case resource planning outcomes, where
ambiguity set P denotes a family of probability distributions, and Q(n,m,é) denotes the random
recourse function which will be specified later. Constraints (1b) ensure that each route will commit
to one type of bus. Constraints (1c) and (1d) jointly show that the number of buses allocated to a
particular route is no larger than the number of available buses. Constraints (le) show that each
route should have at least one bus to achieve social equity. Constraints (1f) specify the boundaries
of the decision variables.

Given a realization € of random parameters é and the values of first-stage decisions (n,x), we

can express the recourse function in the following way:

Q(n,z,§) :an(isr)lQ(n,:c,E,L(g)) — ! max Li;(§)

i€l€L D e i) ik Ok i)

TV
bus utilization rate

+w max max [0,1+ Alij [(1—a;)L; ;—1(&)] — Z Nk | OrCr ] ) (2a)

i€[I],j€[J;] ke[K]

passenger abandon rate

st Lij(€§) =min{ Y nu|ker, [(1— aij)Lij—1 (&)1 + Nij o, Vi €[],V € [J],  (2b)

ke[K)]

Lig(§) =0, Li;(§) € 2", Vi € [I],Vj € [Ji], (2¢)

where w > 0 is the weight that balances the importance of the highest bus utilization rate and the
largest passenger abandon rate. The objective (2a) is to minimize the weighted highest bus utiliza-
tion rate and the largest passenger abandon rate to enhance the social equity. Note that we choose
the min-max fairness measure in (2), widely used in the fairness-related literature (Radunovic and
Le Boudec 2007, Du et al. 2017). Constraints (2b) postulate the number of passengers on board at
each stop, which follows the convention from the existing transit literature (see, e.g., Hadas and
Shnaiderman 2012). Constraints (2c) specify the boundary conditions of the recourse decisions,
i.e., the initialization and integrality of variables L(§).

As mentioned before, the data from Blacksburg Transit has no moment information, and limited

data available is not likely for us to estimate the moments accurately. Thus, we decide not to use
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a moment-based ambiguity set in this research. Instead, to fully exploit the limited data, we plan
to focus on the more appropriate Wasserstein ambiguity set due to its consistency, tractability,
computational advantages, as well as its flexibility of accounting for non-stationary uncertainties

in the near future.

2.1. Wasserstein Ambiguity Set

In this subsection, we briefly introduce the notion of the Wasserstein ambiguity set and its attractive
properties, which are suitable for DtFRAM. In this work, we were provided historical data collected
during the operations. Thus, given an empirical distribution Pz constructed using i.i.d. historical
data Z = {¢' = (@', X*)}se(n) such that Pg{é = ¢’} = 1/N, this paper considers the data-driven
Wasserstein ambiguity set (see, e.g., Gao and Kleywegt 2016, Blanchet et al. 2019a, Esfahani and
Kuhn 2018, Blanchet and Murthy 2019, Hanasusanto and Kuhn 2018, Chen et al. 2018, Xie 2019,
Abadeh et al. 2018, Kuhn et al. 2019, Blanchet et al. 2019b, Chen and Xie 2019) as below:

Py={P: W, (P,P;) <6}, (3)

where 6 > 0 denotes the Wasserstein radius and for any ¢ € [1, 00], the Wasserstein distance W(,:)

is defined as

W, (Py,Ps) = inf { il//_ ) €1 — & ]9Q(dEy, dés) - Q is a joint distribution of & and &, } .

with marginals P; and Py, respectively

where the support

E={(a,A):a;;€[0,1],\;; €Z,,Vie [I],Vje[J]}.
When ¢ = oo, it reduces to the oco—Wasserstein distance

. gz is a joint distribution of & and &
P;,Py) = inf — — :leapm. ! 2 .
Woe (P1, ) =in {Q esssup &1 = &|] with marginals P; and Py, respectively

Above, Q-ess sup ||-|| is the essential supreme of ||-|| with respect to the joint distribution @Q, which

is formally defined as
Q — esssup ||£1 - £2|| = inf {A : Q[H& —EQH > A= O} )

It has been shown in Bertsimas et al. (2018) that its corresponding type oo—Wasserstein ambiguity

set P, has the following equivalent form

1 - _ _
Poo={ 5 D2 XE—¢€):3¢ €= |¢ = <0,V e[N] 5, (4)

LE[N]
where x(-) is the Dirac delta function. This neat representation has a straightforward interpretation,
i.e., the worst-case distribution is also supported by N points, and each support point can only

deviate at most # amount from one of the empirical data Z = {ék}ke[N] cCE.
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Since W (+,-) has a similar statistical performance as W,(-,-) with ¢ € [1,00) (Fournier and
Guillin 2015, Trillos and Slepcev 2015, Xie 2020, Xie et al. 2021) but has more attractive com-
putational properties, we focus on co—Wasserstein ambiguity set, i.e., throughout this paper, we

suppose that P =P..

3. Model Properties
This section explores the properties of DrFRAM (1) and shows its computational complexity.
According to the worst-case characterization in (4) of type-oo Wasserstein ambiguity set P = P,.

DrFRAM (1) can be equivalently represented as the following deterministic counterpart:

1
(DrFRAM) v =min{ — Z sup Q (n,x,&"): (1b) — (1f) . (5)
e e[ EPEE €A —¢HlI<0
Model (5) can be interpreted as a robustification of Sampling Average Approximation (SAA) by
choosing the worst-case perturbation for each empirical sample. Our model properties are based on

this reformulation, and we finally choose a particular norm || - || in Section 3.2 to further simplify

DrFRAM (5).

3.1. Computational Complexity of DrFRAM (5)
We observe that DrFRAM (5) is a mixed-integer nonlinear program and thus expect that it is
an NP-hard problem. This motivates us to derive mixed-integer programming techniques and
approximation algorithms to solve it.

The NP-hardness of DrFRAM (5) is established upon the well-known NP-complete problem —

partition problem.

Proposition 1 Solving DrFFRAM (5) is NP-hard even when N=1,K =2,60=0.

Proposition 1 shows that even under simple settings, DrFRAM (5) may not be polynomial-
time solvable. This motivates us to develop exact and approximation algorithms to solve it, which
serve different purposes. For example, exact algorithms can be useful to verify the correctness
of approximation algorithms and can solve many instances to optimality, while approximation
algorithms, usually more scalable, can provide high-quality initial solutions to speed up the exact

ones.

3.2. Theoretical Sensitivity Analyses and Model Simplification

In this subsection, we analyze the properties of the recourse function Q(n,x,£) and the second-
stage objective function Q(n,x,&, L(£)). These properties allow us to simplify DrFRAM (5) by
linearizing the nonlinear objective function.

We begin with the results for the second-stage objective function Q(n,x,&, L()).
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Proposition 2 For the second-stage objective function Q(n,x,€&, L(€)), we have the following sen-
sitivity results:
o Function Q(n,xz,&, L(&)) is monotone non-decreasing as the recourse decision L;;(€) increases
for some i€ [I] and j € [J;];
e Function Q(n,x,&,L(£)) is monotone non-increasing as the first-stage decision n;, increases
for some i €[I] and k € [K];
o Function Q(n,x,&,L(E)) is monotone non-decreasing as the passenger arrival rate \;;
increases for some i € [I| and j € [J;]; and
e Function Q(n,x,€§,L(§)) is monotone non-decreasing as the passenger alighting rate a;;

increases for some i € [I| and j € [J;].

Proof: We prove the results according to their orders.

e The first monotonicity result is simply because when the number of passengers on the buses
increases, both bus utilization rate and passenger abandon rate grow or stay the same.

e The second monotonicity result is because when the number of buses allocated to a particular
route increases, both its bus utilization rate and passenger abandon rate decrease or stay the
same.

e The third and the fourth monotonicity results are because when more passengers arrive at
a bus stop of a particular route, the route’s bus utilization rate and passenger abandon rate
increase or stay the same.

O

Since the minimization operator does not change the monotonicity of a function, results in Parts

(ii)-(iv) still hold for the recourse function Q(n,x,§).

Corollary 1 For the recourse function Q(n,x,€), we have the following sensitivity results:
e Recourse function Q(n,x,€) is monotone non-increasing as the first-stage decision n,
increases for some i € [I| and k € [K];
e Recourse function Q(n,x,§) is monotone non-decreasing as the passenger arrival rate \;;
increases for some i € [I| and j € [J;]; and
e Recourse function Q(n,x,&) is monotone non-decreasing as the passenger alighting rate a;;

increases for some i € [I| and j € [J;].

The results in Corollary 1 inspire us to choose a proper norm || - || in the type-oo Wasserstein
ambiguity set. Specifically, since random parameters a and X have different magnitude, we choose
the weighted /., norm as ||&|| = max{7y||@|w,||[Alloc} (recall that we let & = (a,\)), where the

positive weight v > 0 is to demonstrate the balance of the importance of both parameters. In
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practice, one can choose a proper v such that the scaled vector ya and vector A have a similar
order of magnitude.
In the spirits of Corollary 1 and the weighted ¢,, norm, DrFRAM (5) admits the following

equivalent representation.

Proposition 3 Suppose ||£]| = max{7y||a@||«, |||} for some v >0, then we have

(DIFRAM)  v" =min %ZQ(n,w,g):(lb)—(lf) , (6)
’ ]

Le[N
where € = (@', X*) with ay; =max{0,a;;, — 6/} and /)\\fj =max{0,\}; + [0]}.

Proof: The simplification of the inner supremum in DrFRAM (5) follows the monotonicity results
in Corollary 1 and the definition of the weighted ¢, norm. U

Proposition 3 removes an obstacle in DrFRAM (5) by finding a closed-form worst-case repre-
sentation for each scenario. Thus, we will mainly focus on addressing the second obstacle, which

is the nonlinearity and non-convexity in the second-stage problem.

4. Linearizing the Second-stage Problem

As mentioned in the previous section, the difficulty of DrFRAM (6) resides in the second-stage
problem (2) (i.e., the representation of the recourse function). The linearization technique is mainly
based on the fact that the product of a binary variable x € {0,1} and a bounded continuous variable

y € {l,u} can be linearized using the well-known McCormick inequalities (McCormick 1976), i.e.,
{zy:2€{0,1},ye[lul}={z:y—u(l—2)<z2<y—Il(1—z),lz<z<ux,x€{0,1},y € [l,u]}.

Hence, to begin with, we first binarize the first-stage integer variables n as

na= Y 2" uy,, Vi€ [I],Vk€ K], (7a)
T’E[Rk]
wirr € {0,1},Vi € [I],Vk € [K],Vr € [Ry], (7b)

where we let Ry = [log(nx)] for each k € [K] denote the largest possible bit when representing

integer variable n;y.

4.1. Linearizing Constraints (2b)
In this subsection, we focus on linearizing the constraints (2b) when & = é‘ for each ¢ € [N]. First,

to suppress the notation, we let L¢:= L(g")
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Before we linearize the constraints (2b), we observe that due to the monotonicity results in Part

(i) of Proposition 2, constraints (2b) are equivalent to

ij > min Z na | Orer ], [(1 _afj)Lf,j—J +Xij o Vie I}, Vje[Ji]. (8)

kE[K]

Since the ceiling function is lower semi-continuous, we can replace [(1 —a;;)L;; ] by its epigraph

variable Lf ;_, such that

It > (1-at)Lt

ij-1= -1

I_/f,j—1 € Zy, Vi€ [I],V] € [Jy]. (9)

In this way, constraints (8) can be further reformulated as

ij > min Z Tk Lékckj ) Ef7lj—1 + /)‘\57 7V7’ € [I],Vj € [Jl]7

ke[K]

14

Above, the piecewise minimum function can be linearized using binary variables y*, indicating

whether each stop is fully occupied or not:

ij > Zke[[{] Nk LékaJ - Myfj?Lf] > If’lf,jfl + )\fj - M(l - yfj>7yf] € {07 1}7VZ € [ILVJ € {JZ]a

3

ij > Zke[K] Nik LékaJ - (M - Afj)yfjv ij > Lt + ijfja yfj S {07 1}7Vi € [ILVJ € [Ji]a

i,5—1 %

(10)

where we choose M = maxye (x| Mk |[0rcr] to be the maximum number of passengers that a route

¢

can carry at the same time. The equivalence of (8) and (10) is due to the fact that Lf ,_, <Lf . .

4.2. Linearizing the Second-stage Objective Function (2a)
For each ¢ € [N], let us use E{, ES to denote the first and second parts of the objective function
(2a). Then, according to constraints (9), equivalently, the second-stage objective function can be

rewritten as

Q(n,z,8' L") = E{ + wE,

where

By Y naldver] | > LE,Vie [I1,V) € [}, BY € [0, 1], (11a)
ke[K]
BY> (M) T L+ 3 = > naldier] | L Vie 1,5 €[], ES € [0, 1. (11b)
ke[K]

Now it remains to linearize the bilinear terms in (11a). According to (7), we can represent variables

n using binary variables u. Therefore, constraints (11a) are equivalent to

S 2 ber | Blua, > L, Vi € [11,V) €[], Ef € [0, 1],

ke[K] re[Ry]
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Introducing McCormick inequalities to linearize the bilinear terms, we have
> 2 G wly, > L, Vi€ [1,V) €[], B € [0, 1], (11c)
ke[K]re[Ry)
wh, > 0,wh, > B g, — 1,wh, < EYwh, <, Vk € [K], Vi€ [I],Vr € [R)]. (11d)

4.3. An Exact Mixed-Integer Linear Programming (MILP) Reformulation for
DrFRAM (6)

Let us put all the linearized pieces together, and we are ready to present an exact MILP reformu-

lation for DrFRAM (6). In particular, DrFRAM (6) is equivalent to the following MILP:

(DFFRAM)  o* = min %ZQ(n,m,u,éﬁ:(1b)—(1f),(7a),(7b) . (12a)

n,e,u
(€[N]

where for simplicity, we slightly abuse the notation by redefining Q(n,x,u, Ef) as

Qn,x,u,§')=  min {Ef +wEY: (2¢),(9),(10), (11b) — (11d) } . (12b)

LY LY w

Note that we can encode the entire DIFRAM (12) into the off-the-shelf solvers such as Gurobi,
CPLEX, MOSEK. However, our numerical study shows that, albeit effective, model (12) has dif-
ficulty solving large-scale instances, remaining large optimality gaps within an hour. Thus, we
will develop valid inequalities and strong formulations based on the knapsack polytope and the
disjunctive programming (Balas 1979) in the next section.

Finally, we remark that one can adopt the scenario decomposition method proposed by Ahmed
(2013) to solve the DrFRAM (12) in a decomposed way. The general idea is to completely decom-
position MILP (12) into N subproblems, i.e., for each ¢ € [N], we solve

v* := min {Q (n,x,u,éf)  (1b) — (1£), (7a), (7b)}. (13)

n,r,u

Subproblem (13) can be accelerated with the valid inequalities and stronger formulations developed
in the next section. Note that the average of their objective functions provides a lower bound of
DrFRAM, and the first-stage decision obtained in each subproblem is also feasible to the original
MILP (12). Hence, we can evaluate these decisions and choose the best one as an upper bound.
Next, we cut off the obtained decisions from their corresponding subproblems using the no-good
cut (Ahmed 2013), i.e., for a scenario £, given a first-stage binary solution (z‘, u*) (we do not need

to include n’ since it can be represented by ‘), we add the following no-good cut

Z (l—a: xzk—i-z Zk,, Yuigr | >1

i€[I],ke[K] r€[Ry]
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Algorithm 1: Scenario Decomposition for Solving DrFRAM
1 Initialization: Set 7=0,e >0, X*={(n,z,u): (1b) — (1f),(7a),(7b)} for all £ € [N],
LB=—00, UB=;

while UB — LB > ¢ do
for ¢ € [N] do

4 L (nf, &', a') € argmin{ Q(n, x,u, &) : (n,x, u) € X*};
5 | LB=max{LB, LY, y Qn' z' a' )}

6 | UB=min{UB,minin £ e Q0! 2, ', €}

7 | X=X\ {(n', x5 u’)} for each £ € [N];

8 T T+1

w N

into the fth subproblem; and repeat the same procedure. We terminate the solution procedure
when invoking a stopping criterion. The detailed implementation can be found in Algorithm 1.
We can further extend the scenario decomposition by bundling the scenarios (see, e.g., 7). Instead
of solving N subproblems for each scenario ¢ € [IN], we group similar scenarios into disjoint subsets
G, C [N],v € [N] using K-means clustering algorithm, and the subsets consist of a partition of [N].
We follow the same procedure that completely decomposition MILP (12) into A/ subproblems, i.e.,

for each v € [N], we solve

v” 1= min {|G1u| Z Q (n,m,u,g> : (1b) — (1f), (7a), (7b)} . (14)

n,r,u
LeGy

The detailed implementation can be found in Algorithm 2.

Algorithm 2: Scenario Decomposition with Grouping for Solving DrFRAM
1 Initialization: Set 7 =0, € > 0, integer N (divisible of N), cluster G,, and set

XY =\yeq, {(n, 2, u) : (1b) — (1f), (7a), (7b)} for all v € [N], LB = —o0, UB = o0;

while UB — LB > ¢ do
3 for v € [N] do

4 L (n”,&",u") € argmin{v” = ﬁ > e, Q(n,a:,u,gé) ‘(n,z,u) € X"};
5 LB:max{LB,ﬁzyew] v}

6 UB = min{U B, mine[n) 3 > ey o(nt,z!, u', &)}

7 | XY= xY\{(n",x",u")} for each £ € [N7;

8 T T17+4+1

N
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Note that to accelerate the algorithm, rather than adding the no-good cut to each subproblem,
we can add an objective cut to force the objective function to increase by at least a positive step,

that is, for each ¢ € [N], we add the following inequality

El+wEy> 0 (n,z",a") +¢ (15)

into the fth subproblem, where (7, 2°, @‘) denotes an optimal solution of /th subproblem and

€’ > 0. Instead of solving the problem to optimal, the accelerated scenario decomposition can obtain

a suboptimal solution. The detailed implementation can be found in Algorithm 3.

Algorithm 3: Accelerated Scenario Decomposition for Solving DrFRAM
1 Initialization: Set 7 =0,e >0, X*={(n,z,u): (1b) — (1f),(7a),(7b)} for all £ € [N],
{€}oeny, LB = —00, UB = o0;

2 while UB—- LB > ¢ do

3 for /€ [N] do

4 L (n,z% u’) € argmin{Q(n,x,u EZ) (15), (n,z,u) € X*};
5 | LB=max{LB, 5>,y Q1,2 u &)

6 UB:min{UB,mintE[N]%ZZG[N]Q(ﬁ 7CE 761 7§£)};

7 T T+1

Finally, we conclude this section by showing that if the data from distributionally robust coun-
terparts (i.e., {57} ¢c(n]) have a small variability, then the naive scenario decomposition lower bound

(ie, 1/ND 2 ein v% will not be faraway from the true optimal v*.

Proposition 4 Suppose that the weight w =0 (i.e., the passenger abandon rate for each bus stop

is negligible), and there exists a matriz p= (u®, p*) € = and a positive integer & € Z, 4 such that
= ps, piy < \)\ | <apy,vie[l],Vje|J).

Then the following approximation ratio holds for the naive scenario decomposition lower bound

(without any no good cut or objective cut)

Q>\

1
sy
€[N]
Proposition 4 shows that not very surprisingly, if the alighting rate for each bus stop is determin-

istic, and the passenger demand does not vary too much from scenario to scenario, then the naive

scenario decomposition lower bound tends to be very close to the true optimality. This is consistent
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with what we have found in the numerical study section. However, in general, Algorithm 1 suffers
from slow convergence when being employed to find a global optimal solution. Therefore, in the
next section, we will derive stronger formulations and valid inequalities to further strengthen MILP

(12).

5. Stronger Formulations and Valid Inequalities

In this section, we strengthen the MILP model (12) by developing different families of valid inequal-
ities. Our results and strong formulations are based on studying the mixed-integer substructures of
model (12). Specifically, we consider convexifying the following two substructures to derive stronger
formulations. First of all, for each i € [I], we consider the substructure of variables (x;.,u;..) by

projecting out variables m. That is, for each i € [I], let us define
X! ={(zs,u;.) : In;, (1b) — (1c), (7a), (7b)} . (16a)
The second substructure is defined for each sample ¢ € [N] and each i € [I] and j € [J;] as

X?jg - {(xizuui::aij) € X’Ll X R-F : (11C)7 (11d)} . (16b)

5.1. Convexification of Set X/}

We will first convexify X}. According to (16a), set X} is equivalent to

X =V Xhr{za=1) | Adzuc{0,1}¥: ) au=1

ke[K] ke[K]

where

Xl =1 (., ;.. Z 2" MUigr < MeTigs Uinr € {0, 13,V € [Ry]
r€[Ry]

Suppose that n, =271k~ 426k~ 42~ and set T := {4, . . ., 45k, Ri }. Since {2771}, (g, are
superincreasing, according to proposition 3.4 in Gupte et al. (2013), the convex hull of X} A {xy =
1} can be described as

L. € [07 1]K7xik - 17u’ik: S [07 1]Rk7

conv (X,‘lk A {J;zk = 1}) = (mi:aui::) Y Uk + Z Uipr < ’Irlvvr € [Rk] \I

TELy

where Z, :={se€Z:s>r}.
Our convex hull description of set X} relies on the well-known disjunctive programming (Balas

1979).
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Lemma 1 Suppose 5 polyhedra X' = {y € R" : A’y < b'} with A* € R™>" and b € R™ for each

i € [8] share the same recession cone. Then the following result holds

convq [\ (X'A{xn=1}) ) Adre{o,1}:) N=1

sels] i€[3]

= (g, N eR" x [0,1]°: A’y <b'N\,,Vie[s], ) y'=y

€[5

According to Lemma 1 and the fact that the convex hull of the union of sets is equal to the
convex hull of the union of the convex hulls of sets, we arrive at the complete description of the

convex hull of set X}. This result is summarized below.

Proposition 5 For each i € [I], the convex hull of the set X} is equal to

S [Oal]Ka Z wik:]-a
L ke[K]
conv (Xz) = (mi:aui::) : WUikr + Z Witer S |IT’SCZ‘]€,VT S [Rk] \I, vk € [K], ' (17)

TEL,

0 § WUiker S :L‘ik,Vr S [Rk],VkT S [K]

5.2. Convexification of Set Xfﬂ

Similarly, to convexify set ije, we first rewrite it as a disjunction

Xie= \/ (X3ox N =1}) /\ z; € {0,1}": Z ziw =10, (18)

ke(K] ke[K]
where

(mizy ui::) S Xilku Z 27471 Lékckafkr Z Lf)
ijék/\{xikzl}:: (a:i;,ui::,ij,wf::,Ef) : re[R) ’
wfkr = uikTEf? ij € R+7Ef € [07 1]7'7;116 =1

We first observe that the convex hull of set X?

2w N = 1} is equal to the intersection of the

constraint ZTE[RH 2" [ Oper Jwly, > Li; and the convex hull of the feasible region subject to the

remaining constraints.

Lemma 2 The following characterization holds for conv(XZ2,, Axy. =1}), i.e.,

conv (X7 A fza = 1}) = conv(X ) (1) (wii, i) Y 27 deerJwfy, = L ¢

r€[Rg]

where

ng@k = {(wi:aui::vl/ ’LUf,Ef) : (miivuiii) € Xilk’wfkr = uikTEf’ij € R+7Ef € [0’ 1]71'7,k =1 } :

7, YR
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It turns out that according to Lemma 2 and proposition 3.1. in Gupte et al. (2013), sets
conv(X?,.) and conv(X7, A {zy =1}) can be completely described using the result in Proposi-
tion 5 and the fact that variables x;. are independent of others and constraint system with respect

to x;. are integral. These results are summarized below.

Proposition 6 For cach i € [I],j € [Ji],k € [K],£ € [N], the sets conv(X7,.) and conv(X7, A
{zy, =1}) admit the following complete descriptions:

;. S [O) 1]Kamik - 17Ef S [Oa 1]7
Wiy + Z Wikr S ’IT’Ef,VT € [Rk] \I7

TEL,
72 _ 0 Vi 0y . U +E WUigr — W; —g Wipr < .
ConV(Xijék)_ (xi:aui::aLijawi::vEl)' ikr = ikt ihr = ihr = ; (19)
TELy TELy

IZ,|(1 = EY),Vr € [Ri]\ T,
O S Wi kr S Ef7VT S [Rk]v
0 S WUikr — Wik S (1 - Ef)avr € [Rk]

and
o
( mize[Ovl]Kamik:LEfe[ovlL )
Wikr + Z Wikr S ’Ir‘Ef7VT € [Rk] \Iv
TEL,
Uik + Z Uikr — Wikyr — Z Wigr <
COHV(XZ%% A {mik = 1}) = (mi:vuizivajvwf::aEf) : TELy TEL,

IZ,|(1 = E7),¥r € [Ri]\ T,

0 <wi, < EY,Vr € [Ry],

0 < WUikr — Wikr < (]- - Ef)vvr € [Rk],
ErG[Rk] 27“71 Lékckjwfkrr Z Lf]

NN

20)

Following Lemma 1 and the fact that the convex hull of a union of sets is equal to the convex
hull of the union of convex hulls of sets, we arrive at the following complete description of the

convex hull of set X72,.
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Proposition 7 For each i € [I],j € [Ji], and € [N], the set conv(X?,) admits the following com-

74

plete description:

.
T © Z Tk =1, Z Elzk:Eé Elzk<xlk7
kE[K] ke[K]
Wik + Z Wipr < |Z, |, Vr € [Ri) \ T, VK € [K],
TEL,
Uik + Z Uikr — Wikr — Z Wifr S
TEI’V‘ TELy

conv(X7,) = Q (@i, us, Li;, wi,, EY) : [Z](1 Eflk) Vr e [Ri] \ Z,
0 <wipr < Ehk,Vr € [Rk] Vk € [K],
0 < Uspr — Wipr < ( Efzk),Vr S [Rk],Vkﬁ S [K},
Z 2t I_(Skckafm > ijk7Vk € [K],
relRy)

ZL”,C LY, 0< B, <B{<1,L, >0,Vk € K]

YR

" (21)

5.3. Valid Inequalities
In this subsection, we develop valid inequalities to further strengthen the MILP model (12).
One-bus-per-route Inequalities: First, at-least-one-bus-per-route constraints (1e) together with
the binarization constraints (7a) imply that at least one of the corresponding binary variables must
be nonzero, i.e., the following valid inequalities must hold:

Z Uik = Tig, Vi € [I],VE € [K]. (22)

r€[Ry]

Under-capacity Inequalities: Let us define M = min¢ g |0rck | as the minimum route capacity
at any route. Suppose each route has no capacity restriction, i.e., any passenger is supposed to get
on board, then we can compute the ideal number of passengers remaining on the bus using the

following formula:

=T a1+ AL, Vi e [1),V] €[], ¥e e [N, (23)

] 137

where we let ¢f, =0 for all i € [I] and ¢ € [N]. Now let us define j, = min{.J;, min;e s, {cfy > M} to

be the first bus stop such that the number of passengers planning to be on board is greater than

the minimum capacity for each i € [I] and ¢ € [N]. Then, clearly, for any bus stop j € [j, — 1], it is
under-capacity, i.e., we must have

Utilization Rate when Being Fully Occupied: If one bus stop is fully occupied, the bus

utilization rate must be one. Thus, we have the following valid inequalities:

1 —y;; < By, Vie [I],Vj e [J],¥e [N]. (25)
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Tightening Big-M Coefficients: Note that in (10), we must have L{; > ij if 75; =1 and
L{; > Lt ;. Hence, in the first part of (10), we can reduce M by M — Y

of (10), )\fj — M (1 —yf;) can be tightened by Y

i;» and in the second part

UyZ ;- Therefore, we arrive at the following stronger

inequalities

0> maldnen) — (M =Xyl L > LE + Xyl Vie [1),¥j € [J)], ¥ e [N]. (26

ke[K]
Passengers Being Unserved when a Bus is Fully Occupied: We note that the passenger
abandon rate becomes positive only when the bus is fully occupied at some moments, i.e., a

passenger will be allowed on board unless the bus is full. Thus, we must have
E! < Ef )Yl |N]. (27)

Lower Bounding the Bus Utilization Rate: The disjunctive programming results in Section 5.2
implies that EY, > ijk/(mk 161¢])- Since nyy, < M, := min{n;, > weix) e — 1+ 1}, we must have

~

E!, > ALAM € [1],Vj € [J;], V¢ € [N]. (28)
M. [rck ]

6. Approximation Algorithms Based on No-One-Left Policy
We observe that the intricacy of the MILP model (12) comes from the linearization of the first part
of the objective function using binary variables w and the linearization of constraints (2b) using
auxiliary variables y. To avoid both, we propose an approximation scheme using the notion of the
so-called No-one-left policy. Recall that in the previous section, we define ¢ to be the ideal number
of passengers at each bus stop when there is no capacity restriction. Our No-one-left policy follows
the same concept.

Thus, we propose to solve the following simplified model as
(No-one-left) min{ — Z Q (n,m,é\e) :(1b) — (1f) 7, (29a)

where we define @(n,w,g) = MaXe[1],jel ;] ij/(Zke[K] nik | 0kck]). Note that @(n,w,@) admits a

second-order conic representation as

O(n,z, &) = min 2 /ggax%, Z Nk | OkCr | — < Z Nk | OxCr +E€’WE ]

Blery , kEIK]

(29D)
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After solving the No-one-left model (29), we can evaluate its objective value vV by plugging in

its optimal first-stage decision (n,z) into DrFRAM (6), i.e.,
1 S
N = N Z Q (n,a},fe) .
Le[N]
The following result shows the approximation bound of the No-one-left policy.

Proposition 8 Suppose that (n,z,E) and (n*,x*, E*) are optimal solutions to the No-one-left
model (29) and DrFRAM (12), respectively. Then we have
M/M -

E;
B o

w —
v* <oV <o+ Z|[(E—e)yllo+

N
where M = minke[K] \‘(skaJ and M ‘= INaX;e(1],je[J;],L€[N] ij.

Proof: First of all, v* <v¥ is due to the feasibility of the first stage decision (n, ).
Next, we note that if E > 1, then we have 1 < On, a‘:,g) <1+ w. Therefore, we must have
v *NH( —e) Ho<*ZE (30)
€[N

According to the optimality of (i, &, E) to No-one-left model (29), we have

. _
maXi;e(n,jelJ;] Lis % MM—l %
¥ O F sy O it <y S (31)
Ze[N ée[N] ke[K] ik L7k Tk
Combining these two inequalities (30) and (31) together, we arrive at the conclusion. O

Proposition 8 shows that (n, &) is optimal to DrFRAM (6) if no passenger is being abandoned
(i.e., E; =0) in an optimal solution to the DrFRAM model and all the utilization rates are zero

in the No-one-left model.

6.1. Enhancing No-one-left Policy

In this subsection, we propose to enhance the No-one-left policy by incorporating the abandon
rate for each scenario that reaches a full utilization rate of some routes and resolving the problems
again. Namely, suppose (n,Z) denotes an optimal first-stage decision of the No-one-left model
(29). Let us denote two subsets of scenarios, N_ ={¢ € [N]: Q (ﬁ,i,@) <1} and N, ={{€[N]:
Q (ﬁ, i,?) > 1}. Then the enhanced model is defined as follows:

(EnModel) mln — Z Q (n x £é> + Z o (n x £é> : (1b) — (1f) », (32a)

LeN_ LeNL

where Q(n, x, £") is defined in (29) and
Q" (n,x, &)= min {1+ ES:(9),(10),(11b), E{ € [0,1]}. (32b)

Once solving the EnModel (32), we can repeat the procedure until invoking the stopping criteria.

This procedure is summarized in Algorithm 4.
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Algorithm 4: Enhancing No-one-left Policy

1 Initialization: Solve the No-one-left model (29) with an optimal first-stage solution (n2,);
set t =0, N_ =[N] and initialize tyay;

2 while Set N_ is changing and t < t,,.x do
3 | Define N.={l€[N]:Q(n,z,&) <1} and N\ ={{ €[N]: Q(n,z, &) > 1};

4 Solve the EnModel (32);
5 t+t+1.

7. Numerical Study

In this section, we present a set of numerical results to compare the strengths of different model
formulations and test the effectiveness of distinct methods using both small and large random
instances as well as real-world data provided by Blacksburg Transit. For the random instances,
passenger arrival rates were generated from uniform distributions with the minimum value ranging
from 2 to 20 and maximum value ranging from 22 to 40, and the proportion of passengers alighting
from the bus was randomly generated from triangular distributions with the lower limit ranging
from 0 to 0.2, the upper limit range from 0.6 to 1, and the mode ranging from 0.45 to 0.55. A time
limit of 3600 seconds was set for solving each instance. All the instances were coded in Python
3.7.0 with calls to Gurobi 9.0.3 on a personal computer with a 1.9 GHz Intel Core i7 processer and
16G memory.

7.1. Results of Small Instances

In this section, we tested five small instances to compare the performances of MILP formulations as
well as their continuous relaxations, where the number of bus routes I is 5 or 6 and the number of
scenarios N is 5, and K =3 types of buses with nominal capacities ¢; = 60, c; = 80, c3 = 120. Each
route has 10 to 40 stops. We generated 50 cases based on these instances using different parameter
combinations (i.e., different values of I, 1,0, w,0). Particularly, cases 1-25, 26-35, 36-40, 41-45, 46-50
correspond to instances 1,2,3,4,5, respectively. For all the cases, we fixed the normalized parameter
v =100.

The numerical results of exactly solving different MILP formulations are reported in Table 1,
where a—b in the “Case” column means instance #a and case #b, “MILP.B” represents MILP (12),
“OPT” represents the optimal objective value obtained, “MILP.VI” represents MILP (12) with
(22)-(27), “MILP.CONV” represents MILP (12) with (17), (21), (26), and (28), “MILP.VI.CONV”
represents MILP (12) with (17), (21), (22)-(28). Without a doubt, we see that all the formulations
are able to find an optimal solution. MILP.VI improves MILP.B’s solution time on average but

introduces more nodes to explore. This is probably because the valid inequalities introduced may
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force the solver to explore different branches before reaching an optimal solution. MILP.CONV
requires fewer nodes to explore, but it usually takes more time to solve. This is possible because of
additional variables introduced to describe the convex hulls. The running time of MILP.VI.CONV
is in between that of MILP.VI and MILP.CONV, but it has the least number of nodes to explore.
Hence, MILP.VI is the best among these methods.

We see that if the Wasserstein radius 6 increases, the objective value increases, and solution time
does not change too much, since any increase in § may result in larger passenger arrival rates and
smaller passenger alighting rates. As the pandemic factor § or the total number of buses increases
and other parameters stay the same, both objective value and solution time decrease, since larger
0 or larger i implies larger capacities for some routes and thus more passengers to get onto the
bus. Weight w does not affect the objective value and solution time too much when the objective
value is less than 1. When the objective value exceeds 1, a larger w results in a larger objective
value while the solution time stays the same. Since the problem size grows as the number of routes

I increases, the solution time also increases.

Table 1 Results of Different MILP Formulations

Case I n 5 w 6 OPT MILP.B MILP.VI MILP.CONV | MILP.VI.CONV
Time Nodes | Time Nodes | Time Nodes | Time Nodes

1-1 0 0.885 40 2624 27 3547 85 4221 44 2241
1-2 0.25 0.920 56 5123 30 3689 203 5284 7 2452
1-3 5 (4,6,2) 0.25 0.25 0.5 0.930 36 3781 14 10032 104 3308 99 3081
1-4 1 0.940 67 7065 40 7375 99 4823 79 2889
1-5 1.5 0.972 45 5870 28 6732 160 4912 112 2732
Average 49 4893 28 6275 130 4510 82 2679

1-6 0 0.885 24 3646 20 3841 69 2936 50 1611
1-7 0.25 0.920 30 2421 26 2588 64 2449 66 1905
1-8 5 (4,6,2) 0.25 0.5 0.5 0.930 21 2448 11 7222 63 2121 93 2667
1-9 1 0.940 36 2542 32 2984 87 2548 96 2173
1-10 1.5 0.982 49 5110 14 3126 86 2516 107 2348
Average 32 3233 21 3952 74 2514 82 2141

1-11 0 0.885 23 1955 39 4716 85 3691 55 1455
1-12 0.25 0.920 24 3101 21 2496 43 1402 57 1782
1-13 5 (4,6,2) 0.25 1 0.5 0.930 16 1682 6 3285 49 1786 76 2161
1-14 1 0.940 18 2186 46 4333 47 1363 106 2953
1-15 1.5 1.000 26 2598 18 4093 82 2668 118 2264
Average 21 2304 26 3785 61 2182 82 2123

1-16 0 0.572 20 3610 18 9968 37 6979 43 6797
1-17 0.25 0.596 8 5566 15 7568 92 2279 49 3650
1-18 5 (6,9,3) 0.25 0.5 0.5 0.600 24 2818 25 14153 126 14562 51 2210
1-19 1 0.609 32 4904 27 17539 116 2651 51 2930
1-20 1.5 0.632 36 4601 17 9853 92 2308 56 4023
Average 24 4300 20 11816 93 5756 50 3922

1-21 0 0.286 3 1856 2 1224 32 2649 17 1364
1-22 0.25 0.298 6 2965 3 3141 34 3712 16 2123
1-23 5 (6,9,3) 0.5 0.5 0.5 0.300 6 1514 6 2484 37 3381 50 4174
1-24 1 0.304 18 1809 2 1305 34 2573 27 1720
1-25 1.5 0.316 10 1705 2 2968 34 5101 76 21284
Average 9 1970 3 2224 34 3483 37 6133

2-26 0 0.389 53 7363 37 11959 164 28193 90 12605
2-27 0.25 0.404 111 12592 31 15186 440 8294 124 15668
2-28 6 (10,15,5) 0.25 0.5 0.5 0.404 75 6496 23 9392 334 31837 132 14800
2-29 1 0.408 47 5636 16 6465 338 33053 73 6650
2-30 1.5 0.427 37 4858 35 13029 415 28730 121 8573
Average 64 7389 28 11206 338 26021 108 11659

2-31 0 0.389 66 10349 18 7355 242 35119 67 9443
2-32 0.25 0.404 61 7711 27 11740 283 5371 95 12051
2-33 6 (10,15,5) 0.25 1 0.5 0.404 58 7054 24 9935 317 6177 76 7333
2-34 1 0.408 53 5675 23 8398 113 19688 62 8379
2-35 1.5 0.427 136 17187 28 13626 481 28128 198 11008
Average 75 9595 24 10211 287 18897 100 9643
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Results of continuous relaxations of different MILP formulations are reported in Table 2, where
we use “C.MILP.B,” “C.MILP.VI,” “C.MILP.CONV,” “C.MILP.VI.CONV” to denote the contin-
uous relaxations of MILP.B, MILP.VI, MILP.CONV, MILP.VI.CONYV, respectively. We also define
“Gap” as the percentage of the difference between the objective value and OPT divided by OPT.
It is evident that both C.MILP.VI and C.MILP.CONYV are better than C.MILP. This demonstrates
the effectiveness of the proposed valid inequalities and the proposed convexification results. Clearly,
the integration of valid inequalities and convexification results is the best, i.e., C.MILP.VI.CONV
yields the smallest optimality gap, which is around 90% on average. Such results indicate that the
MILP.VI.CONV model is the most effective in improving the root gap. We also notice that valid
inequalities contribute more than convexification results in improving the optimality gap since
C.MILP.VI is consistently better than C.MILP.CONV. Besides, C.MILP.CONYV takes more time
than C.MILP.VI. This also explains why MILP.VI performs better than MILP.CONYV in Table 1.
Regarding both solution time and the formulation strength, among the four different MILP for-
mulations, MILP.VI tends to be the best. Since the continuous relaxation values of MILP.B are

nearly 0, deriving stronger MILP formulations is of necessity.

Table 2 Results of Continuous Relaxations of Different MILP Models

Case C.MILP.B C.MILP.VI C.MILP.CONV C.MILP.VI.CONV
Obj.Val Time Gap(%) | Obj.Val Time Gap(%) | Obj.Val Time Gap(%) | Obj.Val Time Gap(%)
1-1 0.000 0.02 100.0 0.089 0.06 89.9 0.088 0.09 90.0 0.095 0.22 89.3
1-2 0.000 0.02 100.0 0.091 0.05 90.1 0.092 0.07 90.0 0.097 0.20 89.5
1-3 0.000 0.02 100.0 0.093 0.06 90.0 0.095 0.08 89.8 0.098 0.23 89.5
1-4 0.000 0.02 100.0 0.094 0.05 90.0 0.097 0.22 89.7 0.100 0.24 89.4
1-5 0.000 0.02 100.0 0.098 0.06 89.9 0.102 0.09 89.5 0.104 0.20 89.3
Average 0.02 100.0 0.06 90.0 0.11 89.8 0.22 89.4
1-6 0.000 0.02 100.0 0.089 0.08 89.9 0.091 0.17 89.7 0.095 0.23 89.3
1-7 0.000 0.02 100.0 0.091 0.06 90.1 0.096 0.09 89.5 0.097 0.21 89.5
1-8 0.000 0.02 100.0 0.093 0.06 90.0 0.099 0.11 89.4 0.098 0.22 89.5
1-9 0.000 0.02 100.0 0.094 0.08 90.0 0.101 0.10 89.3 0.100 0.21 89.4
1-10 0.000 0.02 100.0 0.098 0.06 90.0 0.107 0.08 89.1 0.104 0.21 89.4
Average 0.02 100.0 0.07 90.0 0.11 89.4 0.22 89.4
1-11 0.000 0.02 100.0 0.089 0.06 89.9 0.091 0.07 89.7 0.095 0.21 89.3
1-12 0.000 0.02 100.0 0.091 0.08 90.1 0.096 0.08 89.5 0.097 0.19 89.5
1-13 0.000 0.02 100.0 0.093 0.07 90.0 0.099 0.08 89.4 0.098 0.25 89.5
1-14 0.000 0.02 100.0 0.094 0.07 90.0 0.101 0.07 89.3 0.100 0.27 89.4
1-15 0.000 0.02 100.0 0.098 0.06 90.2 0.108 0.08 89.2 0.104 0.22 89.6
Average 0.02 100.0 0.07 90.0 0.08 89.4 0.23 89.5
1-16 0.000 0.02 100.0 0.044 0.09 92.3 0.040 0.12 92.9 0.049 0.15 91.4
1-17 0.000 0.02 100.0 0.045 0.09 92.4 0.043 0.09 92.8 0.050 0.17 91.5
1-18 0.000 0.02 100.0 0.046 0.08 92.4 0.044 0.16 92.7 0.051 0.24 91.4
1-19 0.000 0.02 100.0 0.047 0.08 92.3 0.045 0.08 92.7 0.052 0.20 91.4
1-20 0.000 0.02 100.0 0.048 0.08 92.3 0.048 0.07 92.4 0.054 0.21 91.4
Average 0.02 100.0 0.08 92.4 0.11 92.7 0.19 91.4
1-21 0.000 0.02 100.0 0.023 0.06 92.1 0.011 0.10 96.2 0.025 0.19 91.1
1-22 0.000 0.02 100.0 0.023 0.06 92.3 0.011 0.12 96.3 0.026 0.20 91.3
1-23 0.000 0.02 100.0 0.023 0.06 92.2 0.011 0.10 96.2 0.026 0.17 91.2
1-24 0.000 0.03 100.0 0.024 0.07 92.2 0.012 0.09 96.2 0.027 0.25 91.2
1-25 0.000 0.02 100.0 0.025 0.06 92.1 0.012 0.09 96.2 0.028 0.21 91.2
Average 0.02 100.0 0.06 92.2 0.10 96.2 0.20 91.2
2-26 0.000 0.03 100.0 0.031 0.13 92.1 0.015 0.12 96.3 0.038 0.22 90.2
2-27 0.000 0.03 100.0 0.031 0.12 92.2 0.015 0.12 96.2 0.039 0.35 90.4
2 - 28 0.000 0.03 100.0 0.032 0.13 92.1 0.016 0.12 96.1 0.039 0.24 90.3
2-29 0.000 0.03 100.0 0.033 0.12 92.0 0.016 0.11 96.1 0.040 0.24 90.2
2 - 30 0.000 0.03 100.0 0.034 0.11 92.1 0.017 0.13 96.0 0.042 0.25 90.2
Average 0.03 100.0 0.12 92.1 0.12 96.1 0.26 90.3
2-31 0.000 0.03 100.0 0.031 0.13 92.1 0.015 0.11 96.3 0.038 0.22 90.2
2-32 0.000 0.02 100.0 0.031 0.12 92.2 0.015 0.12 96.2 0.039 0.35 90.4
2-33 0.000 0.02 100.0 0.032 0.12 92.1 0.016 0.11 96.1 0.039 0.47 90.3
2-34 0.000 0.02 100.0 0.033 0.13 92.0 0.016 0.10 96.1 0.040 0.27 90.2
2-35 0.000 0.02 100.0 0.034 0.12 92.1 0.017 0.13 96.0 0.042 0.25 90.2
Average 0.02 100.0 0.12 92.1 0.12 96.1 0.31 90.3
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We then compare the scenario decomposition Algorithm 1 based on four different MILP for-
mulations (i.e., MILP.B, MILP.VI, MILP.CONV, MILP.VI.CONV) as well as two approximation
algorithms (i.e., Algorithm 3, Algorithm 4), and results are reported in Table 3. Compared to
directly solving MILP formulations using a solver, as shown in Table 1, we see that for each MILP
method, their corresponding scenario decomposition counterpart is more effective and has a much
shorter solution time. More precisely, except for the MILP.B model, employing scenario decompo-
sition Algorithm 1 reduces the solution time by about 60% compared to solving its corresponding
MILP formulation. This demonstrates the effectiveness of scenario decomposition Algorithm 1. As
scenario decomposition based on MILP.VI method took the least time for nearly all the instances,
we used it to the accelerated scenario decomposition Algorithm 3.

We see that if the Wasserstein radius 6 increases, the solution time does not change too much
for all the scenario decomposition methods. As the pandemic factor ¢ or the number of buses n
increases, the solution time decreases. As the weight w increases, the solution time of Algorithm 1
based on MILP.B, MILP.CONV, MILP.VI.CONYV decreases, while the solution time of Algorithm 1
based on MILP.VI increases. As the number of routes I increases, the solution time increases for
all the scenario decomposition methods.

When implementing the accelerated scenario decomposition Algorithm 3, we forced the lower
bound to increase by 1% at each iteration. Therefore, compared to scenario decomposition Algo-
rithm 1 based on MILP.VI, the accelerated scenario decomposition Algorithm 3 significantly
reduces the running time by around 80%. Although the accelerated scenario decomposition Algo-
rithm 3 may miss the optimal solution by cutting off plausible solutions, we see from Table 3 that
it consistently finds optimal solutions for all the testing cases. We also applied the approximation
Algorithm 4 by setting the maximum iteration to be 1000. We notice from Table 3 that for all
the testing cases, the approximation Algorithm 4 can obtain an optimal solution and takes within
a second to solve. This suggests that the approximation Algorithm 4 can be a strong alternative
when the exact methods might not work well. We also see that no matter how the parameters
change, the solution time does not change too much for Algorithm 3 and Algorithm 4.

According to the results in Table 1, Table 2, and Table 3, we see that MILP.VI is the most
efficient one among four MILP formulations, scenario decomposition Algorithm 1 based on MILP.VI
denoted by “Algorithm 1.VI” is the most efficient one among four different scenario decomposition
methods using different MILP formulations, and both approximation methods are quite good. To
further compare those methods, we applied MILP.B, MILP.VI, SceDecomp.VI, Algorithm 3, and
Algorithm 4 to harder instances with a larger objective value. For Algorithm 4, we let the maximum

number of iterations equal to 5 and 100 to see the influence of the maximum number of iterations
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Table 3

Two Approximate Methods (i.e., Algorithm 3, Algorithm 4)

Results of Four Scenario Decomposition Algorithm 1 Based on Four Different MILP Formulations and

Scenario Decomposition Approximate Methods
Case MILP.B MILP.VI MILP.CONV MILP.VI.CONV Algorithm 3 Algorithm 4
Time Gap(%) [ Time Gap(%) [ Time Gap(%) | Time Gap(%) | Time Gap(%) | Time Gap(%)
1-1 22 0.0 8 0.0 37 0.0 21 0.0 7 0.0 0.06 0.0
1-2 14 0.0 6 0.0 28 0.0 16 0.0 8 0.0 0.03 0.0
1-3 27 0.0 9 0.0 36 0.0 20 0.0 12 0.0 0.05 0.0
1-4 40 0.0 8 0.0 128 0.0 27 0.0 10 0.0 0.04 0.0
1-5 72 0.0 8 0.0 83 0.0 71 0.0 11 0.0 0.05 0.0
Average 35 0.0 8 0.0 62 0.0 31 0.0 10 0.0 0.05 0.0
1-6 33 0.0 9 0.0 39 0.0 32 0.0 9 0.0 0.04 0.0
1-7 19 0.0 7 0.0 35 0.0 21 0.0 7 0.0 0.03 0.0
1-8 50 0.0 6 0.0 34 0.0 20 0.0 6 0.0 0.05 0.0
1-9 23 0.0 13 0.0 49 0.0 18 0.0 15 0.0 0.04 0.0
1-10 22 0.0 17 0.0 69 0.0 38 0.0 10 0.0 0.06 0.0
Average 29 0.0 10 0.0 45 0.0 26 0.0 9 0.0 0.04 0.0
1-11 21 0.0 14 0.0 45 0.0 28 0.0 8 0.0 0.04 0.0
1-12 17 0.0 11 0.0 38 0.0 18 0.0 7 0.0 0.03 0.0
1-13 15 0.0 13 0.0 38 0.0 17 0.0 11 0.0 0.04 0.0
1-14 19 0.0 14 0.0 55 0.0 25 0.0 13 0.0 0.04 0.0
1-15 49 0.0 13 0.0 60 0.0 49 0.0 11 0.0 0.06 0.0
Average 24 0.0 13 0.0 47 0.0 27 0.0 10 0.0 0.04 0.0
1-16 39 0.0 13 0.0 65 0.0 36 0.0 5 0.0 0.03 0.0
1-17 25 0.0 11 0.0 52 0.0 33 0.0 5 0.0 0.02 0.0
1-18 27 0.0 10 0.0 45 0.0 35 0.0 5 0.0 0.03 0.0
1-19 33 0.0 9 0.0 76 0.0 33 0.0 5 0.0 0.02 0.0
1-20 33 0.0 9 0.0 54 0.0 31 0.0 3 0.0 0.03 0.0
Average 31 0.0 10 0.0 58 0.0 34 0.0 5 0.0 0.03 0.0
1-21 20 0.0 6 0.0 28 0.0 25 0.0 2 0.0 0.03 0.0
1-22 14 0.0 6 0.0 26 0.0 18 0.0 4 0.0 0.03 0.0
1-23 12 0.0 5 0.0 20 0.0 17 0.0 3 0.0 0.03 0.0
1-24 15 0.0 6 0.0 24 0.0 19 0.0 2 0.0 0.03 0.0
1-25 13 0.0 7 0.0 26 0.0 17 0.0 2 0.0 0.03 0.0
Average 15 0.0 6 0.0 25 0.0 19 0.0 3 0.0 0.03 0.0
2-26 38 0.0 7 0.0 83 0.0 47 0.0 7 0.0 0.04 0.0
2-27 44 0.0 7 0.0 51 0.0 29 0.0 9 0.0 0.04 0.0
2-28 41 0.0 8 0.0 57 0.0 29 0.0 8 0.0 0.05 0.0
2-29 35 0.0 5 0.0 66 0.0 20 0.0 9 0.0 0.03 0.0
2-30 25 0.0 12 0.0 53 0.0 24 0.0 9 0.0 0.04 0.0
Average 37 0.0 8 0.0 62 0.0 30 0.0 8 0.0 0.04 0.0
2-31 35 0.0 10 0.0 80 0.0 39 0.0 10 0.0 0.04 0.0
2-32 34 0.0 7 0.0 49 0.0 24 0.0 6 0.0 0.05 0.0
2-33 30 0.0 6 0.0 50 0.0 21 0.0 9 0.0 0.03 0.0
2-34 27 0.0 6 0.0 43 0.0 19 0.0 9 0.0 0.05 0.0
2-35 21 0.0 9 0.0 53 0.0 22 0.0 6 0.0 0.03 0.0
Average 29 0.0 8 0.0 55 0.0 25 0.0 8 0.0 0.04 0.0

on the solution quality. These two different configurations are denoted by Algorithm 4(max iter 5)
and Algorithm 4(max iter 100). Results are displayed in Table 4.

From Table 4, similar to previous results, we see that MILP.VI reduces the solution time com-
pared to MILP.B. Although Algorithm 1.VI outperforms MILP.VI, Algorithm 3 is the best among
these three. We also see that Algorithm 4 (max iter 5) has the shortest solution time but misses the
optimal solution, while Algorithm 4(max iter 100) takes a longer average solution time. However,
its solution quality is better, and its average solution time is overall shorter than that of acceler-
ated scenario decomposition Algorithm 1. Therefore, in practice, we suggest using approximation

Algorithm 4 with a properly chosen maximum number of iterations to solve hard instances.

7.2. Results of Larger Instances

This subsection focuses on larger instances. We generated 3 larger instances where the number of
bus routes I € {10,20} and the number of scenarios N € {10,20}. There are K =3 types of buses
with nominal capacities ¢; = 60, c; = 80, c3 = 120 and each route has 10 to 40 stops. The pandemic

factor 4 is 0.25. We tested on 20 cases based on these instances using different parameter configu-
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Table 4 Results of Instances with a Larger Objective Value
Case w 6 OPT MILP.B MILP.VI Algorithm 1.VI| Algorithm 3 Algorithm 4 (max itr 5) | Algorithm 4(max itr 100)
) Time | Time Gap(%) | Time Gap(%) | Time Gap(%) | Obj.Val Time Gap(%) | Obj.Val Time Gap(%)
3-36 0.25 0 1.006 56 25 0.0 11 0.0 12 0.0 1.038 1 3.2 1.006 40 0.0
3-37 0.25 1.053 33 46 0.0 15 0.0 16 0.0 1.063 3 1.0 1.053 3 0.0
3-38 0.5 1.053 19 54 0.0 24 0.0 19 0.0 1.063 3 1.0 1.053 3 0.0
3 -39 1 1.053 35 31 0.0 39 0.0 23 0.0 1.063 4 1.0 1.053 3 0.0
3 - 40 1.5 1.076 33 12 0.0 23 0.0 41 0.0 1.076 10 0.0 1.076 8 0.0
Average 35 34 0.0 22 0.0 22 0.0 4 1.2 11 0.0
4-41 0.5 0 1.032 24 41 0.0 15 0.0 22 0.0 1.056 2 2.3 1.032 56 0.0
4 - 42 0.25 1.105 48 24 0.0 33 0.0 24 0.0 1.135 3 2.7 1.105 5 0.0
4-43 0.5 1.105 40 19 0.0 26 0.0 17 0.0 1.135 3 2.7 1.105 5 0.0
4 - 44 1 1.105 23 25 0.0 21 0.0 20 0.0 1.135 4 2.7 1.105 6 0.0
4 - 45 1.5 1.152 35 11 0.0 24 0.0 23 0.0 1.152 10 0.0 1.152 16 0.0
Average 34 24 0.0 24 0.0 21 0.0 4 2.1 18 0.0
5-46 1 0 1.085 33 15 0.0 15 0.0 11 0.0 1.093 2 0.8 1.085 65 0.0
5-47 0.25 1.210 29 13 0.0 19 0.0 14 0.0 1.231 4 1.7 1.210 3 0.0
5-48 0.5 1.210 36 34 0.0 17 0.0 11 0.0 1.231 4 1.7 1.210 3 0.0
5-49 1 1.210 25 14 0.0 17 0.0 18 0.0 1.231 4 1.7 1.210 4 0.0
5-50 1.5 1.303 36 36 0.0 21 0.0 15 0.0 1.333 19 2.3 1.303 11 0.0
Average 32 22 0.0 18 0.0 14 0.0 7 1.6 17 0.0

rations (i.e., different values of N,I,n,w,#). Particularly, cases 51-60, 61-65, 66-70 correspond to
instances 6, 7, 8, respectively.

Results of different MILP formulations are reported in Table 5 and Table 6, where “Obj.Val”
denotes the best upper bound, “LB” denotes the best lower bound, “Opt.Gap” represents the
optimality gap computed as the percentage of the difference between Obj.Val and LB divided by
Obj.Val, and “/” denotes the cases that no solution was found within the time limit (i.e., 3600
seconds). Unfortunately, no case can be solved to optimality in time limit. For the cases 64,65,69,70,
MILP.VI.CONV cannot even find a feasible solution within the time limit. We notice that MILP.VI
consistently obtains the best lower bound among the four MILP formulations almost for each case.
However, albeit promising, MILP.VI may not be ideal for solving extremely large instances since

the optimality gap is quite large within the time limit.

Table 5 Results of MILP.B and MILP.VI for Solving Larger Instances

Case N I n w 0 MILP.B MILP.VI
Obj.Val Time Opt.Gap(%) LB Nodes | Obj.Val Time Opt.Gap(%) LB Nodes
6 - 51 0 0.743 3600 39.8 0.447 16791 0.743 3600 34.8 0.484 121062
6 - 52 0.25 0.763 3600 48.0 0.397 10684 0.763 3600 37.6 0.476 20532
6-53 10 10 (10,15,5) 0.5 0.5 0.775 3600 39.8 0.466 20265 0.775 3600 32.1 0.526 21055
6 - 54 1 0.778 3600 35.1 0.505 14401 0.778 3600 34.3 0.511 143685
6 - 55 1.5 0.817 3600 32.9 0.549 21088 0.817 3600 41.1 0.482 20586
Average 3600 34.0 16646 3600 37.7 65384
6 - 56 0 0.743 3600 24.3 0.563 27659 0.743 3600 34.5 0.487 164536
6 - 57 0.25 0.763 3600 30.5 0.530 25626 0.763 3600 40.8 0.452 20589
6-58 10 10 (10,15,5) 1 0.5 0.775 3600 39.4 0.469 18724 0.775 3600 44.7 0.428 20616
6 - 59 1 0.778 3600 35.3 0.503 12208 | 0.778 3600 35.1 0.505 22077
6 - 60 1.5| 0.817 3600 27.5 0.593 34584 | 0.829 3600 46.9 0.440 20639
Average 3600 31.4 23760 3600 41.0 49691
7-61 0 1.309 3600 78.5 0.282 673 1.249 3600 62.4 0.470 13611
7-62 0.25 1.311 3600 77.4 0.296 869 1.300 3600 57.8 0.549 1111
7-63 10 20 (8,20,8) 0.5 0.5 1.341 3600 78.8 0.285 1040 1.272 3600 56.4 0.555 1116
7-64 1 1.316 3600 77.4 0.297 1035 1.340 3600 56.9 0.577 1071
7 - 65 1.5 1.335 3600 76.6 0.313 1058 1.299 3600 51.8 0.626 1085
Average 3600 77.0 935 3600 54.4 3599
8 - 66 0 1.378 3600 81.0 0.261 1 0.798 3600 61.1 0.311 1195
8 - 67 0.25 1.112 3600 80.6 0.215 20691 0.923 3600 64.2 0.331 1052
8-68 20 20 (20, 30,15) 0.5 0.5 1.396 3600 80.5 0.272 1 1.349 3600 75.6 0.329 2958
8 - 69 1 1.332 3600 81.1 0.252 1 1.294 3600 72.9 0.351 1058
8-70 1.5 1.353 3600 80.3 0.267 1 0.867 3600 58.7 0.358 1088
Average 3600 80.7 4139 3600 65.8 1470
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Table 6 Results of MILP.CONV and MILP.VI.CONV for Solving Larger Instances

Case MILP.CONV MILP.VI.CONV
) Obj.Val Time Opt.Gap(%) LB Nodes | Obj.Val Time Opt.Gap(%) LB Nodes
6 - 51 0.755 3600 49.5 0.381 2487 0.755 3600 50.1 0.377 21512
6 - 52 0.773 3600 48.2 0.400 1352 0.773 3600 48.1 0.401 21526
6 - 53 0.787 3600 42.9 0.449 21090 0.775 3600 54.6 0.352 21166
6 - 54 0.788 3600 55.4 0.352 5154 0.778 3600 47.6 0.408 15570
6 - 55 0.861 3600 54.1 0.395 2274 0.829 3600 54.6 0.376 15002
Average 3600 54.8 3714 3600 51.1 15286
6 - 56 0.767 3600 45.4 0.419 20850 0.743 3600 48.6 0.382 21441
6 - 57 0.773 3600 40.5 0.460 1075 0.773 3600 53.5 0.360 15879
6 - 58 0.782 3600 44.9 0.431 1039 0.782 3600 48.5 0.403 20659
6 - 59 0.847 3600 51.3 0.413 1568 0.792 3600 51.2 0.386 18457
6 - 60 0.864 3600 47.8 0.451 21036 0.817 3600 48.8 0.418 12172
Average 3600 49.5 11302 3600 50.0 15315
7-61 1.392 3600 65.1 0.485 1 1.443 3600 73.7 0.380 1
7-62 1.393 3600 63.6 0.507 1 1.445 3600 69.1 0.446 11
7-63 1.385 3600 62.8 0.515 1 1.445 3600 69.0 0.448 7
7 - 64 1.405 3600 65.7 0.482 1 / 3600 / / /
7 - 65 1.411 3600 63.1 0.521 2903 / 3600 / / /
Average 3600 64.4 1452 3600 70.6 6
8 - 66 1.447 3600 79.1 0.302 1 1.447 3600 96.7 0.048 1
8- 67 1.446 3600 80.7 0.279 18 1.446 3600 97.3 0.039 1
8 - 68 1.447 3600 75.3 0.357 1 1.447 3600 95.7 0.063 1
8 - 69 1.449 3600 80.3 0.286 1 / 3600 / / /
8 - 70 1.412 3600 76.4 0.334 1 / 3600 / / /
Average 3600 78.3 1 3600 96.5 1

Results of continuous relaxations of MILP formulations are displayed in Table 7. Similarly, we
see that the continuous relaxation of MILP.VI.CONYV is the best compared to other formulations;
however, it takes the longest time to compute. On the other hand, the continuous relaxation values
of MILP.VI are comparable to those of MILP.VI.CONV but takes a much shorter time. This
somehow explains why MILP.VI works the best among all the MILP formulations. Results of cases
61-70 show that for very large-scale cases, even solving a continuous relaxation takes a relatively
long time to solve to optimality, indicating that exact methods may also have trouble solving these

cases to optimality within an hour.

Table 7 Results of Continuous Relaxations of Four Different MILP Formulations for Solving Larger Instances

Case C.MILP.B C.MILP.VI C.MILP.CONV | C.MILP.VI.CONV
Obj.Val Time | Obj.Val Time | Obj.Val Time | Obj.Val Time

6 - 51 0.000 0.16 0.044 0.83 0.030 0.45 0.054 3.53
6 - 52 0.000 0.15 0.045 0.96 0.032 0.44 0.056 2.68
6 - 53 0.000 0.16 0.046 0.58 0.032 0.37 0.056 2.65
6 - 54 0.000 0.34 0.046 1.09 0.033 0.39 0.057 2.72
6 - 55 0.000 0.19 0.048 0.67 0.035 0.40 0.059 3.21
Average 0.20 0.83 0.41 2.96
6 - 56 0.000 0.16 0.044 0.98 0.030 0.36 0.054 2.38
6 - 57 0.000 0.15 0.045 0.74 0.032 0.53 0.056 2.52
6 - 58 0.000 0.14 0.046 0.62 0.032 0.46 0.056 2.53
6 - 59 0.000 0.14 0.046 0.85 0.033 0.62 0.057 3.48
6 - 60 0.000 0.14 0.048 0.79 0.035 0.37 0.059 2.95
Average 0.15 0.80 0.47 2.77
7-61 0.000 0.22 0.307 2.45 0.020 1.12 0.307 12.28
7-62 0.000 0.24 0.342 1.59 0.021 1.56 0.342 8.82
7-63 0.000 0.23 0.352 2.18 0.022 1.58 0.352 8.47
7 - 64 0.000 0.23 0.367 2.35 0.022 1.60 0.367 8.17
7 - 65 0.000 0.22 0.415 2.33 0.023 1.12 0.415 6.76
Average 0.23 2.18 1.40 8.90
8 - 66 0.000 0.52 0.023 5.01 0.003 4.61 0.027 22.80
8- 67 0.000 0.64 0.024 4.50 0.003 3.69 0.028 25.73
8- 68 0.000 0.50 0.024 6.05 0.003 3.49 0.028 40.80
8-69 0.000 0.56 0.024 5.01 0.003 3.75 0.028 29.88
8-70 0.000 0.53 0.025 4.21 0.009 3.12 0.030 29.71
Average 0.55 4.96 3.73 29.79

Results of scenario decomposition Algorithm 1 based on four different MILP formulations, sce-

nario decomposition with grouping Algorithm 2 based on MILP.VI, accelerated scenario decompo-
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sition Algorithm 3 based on MILP.VI and approximation algorithm Algorithm 4 (with maximum
iteration equal to 5) are shown in Table 8 and Table 9, where “Best.Obj” represents the best objec-
tive value obtained by four MILP formulations and Algorithm 1 based on four MILP formulations
for each case. In scenario bundling, we used K-means clustering algorithm to group the scenarios
into 5 groups for instance 6 and 7, 10 groups for instance 8. It is seen that Algorithm 4 is the only
method that can find feasible solutions to cases 61-65. For cases 66-70, only Algorithm 1 based on
the MILP.VI formulation, Algorithm 3, and Algorithm 4 can obtain feasible solutions within the
time limit. For the hard cases 61-70, Algorithm 4 finds better solutions than the best ones output
by the exact methods. We notice that, in Table 9, based on the MILP.VI formulation, compared
with Algorithm 1, Algorithm 2 using scenario group improves the optimality gap for instance 6,
which shows that grouping can help solve medium-size instances. However, Algorithm 2 cannot
obtain any feasible solution for instance 8 within the time limit, while Algorithm 1 can find at
least one solution. This may be because scenario-grouping subproblems are more challenging to
solve than those without grouping. Thus, for the large-scale instances, we suggest using the naive
scenario decomposition method (i.e., Algorithm 1). For easy cases 51-60, both Algorithm 3 and
Algorithm 4 find exactly the same solutions as the best ones output by the exact methods. Overall,
we conclude that among all the exact methods, when solving moderate-sized cases, Algorithm 1
based on MILP.VI outperforms other methods by providing the smallest optimality gaps; on the
other hand, for the hard cases, none of the exact methods works well, MILP.VI and Algorithm 1
based on MILP.VI are slightly better than others since they can consistently find a better solu-
tion. We also see that Algorithm 4 consistently finds either a better solution or the same quality
solution. Therefore, in practice, when facing very large-scale cases or involving multiple-round

cross-validations, we suggest using Algorithm 4.

7.3. Out-of-sample Performance

In this section, we tested the out-of-sample performance of the proposed DrFRAM model. All the
instances in this subsection are relatively small and were solved to optimality by MILP.VI. Let P*°
denote the sample probability distribution, and P* be the true distribution of random parameters

é . Motivated by Esfahani and Kuhn (2018), we define the out-of-sample probability as
Pe° {é:v* < Ep+ [Q (nD,wD,éﬂ + pCVaR, _, (nD,ch,é) } ,

where (n?,x”) denotes the optimal solution of the DrIFRAM model and Q(-,-,-) represents the
recourse function. That is, we would like to ensure that the probability that the DrFRAM optimal
value is smaller than the mean-risk objective is small, e.g., no larger than 2«a; in our numerical

study, we let « =5%, p=0.1 and € =0.1. To measure this out-of-sample probability, for any given



Luying Sun, Weijun Xie, Tim Witten: Distributionally Robust Fair Transit Resource Allocation

30

Table 8 Results of Three Scenario Decomposition Algorithm 1 Based on Three Different MILP Formulations
(i.e., MILP.B, MILP.CONV, MILP.CONV.VI) for Solving Larger Instances

Scenario Decomposition
Case MILP.B MILP.CONV MILP.VI.CONV
Obj.Val LB Time Opt.Gap(%) | Obj.Val LB Time Opt.Gap(%) | Obj.Val LB Time Opt.Gap(%)
6 - 51 0.743 0.708 3600 4.7 0.743 0.701 3600 5.7 0.743 0.717 3600 3.6
6 - 52 0.763 0.734 3600 3.8 0.763 0.731 3600 4.3 0.763 0.743 3600 2.7
6 - 53 0.775 0.745 3600 3.9 0.775 0.738 3600 4.7 0.775 0.740 3600 4.4
6 - 54 0.778 0.748 3600 3.8 0.778 0.741 3600 4.7 0.778 0.756 3600 2.8
6 - 55 0.817 0.785 3600 3.9 0.817 0.783 3600 4.2 0.817 0.795 3600 2.8
Average 3600 4.0 3600 4.7 3600 3.3
6 - 56 0.743 0.717 3600 3.6 0.743 0.702 3600 5.6 0.743 0.717 3600 3.6
6 - 57 0.763 0.737 3600 3.4 0.763 0.732 3600 4.1 0.763 0.743 3600 2.7
6 - 58 0.775 0.745 3600 3.9 0.775 0.738 3600 4.7 0.775 0.740 3600 4.4
6 - 59 0.778 0.748 3600 3.8 0.778 0.741 3600 4.7 0.778 0.748 3600 3.8
6 - 60 0.817 0.785 3600 3.9 0.817 0.783 3600 4.2 0.817 0.795 3600 2.8
Average 3600 3.7 3600 4.7 3600 3.5
7-61 7 7 3600 7 7 7 3600 7 7 7 3600 7
7-62 / / 3600 / / / 3600 / / / 3600 /
7-63 / / 3600 / / / 3600 / / / 3600 /
7-64 / / 3600 / / / 3600 / / / 3600 /
7-65 / / 3600 / / / 3600 / / / 3600 /
Average 3600 / 3600 / 3600 /
8- 66 7 7 3600 7 7 7 3600 7 7 7 3600 7
8- 67 / / 3600 / / / 3600 / / / 3600 /
8 - 68 / / 3600 / / / 3600 / / / 3600 /
8 - 69 / / 3600 / / / 3600 / / / 3600 /
8-70 / / 3600 / / / 3600 / / / 3600 /
Average 3600 / 3600 / 3600 /

Table 9 Results of the Scenario Decomposition Algorithm 1 Based on MILP.VI, Denoted by Algorithm 1.VI,
Scenario Decomposition with Grouping Algorithm 2 Based on MILP.VI, Denoted by Algorithm 2.VI, and Two
Approximate Methods (i.e., Algorithm 3, Algorithm 4) for Solving Larger Instances

Case Algorithm 1.VI Algorithm 2.VI Best.Obj Algorithm 3 Algorithm 4
Obj.Val LB Time Opt.Gap(%) | Obj.Val LB Time Opt.Gap(%) -b) Obj.Val Time | Obj.Val Time
6 - 51 0.743 0.719 3600 3.3 0.743 0.719 3600 3.3 0.743 0.743 119 0.743 0.01
6 - 52 0.763 0.748 3600 2.0 0.763 0.750 3600 1.8 0.763 0.763 102 0.763 0.02
6 - 53 0.775 0.757 3600 2.2 0.775 0.759 3600 2.1 0.775 0.775 152 0.775 1.00
6 - 54 0.778 0.762 3600 2.0 0.778 0.765 3600 1.7 0.778 0.778 123 0.778 0.01
6 - 55 0.817 0.797 3600 2.5 0.817 0.798 3600 2.5 0.817 0.817 171 0.817 0.02
Average 3600 2.4 3600 2.3 133 0.21
6 - 56 0.743 0.719 3600 3.3 0.743 0.719 3600 3.3 0.743 0.743 159 0.743 0.01
6 - 57 0.763 0.748 3600 2.0 0.763 0.750 3600 1.8 0.763 0.763 139 0.763 0.02
6 - 58 0.775 0.754 3600 2.7 0.775 0.759 3600 2.1 0.775 0.775 233 0.775 1.00
6 - 59 0.778 0.766 3600 1.5 0.778 0.765 3600 1.7 0.778 0.778 234 0.778 0.01
6 - 60 0.817 0.800 3600 2.1 0.817 0.800 3600 2.1 0.817 0.817 212 0.817 0.02
Average 3600 2.3 3600 2.2 195 0.21
7-61 / / 3600 / / / 3600 / 1.249 / 3600 1.124 3600
7-62 / / 3600 / / / 3600 / 1.300 / 3600 1.139 3600
7-63 / / 3600 / / / 3600 / 1.272 / 3600 | 1.140 3600
7-64 / / 3600 / / / 3600 / 1.316 / 3600 | 1.148 3600
7-65 / / 3600 / / / 3600 / 1.299 / 3600 | 1.163 3600
Average 3600 / 3600 / 3600 3600
8 - 66 0.768 0.695 3600 9.4 / / 3600 / 0.798 0.767 3600 0.764 776
8- 67 0.789 0.718 3600 9.0 / / 3600 / 0.923 0.789 3600 0.780 270
8 - 68 0.800 0.723 3600 9.7 / / 3600 / 1.349 0.800 3600 0.789 390
8-69 0.819 0.735 3600 10.3 / / 3600 / 1.294 0.808 3600 0.800 349
8-70 0.849 0.769 3600 9.4 / / 3600 / 0.867 0.848 3600 0.839 986
Average 3600 9.6 3600 / 3600 554

0, we first solved the DrFRAM model using generated data and then generated new samples with
the same sample size and obtained (1 — «) confidence intervals of the objective value by plugging
in the solution to the DrFRAM and the mean-risk models. We repeated the same procedure for a
list of @ values and selected the smallest 6 that the confidence interval for the DrFRAM objective
value is beyond that of the mean-risk objective value, i.e., to guarantee out-of-sample probability
to be at most 2a.

In our numerical study, we supposed that the number of bus routes [ is 5, each route has 10

to 40 stops, there are K =3 types of buses with nominal capacities ¢; = 60, ¢, = 80, c3 = 120, the
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number of buses is n = (6,9, 3), the pandemic factor ¢ is 0.25, the weight w is 0.5, and the number
of scenarios N = 10. We also assumed that the passenger arrival rates follow discrete uniform
distributions between 0 and 25. The percentage of passengers alighting from the bus follows a
triangular distribution with a lower limit of 0.2, an upper limit of 0.9, and a mode of 0.4. To select
the smallest # that guaranteed a 90% in-sample performance, we adopted the following procedure:
(i) for each 6 € {0,0.2,...,3}, generate 10 scenarios for the DrFRAM model; (ii) generate 10
scenarios by plugging the solution from part (i) into the DrFRAM and mean-risk models; (iii) repeat
part (i) and (ii) for 15 times and derive the asymptotic 95% confidence intervals of both models; and
(iv) Choose the smallest 6 such that the confidence interval of the DrFRAM model is completely
above the confidence interval of the mean-risk model. We also compared the performances of the
SAA model (i.e., in DrFRAM (5) with # = 0) and the DrFRAM model with the following procedure:
(i) generate 10 scenarios to solve the DrPFRAM model with the best tuned Wasserstein radius and
the SAA model separately; (ii) generate 10 scenarios with the same parameters and evaluate the
DrFRAM and SAA solutions using the SAA model; (iii) repeat part (ii) 1000 times and compute
the asymptotic 95% confidence interval for the mean of the objective value.

The result is displayed in Figure 1, and the best Wasserstein radius is § = 1.6. By comparing
the results of the SAA model and the DrEFRAM model with 6§ = 1.6, we see that the SAA solution
yields a higher objective value than the DrFRAM solution. This demonstrates that the DrFRAM
model with the best tuned Wasserstein radius can outperform the SAA model when there are very

limited data.
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7.4. Blacksburg Transit Case Study

In this section, we applied approximation Algorithm 4 to solve the real-world Blacksburg Transit
allocation problem since the dataset provided by Blacksburg Transit is of a similar scale as the
largest cases studied in the previous section. The operation data was provided by Blacksburg Tran-
sit, and passenger arrival and alighting data were collected in September 2020, amid the COVID-19
pandemic. Blacksburg Transit has 17 routes, three types of buses with different capacities, where
the number of buses with the nominal capacity equal to 60, 80, 120 are 8,20, 8, respectively, and
each route has 10 to 40 stops. As public policies and government regulations change as the pan-
demic evolves, we study the pandemic factor § varying from 0.25 (social distancing required by
CDC) to 1 (fully operated). We set the weight w = 0.5 in this numerical study since the priority
during a pandemic is to enforce social distancing. We adopted the following cross-validation pro-
cedure to choose the best Wasserstein radius 6 for a given ¢ using 22 scenarios as training data:
(i) randomly select 16 scenarios for solving the model; (ii) for each 6 € {0,0.2,...,2}, solve the
DrFRAM model using the 16 selected scenarios and evaluate the solution using the remaining 6
scenarios; (iii) repeat (i) and (ii) for 15 times and derive the asymptotic 95% confidence interval
of the objective values. We followed the same procedure in the previous subsection to select the
smallest 6 such that the confidence interval for the DrFRAM objective value is beyond that of the
mean-risk objective value. We let p=0.5 and € =0.1. A time limit of 3600 seconds was set for a
single run. Note that when all the DrFRAM objective values corresponding to different Wasserstein
radii 6 are much less than 1, then the cross-validation takes about 1000 seconds; otherwise, if for
some Wasserstein radii, their corresponding DrFRAM objective values are around or exceeding 1,
then the cross-validation can take up to 15 hours.

We see that for any 6 € {0.5,0.75,1} and for any 6 € {0,0.2,...,6}, since objective values for
all the scenarios are observed to be less than 1, according to Proposition 8 and its remark, the
solution obtained by approximation Algorithm 4 can be very close to the optimality. Besides, since
we obtain the same solution when § > 0.5, we only consider § € {0.25,0.5}. Thus, according to our
cross-validation results in Table 10 and Figure 2, we chose § = 1.8 as the best Wasserstein radius
when 0 =0.25 and 6 =2.6 for § =0.5.

We evaluated the current bus assignment from Blacksburg Transit and compared the results
of the SAA model and DrFRAM model with the best tuned Wasserstein radius 6 with unused 6
scenarios as testing data. To simulate the possible changes in data, we applied a truncated Gaussian
noise to each testing sample. The noise for the proportion of passengers alighting from the bus
follows A/(0,0.001¢) truncated to be nonnegative, while the noise for the passenger arrival rate
follows N (0,0.1¢) rounded to the nearest nonnegative integer, where the parameter t € {0,...,50}.

We repeated the sampling process 100 times to derive the 95% asymptotic confidence interval.
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Table 10  Cross Validation Results of Blacksburg Transit Data
6=0.25 6=0.5
0 95% C.I of DrIFRAM 95% C.I. of Mean-Risk | 8 95% C.I. of DiFRAM 95% C.I. of Mean-Risk
0.0 [0.122, 0.135 ] [0.219, 0.254 | 0.0 [ 0.056 , 0.059 ] [0.104 , 0.110 ]
0.2 [ 0.559 , 0.580 ] [ 0.555 , 0.590 ] 0.2 [0.290 , 0.296 | [ 0.283, 0.300 ]
0.4 [ 0.565 , 0.586 ] [ 0.559 , 0.594 ] 0.4 [0.292 , 0.298 ] [ 0.283 , 0.300 ]
0.6 [0.571, 0.593 ] [ 0.563 , 0.598 ] 0.6 [0.295 , 0.302 ] [0.285, 0.302 ]
0.8 [ 0.578 , 0.600 ] [ 0.569 , 0.603 ] 0.8 [0.299 , 0.306 ] [ 0.287 , 0.304 ]
1.0 [0.588, 0.612 ] [0.578 , 0.616 ] 1.0 [0.304, 0.311 ] [0.291 , 0.310 |
1.2 [1.051,1.131] [ 0.845 , 1.001 ] 1.2 [0.651, 0.741] [0.535, 0.712 ]
1.4 [1.130, 1.217 ] [1.005 , 1.129 ] 1.4 [0.797 , 0.952 ] [ 0.747 , 0.996 |
1.6 [1.134, 1.224 ] [ 1.001 , 1.163 ] 1.6 [0.686 , 0.774 ] [0.544 , 0.656 ]
1.8 [1.073 , 1.154 ] [ 0.865 , 0.984 ] 1.8 [0.690 , 0.781 ] [ 0.550 , 0.670 ]
2.0 [1.016 , 1.075 ] [0.784 , 0.873 ] 2.0 [0.793 , 0.929 ] [ 0.663 , 0.820 ]
2.2 [1.412,1.452] [ 1.081 , 1.090 ] 2.2 [0.996 , 1.090 ] [ 0.820 , 1.023 ]
2.4 [1.418 , 1.451 ] [ 1.070 , 1.082 ] 2.4 [1.032,1.136 ] [0.847, 1.027 ]
2.6 [1.377 , 1.418 ] [1.099, 1.149 ] 2.6 [1.038 , 1.130 ] [ 0.824 , 0.956 ]
2.8 [1.427, 1.454 ] [ 1.083, 1.089 ] 2.8 [1.044 , 1.145 ] [0.831, 0.989 ]
3.0 [1.430 , 1.462 ] [1.084 , 1.098 ] 3.0 [1.151, 1.264 ] [0.968 , 1.138 ]
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Figure 2 Confidence Intervals of DrFRAM Objective Values and Mean-Risk Objective Values

The result is illustrated in Figure 3. It is seen that our solutions can significantly reduce the

highest bus utilization rate and passenger abandon rate compared to the current assignment from

Blacksburg Transit. We also see that our DrFRAM solution outperforms SAA one across all the

noise levels. This indicates that our proposed approach can consistently provide a better solution

than SAA even when the underlying distribution of uncertain parameters is unknown or varies

over time.

We analyzed the impact of model parameters, i.e., pandemic factor § and weight w by varying

0 from 0.25 to 1 and w from 0.25 to 2. While varying 4, we let w = 0.5; while varying w, we let

0 =0.25. We tuned 6 following the same procedure as introduced at the beginning of this subsection

for the different parameter combinations and did the evaluation with the best-tuned 6 to derive

95% confidence intervals. The results are illustrated in Figure 4. It is seen that the objective value
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Figure 3 A Comparison of Risk-Neutral Objective Values for Three Different Methods with Different Noise

Levels

gets smaller when the pandemic factor § increases, which indicates that the weighted sum of bus
utilization and passenger abandon rates decreases when more passengers are allowed to get on
board. The objective value increases when the weight w increases since a higher weight w leads to

a larger objective value.
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Figure 4 Sensitivity Analysis on Model Parameters

We also compared the weighted sum of bus utilization rate and passenger abandon rate among
all the routes, as illustrated in Figure 5. It is seen that our solution yields much stable route-
based objectives than the current one from Blacksburg Transit or SAA one. This implies that our
DrFRAM solution can be indeed fairer and significantly reduce the transit resource inequity among
different routes. We also compared our proposed assignment solution with the current one in average
total bus capacity for each route, as illustrated in Figure 6. It is seen that our proposed solution

assigns more buses to several routes but fewer buses to the others than the current assignment.
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For example, our solution assigns more buses to route MSA (see Figure 7), connecting downtown
Blacksburg to the campus. Although passenger demand decreased due to the COVID-19 pandemic,
residents still commuted to downtown for daily essential products. On the other hand, our solution
assigns fewer buses to route HWA and HWB, which connect the largest residential communities to
the campus, since most residents were taking virtual classes and working from home. By exploring
the outdoor activities, we see that passengers reduced daily commute to school or work but kept
the necessary short trips for daily essentials during the pandemic, which could result in more
imbalance in passenger demand among different routes. Our data-driven model can help enhance
the policy-making for Blacksburg Transit by handling the shifts in passenger demand among bus

routes and stops during a pandemic.
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Figure 5 A Comparison of Route-based Weighted Sum of Bus Utilization Rate and Passenger Abandon Rate
Among Three Different Results. Here, xticks are route names of Blacksburg Transit and route-based
objective represents the weighted sum of bus utilization rate and passenger abandon rate for each
route.

8. Conclusion

In this paper, we study the transit resource allocation problem to minimize the highest utilization
rate and the largest passenger abandon rate under stochastic passenger arrival and alighting rates.
We propose a DrFRAM under type-oo Wasserstein ambiguity set, which is proven to be NP-
hard. To simplify the DrFRAM, we derive the monotonicity properties of the DrFRAM and use
McCormick inequalities to linearize the nonlinear components, which allows us to derive an MILP
formulation. To further improve the MILP formulation, valid inequalities and stronger formulations
are derived. We also develop scenario decomposition methods and No-one-left based approximation
algorithm to solve DrFRAM. Finally, we numerically demonstrate the effectiveness of the proposed

approaches in both small and large instances and apply them to solve the real-world instance using
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Figure 7 lllustration of Route HWA/HWB and Route MSA

the data provided by Blacksburg Transit. Compared to the current allocation plan, our result is
demonstrated to be more robust and fairer. More importantly, Blacksburg Transit is using our
model to help measure the unbalance of their transit resource assignment. Blacksburg Transit is now
following our recommendations in the internal system to make better decisions during the COVID-
19 crisis. The proposed DrFRAM framework can be generalized to other problems with uncertain
demand and fair resource allocation issues. For instance, we can extend our framework to the truck
platooning problems with fair truck resource allocation and passenger demand uncertainty. We can
also generalize the model to the call center problems, aiming to minimize the waiting time and

maximize fairness and customer satisfaction.
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Appendix A: Proofs
A.1. Proof of Proposition 1
Proposition 1 Solving DrFRAM (5) is NP-hard even when N =1, K =2,0=0.

Proof: Let us consider the following NP-complete problem.
(Partition Problem) Given an integer T' € Z., consider n positive numbers {a;}ieir) C Zy 4
having an even sum, is there a partition S;,S; such that Zz‘esl o; = ZieSQ oa;=f£,5 N8 =
0,5, USy=1[T]?
We show that finding a feasible solution for a special case of DIFRAM (5) can be reduced to the
partition problem. First of all, suppose there is only N =1 empirical sample and the Wasserstein
radius 8 = 0. We also assume that there are K =2 types of buses, there are 1, = buses for each
k € [K] and the reduced bus capacity is |dxci| = C' > max;c(r)a;. Suppose that there are I =T
routes and for each route i € [I], there is only J; =1 stop and the empirical alight rate a;; =1 and

arrival rate \;; = a;. Under this setting, DIFRAM (5) can be reduced to the following optimization

problem:
" = minmax —— (33a)
n,x i€[T] CZI{:G[Q] nik’
st Y wgp=1,Vie[T], (33b)
ke(2]
na, < B, Vi€ [T),Vk € [2], (33c)
> i <B,Vke[2], (33d)
1€[T]
> na=1,Vie[T), (33¢)
ke(2]
ziy, €{0,1},ny, € Z7,Vi € [T],VEk € [2]. (33f)

Thus, in the model (33), the optimal value v* < & if and only if there exists a feasible solution

(n, ) satisfying the 3, 1, iy > a; for all i € [I] . Or equivalently, the following set is nonempty
T :={(n,z) :ny > a;zy, Vi € [T),Vk € [2], (33b) — (33f)}.

Note that 26 =5

and only if the following integer program is nonempty:

ie(r) G- Thus, in set 7, we must have n;, = a;x;,. Hence, set T is nonempty if

Z i Tip = B, Z T = 1,14 € {0,1},Vi € [T],Vk € 2],

1€[T) kel[2]
which is exactly equivalent to the partition problem.
Hence, checking the special case (33) having a feasible solution with its objective value no larger
than 1/C is equivalent to solving the partition problem. This proves the NP-hardness of DrFRAM
(5). O
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A.2. Proof of Proposition 4

Proposition 4 Suppose that the weight w =0 (i.e., the passenger abandon rate for each bus stop

is negligible), and there exists a matriz p= (u®, p*) € = and a positive integer & € Z, 4 such that
MWM” < |)‘ | < O‘:U’zj)VZ € [I],Vj € [JZ]

Then the following approrimation ratio holds for the naive scenario decomposition lower bound

(without any no good cut or objective cut)

Q>\

1
sy
€[N]
Proof: We split the proof into three steps.
Step 1. The second inequality holds true since we drop the nonanticipactivity constraints when
computing the naive scenario decomposition lower bound.
Step 2. Next, to prove the first inequality, let us use v” to denote the optimal value of the following
nominal problem as

P(a) = min {Q (n,z,u,au) : (1b) — (1f), (7a), (7b)} (34)

n,r,u

v

for some positive integer o € Z, . In model (34), the function Q(n,x,u,ap) is defined in (12b)
by letting é\@ =apu.

According to the monotonicity results in Corollary 1, we have
Q(’I’L, T,u, EZ) < Q(n, xTr,u, &p)

for all £ € [N] and any feasible (n,x,u). Thus, aggregating the above inequalities for all ¢ € [N],

we have

% > on,z,u.€) < Qn,z,u,ap)

€[N
for any feasible (m,x,u). This implies that v* < 0P (a).
Similarly, we also have v > v”(1) for each £ € [N]. That is, 5 >,y v* > v”(1). Now it remains
to show that v?(a) <avP(1).
Step 3. We observe that

Claim 1 For any real number g € Ry and positive integer number o € Z., ., the following inequality

must hold a[q]| > [aq].

Proof: This is simply because a[q] > ag and the former is an integer. o
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Suppose that (n*,z*,u*) is an optimal first-stage solution and (L', L', w!,y', E') is an optimal
second-stage decision to model (34) with o= 1.

Now let us define

ij = min Z nkaékckJ,aL}j Vi€ [I,V5 € [J],

ke[K]

I/Z‘_l = ’7(1 Hzg)L?J 1-‘ VZ € [I],VJ € [Ji]’

yz] _I[ L(’i < z 7k L(SkaJ ,\V/l € [I],\V/j € [J’L]’

ke[K]

EY= max L% )
elll,jelJs] Zke n [0kcr)

ES= max (au})™!
’ iem,jewi]( i)

[_f?fj—l + aﬂ?j - Z g [Ower] )

kE[K]

wd =By Vi€ [I],Vk € [K],Vr € [Ry].

According to the definition of the model (34) with o = &, we see that (n*,x*,u*) is a feasible
first-stage solution and (L%, LY w?®,y®, E¥) satisfies constraints (2c), (9), (11b)—(11d). It remains
to show that constraints (10) also hold.

Before proceeding, we observe the following fact:

< aLzlj 1

Claim 2 For any i< [I],j € [Ji], we must have LS

j—1 —

Proof: Note that

Lg'fl = [(1 _/'Llj)Llaj 1~| S [(1 _Mij)aLllj 1~| S a((l _lu’zy)Lzlj 1~| = aLzlj 1

where the first inequality is due to the definition of LY ij—1 and the second one is due to Claim 1. ¢
There are two cases:

e When LY < > kepr) MikLOkcr], it is sufficient to show that L% > L, + ap;. This must be

37—1
true since we have

1
< aL” 15

a 1 a
LE =aLL, LS, <

Ll >L’LJ 1 +l“’1]

where the first inequality is due to Claim 2 and the second one is due to the fact that
(LY, L', w',y', E') is an optimal (and of course feasible) second-stage decision to the model

(34) with av=1.
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e When L% = > _kepi) Mir LOkcr ], we have y2 = 0. It is sufficient to show that L& > L% . This is
true since

‘Z’ia;%l =[(1- M(z‘lj)L?,ij < Z n, [Orer] = Lia;'
ke[K]
where the inequality is due to the fact that L, <37, i ni [0k ).
QED.

Finally, we observe that the objective function is

Le

Ea—i-wEa: max = +w max (au)) ' LE._, +ap) - ny | dxe
1 2 SR Zke ;k L(SkaJ iG[I],jE[Ji]( ILLJ) J—1 Hij kez[;q kL k kJ
+
mln{Zke[K v Lower ], L} }
= max
i€ll].j€lJ:) 2 ketr] Min LOkc ]
. amin{zke[m n, L5kckJ,L}j} AE =GP (1)
max =aF| =av
~ i€l jeli] > kepr) M LOke !

where the inequality is due to the fact that min{a, @b} < amin{a,b} for any non-negative numbers
a,b and positive integer Q.

Since (n*,x*,u") is a feasible first-stage solution and (L%, L% w®,y®, E%) is a feasible second-
stage solution to model (34) with the objective value at most av”(1), this proves that v”(a) <
avP(1). This completes the proof. O
A.3. Proof of Lemma 2

Lemma 2 The following characterization holds for conv(XZ,, A{zy =1}), i.e

conv(Xfﬂ,f/\{:rik:1}):conv()2§jgk)ﬂ w;,, L)) Z 2" Open Jwiy, > LY p

r€[Ry]

where

X = { (@it Lijy wi B ¢ (@0, ws) € Xy why, = i By, L € Ry B € [0, 1] 2, =1 )

177

Proof: Since the convex hull of the intersection of two sets is contained in the intersection of the

convex hulls of two sets, we must have

CODV(XEJ‘M Mag=1}) C CODV(XEJ‘M) ﬂ (wf::v ij) : Z 2! [6rc] wfkr > ij

r€[Ry]

It remains to show that

conv(X2 o Az =1}) 2 conv (X7, ﬂ (w!., L Z 2" brerJwiy, > LY

re[Ry]
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Indeed, for any (x;,u.., L, wi,, Ef) € conV(Xfﬂk)ﬂ{(wf::,ij) 'Y ey 27 Lk, Zij}-

There exists a finite collection {(x],ul, LT, w7, Ei")} ¢ and {a; },cpq C [0,1] such that

ij

i i)
T€[q] T€lq]

and B:=30 10> g2 [OkcrJwif, > L.

Now let us define

E T T lr lr 44 4 4 14 §
a‘f'(miﬂui::?L wi::7E1 ):<wi17ui::7L wi::7E1)7 a"’:]‘

L
8

L == 3" 2 §per 0,

r€[Ry]

for each 7 € [¢]. Clearly, we have

T T TéT oT 0T\ 4 Vi 4
E :O[T(mi:?ui::?L wi::’El )_(wi:)’u’i::aL' w'::7E1)7

17 177 "1
T€lq]

(@7, ul., L wil, B{7) € X7y, Mg, = 1},¥7 € [g].

15 %

Thus, (., w;., L, w., EY) € conv (X7, Az, =1}). O
Appendix B: Testing Integrality of L;;

We tested six small instances to compare the objective value of MILP formulations with the integer
L as well as the objective value of MILP with relaxing the integrality of L, where the number of
bus routes I is 5 and the number of scenarios IV is 6. There are K = 3 types of buses with nominal
capacities ¢; = 60, co = 80, c3 = 120. Each route has 10 ~ 40 stops. We let n = (4,6,3),0 =0.25,w =
5,0 =0,v=100. The passenger arrival rates were assumed to follow uniform distributions with the
minimum value ranging from 2 to 20 and the maximum one from 22 to 40, and the proportion
of passengers alighting from the bus was randomly generated from triangular distributions with
the lower limit ranging from 0 to 0.2, the upper limit range from 0.6 to 1, and the mode ranging
from 0.45 to 0.55. The results are shown in Table 11. By relaxing the integrality of L, the solution
time decreases around 15%, which is not very significant since our model is for strategic planning
purposes. However, we see that the objective value by relaxing passenger number to be continuous
can decrease by around 14%, which can be quite significant and cause misleading decisions. Relaxing
the integrality of L can result in a misleading solution as shown in Table 12, where different routes
have different bus assignments. Dominant routes in each scenario (i.e., the ones having the largest
weighted sum of bus utilization and passenger abandon rates) are also different. Since there is no
big improvement in the solution time, we believe that keeping integer L is necessary for the sake

of solution quality.
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Table 11 Objective Value of MILP with Integer L and MILP with Continuous L
Instance Ipteger L Coptinuous‘. L ‘Relative
Obj.Val Time | Obj.Val Time | Difference(%)
1 1.148 11.0 | 0.948 10.3 174
2 1.241 164 | 1.034 135 16.7
3 1.178 229 | 1.022 209 13.3
4 1.106 22.5 | 0.986 17.1 10.8
5 1.104 18.8 | 0.978 14.2 11.5
6 1.330 133 | 1.163 12.0 12.5
Table 12 Bus assignment of MILP with Integer L and MILP with Continuous L
Integer L Continuous L
Obj.Val 0.942 0.916
Route Domma.nt Bus 1| Bus 2 | Bus 3 Domlna'nt Bus 1| Bus 2 | Bus 3
Scenario Scenario
1 2 1 1
2 2 1-6 4
3 1, 3-6 3 2
4 3 2
5 3 4
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