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Abstract. We are concerned with free boundary problems originating from the analysis of multidimen-
sional transonic shocks for the Euler equations in compressible fluid dynamics. We survey some recent
developments in the analysis of multidimensional transonic shocks and corresponding free boundaries
for the Euler equations and related nonlinear partial differential equations (PDEs). The nonlinear PDEs
under our analysis include the steady Euler equations for potential flow, the steady full Euler equations,
the unsteady Euler equations for potential flow, and related nonlinear PDEs of mixed elliptic-hyperbolic
type. The transonic shock problems especially include the problem of steady transonic flow past solid
wedges, von Neumann’s problem for shock reflection-diffraction, and the Prandtl-Meyer problem for
unsteady supersonic flow onto solid wedges. We first show how these longstanding multidimensional
transonic problems can be formulated as free boundary problems for the Euler equations and related
nonlinear PDEs of mixed type. Then we present an effective nonlinear method and related techniques
for solving these free boundary problems, which should also be useful to analyze other longstanding or
newly emerging free boundary problems for nonlinear PDEs.
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1. Introduction

The purpose of this expository paper is to survey some recent developments in the analysis of free
boundary problems originating from the analysis of multidimensional (M-D) transonic shock waves for
the Euler equations in compressible fluid dynamics and related nonlinear nonlinear partial differential
equations (PDEs). We show how several multidimensional transonic problems can be formulated as
free boundary problems for the Euler equations and then present an efficient nonlinear method and
related techniques for solving these free boundary problems.

Shock waves are steep wavefronts that are fundamental in nature, especially in high-speed fluid flows
governed by the compressible Euler equations in fluid mechanics. The time-dependent compressible
Euler equations are a nonlinear second-order nonlinear waves equations for potential flow or a first-order
system of hyperbolic conservation laws for full Euler flow. One of the main features of such nonlinear
PDEs is that, no mater how smooth the initial data starts with, the solution develops singularity in
a finite time to form shock waves generically, so that the notion of solutions has to be extended to
the notion of entropy solutions in order to accommodate the discontinuity waves such as the shock
waves, that is, the weak solutions satisfying the entropy condition that is consistent with the second
law of thermodynamics. The general entropy solutions involving shock waves (shocks for short) for
this system have extremely complicated and rich structures. On the other hand, many fundamental
problems in physics and engineering involve steady solutions (i.e., time-independent solutions) or self-
similar solutions (i.e., the solutions depend only on the self-similar variables with form x

t for the space
variables x and time-variable t). Such solutions are governed by the steady or self-similar compressible
Euler equations for potential flow or, more generally, the full Euler flow. These governing PDEs in the
new forms are time-independent and often are of mixed elliptic-hyperbolic type.

Generally speaking, multidimensional transonic shocks are codimension-one discontinuity fronts in
the solutions of the steady or self-similar Euler equations and related nonlinear PDEs of mixed elliptic-
hyperbolic type, which separate two phases: one of them is supersonic phase (i.e., the fluid speed is
larger than the sonic speed) which is hyperbolic, while the other is subsonic phase (i.e., the fluid speed is
smaller than the sonic speed) which is often elliptic (for potential flow) or elliptic-hyperbolic composite
(for full Euler flow; i.e., elliptic equations composited with some hyperbolic transport equations). They
are formed in many physical situations, for example, by smooth supersonic flows or supersonic shock
waves impinging onto solid wedges/cones or passing through a de Laval nozzle, around supersonic or
near-sonic flying bodies, or other natural processes. Mathematical analysis of shock waves (shocks, for
short) can date back Stokes [112], Riemann [101], starting for the one-dimensional case. Mathematical
understanding of multidimensional transonic shocks has been one of the most challenging and long-
standing scientific research directions, since the solutions involved are discontinuous across the shocks.
Such transonic shocks can be formulated as free boundary problems (FBPs) in the mathematical theory
of nonlinear PDEs involving mixed elliptic-hyperbolic type.

General speaking, a free boundary problem is a boundary value problem for a PDE or a system
of PDEs which is defined in a domain, a part of whose boundary is a priori unknown; this part
is accordingly named as a free boundary. The mathematical problem is then to determine both the
location of the free boundary and the solution of the PDE or the system of PDEs in the resulting domain,
which requires to combine Analysis and Geometry in sophisticated ways, together with mathematical
modelling based on Physics and Engineering. FBPs are one of the most important research directions
in the analysis of PDEs, with wide applications across the sciences and real world problems; on the
other hand, it is widely regarded as a truly challenging field of Mathematics.

Transonic shocks problems for steady or self-similar solutions are typically formulated as boundary-
value problems for a nonlinear PDE or system of mixed elliptic-hyperbolic type, where the type of PDE
at a point is determined by the solution (as well as its gradient for some models). For a system, the type
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is more complicated and may be either hyperbolic, or mixed-composite elliptic-hyperbolic (simply also
called “mixed”, for short when no confusion arises). General solutions of such nonlinear PDEs can be
nonsmooth and of complicated structure, and their uniqueness is not known in many cases. However,
in many problems, especially the those motivated by physical phenomena, the expected structure of
solutions is known from the physics. The solutions are expected to be piecewise smooth and to have
some hyperbolic and elliptic regions separated by shocks, or sonic surfaces (or curves in the 2-D case)
with continuous type-transition (i.e., the type of the PDEs changes without discontinuities in the
quantities corresponding to the physical velocities). In this paper, we present the problems in which
the hyperbolic part of the solution is known apriori, or can be determined separately from the elliptic
part, in some larger region. Then the problem is reduced to determining the region in which the solution
is elliptic, with the transonic shock as a part of its boundary is the transonic shock. In other words,
we need to solve a free boundary problem with the transonic shock as a free boundary for the elliptic
phase of the solution. Since the type of the PDE or system depends on the solution, the ellipticity in
the region to be determined is a part of the results to be proved. We note that, in some other problems
involving shocks, a FBP needs to be solved in order to find the hyperbolic part of the solution as well.
We will not discuss such problems in this paper.

For several problems which we discuss below, the PDEs are a single second-order nonlinear equation
of second order, whose type (elliptic or hyperbolic) depend on the gradient of solution. That is, the
quasilinear elliptic PDE of second order, whose coefficients (and thus the type of the PDE) depend on
the gradient of solution. In the other problems, the PDEs are a first-order nonlinear system, whose type
is either hyperbolic or composite elliptic-hyperbolic, and is determined by the solution only. In these
problems as FBPs, the key is to determine the expected elliptic region in which the solution is solved,
while the hyperbolic part of the solution is apriori known. However, since the equation or system is
of mixed type, the ellipticity in the region depends on the solution and thus is not determined apriori,
and needs to be controlled in the process of solving the problem.

In all the problems discussed in the paper, the equation (or a part of the system) is elliptic for
our solution in the region determined by the free boundary problem. That is, we solve an (expected)
elliptic free boundary problem. However, the methods of elliptic FBPs, starting from the variational
methods of Alt-Caffarelli [1] and Alt-Caffarelli-Friedman [2–4], and the Harnack inequality approach of
Caffarelli [14–16] to other methods of many further works, do not directly apply to our problems. One
of the reasons is that the type of equation needs to be controlled in order to apply these methods, which
requires some strong estimates already. Another technical reason is that the mixed elliptic-hyperbolic
problems do not directly fit into a standard variational framework, because the Euler-Lagrange equation
is elliptic for convex functionals. On the other hand, the equations and boundary conditions with
elliptic truncation have a complicated structure, which does not fit in the framework of [1–4] and other
works on variational free boundary problems. The reasons of why methods of [14–16] do not apply
directly include that a boundary comparison principle for positive solutions of nonlinear elliptic PDEs
in Lipschitz domains is unavailable yet, in the case that nonlinear PDEs are not homogeneous with
respect to the unknown function and its derivatives, which is the case for the problem. To overcome
these difficulties, we use the global structure of our problem. It allows to derive certain properties of
the solution (such as monotonicities), which allow to control the type of the PDEs and the geometry
of the problem. With this, we solve the free boundary problem by the iteration procedure.

Because of the nonlinearity and mixed type of the equation/system, it is not clear if general weak
solutions of the problem we consider is unique. On the other hand, we are interested in the solutions of
a specific structure, motivated by physical applications. Thus, we construct the solution in a carefully
defined class of solutions, which we call admissible solutions. This class needs to be defined with two
somewhat opposite features: the conditions determining this class need not only to be flexible enough
so that this class contains all possible solutions of the problem which are of the desired structure,
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but also to be rigid enough so that the conditions in the definition of admissible solutions force the
desired structure of the solution and give the sufficient analytic and geometric control such that one can
derive the estimates for these solutions and eventually construct a solution in this class by the iteration
procedure. In order to define such class, we start with the solutions near some background solutions

(i) to make sure that the solutions obtained are still in the same phase (elliptic) via careful esti-
mates;

(ii) to gain the insight and motivation for the solution structures and properties to form an admis-
sible class of solutions on which the apriori estimates and fixed point argument are based.

In several problems below, we consider only the solutions near the background solution, as in (i) above.
In the other problems, see Section 4, we carry out both steps described above and construct admissible
solutions which are not close to any known background solution.

Furthermore, The elliptic and hyperbolic regions may be separated not only by shocks, which are
discontinuity fronts for velocities, but also by sonic surfaces (or curves in the 2-D case) where the
type of the equation changes without discontinuities in the quantities corresponding to the physical
velocities, as pointed out earlier. This means that the ellipticity and hyperbolicity degenerate near the
sonic surfaces. This introduces additional difficulties in the analysis of such solutions. Also, the sonic
surfaces (or curves) may intersect the transonic shocks (see e.g. Figure 4.1, point P1) so that, near such
points, the analysis of solutions is even more involved.

The organization of this expository paper is as follows: In §2, we start with our presentation of
multidimensional transonic shocks and free boundary problems for the Euler equations in a setup as
simple as possible, and show how a transonic shock problem can be formulated as a free boundary
problem for the corresponding nonlinear PDEs of mixed elliptic-hyperbolic type. Then we describe a
nonlinear method and related ideas/techniques, first developed in Chen-Feldman [31], with focus on
the key points for solving such free boundary problems through this simplest setup. In §3, we describe
how the nonlinear method and related techniques presented in §2 can be applied to solve the existence,
stability, and asymptotic behavior of two-dimensional steady transonic flows with transonic shocks past
curved wedges for the full Euler equations, by reformulating the problems as free boundary problems
via two different approaches. In §4, we describe how transonic shocks and free boundary problems for
self-similar shock reflection/diffraction for the Euler equations for potential flow. In §5, we discuss some
recent developments in the analysis of geometric properties of transonic shocks as free boundaries in
two-dimensional self-similar coordinates for compressible fluid flows with focus on convexity properties
of the self-similar transonic shocks in §4. Finally, in §6, we give several concluding remarks including
some open problems for further developments.

2. Multidimensional Transonic Shocks and Free Boundary Problems for the Steady
Euler Equations for Potential Flow

For clarity, we start with our presentation of multidimensional transonic shocks and free boundary
problems for the Euler equations in a setup as simple as possible, and show how a transonic shock
problem can be formulated as a free boundary problem for the corresponding nonlinear PDEs of mixed
elliptic-hyperbolic type. Then we describe a nonlinear method and related ideas/techniques, first
developed in Chen-Feldman [31], with focus on the key points for solving such free boundary problems
through this simplest setup.

The steady Euler equations for potential flow, consisting of the conservation law of mass and the
Bernoulli law for the velocity, can be written into the following second-order, nonlinear PDE of mixed
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elliptic-hyperbolic type for the velocity potential φ : Rd Ñ R by scaling:

div pρp|Dφ|2qDφq � 0, (2.1)

where the density function ρpq2q is
ρpq2q � �

1� θq2
� 1

2θ (2.2)

with θ � γ�1
2 ¡ 0 for the adiabatic exponent γ ¡ 1, and D :� pBx1 , . . . , Bxdq, i.e., the gradient with

respect to x � px1, . . . , xdq P Rd.
Equation (2.1) can also be written in the non-divergence form:

ḑ

i,j�1

�
ρp|Dφ|2qδij � 2ρ1p|Dφ|2qφxiφxj

�
φxixj � 0, (2.3)

where the coefficients of the second-order PDE (2.3) depend on Dφ, the gradient of the unknown
function φ.

The second-order nonlinear PDE (2.1), or equivalently (2.3) for smooth solutions, is strictly elliptic
at Dφ with |Dφ| � q if

ρpq2q � 2q2ρ1pq2q ¡ 0; (2.4)

and is strictly hyperbolic if

ρpq2q � 2q2ρ1pq2q   0. (2.5)

In fluid mechanics, the elliptic regions of equation (2.1) correspond to the subsonic flow, the hyperbolic
regions of (2.1) to the supersonic flow, and the regions with ρpq2q � 2q2ρ1pq2q � 0 for q � |Dφ| to the
sonic flow.

2.1. Multidimensional Transonic Shocks and Free Boundary Problems. Let Ω � Rd be a
domain. A function φ PW 1,8pΩq is a weak solution of (2.1) in Ω if

(i) |Dφpxq| ¤ 1{
?
θ a.e. x P Ω (i.e., physical region after the scaling);

(ii) for any test function ζ P C8
0 pΩq,»

Ω
ρp|Dφ|2qDφ �Dζ dx � 0. (2.6)

We are interested in the weak solutions with shocks (surfaces of jump discontinuity of the solutions
with codimension-one), motivated from Continuum Physics. More precisely, let Ω� and Ω� be open
nonempty subsets of Ω such that

Ω� X Ω� � H, Ω� Y Ω� � Ω,

and S :� BΩ�zBΩ. Let φ PW 1,8pΩq be a weak solution of (2.1) so that φ P C2pΩ�qXC1pΩ�q and Dφ
has a jump across S.

We now derive the necessary conditions on S that is a C1 surface of codimension-one. First, the
requirement that φ is in W 1,8pΩq yields curlpDφq � 0 in the sense of distributions, which implies

φ�τ � φ�τ on S, (2.7)

where

φ�τ :� Dφ� � pDφ� � νqν
are the trace values of the tangential gradients of φ on S in the tangential space with pd�1q-dimension
on the Ω� sides, respectively, and ν is the unit normal to S from Ω� to Ω�. Then we simply write
φτ :� φ�τ on S and choose

φ� � φ� on S. (2.8)



6 GUI-QIANG G. CHEN AND MIKHAIL FELDMAN

Now, for ζ P C8
0 pΩq, we use (2.6) to compute

0 �
�»

Ω�

�
»
Ω�



ρp|Dφ|2qDφ �Dζ dx

� �
»
BΩ�

ρp|Dφ|2qDφ � ν ζ dHd�1 �
»
BΩ�

ρp|Dφ|2qDφ � ν ζ dHd�1

�
»
S

��ρp|Dφ�|2qDφ� � ν � ρp|Dφ�|2qDφ� � ν� ζ dHd�1,

where Hd�1 is the pd � 1q-dimensional Hausdorff measure, i.e., the surface area measure. Thus, the
other condition on S, which measures the trace jump of the normal derivative of φ across S, is

ρp|Dφ�|2qφ�ν � ρp|Dφ�|2qφ�ν on S, (2.9)

where φ�ν � Dφ� � ν are the trace values of the normal derivative of φ along S on the Ω� sides, and

ρp|Dφ�|2q � �
1� θ|φ�τ |2 � θ|φ�ν |2

� 1
2θ ,

respectively.
Conditions (2.8)–(2.9) are called the Rankine-Hugoniot conditions for potential flow in fluid mechan-

ics. On the other hand, it can also be shown that any φ P C2pΩ�q XC1pΩ�q such that Dφ has a jump
across S satisfying the Rankine-Hugoniot conditions (2.8)–(2.9), must be a weak solution of (2.1).

Therefore, the necessary and sufficient conditions for φ P C2pΩ�q XC1pΩ�q to be a weak solution of
(2.1) are the Rankine-Hugoniot conditions (2.8)–(2.9).

For given K ¡ 0, consider the function:

ΦKppq :�
�
K � θp2

� 1
2θ p for p P r0,

a
K{θs. (2.10)

This function satisfies

ΦKppq ¡ 0 for p P p0,
a
K{θq, limpÑ0ΦKppq � lim

pÑ
?
K{θ ΦKppq � 0, (2.11)

0   Φ1
Kppq ¤ K

1
2θ for p P p0, pKsonicq, Φ1

Kppq   0 for p P ppKsonic,
a
K{θq, (2.12)

Φ
2

Kppq   0 for p P p0, pKsonics, (2.13)

where

pKsonic :�
a
K{pθ � 1q. (2.14)

By direct calculation, condition (2.4) is equivalent to Φ1
1pqq ¡ 0, and condition (2.5) is equivalent to

Φ1
1pqq   0. Thus, using (2.12), we obtain that PDE (2.1) is strictly elliptic at Dφ if |Dφ|   p1sonic and

is strictly hyperbolic if |Dφ| ¡ p1sonic, where we use the notation (2.14).

Suppose that φpxq is a solution satisfying

|Dφ|   p1sonic � 1{
?
θ � 1 in Ω�, |Dφ| ¡ p1sonic in Ω�, (2.15)

and

Dφ� � ν ¡ 0 on S, (2.16)

besides (2.8) and (2.9). Then φpxq is a transonic shock solution with transonic shock S that divides
the subsonic region Ω� from the supersonic region Ω�. In addition, φpxq satisfies the physical entropy
condition (see Courant-Friedrichs [56]; also see [57,76]):

ρp|Dφ�|2q   ρp|Dφ�|2q (2.17)
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which implies, by (2.16), that the density ρ increases in the flow direction. Note that equation (2.1) is
elliptic in the subsonic region Ω� and hyperbolic in the supersonic region Ω�.

For clarity of presentation of the nonlinear method, first developed in Chen-Feldman [31], we focus
first on the free boundary problem in the simplest setup, while the method and related ideas and
techniques have been applied to more general free boundary problems involving transonic shocks, which
will be discussed later.

Let px1, xdq be the coordinates of Rd with xd P R and x1 � px1, � � � , xd�1q P Rd�1. From now on, in
this section, we focus on Ω :� p0, 1qd�1 � p�1, 1q for simplicity without loss of our main objectives.

Let q� P pp1sonic, 1{
?
θq and φ�0 pxq :� q�xd. Then φ�0 is a supersonic solution in Ω. From (2.11)–

(2.13), there exists a unique q� P p0, p1sonicq such that�
1� θpq�q2� 1

2θ q� � �
1� θpq�q2� 1

2θ q�. (2.18)

In particular, q�   q�. Define φ�0 pxq :� q�xd in Ω. Then the function

φ0pxq � minpφ�0 pxq, φ�0 pxqq (2.19)

is a transonic shock solution in Ω, in which Ω�
0 � txd ¥ 0uXΩ are the subsonic and supersonic regions

of φ0pxq, respectively. Also note that, on Bp0, 1qd�1� r�1, 1s, the boundary condition pφ0qν � 0 holds.

We start with perturbations of the background solution φ0pxq defined in (2.19). We use the following
Hölder norms: For α P p0, 1q and any non-negative integer k,

rusk,0,Ω �
¸
|β|�k

sup
xPΩ

p|Dβupxq|, rusk,α,Ω �
¸
|β|�k

sup
x,yPΩ,x�y

|Dβupxq �Dβupyq|
|x� y|α , (2.20)

}u}k,0,Ω �
ķ

j�0

rusj,0,Ω, }u}k,α,Ω � }u}k,0,Ω � rusk,α,Ω,

where β � pβ1, � � � , βdq, βl ¥ 0 integers, Dβ � Bβ1x1 � � � Bβdxd , and |β| � β1 � � � � � βd.

Then the transonic shock problem can be formulated as:

Problem 2.1. Given a supersonic solution φ� of (2.1) in Ω, which is a C2,α perturbation of φ�0 :

}φ� � φ�0 }2,α,Ω ¤ σ (2.21)

for some α P p0, 1q with small σ ¡ 0 and satisfies

φ�ν � 0 on Bp0, 1qd�1 � r�1, 1s, (2.22)

find a transonic shock solution φ in Ω such that

φ � φ� in Ω� :� ΩzΩ�,

where Ω� :� tx P Ω : |Dφpxq|   p1sonicu is the subsonic region of φ, which is the complementary set
of the supersonic region of φ in Ω, and$'&'%

φ � φ� on p0, 1qd�1 � t�1u,
φ � φ�0 on p0, 1qd�1 � t1u,
φν � 0 on Bp0, 1qd�1 � r�1, 1s.

(2.23)
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Since φ � φ� in Ω�, |Dφ|   p1sonic   |Dφ�| in Ω�, |Dφ�| ∼ Bxdφ� ¡ p1sonic in Ω, and it is expected
that Ω� � txd ¡ fpx1qu X Ω and |Dφ| ∼ Bxdφ   p1sonic in Ω� with (2.8) across the transonic shock
S � txd � fpx1qu X Ω, then φ should satisfy

φpxq ¤ φ�pxq, for x P Ω. (2.24)

This motivates the following reformulation of Problem 2.1 into a more general free boundary problem
for the subsonic (elliptic) part of the solution:

Problem 2.2 (Free Boundary Problem). Find φ P CpΩq such that

(i) φ satisfies (2.24) in Ω and (2.23) on BΩ;
(ii) φ P C2,αpΩ�q is a solution of (2.1) in Ω� � tx P Ω : φpxq   φ�pxqu, the non-coincidence set;
(iii) the free boundary S � BΩ� X Ω is given by xd � fpx1q for x1 P p0, 1qd�1 so that Ω� � txd ¡

fpx1q | x1 P p0, 1qd�1u with f P C2,αpr0, asd�1q;
(iv) the free boundary condition (2.9) holds on S.

In the free boundary problem (Problem 2.2) above, phase φ� is not required to be a solution of (2.1)
and φ is not necessary to be subsonic in Ω�, although we require the subsonicity in Problem 2.1 so
that the free boundary is a transonic shock.

It is proved in Chen-Feldman [31] that, if the perturbation φ��φ�0 is small enough in C2,α, then the
free boundary problem (Problem 2.2) has a solution, and this implies that Problem 2.1 has a transonic
shock solution. Furthermore, the transonic shock is stable under any small C2,α perturbation of φ�.

Theorem 2.1 (Chen-Feldman [31]). Let q� P p0, p1sonicq and q� P pp1sonic, 1{
?
θq satisfy (2.18). Then

there exist positive constants σ0, C1, and C2 depending only on q�, d, γ, and Ω such that, for every
σ ¤ σ0 and any function φ� satisfying (2.21) and (2.22), there exists a unique solution φ of the free
boundary problem, Problem 2.2, satisfying

}φ� φ�0 }2,α,Ω� ¤ C1σ.

In addition, Ω� � txd ¡ fpx1qu X Ω with f : Rd�1 Ñ R satisfying

}f}2,α,Rd�1 ¤ C2σ, Dx1fpx1q � 0 on Bp0, 1qd�1,

that is, the free boundary S � tpx1, xdq : xd � fpx1q,x1 P Rd�1u X Ω is in C2,α and orthogonal to BΩ
at their intersection points.

In particular, we obtain

Corollary 2.3. Let q� be as in Theorem 2.1, and let σ0 be the constant defined in Theorem 2.1. If φ�
satisfies conditions of Theorem 2.1 with σ ¤ σ0, and if φ�pxq is a supersonic solution of (2.1) satisfying
the conditions stated in Problem 2.1, then there exists a transonic shock solution φ of Problem 2.1 with
the shock S � tpx1, xdq : xd � fpx1q,x1 P Rd�1u X Ω. Functions φ and f have the properties stated in
Theorem 2.1.

Indeed, under conditions of Corollary 2.3, solution φ of Problem 2.2 obtained in Theorem 2.1, along
with the free boundary S � tpx1, xdq : xd � fpx1q,x1 P Rd�1uXΩ, forms a transonic shock solution of
Problem 2.1.

The following features of equation (2.1) and the free boundary condition (2.9) are employed in the
proof of Theorem 2.1.

(i) The nonlinear equation (2.1) is uniformly elliptic only if |Dφ|   p1sonic� ε in Ω� for some ε ¡ 0;

(ii) |Dφ�| � �|φ�ν |2 � |φτ |2
�1{2

on S is subsonic only if φτ is sufficiently small;



TRANSONIC SHOCKS AND FREE BOUNDARY PROBLEMS FOR THE EULER EQUATIONS 9

(iii) The free boundary condition (2.9) is uniformly non-degenerate (i.e., φ�ν � φ�ν is bounded from
below by a positive constant on S) only if φ�ν ¡ pKsonic�ε on S for some ϵ ¡ 0 withK � 1�θ|φτ |2.

By (2.21), these conditions hold if, for any x P S, the unit normal νpxq to S is sufficiently close to
being orthogonal to txd � 0u.

2.2. A Nonlinear Method for Solving the Free Boundary Problems for Nonlinear PDEs of
Mixed Type. We now describe an iterative method and related techniques, developed first in Chen-
Feldman [31], for the construction of solutions of free boundary problems for equations of mixed elliptic
hyperbolic type, through Problem 2.2 for the simplest setup. In Theorem 2.1 we construct a solution
which is close to a given background solution, and we describe now the version of the method which
is restricted to this setup. The key ingredient is an iteration scheme, based on the non-degeneracy of
the free boundary condition: the jump of the normal derivative of solutions across the free boundary
has a strict lower bound. Since the equation is of mixed type, we make a cutoff (truncation) of the
nonlinearity near the value related to the background solution in order to fix the type of equation (make
it elliptic) and, at the fixed point of the iteration, we remove the cutoff by an estimate. The iteration
set consists of functions close to the background solution, in the present case in C2,α norm. Then,
for each function from the iteration set, the nondegeneracy allows to use one of the Rankine-Hugoniot
conditions, equality (2.8), to define the iteration free boundary, which is a smooth graph. In the domain
Ω� determined by the iteration free boundary, we solve a boundary-value problem, with the truncated
PDE, and with the condition on the shock derived from another Rankine-Hogoniot condition, (2.9), by a
truncation similar to the truncation of the equation, to achieve the uniform obliqueness, and with other
appropriate modifications, in some cases with the use of condition (2.8). On the rest of the boundary
of the iteration domain the conditions for the iteration problem are same as in the original problem.
The solution of this iteration problem defines the value of the iteration map. We use estimates for the
iteration problem to prove existence of a fixed point of the iteration map. Then we show that a fixed
point is a solution of the original problem.

In some further problems, we look for solutions which are not close to a known background solution.
Some of these problems, and the corresponding version of the nonlinear method described above, are
discussed in Section 4.

2.2.1. Subsonic Truncations – Shiffmanization. In order to solve the free boundary problem,
we first reformulate Problem 2.2 as a truncated one-phase free boundary problem, motivated by the
argument in Shiffman [109], so called the shiffmanization (cf. Lax [77]); also see [4, pp. 87–90]. This
is achieved by modifying both the nonlinear equation (2.1) and the free boundary condition (2.9), to
make the equation uniformly elliptic away from the elliptic region and the free boundary condition
non-degenerate. Then we solve the truncated one-phase free boundary problem with the modified
equation in the downstream region, the modified free boundary condition, and the given hyperbolic
phase in the upstream region. By a careful gradient estimate later on, we prove that the solution in
fact solves the original problem. We note that for steady potential flow equation (2.1), the coefficients
of it non-divergent form (2.3)) depend on Dφ, so the type of equation depends on Dφ. Because of this
the iteration procedure has no additional compactness effect, which is different from that in [18].

We first recall that the ellipticity condition for (2.1) at |Dφ| � q is (2.4), which is equivalent to

Φ1
1pqq ¡ 0, (2.25)

where ΦKppq is the function defined in (2.10). By (2.12), inequality (2.25) holds for q P p0, p1sonicq.
The shiffmanization is done by modifying Φ1pqq so that the new function Φ̃1pqq satisfies (2.25)

uniformly for all q ¡ 0 and, around q�, Φ̃1pqq � Φ1pqq. More precisely, the procedure is in the following
steps:
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1. Denote ε :� p1sonic�q�
2 . Let y � c0q � c1 be the tangent line of the graph of y � Φ1pqq at

q � p1sonic � ε. Then, using (2.12), we obtain c0 � Φ1
1pp1sonic � εq ¡ 0.

Define Φ̃1 : r0,8q Ñ R as

Φ̃1pqq �
#
Φ1pqq if 0 ¤ q   p1sonic � ε,

c0q � c1 if q ¡ p1sonic � ε,
(2.26)

which satisfies Φ̃1 P C1,1pr0,8qq.
2. Define

ρ̃psq � Φ̃1p
?
sq?
s

for s P r0,8q. (2.27)

Then ρ̃ P C1,1pr0,8qq and
ρ̃pq2q � ρpq2q if 0 ¤ q   p1sonic � ε. (2.28)

By (2.12)–(2.13) and the definition of Φ̃1 in (2.26),

0   c0 � Φ1
1pp1sonic � εq ¤ Φ̃1

1pqq � ρ̃pq2q � 2q2ρ̃1pq2q ¤ C for q P p0,8q
for some constant C ¡ 0. Then the equation

L̃φ :� div pρ̃p|Dφ|2qDφq � 0 (2.29)

is uniformly elliptic, with ellipticity constants depending only on q� and γ.

3. We also do the corresponding truncation of the free boundary condition (2.9):

ρ̃p|Dφ|2qφν � ρp|Dφ�|2qDφ� � ν on S. (2.30)

On the right-hand side of (2.30), we use the non-truncated function ρ since ρ � ρ̃ on the range of
|Dφ�|2. Note that (2.30), with the right-hand side considered as a known function, is the conormal
boundary condition for the uniformly elliptic equation (2.29).

4. Introduce the function
u :� φ� � φ.

Then, by (2.24), the problem is to find u P CpΩq with u ¥ 0 such that

(i) u P C2,αpΩ�q is a solution of

divApDu,xq � fpxq in Ω� :� tu ¡ 0u X Ω (the non-coincidence set), (2.31)

ApDu,xq � ν � Gpν,xq on S :� BΩ�zBΩ, (2.32)

and the boundary condition on BΩ determined by (2.23) and φ�pxq:$'&'%
u � 0 on p0, 1qd�1 � t�1u,
u � φ� � φ�0 on p0, 1qd�1 � t1u,
uν � 0; on Bp0, 1qd�1 � r�1, 1s,

(2.33)

where ν is the unit normal to S towards the unknown phase and

ApP,xq � ρ̃p|Dφ�pxq � P |2qpDφ�pxq � P q � ρ̃p|Dφ�pxq|2qDφ�pxq, P P Rd,
fpxq � �div pρ̃p|Dφ�pxq|2qDφ�pxqq,
Gpν,xq � �

ρp|Dφ�pxq|2q � ρ̃p|Dφ�pxq|2q�Dφ�pxq � ν.
Note that we used (2.22) to determine the condition on third line of (2.33).

(ii) the free boundary S :� BΩ�XΩ � txd � fpx1q : x1 P p0, 1qd�1u, so that Ω� � txd ¡ fpx1quXΩ
with f P C2,αpr0, asd�1q and Dx1f � 0 on Bpp0, 1qd�1 � r�1, 1sq;

(iii) the free boundary condition (2.32) holds on S.
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2.2.2. Domain Extension. We then extend domain Ω of the truncated free boundary problem in
§2.2.1 above to domain Ωe, so that the whole free boundary lies in the interior of the extended domain.
This is possible because we consider the simple geometry of the domain in this section.

Notice that, for a function ϕ P C2,αpΩq with Ω :� p0, 1qd�1 � p�1, 1q and
ϕν � 0 on Bp0, 1qd�1 � r�1, 1s, (2.34)

we can extend ϕ to Rd�1 � r�1, 1s so that the extension (still denoted) ϕ satisfies

ϕ P C2,αpRd�1 � r�1, 1sq,
and, for every m � 1, � � � , n� 1, and k � 0,�1,�2, � � � ,

ϕpx1, � � � , xm�1, k � z, xm�1, � � � , xdq � ϕpx1, � � � , xm�1, k � z, xm�1, � � � , xdq, (2.35)

that is, ϕ is symmetric with respect to every hyperplane txm � ku. Indeed, for k � pk1, � � � , kd�1, 0q
with k1, � � � , kd�1 integers, we define

ϕpx� kq � ϕpηpx1, k1q, � � � , ηpxd�1, kd�1q, xdq for x P p0, 1qd�1 � r�1, 1s,
with

ηpt, kq �
"
t if k is even,
1� t if k is odd.

It follows from (2.35) that ϕpx1, xdq is 2a-periodic in each variable of px1, � � � , xd�1q:
ϕpx� 2emq � ϕpxq, for x P Rd�1 � r�1, 1s, m � 1, � � � , d� 1,

where em is the unit vector in the direction of xm.
Thus, with respect to this 2-periodicity, we can consider ϕ as a function on Ωe :� Td�1 � r�1, 1s,

where Td�1 is an pd� 1q-dimensional flat torus with its coordinates given by cube p0, 2qd�1. Note that
(2.35) represents an extra symmetry condition, in addition to ϕ P C2,αpTd�1 � r�1, 1sq, and (2.35)
implies (2.34).

Then, by (2.22), we can extend φ� in the same way, that is, φ� P C2,αpΩeq satisfies (2.35). Also, φ�0
can be also considered as the functions in Ωe satisfying (2.35), since φ�0 pxq � q�xd in Rd�1 � r�1, 1s,
which is independent of x1.

Therefore, we have reduced the transonic shock problem, Problem 2.2, into the following free bound-
ary problem:

Problem 2.4. Find u P CpΩeq with u ¥ 0 such that

(i) u P C2,αpΩe
�q is a solution of (2.31) in Ωe

� :� tupxq ¡ 0u X Ωe, the non-coincidence set;
(ii) First two conditions in (2.33) hold on BΩe, i.e. u � 0 on BΩe X txn � �1u and

u � φ� � φ�0 on BΩe X txn � 1u; (2.36)

(iii) the free boundary S � BΩ� X Ωe is given by the equation: xd � fpx1q for x1 P Td�1, so that
Ω� � txd ¡ fpx1q | x1 P Td�1u with f P C2,αpTd�1q and Dx1f � 0 on BpTd�1 � r�1, 1sq;

(iv) the free boundary condition (2.32) holds on S.

As indicated in §2.1, similarly, one of the main difficulties for solving the modified free boundary
problem, Problem 2.4, is that the methods of previous works on elliptic free boundary problems do not
directly apply to it. Indeed, equation (2.31) is quasilinear, uniformly elliptic, but does not have a clear
variational structure, while the function Gpν,xq in (2.32) depends on ν. Because of these features, the
variational methods in [1, 3] do not directly apply to Problem 2.4. Moreover, the nonlinearity in our
problem makes it difficult to apply the Harnack inequality approach of Caffarelli [14–16]. In particular,
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a boundary comparison principle for positive solutions of elliptic equations in Lipschitz domains is
unavailable yet in our case that nonlinear equations are not homogeneous with respect to pD2u,Du, uq
here. Therefore, a different nonlinear method is required to overcome these difficulties for solving
Problem 2.4.

2.2.3. Iteration Scheme for Solving Free Boundary Problems. The iteration scheme, developed
in Chen-Feldman [31], is based on the non-degeneracy of the free boundary condition: the jump of the
normal derivative of a solution across the free boundary has a strictly positive lower bound.

Denote u0 :� φ� � φ�0 . Note that u0 satisfies the nondegeneracy condition: Bxdu0 � q� � q� ¡ 0 in

Ωe. Assume that (2.21) holds with σ ¤ q��q�
10 . Let function v on Ωe be given such that }v � pφ� �

φ�0 q}C2,αpΩeq ¤
q��q�

10 , then v satisfies the nondegeneracy condition: Bxdv ¥ q��q�
2 ¡ 0 in Ωe. Define

domain Ω�pvq � tv ¡ 0u � Ωe. Then Ω�pvq � txd ¡ fpx1q | x1 P Td�1u and Spvq :� BΩ�pvqzBΩe �
txd � fpx1q | x1 P Td�1u with f P C2,αpTd�1q. We solve the oblique derivative problem (2.31)–(2.32)

and (2.36) in Ω�pvq to obtain the solution u P C2,αpΩ�pvqq. However, u is not identically zero on Spvq
in general, and then u is not a solution of the free boundary problem. Next, estimates for the problem
(2.31)–(2.32) and (2.36) in Ω�pvq show that }u� pφ� � φ�0 q}C2,αpΩ�pvqq is small. Then we extend u to

the whole domain Ωe so that }u� pφ� � φ�0 q}C2,αpΩeq is small. This defines iteration v ÞÑ u. The fixed

point u � v of this process determines a solution of the free boundary problem, since u is a solution
of (2.31)–(2.32) and (2.36) in Ω�puq, and u satisfies u � v ¡ 0 on Ω�puq � Ω�pvq :� tv ¡ 0u, and
u � v � 0 on S :� BΩ�pvqzBΩe. Then we need to show existence of a fixed point. Because of the
dependence on ν on the right-hand side of the free boundary condition (2.32), the elliptic estimates
alone are not sufficient for that. However, the structure of our problem allows to obtain better estimates
for the iteration and to prove the existence of a fixed point. More precisely, the nonlinear method can
be described in the following five steps:

1. Iteration set. Let M ¥ 1. Set

KM :�  
w P C2,αpΩeq : }w � pφ� � φ�0 q}2,α,Ωe ¤Mσ, w satisfies (2.35)

(
, (2.37)

where φ�0 pxq � q�xd. According to the definition, KM is convex and compact in C2,βpΩeq, 0   β   α.
Let w P KM . Since q� ¡ q�, it follows that, if

σ ¤ q� � q�

10pM � 1q , (2.38)

then (2.37) and (2.21) imply

wxdpxq ¥
q� � q�

2
¡ 0. (2.39)

Then, by the implicit function theorem, Ω�pwq :� twpxq ¡ 0u X Ωe has the form:

Ω�pwq � txd � fpx1q | x1 P Td�1u, }f}2,α,Td�1 ¤ CMσ   1, (2.40)

with C depending upon q� � q�, and the last inequality is obtained by choosing small σ. The corre-
sponding unit normal

νpx1q � p�Dx1fpx1q, 1qa
1� |Dx1fpx1q|2

P C1,αpTd�1; Sd�1q,
and

}ν � ν0}1,α,Rd�1 ¤ CMσ, (2.41)

where ν0 is defined by

ν0 :� Dpφ�0 � φ�0 q
|Dpφ�0 � φ�0 q|

� p0, � � � , 0, 1qJ. (2.42)
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Also, νp�q can be considered as a function on Sw :� txd � fpx1qu. From the definition of fpx1q in (2.40),
it follows that, for x P Sw,

νpxq � Dwpxq
|Dwpxq| . (2.43)

By the definition of KM and (2.38) with (2.21), νpxq can be extended to Ωe via formula (2.43) and

}ν � ν0}1,α,Ωe ¤ CMσ (2.44)

with C � Cpq�, q�q. Motivated by the free boundary condition (2.30), we define the function, Gw, on
Ωe:

Gwpxq :�
�
ρp|Dφ�pxq|2q � ρ̃p|Dφ�pxq|2q�Dφ�pxq � νpxq, (2.45)

where νp�q is defined by (2.43).
We now solve the following fixed-boundary value problem for u in domain Ω�pwq:

divApDu,xq � fpxq in Ω� :� tw ¡ 0u, (2.46)

ApDu,xq � ν � Gpν,xq on S :� BΩ�zBΩe, (2.47)

u � φ� � q� on txd � 1u � BΩ�pwqzSw, (2.48)

and show that its unique solution u can be extended to the whole domain Ωe so that u P KM .

2. Existence and uniqueness of the solution for the fixed boundary value problem (2.46)–
(2.48). We establish the existence and uniqueness of solution u for problem (2.46)–(2.48) and show

that u is close in C2,αpΩ�pwqq to the unperturbed subsonic solution φ��φ�0 : Let M ¥ 1. There exists
σ0 ¡ 0, depending only on M , q�, Ω, d, and γ such that, if σ P p0, σ0q so that φ� satisfies (2.21) and

w P KM , there exists a unique solution u P C2,αpΩ�pwqq of problem (2.46)–(2.48) that satisfies (2.35)
and

}u� pφ� � φ�0 q}2,α,Ω�pwq ¤ Cσ, (2.49)

where C depends only on pq�,Ω, d, γq, and is independent of M , w P KM , and σ P p0, σ0q.
To achieve this, it requires to combine the existence arguments with careful Schauder estimates for

nonlinear oblique boundary value problems for nonlinear elliptic equations, based on the results in
Gilbarg-Trudinger [65], Lieberman [84], Lieberman-Trudinger [85], and the references cited therein.

3. Construction and continuity of the iteration map. Then we construct the iteration map by
an extension of the unique solution of (2.46)–(2.48), which satisfies (2.49), and show the continuity of
the iteration map: Let upxq be a solution of problem (2.46)–(2.48) in domain Ω�pwq established in
Step 2 above. Then upxq can be extended to the whole domain Ωe in such way that this extension,
denoted as Pwupxq, satisfies the following two properties:

(i) There exists C0 ¡ 0, which depends only on pq�,Ω, d, γq and is independent of pM,σq and wpxq,
such that

}Pwu� pφ� � φ�0 q}2,α,Ωe ¤ C0σ. (2.50)

(ii) Let β P p0, αq. Let a sequence wj P KM converge in C2,βpΩeq to w P KM . Let uj P C2,αpΩ�pwjqq
and u P C2,αpΩ�pwqq be the solutions of problems (2.46)–(2.48) for wjpxq and wpxq, respectively.
Then Pwjuj Ñ Pwu in C2,βpΩeq.

Define the iteration map J : KM Ñ C2,αpΩeq by
Jw :� Pwu, (2.51)

where upxq is the unique solution of problem (2.46)–(2.48) for wpxq. By (2.50), J is continuous in the
C2,βpΩeq-norm for any positive β   α.

Now we denote by upxq both the function upxq in Ω�pwq and its extension Pwupxq.
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Choose M to be the constant C0 from (2.50). Then, for u P KM , we see that u :� Jw P KM if σ ¡ 0
is sufficiently small, depending only on q�, Ω, d, and γ, since M is now fixed. Thus, (2.51) defines the
iteration map J : KM Ñ KM and, from (2.50), J is continuous on KM in the C2,βpΩeq-norm for any
positive β   α.

4. Existence of a fixed point of the iteration map. We then prove the existence of solutions of
the free boundary problem, Problem 2.2.

First, in order to solve Problem 2.4, we seek a fixed point of map J . We use the Schauder fixed point
theorem (cf. [65, Theorem 11.1]) in the following setting:

Let σ ¡ 0 satisfy the conditions in Step 3. Let β P p0, αq. Since Ωe is a compact manifold with
boundary and KM is a bounded convex subset of C2,αpΩeq, it follows that KM is a compact convex
subset of C2,βpΩeq. We have shown that JpKM q � KM , and J is continuous in the C2,βpΩeq-norm.
Then, by the Schauder fixed point theorem, J has a fixed point φ P KM .

If upxq is such a fixed point, then

ũpxq :� maxp0, upxqq
is a classical solution of Problem 2.4, and Spuq is its free boundary.

It follows that φ :� φ� � ũ is a solution of Problem 2.2, provided that σ is small enough so that

(2.49) implies that |Dφ| � |Dpφ� � uqpxq|   p1sonic � ε on Ω�puq, where ε � psonic�q�
2 defined in §2.2.1.

Indeed, then (2.28) implies that φpxq lies in the non-truncated region for equation (2.29). Note also
that boundary condition φν � 0 on Bp0, 1qd�1 � r�1, 1s is satisfied because u and φ� satisfy (2.35) on
Td�1 � r�1, 1s.

For such values of σ, if φ�pxq is a supersonic solution of (2.1) satisfying the conditions stated in
Problem 2.1, the function φpxq is a solution of Problem 2.1. Indeed, |Dφ| � |Dpφ� � ũq|   p1sonic � ε
on Ω�pφq :� tφ   φ�u � tũpxq ¡ 0u since ũ � u on Ω�pũq, and |Dφ| � |Dpφ�| ¡ p1sonic on ΩzΩ�pφq,
and equation (2.1) is satisfied in Ω�pφq and in ΩzΩ�pφq, and Rankine-Hugoniot conditions (2.8)–(2.9)
are satisfied on S � BΩ�pφqzBΩ.

This completes the construction of the global solutions. The uniqueness and stability of solutions of
the free boundary problem are obtained by using the regularity and nondegeneracy of solutions.

Remark 2.5. For clarity, in this section, we focus on the simplest setup of the domain as Ω �
p0, 1qd�1�p�1, 1q, which can be extended directly to ΩR � Πd�1

j�1p0, ajq�p�1, Rq for any R ¡ 0, then to

ΩR � Πd�1
j�1 � p�1,8q by analysing the asymptotic behavior of the solution when RÑ8, as well as to

Ω � Rd�1 � p�1,8q; see Chen-Feldman [31–33]. See also Chen [47] for the extension to the isentropic
Euler case.

If the hyperbolic phase is C8, then the solution and the corresponding free boundary in Theorem 2.1
are also C8. Furthermore, our results can be extended to the problem with a steady C1,α, α P p0, 1q,
perturbation of the upstream supersonic flow and/or general Dirichlet data hpx1q,x1 P Rd�1, at xd � 1
satisfying

}h� φ�0 }1,α,Rd�1 ¤ Cσ.

Also, the Dirichlet data in Problem 2.2 may be replaced by the corresponding Neumann data satisfying
the global solvability condition.

The global uniqueness of the piecewise constant transonic shocks in straight ducts modulo translations
was analyzed in [42, 63].

Remark 2.6. The setup domains have also been extended to multidimensional infinite nozzles of arbi-
trary cross-section in Chen-Feldman [34]; also see Xin-Yin [123] and Yuan [125] for the two-dimensional
case with the downstream pressure exit.
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For the analysis of geometric effects of the nozzles on the uniqueness and stability of steady transonic
shocks, see Bae-Feldman [5], Chen-Yuan [43], Liu-Yuan [89],Liu-Xu-Yuan [90], Li-Xin-Yin [79],and the
references cited therein.

Remark 2.7. The iteration scheme can also be reformulated such that the free boundary normal ν as
unknown in the iteration by replacing in (2.43) the known function w by the unknown u, i.e. defining

νpxq � Dupxq
|Dupxq| . (2.52)

Note that, at the fixed point, when u � w, (2.52) coincides with (2.43), i.e. defines the normal to S.
By using expression (2.52) for ν in the iteration boundary condition, we improve the regularity and
structure of the boundary condition, in particular make it independent of the regularity and constants
in the iteration set. This is useful in many cases, see e.g. [35]. Moreover, this allows to obtain the
compactness of the iteration map, which was used in [37].

This nonlinear method and related techniques described above for free boundary problems has played
a key role in many recent developments in the analysis of multidimensional transonic shock problems,
as shown in §3–§5.

3. Two-Dimensional Transonic Shocks and Free Boundary Problems for the Steady
Full Euler Equations

We now describe how the nonlinear method and related techniques presented in §2 can be applied to
prove the existence, stability, and asymptotic behavior of two-dimensional steady transonic flows with
transonic shocks past curved wedges for the full Euler equations, by reformulating the problems as free
boundary problems via two different approaches.

The two-dimensional steady Euler equations for polytropic gases are of the form (cf. [37, 56]):$'&'%
divpρuq � 0,

divpρub uq �∇p � 0,

div
�
ρupE � p

ρq
� � 0,

(3.1)

where u � pu1, u2q is the velocity, ρ the density, p the pressure, and E � 1
2 |u|2 � e the total energy

with internal energy e.
Choose density ρ and entropy S as the independent thermodynamical variables. Then the constitutive

relations can be written as pp, e, T q � pppρ, Sq, epρ, Sq, T pρ, Sqq governed by

TdS � de� p

ρ2
dρ,

where T represents the temperature. For a polytropic gas,

p � ppρ, Sq � κργeS{cv , e � epρ, Sq � κ

γ � 1
ργ�1eS{cv , T � T pρ, Sq � κ

pγ � 1qcv ρ
γ�1eS{cv , (3.2)

where γ ¡ 1 is the adiabatic exponent, cv ¡ 0 is the specific heat at constant volume, and κ ¡ 0 is any
constant under scaling.

System (3.1) can be written as a first-order system of conservation laws:

Bx1F pUq � Bx2GpUq � 0, U � pu, p, ρq P R4. (3.3)

Solving detpλ∇UF pUq �∇UGpUqq � 0 for λ, we obtain four eigenvalues:

λ1 � λ2 � u2
u1
, λj � u1u2 � p�1qjc

a
|u|2 � c2

u21 � c2
for j � 3, 4,
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where

c �
c
γp

ρ
(3.4)

is the sonic speed of the flow for a polytropic gas.
The repeated eigenvalues λ1 and λ2 are real and correspond to the two linear degenerate characteristic

families which generate vortex sheets and entropy waves, respectively. The eigenvalues λ3 and λ4 are
real when the flow is supersonic (i.e., |u| ¡ c), and complex when the flow is subsonic (i.e., |u|   c) in
which case the elliptic equations are involved,

For a transonic flow, in which both the supersonic and subsonic phases occur in the flow, system
(3.1) is of mixed-composite hyperbolic-elliptic type, which consists of two equations of mixed elliptic-
hyperbolic type and two equations of hyperbolic type (i.e., two transport-type equations).

In the regimes with ρ|u| ¡ 0, from the first equation in (3.1), considered in simply-connected domain
containing the origin, there exists a unique stream function ψ such that

Dψ � p�ρu2, ρu1q with ψp0q � 0. (3.5)

We use the following coordinate transformation to the Lagrangian coordinates:

px1, x2q Ñ py1, y2q � px1, ψpx1, x2qq, (3.6)

under which the original curved streamlines become straight. In the new coordinates y � py1, y2q, we
still denote the unknown variables Upxpyqq by Upyq for simplicity of notation. Then the original Euler
equations in (3.1) become the following equations in divergence form:� 1

ρu1

�
y1
� �u2

u1

�
y2
� 0, (3.7)�

u1 � p

ρu1

�
y1
� �pu2

u1

�
y2
� 0, (3.8)

pu2qy1 � py2 � 0, (3.9)�1
2
|u|2 � γp

pγ � 1qρ
�
y1
� 0. (3.10)

One of the advantages of the Lagrangian coordinates is to straighten the streamlines so that the
streamline may be employed as one of the coordinates to simplify the formulations, since the Bernoulli
variable and entropy are conserved along the streamlines.

3.1. Supersonic Flow onto Solid Wedges and Free Boundary Problems. For an upstream
steady uniform supersonic flow past a symmetric straight-sided wedge (see Fig. 3.1):

W :� tx � px1, x2q P R2 : |x2|   x1 tan θw, x1 ¡ 0u (3.11)

whose angle θw is less than the detachment angle θdw, there exists an oblique shock emanating from the
wedge vertex. Since the upper and lower subsonic regions do not interact with each other, it suffices
to study the upper part. More precisely, if the upstream steady flow is a uniform supersonic state, we
can find the corresponding constant downstream flow along the straight-sided upper wedge boundary,
together with a straight shock separating the two states. The downstream flow is determined by the
shock polar whose states in the phase space are governed by the Rankine-Hugoniot conditions and the
entropy condition; see Fig. 3.1. Indeed, Prandtl in [100] first employed the shock polar analysis to
show that there are two possible steady oblique shock configurations when the wedge angle θw is less
than the detachment angle θdw — The steady weak shock with supersonic or subsonic downstream flow
(determined by the wedge angle that is less or larger than the sonic angle θsw) and the steady strong
shock with subsonic downstream flow, both of which satisfy the entropy condition, provided that no
additional conditions are assigned at downstream. See also [13,56,97] and the references cited therein.
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Figure 3.1. The shock polar in the u-plane and uniform steady (weak/strong) shock
flows (see [24])

The fundamental issue – whether one or both of the steady weak and strong shocks are physically
admissible – has been vigorously debated over the past eight decades (cf. [56, 57, 91, 106,120]). Exper-
imental and numerical evidence has strongly indicated that the steady weak shock solution would be
physically admissible, as Prandtl conjectured in [100]. One natural approach to single out the physi-
cally admissible steady shock solutions is via the stability analysis: The stable ones are physical. See
Courant-Friedrichs [56] and von Neumann [120]; see also [91,106].

A piecewise smooth solution U � pu, p, ρq separated by a front S :� tx : x2 � σpx1q, x1 ¥ 0u
becomes a weak solution of the Euler equations (3.1) as in §2.1 if and only in the Rankine-Hugoniot
conditions are satisfied along S:$'''''&'''''%

σ1px1qr ρu1 s � r ρu2 s,
σ1px1qr ρu21 � p s � r ρu1u2 s,
σ1px1qr ρu1u2 s � r ρu22 � p s,
σ1px1qr ρu1pE � p

ρq s � r ρu2pE � p
ρq s,

(3.12)

where r � s denotes the jump between the quantity of two states across front S as before.
Such a front S is called a shock if the entropy condition holds along S: The density increases in the

fluid direction across S.
For given state U�, where we use notation (3.3), all states U that can be connected with U� through

the relations in (3.12) form a curve in the state space R4; the part of the curve whose states satisfy the
entropy condition is called the shock polar. The projection of the shock polar onto the u–plane is shown
in Fig. 3.1. In particular, for an upstream uniform horizontal flow U�

0 � pu�10, 0, p�0 , ρ�0 q past the upper
part of a straight-sided wedge whose angle is θw, the downstream constant flow can be determined
by the shock polar (see Fig. 3.1). Note that downstream flow must be parallel to the wedge and the
upstream flow is parallel to the axis of wedge, so the angle between the upstream and downstream flow
is equal to the wedge (half)-angle. According to the shock polar, the two flow angles (or, equivalently,
wedge angles) are important:

One is the detachment angle θdw, such that line u2 � u1 tan θ
d
w is tangential to the shock polar at

point T and there is no intersection between line u2 � u1 tan θw and the shock polar when θw ¡ θdw.
For wedge angles θw P p0, θdwq there are two intersection points of the line u2 � u1 tan θw and the shock
polar, one intersection point is on the arc �TH and it determines velocity pu1, u2q of the downstream flow
corresponding to the strong shock, and another intersection point is on the arc �TQ and it corresponds
to the weak shock. Thus for wedge angles θw P p0, θdwq, shock polar ensures the existence of two attached
shocks at the wedge: strong and weak.

Other important angle is the sonic angle θsw   θdw such that line u2 � u1 tan θ
s
w intersects with the

shock polar at point S on the circle of radius c0, for which the downstream fluid velocity is at the sonic
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speed. Point S divides arc �HS, which corresponds to the weak shocks, into the two open arcs �TS and�TH; see Fig. 3.1. The nature of these two cases, as well as the case for arc �SQ, is very different. When
the wedge angle θw is between θsw and θdw, there are two subsonic solutions (corresponding to the strong
and weak shocks); while for the wedge angle θw is smaller than θsw, there one subsonic solution (for the
strong shock) and one supersonic solution (for the weak shock). Such an oblique shock S0 is straight,
described by x2 � s0x1. The question is whether the steady oblique shock solution is stable under a
perturbation of both the upstream supersonic flow and the wedge boundary.

Since we are interested in determining the downstream flow, we can restrict the domain to the first
quadrant, see Fig. 3.2.

Fix a constant upstream flow U�, a wedge angle θw P p0, θdwq, and a constant downstream state U�
0

which is one of downstream states (weak or strong) determined by the shock polar. States U�
0 and U�

0
determine the oblique shock x2 � s0x1, and the transonic shock solution U0 in tx | x1 ¡ 0, x2 ¡ 0uzW
such that U � U�

0 in Ω�
0 � tx P R2 : x2 ¡ s0x1, x1 ¡ 0u and U � U�

� in Ω�
0 � tx P R2 : s0x1 ¡ x2 ¡

x1 tan θw, x1 ¡ 0u, see Fig. 3.1. We will refer to this solution as constant transonic solution pU�
0 , U

�
0 q.

Assume that the perturbed upstream flow U�
I is close to U�

0 , thus U�
I is supersonic and almost

horizontal, and that the wedge is close to a straight-sided wedge. Then, for any suitable wedge angle
(smaller than a detachment angle), it is expected that there should be a shock attached to the wedge
vertex, see Fig. 3.2. We now use a function bpx1q ¥ 0 to describe the upper perturbed wedge boundary:

BW � tx P R2 : x2 � bpx1q, x1 ¡ 0u, where bp0q � 0. (3.13)

Then the wedge problem can be formulated as the following problem:

Problem 3.1 (Initial-Boundary Value Problem). Find a global solution of system (3.1) in Ω :� tx2 ¡
bpx1q, x1 ¡ 0u such that the following conditions hold:

(i) Cauchy condition at x1 � 0:
U |x1�0 � U�

I px2q; (3.14)

(ii) Boundary condition on BW as the slip boundary:

u � νw|BW � 0, (3.15)

where νw is the outer unit normal vector to BW .

Assume that the background shock is the straight line given by x2 � σ0px1q for σ0px1q :� s0x1.
When the upstream steady supersonic perturbation U�

I px2q at x1 � 0 is suitably regular and small,
the upstream steady supersonic smooth solution U�pxq exists in region Ω� � tx : x2 ¡ s0

2 x1, x1 ¥ 0u,
beyond the background shock, but is still close to U�

0 .
Assume that the shock front (the free boundary) S we seek is

S � tx : x2 � σpx1q, x1 ¥ 0u, where σp0q � 0, σpx1q ¡ 0 for x1 ¡ 0. (3.16)

The domain for the downstream flow behind S is denoted by

Ω � tx P R2 : bpx1q   x2   σpx1q, x1 ¡ 0u. (3.17)

Then Problem 3.1 can be further reformulated into the following free boundary problem:

Problem 3.2 (Free Boundary Problem; see Fig. 3.2). Let pU�
0 , U

�
0 q be a constant transonic solution

for wedge angle θw P p0, θdwq, with transonic shock S0 :� tx2 � σ0px1q : x1 ¡ 0u for σ0px1q :� s0x1.
For any upstream flow U� for system (3.1) in domain Ω� which is a small perturbation of U�

0 , and
any wedge boundary function bpx1q, which is a small perturbation of b0px1q � x1 tan θw, find a shock
S as a free boundary x2 � σpx1q and a solution U in Ω, which are small perturbations of S0 and U�

0 ,
respectively, such that

(i) U satisfies (3.1) in domain Ω;
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Figure 3.2. The leading steady shock x2 � σpx1q as a free boundary under the per-
turbation (see [24])

(ii) The slip condition (3.15) holds along the wedge boundary BW ;
(iii) The Rankine-Hugoniot conditions (3.12) as free boundary conditions hold along the transonic

shock-front S.
U�
0 corresponding to a state on arc �SQ gives a weak supersonic shock (i.e., both the upstream and

downstream states are supersonic) (see Fig. 3.1), the problem is denoted by Problem 3.2 (WS); U�
0

corresponding to a subsonic state on arc �TS gives a weak transonic shock (i.e., the upstream state is
supersonic and the downstream state is subsonic) (see Fig. 3.1), the problem is denoted by Problem 3.2
(WT); while the strong transonic shock problem corresponds to arc �TH, denoted by Problem 3.2 (ST).

In general, uniqueness in the initial-boundary value problem (Problem 3.1) is not known (as it is
problem for a nonlinear system of a composite elliptic-hyperbolic type), so is possible that (Problem
3.1) has solutions which are not of steady oblique shock structure, i.e. which are not solutions of
(Problem 3.2). On the other hand, the global solution of the free boundary problem (Problem 3.2)
provides the global structural stability of the steady oblique shock, as well as more detailed structure
of the solution.

Supersonic (i.e., supersonic-supersonic) shocks correspond to arc �SQ (which is a stronger shock) (see
Fig. 3.1). The local stability of such shocks was first established in [67,81,102]. The global stability of
the supersonic shocks for potential flow past piecewise smooth perturbed curved wedges was established
in Zhang [129]; also see [45, 52, 53] and the references therein. The global stability and uniqueness of
the supersonic shocks for the full Euler equations, Problem 3.2 (WS), was solved for more general
perturbations of both the initial data and wedge boundary even in BV in Chen-Zhang-Zhu [44] and
Chen-Li [40].

For transonic (i.e., supersonic-subsonic) shocks, the strong shock case corresponding to arc �TH was
first studied in Chen-Fang [52] for the potential flow (see Fig. 3.1). In Fang [62], the full Euler equations
were studied with a uniform Bernoulli constant for both weak and strong transonic shocks. Because
the framework is a weighted Sobolev space, the asymptotic behavior of the shock slope or subsonic
solution was not derived. In Yin-Zhou [124], the Hölder norms were used for the estimates of solutions
of the full Euler equations with the assumption on the sharpness of the wedge angle, which means that
the subsonic state is near point H in the shock polar, by Approach I, first introduced in [25] which
will described §3.2. In Chen-Chen-Feldman [26], the weaker transonic shock, which corresponds to arc�TS, was first investigated by Approach I. Then, in [27], the weak and strong transonic shocks, which
correspond to arcs �TS and �TH , respectively, were solved, by Approach II which will described in §3.3,
so that the existence, uniqueness, stability, and asymptotic behavior of subsonic solutions of Problem
3.2 (WT) & (ST) in a weighted Hölder space were obtained.



20 GUI-QIANG G. CHEN AND MIKHAIL FELDMAN

We now describe two approaches for the wedge problem, based on the nonlinear method and related
techniques presented in §2. First, we need to introduce the weighed Hölder norms in the subsonic
domain Ω, where Ω is either a truncated triangular domain or an unbounded domain with the vertex
at origin O and one side as the wedge boundary. There are two weights: One is the distance function
to origin O and the other is to the wedge boundary BW. For any x,x1 P Ω, define

δox :� minp|x|, 1q, δox,x1 :� minpδox, δox1q, δwx :� minpdistpx, BWq, 1q, δwx,x1 :� minpδwx , δwx1q,
∆x :� |x| � 1, ∆x,x1 :� minp∆x,∆x1q, r∆x :� distpx, BWq � 1, r∆x,x1 :� minpr∆x, r∆x1q.

Let α P p0, 1q, and l1, l2, γ1, γ2 P R with γ1 ¥ γ2, and let k ¥ 0 be an integer. Let k � pk1, k2q be an
integer-valued vector, where k1, k2 ¥ 0, |k| � k1 � k2, and D

k � Bk1x1Bk2x2 . We define

rf spγ1;Oqpγ2;BWq
k,0;pl1,l2q;Ω � sup

xPΩ
|k|�k

 pδoxqγ̂0pδwx qmaxtk�γ2,0u∆l1
x
r∆l2�k
x |Dkfpxq|(, (3.18)

rf spγ1;Oqpγ2;BWq
k,α;pl1,l2q;Ω � sup

x,x1PΩ
x�x1,|k|�k

!
pδox,x1qγ̂αpδwx,x1qmaxtk�α�γ2,0u∆l1

x,x1
r∆l2�k�α
x,x1

|Dkfpxq �Dkfpx1q|
|x� x1|α

)
, (3.19)

}f}pγ1;Oqpγ2;BWq
k,α;pl1,l2q;Ω �

ķ

i�0

rf spγ1;Oqpγ2;BWq
i,0;pl1,l2q;Ω � rf spγ1;Oqpγ2;BWq

k,α;pl1,l2q;Ω , (3.20)

where γ̂β � maxtγ1 �mintk � β,�γ2u, 0u for β P r0, 1q. Similarly, the Hölder norms for a function of

one variable on p0,8q R with the weight near t0u and decay at infinity are denoted by }f}pγ2;0qk,α;plq;p0,8q.
For a vector-valued function f � pf1, f2, � � � , fnq, we define

}f}pγ1;Oqpγ2;BWq
k,α;pl1,l2q;Ω �

ḑ

i�1

}fi}pγ1;Oqpγ2;BWq
k,α;pl1,l2q;Ω .

Let

C
k,α;pl1,l2q
pγ1;Oqpγ2;BWqpΩq �

!
f : }f}pγ1;Oqpγ2;BWq

k,α;pl1,l2q;Ω   8
)
. (3.21)

The requirement that γ1 ¥ γ2 in the definition above means that the regularity up to the wedge
boundary is no worse than the regularity up to the wedge vertex. When γ1 � γ2, the δ

o–terms disappear
so that pγ1, Oq can be dropped in the superscript. If there is no weight pγ2, BWq in the superscript,

the δ–terms for the weights should be understood as pδoxqmaxtk�γ1,0u and pδoxqmaxtk�α�γ1,0u in (3.18) and
(3.19), respectively. Moreover, when no weight appears in the superscripts of the seminorms in (3.18)
and (3.19), it means that neither δo nor δw is present. For a function of one variable defined on p0,8q,
the weighted norm }f}pγ1;0q

k,α;plq;R� is understood in the same as the definition above with the weight to

t0u and the decay at infinity.
In the study of Problem 3.2 for a transonic solution pU�

0 , U
�
0 q with wedge angle θw, the variables in

U are expected to have different levels of regularity, so we distinguish these variables by defining

U1 � pu � τ 0
w, ρq and U2 � pw, pq for

w � u � ν0
w

u � τ 0
w

, where ν0
w � p� sin θw, cos θwq, τ 0

w � pcos θw, sin θwq.
(3.22)

Note that U�
10 � p|u�0 |, ρ�0 q and U�

20 � p0, p�0 q are the corresponding quantities for the background
subsonic state.

Note that ν0
w is the interior (for Ω0) unit normal to BW0, and τ 0

w is the tangential to BW0 unit vector,
where BW0 and Ω0 are defined by (3.13) and (3.17) for the background solution pU�

0 , U
�
0 q, i.e. u � τ 0

w
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and u �ν0
w are components u1 and u2 of u in the coordinates rotated clockwise by angle θw, so that the

background downstream flow becomes horizontal.

Theorem 3.1 (Chen-Chen-Feldman [27]). Let pU�
0 , U

�
0 q be a constant transonic solution for wedge

angle θw P p0, θdwq. There are positive constants α, β, C0, and ε, depending only on the background states
pU�

0 , U
�
0 q, such that:

(i) If pU�
0 , U

�
0 q corresponds to the state on arc �TS, and

}U� � U�
0 }2,α;p1�β,0q;Ω� � }b1� tan θw}p�α;0q1,α;p1�βq;R�   ε, (3.23)

then there exists a solution pU, σq of Problem 3.2 (WT) and a function U8 � pu81 , 0, p�0 , ρ8q �
Z8p�x1 sin θw � x2 cos θwq for an appropriate function Z8 : r0,8q Ñ R4 such that U1 and U2

defined by (3.22) satisfy

}U1 � U8
1 }p�α;BWq

2,α;pβ,1q;Ω � }U2 � U�
20}p�α;Oqp�1�α;BWq

2,α;p1�β,0q;Ω � }σ1 � s0}p�α;0q2,α;p1�βq;R�

�}U8
1 � U�

10}p�α;0q2,α;p1�βq;r0,8q ¤ C0

�
}U� � U�

0 }2,α;p1�β,0q;Ω� � }b1� tan θw}p�α;0q1,α;p1�βq;R�
	
,

(3.24)

where we have denoted U8
1 :� pu8τ , ρ8q;

(ii) If pU�
0 , U

�
0 q corresponds to the state on arc �TH, and

}U� � U�
0 }2,α;pβ,0q;Ω� � }b1� tan θw}p�α�1;0q

2,α;pβq;R�   ε, (3.25)

then there exists a solution pU, σq of Problem 3.2 (ST), such that U1 and U2 defined by (3.22)
satisfy

}U1 � U�
10}p�1�α;BWq

2,α;p0,βq;Ω � }U2 � U�
20}p�1�α;Oq

2,α;pβ,0q;Ω � }σ1 � s0}p�1�α;0q
2,α;pβq;R�

¤ C0

�
}U� � U�

0 }2,α;pβq;Ω� � }b1� tan θw}p�1�α;0q
2,α;pβq;R�

	
.

(3.26)

The solution, pU, σq, is unique within the class of solutions such that the left-hand side of (3.24) for
Problem 3.2 (WT) or (3.26) for Problem 3.2 (ST) is less than C0ε.

The dependence of constants α, β, C0, and ε in Theorem 3.1 is as follows: α and β depend on
pU�

0 , U
�
0 q, but are independent of pC0, εq; C0 depends on pU�

0 , U
�
0 , α, βq, but is independent of ε; and

ε depends on all pU�
0 , U

�
0 , α, β, C0q.

The difference in the results of the two problems is that the solution of Problem 3.2 (WT) has less
regularity at corner O and decays faster with respect to |x| (or the distance from the wedge boundary)
than the solution of Problem 3.2 (ST).

Note that part (i) of Theorem 3.1 gives asymptotics os the solution U as |x| Ñ 8 within Ω, and
U8 is an asymptotic profile. Moreover, convergence of U2 to U8

2 � U�
20 as |x| Ñ 8 is of polynomial

rate |x|�pβ�1q, which is faster than convergence rate of U1, which is |x|�β . But as x2 Ñ �8, both U1

and U2 decay to U�
10 and U�

20 resp. with the rate x
�pβ�1q
2 , which for U1 can be seen by combining the

estimates of the first and last terms in the right-hand side of (3.24). Part (ii) of Theorem 3.1 does not
give asymptotic limit of U1 as |x| Ñ 8, while U2 converges to to U�

20 with the rate |x|�β . Also, both

both U1 and U2 decay to U�
10 and U�

20 resp. with the rate x�β2 in case (ii).
Furthermore, for both cases (i) and (ii) of Theorem 3.1, the asymptotic profile in Lagrangian coor-

dinates is given in Theorem 3.3.
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3.2. Approach I for Problem 3.2 (WT). We now describe Approach I for solving Problem 3.2 (WT).

We work in Lagrangian coordinates introduced in (3.6). From the slip condition (3.15) on the wedge
boundary BW it follow that BW is a streamline, and so in the Lagrangian coordinates, BW becomes
the half-line L1 � tpy1, y2q : y1 ¡ 0, y2 � 0u. Let S � ty2 � σ̂py1qu be a shock-front. Then, from
equations (3.7)–(3.10), we can derive the Rankine-Hugoniot conditions along S:

σ̂1py1q
� 1

ρu1

� � ��u2
u1

�
, (3.27)

σ̂1py1q
�
u1 � p

ρu1

� � ��pu2
u1

�
, (3.28)

σ̂1py1qru2 s � r p s, (3.29)�1
2
|u|2 � γp

pγ � 1qρ
� � 0. (3.30)

The background shock-front in the Lagrangian coordinates is S0 � ty2 � s1y1u with s1 � ρ�0 u
�
10ps0 �

tan θ0q ¡ 0.
Without loss of generality, we assume that, in the Lagrangian coordinates, the supersonic solution

U� exists in domain D� defined by

D� �
!
y : y2 ¡ s1

2
y1, y1 ¡ 0

)
. (3.31)

For a given shock function σ̂py1q, let
D�
σ̂ �  

y : y2 ¡ σ̂py1q, y1 ¡ 0
(
, (3.32)

Dσ̂ �  
y : 0   y2   σ̂py1q, y1 ¡ 0

(
. (3.33)

Then Approach I consists of three steps:

1. Potential function ϕpyq. We first use a potential function to reduce the full Euler equations
to a scalar nonlinear elliptic equation of second-order in the subsonic region. This method was first
proposed in [25] in which the advantage of the conservation properties of the Euler system is taken for
the reduction.

More precisely, since ρu1 � 0 in either the supersonic or subsonic region, using (3.7), there exists a
potential function of the vector field pu2u1 , 1

ρu1
q such that

Dϕ � pu2
u1
,

1

ρu1
q with ϕp0q � 0. (3.34)

Equation (3.10) implies the Bernoulli law:

1

2
q2 � γp

pγ � 1qρ � Bpy2q, (3.35)

where B � Bpy2q is known, in fact it is completely determined by the incoming flow U� at the initial

position I, because of the Rankine-Hugoniot condition (3.30), and q � |u| �
a
u21 � u22.

From equations (3.7)–(3.10), we find � p

ργ

	
y1
� 0, (3.36)

which implies

p � Apy2qργ in the subsonic region Dσ̂. (3.37)
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With equations (3.34) and (3.37), we can rewrite the Bernoulli law (3.35) as

ϕ2y1 � 1

2ϕ2y2
� γ

γ � 1
Aργ�1 � Bρ2. (3.38)

In the subsonic region, q � |u|   c :�
b

γp
ρ . Therefore, the Bernoulli law (3.35) implies

ργ�1 ¡ 2pγ � 1qB
γpγ � 1qA. (3.39)

Condition (3.39) guarantees that ρ can be solved from (3.38) as a smooth function of pDϕ,A,Bq.
Assume that A � Apy2q has been known. Then pu, p, ρq can be expressed as functions of Dϕ:

ρ � ρpDϕ,A,Bq, u � p 1

ρϕy2
,
ϕy1
ρϕy2

q, p � Aργ , (3.40)

since B � Bpy2q is given by the incoming flow.
Similarly, in the supersonic region D�, we employ the corresponding variables pϕ�, A�, Bq to replace

U�, where B is the same as in the subsonic region because of the Rankine-Hugoniot condition (3.30).

We now choose (3.9) to derive a second-order nonlinear elliptic equation for ϕ so that the full Euler
system is reduced to this equation in the subsonic region:

pN1pDϕ,A,Bqqy1 � pN2pDϕ,A,Bqqy2 � 0, (3.41)

where pN1, N2qpDϕ,A,Bq � pu2, pqpDϕ,A,Bq are given by

N1pDϕ,A,Bq � ϕy1
ϕy2ρpDϕ,Apy2q, Bpy2qq

, N2pDϕ,A,Bq � Apy2qρpDϕ,Apy2q, Bpy2qqγ . (3.42)

Then a careful calculation shows that the discriminant

N1
ϕy1
N2
ϕy2

�N1
ϕy2
N2
ϕy1

� c2ρ2u21
c2 � q2

¡ 0 (3.43)

in the subsonic region with ρu1 � 0. Therefore, when ϕ is sufficiently close to ϕ�0 (determined by the
subsonic background state U�

0 ) in the C1–norm, equation (3.41) is uniformly elliptic, and the Euler
system (3.7)–(3.10) is reduced to the elliptic equation (3.41) in domain Dσ̂, where σ̂ is the function for
the free boundary (transonic shock).

The boundary condition for ϕ on the wedge boundary ty2 � 0u is derived from the fact that
ϕpy1, y2q � x2py1, y2q by (3.5), (3.6), (3.34). Then, recalling that BW � tx : x2 � bpx1q, x1 ¡ 0u
in x-coordinates, which is ty : y2 � 0, y1 ¡ 0u in y-coordinates, and y1 � x1 by (3.6), we get

ϕpy1, 0q � bpy1q. (3.44)

The condition on S is derived from the Rankine-Hugoniot conditions (3.27)–(3.29). Condition (3.27)
is equivalent to the continuity of ϕ across S:

rϕs|S � 0, (3.45)

which also gives

σ̂1py1q � �rϕy1srϕy2s
py1, σ̂py1qq. (3.46)

Replacing σ̂1py1q in (3.28) and (3.29) with (3.46) gives rise to the conditions on S:

GpDϕ,A,U�q � rϕy1s
� 1

ρϕy2
�Aργϕy2

�� rϕy2srAργϕy1s � 0, (3.47)

HpDϕ,A,U�q � rϕy1srN1s � rϕy2srN2s � 0. (3.48)



24 GUI-QIANG G. CHEN AND MIKHAIL FELDMAN

We now combine the above two conditions into the boundary condition for (3.41) by eliminating A. By
calculation, we have

HA � N1
Arϕy1s �N2

Arϕy2s �
γ

γ � 1

ργ�1u2
c2 � q2

�
u2
u1

�
�
ργpq2 � c2

γ�1q
c2 � q2

�
1

ρu1

�
¡ 0,

and

GA � rϕy1s
�N1

A

ϕy1
� ϕy2N

2
A

	
� rϕy2sϕy1N2

A

�
u2ρ

γpq2 � c2

γ�1q
u1pc2 � q2q

�
1

ρu1

�
� ργ�1

u1pc2 � q2q
�
u2

2 � c2 � u21
γ � 1


�
u2
u1

�
  0,

since r 1
ρu1

s   0 and u2� is close to 0. Therefore, both equations (3.47) and (3.48) can be solved for A

to obtain A � g1pDϕ,U�q and A � g2pDϕ,U�q, respectively. Then we obtain our desired condition on
the free boundary (i.e., the shock-front):

ḡpDϕ,U�q :� pg2 � g1qpDϕ,U�q � 0. (3.49)

Then the original free boundary problem, Problem 3.2, is reduced to the following free boundary
problem for the elliptic equation (3.41):

Problem 3.3 (Free Boundary Problem). Seek pσ̂, ϕ,Aq such that ϕ is a solution of the elliptic equation
(3.41) in the region with the fixed boundary condition (3.44), and the free boundary conditions (3.45)
and (3.49), and equalities (3.47) and (3.48) hold.

2. Hodograph transformation and fixed boundary value problem. In order to solve the free
boundary problem, we employ the hodograph transformation to make the shock-front a fixed boundary.
This allows to find ϕ for each A from an appropriately chosen set. After that, we only need to perform
iteration for the unknown function A, to satisfy (3.47) and (3.48).

Note that the solutions in Theorem 3.1 satisfy that }U � U�
0 }L8pΩq ¤ C0ε. Then, denoting by ϕ�0

the potential function (3.34) for the subsonic background state U�
0 , we obtain that ϕ is close to ϕ�0

in C1 on the closure of the subsonic region. Then on the iteration, we will consider (and eventually
obtain) solutions U for which the same property holds. Thus below we assume that ϕ is close to ϕ�0 in

C1pDσ̂q, see (3.33).
We now extend the domain of ϕ� from D� to the first quadrant D� YDσ̂. Let ϕ�0 � 1

ρ�0 u
�
20

y2, which

is the the potential function (3.34) for the supersonic background state U�
0 . Then ϕ� is close to ϕ�0 in

C1pD�q since U� is close to U�
0 in L8 (and in stronger norm, see Theorem 3.1). We can extend ϕ�

into D�YDσ̂ so that it remains close to ϕ�0 in C1 on the closure of D�YDσ̂. We then use the following
partial hodograph transformation:

py1, y2q Ñ pz1, z2q � pϕ� ϕ�, y2q. (3.50)

Note that, using (3.34), we have By1pϕ�0 � ϕ�0 q � u022
u021

¡ 0. Thus, since ϕ and ϕ� are close in C1 to

ϕ�0 and ϕ�0 resp., then the transformation (3.50) is invertible, that is y1 is a function of z :� pz1, z2q:
y1 � φpzq.

Let

M1pDϕ,A,U�q � N1pDϕ,A,Bq �N2pDϕ,A,Bqrϕy2srϕy1s
, M2pDϕ,A,U�q � N2pDϕ,A,Bq

rϕy1s
,
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and

M
ipDφ,φ,A, zq � �M ipBy1ϕ�pφ, z2q �

1

φz1
, By2ϕ�pφ, z2q �

φz2
φz1

, A, U�pφ, z2qq, i � 1, 2.

Then equation (3.41) becomes�
M

1pDφ,φ,A, zq�
z1
� �

M
2pDφ,φ,A, zq�

z2
� 0. (3.51)

Notice that

M
1
φz1

M
2
φz2

� 1

4

�
M

1
φz2

�M
2
φz1

�2 � rϕy1s2
�
N1
ϕy1
N2
ϕy2

� pN1
ϕy2
q2� ¡ 0,

which implies that equation (3.51) is uniformly elliptic, for any solution φ that is close to φ�0 (determined
by (3.50) with ϕ � ϕ�0 ) in the C1–norm.

Under the transform (3.50), the unknown shock-front S becomes a fixed boundary, which is the

z2-axis (where we use that ϕ is close in C1 to ϕ�0 in Dσ̂ and to ϕ�0 in D�
σ̂ , to conclude from (3.34) that

ϕ is Lipschitz across S, and then that ϕ � ϕ� on S but ϕ � ϕ� in Dσ̂zS). Along the z2-axis, condition
(3.49) is now

g̃pDφ,φ, zq :� ḡpBy1ϕ�pφ, z2q �
1

φz1
, By2ϕ�pφ, z2q �

φz2
φz1

, U�pφ, z2qq
� 0 on tz1 � 0, z2 ¡ 0u. (3.52)

We also convert condition (3.48) into z–coordinates:

rHpDφ,φ,A, zq :� HpBy1ϕ�pφ, z2q �
1

φz1
, By2ϕ�pφ, z2q �

φz2
φz1

, A, U�pφ, z2qq � 0 (3.53)

along the z2-axis.

The condition on the z1-axis can be derived from (3.44) as follows: Restricted on z2 � 0, the
coordinate transformation (3.50) becomes

z1 � bpy1q � ϕ�py1, 0q.
Then y1 can be expressed in terms of z1 as y1 � rbpz1q so that φpz1, 0q � y1 satisfies

φpz1, 0q � rbpz1q on tz2 � 0, z1 ¡ 0u. (3.54)

Therefore, the original wedge problem is now reduced to the following problem on the first quadrant
Q.

Problem 3.4 (Fixed Boundary Value Problem). Seek pφ,Aq such that φ is a solution of the second-
order nonlinear elliptic equation (3.51) in the unbounded domain Q with the boundary conditions (3.52)
and (3.54), and such that (3.53) holds.

3. Solution to the fixed boundary value problem – Problem 3.4. Through the shock polar, we
can determine the values of U at the origin, and hence Ap0q is fixed, depending on the values of U�p0q
and b1p0q. Then we solve (3.53) to obtain a unique solution Ã � hpz, ϕ,Dϕq that defines the iteration
map.

This is achieved by the following fixed point arguments. Consider a Banach space:

X � tA : Ap0q � 0, }A}p�αq;t0u1,α;p1�βq;p0,8q   8u.
Then we define our iteration map J : X ÝÑ X through the following:
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First, we define a smooth cutoff function χ on r0,8q such that

χpsq �
#
1, 0 ¤ s   1,

0, s ¡ 2.

Set

Ap0q :� tpωp0q, b1p0qq for ω � U� � U�
0 , (3.55)

where t is a function determined by the Rankine-Hugoniot conditions (3.47)–(3.48). Then we define
wtpz2q as

wtpz2q :� A�
0 �

�
tpωp0q, b1p0qq �A�

0

�
χpz2q. (3.56)

Consider any A � Apz2q so that A� wt P X satisfying

}A�A�
0 }p�αq;t0u1,α;p1�βq;p0,8q ¤ C0ε (3.57)

for some fixed constant C0 ¡ 0, where A�
0 � p�0

pρ�0 qγ
.

With this A, we solve equation (3.51) for φ � φA in the unbounded domain Q with the boundary
conditions (3.52) and (3.54), and with the asymptotic condition φÑ φ8 as xÑ8, where the limit is
understood in the appropriate sense, where φ8 is the solution of

z1 � pϕ8 � ϕ�qpφ8, z2q, (3.58)

with ϕ8 � u�20
u�10
y1 � lpy2q, where lpy2q is determined by the Bernoulli law (3.38), replacing ϕ and ρ with

their asymptotic values ϕ8 and ρ8py2q �
�

p�0
Apy2q

	 1
γ
, and noting that B � Bpy2q is determined by the

upstream state U�. Specifically, we show existence of a solution φ in the set:

Σδ �
 
φ : }φ� φ8}p�1�αq;BW

2,α;pβ,0q;Q ¤ δ
(

for sufficiently small δ ¡ 0,

which is compact and convex subset of the Banach space:

B �  
φ : }φ� φ8}p�1�α1q;BW

2,α1;pβ1,0q;Q   8(
with 0   α1   α, 0   β1   β.

Equation (3.51) is uniformly elliptic for φ P Σδ if δ ¡ 0 is small. This allows to solve the problem for
φ � φA P Σδ by the Schauder fixed point theorem if the perturbation is small, i.e. if ε is small in the
conditions of Theorem 3.1 and in (3.57). Then, with this φ � φA, we solve (3.53) to obtain a unique

Ã that defines the iteration map J by J pA� wtq :� Ã� wt.

Finally, by the implicit function theorem, we prove that J has a fixed point A � wt, for which A
satisfies (3.57).

For more details for this approach, see Chen-Chen-Feldman [25, 26]. This approach can also be
applied to Problem 3.2 (ST); see [124] for the case when the wedge angle is sufficiently small.

3.3. Approach II for Problem 3.2 (ST) & (WT). We now describe the second approach, Approach
II. It allows to handle both cases in Theorem 3.1: case of Problem 3.2 (WT) and of Problem 3.2 (ST).
Moreover, in case of Problem 3.2 (WT), this approach yields a better asymptotic decay rate, as stated
in (3.24).

It will be convenient to rotate the x-coordinates clockwise by angle θw, so that the background
downstream flow becomes horizontal, as discussed in the paragraph before Theorem 3.1. We still use
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the same notations in the rotated coordinates, in particular we write x � px1, x2q and u � pu1, u2q in
the rotated basis. Then in the new coordinates:

u�20
u�10

� � tan θw, U�
0 � pu�10, �u�10 tan θw, p�0 , ρ�0 q, U�

0 � pu�10, 0, p�0 , ρ�0 q. (3.59)

And since the new coordinates px1, x2q are along the vectors pτ 0
w,ν

0
wq, i.e. u1 � u � τ 0

w, u2 � u � ν0
w, we

have by (3.22)

U1 � pu1, ρq and U2 � pw, pq for w � u2
u1
. (3.60)

Furthermore, we have from (3.13) and (3.23) or (3.25) with small ε, that in the rotated coordinates

BW � tx P R2 : x2 � brotpx1q, brotp0q � 0u, (3.61)

and the function brot satisfies the estimates in (3.63) or (3.65) below, resp., with Cε instead of ε. For
the background solution, brot,0 � 0, i.e. BW0 is the positive x1-axis.

We will construct a solution with a shock front S expressed in the rotated coordinates as (3.16)
with a function σ̃px1q. The background shock is now expressed as S0 :� tx2 � σ̃0px1q : x1 ¡ 0u for
σ0px1q :� s̃0x1, where s̃0 � tanparctan s0� θwq. Then the subsonic region of the solution has the form:

Ω � tx P R2 : b̃px1q   x2   σ̃px1q, x1 ¡ 0u. (3.62)

We can assume that the upstream steady supersonic smooth solution U�pxq exists in region Ω� �
tx : 2s̃0 ¡ x2 ¡ s̃0

2 x1, x1 ¥ 0u, beyond the background shock, but is still close to U�
0 .

Moreover, in part (i) of Theorem 3.1, in the rotated coordinates U8 is independent of x1, and
U8 � Z8.

Specifically, we will prove the following in the rotated coordinates:

Theorem 3.2 (Chen-Chen-Feldman [27]). Let pU�
0 , U

�
0 q, given by (3.59), be a constant transonic

solution for wedge angle θw P p0, θdwq. There are positive constants α, β, C0, and ε, depending only on
the background states pU�

0 , U
�
0 q, such that:

(i) If pU�
0 , U

�
0 q corresponds to the state on arc �TS, and

}U� � U�
0 }2,α;p1�β,0q;Ω� � }b1rot}p�α;0q1,α;p1�βq;R�   ε, (3.63)

then there exists a solution pU, σ̃q of Problem 3.2 (WT) and a function U8py2q � pu81 py2q, 0, p�0 , ρ8py2qq,
and we denote U8

1 � pu8τ , ρ8q, such that U1 and U2 defined by (3.22) satisfy

}U1 � U8
1 }p�α;BWq

2,α;pβ,1q;Ω � }U2 � U�
20}p�α;Oqp�1�α;BWq

2,α;p1�β,0q;Ω � }σ̃1 � s̃0}p�α;0q2,α;p1�βq;R�

� }U8
1 � U�

10}p�α;0q2,α;p1�βq;r0,8q ¤ C0

�
}U� � U�

0 }2,α;p1�β,0q;Ω� � }b1rot}p�α;0q1,α;p1�βq;R�
	
;

(3.64)

(ii) If pU�
0 , U

�
0 q corresponds to the state on arc �TH, and

}U� � U�
0 }2,α;pβ,0q;Ω� � }b1rot}p�α�1;0q

2,α;pβq;R�   ε, (3.65)

then there exists a solution pU, σ̃q of Problem 3.2 (ST), such that U1 and U2 defined by (3.22)
satisfy

}U1 � U�
10}p�1�α;BWq

2,α;p0,βq;Ω � }U2 � U�
20}p�1�α;Oq

2,α;pβ,0q;Ω � }σ̃1 � s̃0}p�1�α;0q
2,α;pβq;R�

¤ C0

�
}U� � U�

0 }2,α;pβq;Ω� � }b1rot}p�1�α;0q
2,α;pβq;R�

	
.

(3.66)

The solution, pU, σ̃q, is unique within the class of solutions such that the left-hand side of (3.24) for
Problem 3.2 (WT) or (3.26) for Problem 3.2 (ST) is less than C0ε.
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Clearly, Theorem 3.1 follows from Theorem 3.2 if ε is small so that from the estimates of σ̃ in (3.64)
or (3.66) shock remains graph x2 � σpx1q after rotating coordinates back.

To prove Theorem 3.2, we will work in the Lagrangian coordinates (3.6) defined for the rotated
coordinates x � px1, x2q. Then, as in the previous case, using that, from the slip condition (3.15) on
the wedge boundary, the curve BW is a streamline, we obtain that in the present Lagrangian coordinates,
BW becomes the half-line

L1 � tpy1, y2q : y1 ¡ 0, y2 � 0u.
We can assume that, in the Lagrangian coordinates, the supersonic solution U� exists in domain D�
defined by (3.31). Shock S is given by y2 � σ̂py1q, y1 ¡ 0, where the function σ̂ differs from the one
in Approach 1 because Lagrangian coordinates are now defined differently. Supersonic region D�

σ̂ and
subsonic region Dσ̂ of the solution are given by (3.32) and (3.33) resp., with the present function σ̂.

Background shock front S0 is now given by y2 � s1y1, y1 ¡ 0, where s1 � ρ�0 u
�
10s̃0.

We prove first existence and estimates of solution in Lagrangian coordinates:

Theorem 3.3. Let pU�
0 , U

�
0 q be a constant transonic solution for wedge angle θw P p0, θdwq. There are

positive constants α, β, C0, and ε, depending only on the background states pU�
0 , U

�
0 q, such that if BW

in (3.61) and U� satisfy

(i) (3.63) for Problem 3.2 (WT)
(ii) (3.65) for Problem 3.2 (ST)

then there exists a transonic shock SL � ty2 � σ̂py1q, y1 ¡ 0u and a subsonic solution U � Upyq
of (3.7)–(3.10) in Dσ̂, satisfying Rankine-Hugoniot conditions (3.27)–(3.30) along SL with U� ex-
pressed in Lagrangian coordinates in D�

σ̂ , and the slip condition w|L1
� b1rot, and there exists a function

U8py2q � pu81 py2q, 0, p�0 , ρ8py2qq, where we denote U8
1 py2q :� pu81 py2q, ρ8py2qq, such that Upyq satisfies

the following estimates:

(i) For Problem 3.2 (WT):

}U1 � U8
1 }p�α;L1q

2,α;p1�β,0q;Dσ̂
� }U2 � U�

20}p�α;Oqp�1�α;L1q
2,α;p1�β,0q;Dσ̂

� }σ̂1 � s1}p�α;0q2,α;p1�βq;R�

� }U8
1 � U�

10}p�α;0q2,α;p1�βq;R� ¤ C0

�
}U� � U�

0 }2,α;p1�β,0q;D�σ̂ � }b1rot}p�α;0q1,α;p1�βq;R�
	
;

(3.67)

(ii) For Problem 3.2 (ST)

}U1 � U8
1 }p�1�α;BWq

2,α;pβ,0q;Dσ̂
� }U2 � U�

20}p�1�α;Oq
2,α;pβ,0q;Dσ̂

� }σ̂1 � s1}p�1�α;0q
2,α;pβq;R�

� }U8
1 � U�

10}p�1�α;0q
2,α;pβq;R� ¤ C0

�
}U� � U�

0 }2,α;pβq;D�σ̂ � }b1rot}p�1�α;0q
2,α;pβq;R�

	
.

(3.68)

The function U8py2q can be understood as asymptotic limit of Upyq as y1 Ñ8.

Now we describe the proof of Theorem 3.3, which is the main part of Approach 2.
Rewrite system (3.7)–(3.10) into the following nondivergence form for U � pu, p, ρqJ:

ApUqUy1 �BpUqUy2 � 0, (3.69)

where

ApUq �

������
� 1
ρu21

0 0 � 1
ρ2u1

1� p
ρu21

0 1
ρu1

� p
ρ2u1

0 1 0 0

u1 u2
γ

pγ�1qρ � γp
pγ�1qρ2

������ , BpUq �

�����
u2
u21

� 1
u1

0 0
pu2
u21

� p
u1

�u2
u1

0

0 0 1 0

0 0 0 0

����� .
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Solving detpλA�Bq � 0 for λ, we obtain four eigenvalues:

λ1 � λ2 � 0, λj � � cρ

c2 � u21

�
cu2 � p�1qju1

a
c2 � q2i

�
for j � 3, 4,

where q �
a
u21 � u22   c in the subsonic region. The corresponding left eigenvectors are

l1 � p0, 0, 0, 1q, l2 � p�pu1, u1, u2,�1q,

l3,4 � pppγp� ρu21q
pγ � 1qρu1 λ3,4 �

γp2u2
pγ � 1qu1 ,�pu1 �

γp

pγ � 1qρu1 qλ3,4 �
γpu2

pγ � 1qu1 ,
γp

γ � 1
� u2λ3,4, λ3,4q.

Then

(i) Multiplying equations (3.69) from the left by l1 leads to the same equation (3.10). This, together
with the Rankine-Hugoniot condition (3.30), implies the Bernoulli law (3.35) in both supersonic
and subsonic domains, and across the shock-front. Therefore, Bpy2q can be computed from the
upstream flow U�. If u1 is a small perturbation of u�10, then u1 ¡ 0. Therefore, we can solve
(3.35) for u1:

u1 �

b
2B � 2γp

pγ�1qρ?
1� w2

with w � u2
u1
. (3.70)

(ii) Multiplying system (3.69) from the left by l2 also gives (3.36).
(iii) Multiplying equations (3.69) from the left by l3 and separating the real and imaginary parts of

the equation lead to the elliptic system:

DRw � eDIp � 0,

DIw � eDRp � 0,
(3.71)

where DR � By1 � λRBy2 , DI � λIBy2 , λR � � c2ρu2
c2�u21

, λI � cρu1
?
c2�q2

c2�u21
, and e �

?
c2�q2
cρu21

.

Therefore, equations (3.7)–(3.10) are decomposed into (3.70)–(3.71).
We solve this problem by iterations. Given U� which is close to U�

0 as defined in Theorem 3.3,
working in Lagrangian coordinates, we solve for U . However, since U8 is not known, we cannot
directly solve for U satisfying (3.67) for Problem 3.2 (WT) or (3.68) for Problem 3.2 (ST). Instead, we
solve for U which is close to U�

0 as in (3.26) for Problem 3.2 (ST) and similar norms with appropriate
growth for Problem 3.2 (WT), but using these norms in Lagrangian coordinates (more precisely, in
pz1, z2q-coordinates defined by (3.74)). Note that these norms are weaker than the ones in (3.67) or
(3.68) resp., in particular they do not determine any limit for U1 � pu1, ρq as |y| Ñ 8 within the
subsonic region. On the other hand, these norms determine that the quantities pw, pq have the limit
p0, p�0 q at infinity within the subsonic region, and this asymptotic condition is sufficient to have the
iteration problem well-defined (in fact, we use only the asymptotic decay of w, then we can prove the
asymptotic decay of p�p�0 ), and obtain existence and uniqueness in the iteration problem. After we find
by iteration (the unique) solution U of the problem stated in Theorem 3.3, we identify U8

1 � pρ8, u81 q,
and show the faster convergence of pρ, u1q to pρ8, u81 q, thus prove (3.67) or (3.68) resp. Note that in
estimates discussed above, U�U�

0 (rather than U itself) lies in weighted spaces (3.21). For this reason,
it is convenient to perform iteration in terms of

δU1 � U � U�
10, δU2 � U � U�

20 and δσ̂ � σ̂ � σ̂0 � σ̂ � s1y1, (3.72)

where U1, U2 are defined by (3.60).
Then we follow the steps below to solve this problem:

1. Introduce a linear boundary value problem for iteration. For a given shock-front σ̂, the
subsonic domain Dσ̂ is fixed, and depends on σ̂. We make the coordinate transformation to transform
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the domain from Dσ̂ to D, where D � Dσ̂0 with σ̂0py2q � s1y1 is the domain corresponding to the
background solution:

D �  
y : 0   y2   s1y1

(
, with BD � L1 Y L2 where

L1 � tpy1, y2q : y1 ¡ 0, y2 � 0u, L2 � tpy1, y2q : y1 ¡ 0, y2 � s1y1u.
(3.73)

This transformation is:

py1, y2q Ñ pz1, z2q :� py1, y2 � δσ̂py1qq, (3.74)

where δσ̂py1q � σ̂py1q � σ̂0py1q. In the z–coordinates, L1 corresponds to BW , and L2 corresponds to
BS. Also, Upyq becomes Uσ̂pzq, depending on σ̂. Then the upstream flow U� involves an unknown
variable explicitly depending on σ̂:

U�
σ̂ pzq � U�pz1, z2 � δσ̂pz1qq, (3.75)

where U� is the given upstream flow in the y–coordinates. Equations (3.71) in z-coordinates are:rDRw � e rDIp � 0,rDIw � e rDRp � 0,
(3.76)

in D. where rDR � Bz1�pλR� δσ̂1qBz2 and rDI � λIBz2 . Since U�
0 is a constant vector and w�0 � 0, then

the same system holds for δp, δw, where we use notation (3.72). Moreover, as we consider iteration

pδU, δwq Ñ pδŨ , δw̃q, we use U � U�
0 � δU to determine the coefficients in (3.76), and δp̃, δw̃ for the

unknown functions. Thus we have rDRδw̃ � e rDIδp̃ � 0,rDIδw̃ � e rDRδp̃ � 0,
(3.77)

in D. We use system (3.77) as a linear system for iterations.
In the z-coordinates, the Rankine-Hugoniot conditions (3.27)–(3.30) keep the same form, except

that σ̂1py1q is replaced by σ̂1pz1q and U� is replaced by U�
σ̂ along line z2 � s1z1. Among the four

Rankine-Hugoniot conditions, (3.30) is used in the Bernoulli law. From condition (3.29), we have

σ̂1pz1q � rps
ru1wspz1, s1z1q, (3.78)

which will be used to update the shock-front later. Now, because of (3.70), we can use Ū � pw, p, ρq as
the unknown variables along z2 � s1z1. Using (3.78) to eliminate σ̂1 in conditions (3.27)–(3.28) gives

G1pU�
σ̂ , Ūq :� rps

� 1

ρu1

�
� rwsru1ws � 0, (3.79)

G2pU�
σ̂ , Ūq :� rps

�
u1 � p

ρu1

�
� rpwsru1ws � 0, (3.80)

on L2. We use conditions (3.79)–(3.80) to define the linear conditions for iteration Ū Ñ r̄U , such that

at a fixed point Ū � r̄U these iteration conditions imply that the original conditions (3.79)–(3.80) hold.
Specifically, we define conditions

∇ŪGipU�
0 , Ū

�
0 q � δ r̄U � ∇ŪGipU�

0 , Ū
�
0 q � δŪ �GipU�

σ̂ , Ūq on L2, (3.81)

which can be written as:

bi1δw̃ � bi2δp̃� bi3δρ̃ � gipU�
σ̂ , Ūq for i � 1, 2 on L2, (3.82)

where pbi1, bi2, bi3q :� ∇ŪGipU�
0 , Ū

�
0 q and gipU�

σ̂ , Ūq :� ∇ŪGipU�
0 , Ū

�
0 q � δŪ �GipU�

σ̂ , Ūq.
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Figure 3.3. The shock polar in the pw, pq–variables

Since there are two conditions in (3.82), i � 1, 2, we can eliminate δρ̃, thus obtain

δw̃ � b1δp̃ � g3 on L2, (3.83)

where

b1 � b12b23 � b22b13
b11b23 � b21b13

, g3 � b23g1 � b13g2
b11b23 � b21b13

(3.84)

with

b11b23 � b21b13 � p�u�20qrp0s
� γp�0
pγ � 1qpρ�0 q2u�10

� p�0
u�10

� 1

pρ�0 q2
� γp�0
pγ � 1qpρ�0 q3pu�10q2

�	 ¡ 0.

Notice that the shock polar is a one-parameter curve determined by the Rankine-Hugoniot conditions.
If p is used as the parameter, by equation (3.83), we obtain that δw � �b1δp � g3pδpq, which shows
that �b1δp is the linear term and g3pδpq is the higher order term. From Fig. 3.3, we know that wppq is
decreasing in p on arc �TH and increasing on �TS. Therefore, it is easy to see that

b1 ¡ 0 corresponds to the state on arc �TH, b1   0 to �TS, and b1 � 0 at the tangent point T . (3.85)

This difference in the sign of b1 is the reason of different rates of decay at infinity and near the origin
in cases (i) and (ii) of Theorems 3.1 and 3.3.

We compute

b13 � �rp0s
� p�0
pρ�0 q2u�10

� γp�0
pγ � 1qpρ�0 q3pu�10q3

	
  0.

Thus condition (3.82) for i � 1 can be rewritten as

δρ̃ � g4 � b2δw̃ � b3δp̃ on L2, (3.86)

where g4 � g1
b13
, b2 � b11

b13
, and b3 � b12

b13
.

We notice that conditions (3.83)–(3.86) are equivalent to conditions (3.82) for i � 1, 2.
Boundary condition on L1 comes from the slip condition (3.15) on BW . Specifically, using (3.61)

and (3.15), we obtain w � b1rot on BW . Then, in z-coordinates, this must hold on L1. Also, for the
background solution, brot � b0 � b0 � 0 by (3.61). Then we prescribe

δw̃ � b1rot on L1. (3.87)
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2. Design the iteration map Q and existence of a fixed point for Q. We perform iteration
in terms of δUk, k � 1, 2 and δσ̂ as defined by (3.72), in z-coordinates defined in (3.74). In fact,
for σ̂, we only need σ̂1 since σ̂p0q � 0, i.e. shock is attached to the tip of wedge. Note also that

δσ̂1 � σ̂1 � s1. We thus denote V � pU1, U2, δσ̂
1q, and perform the following iteration δV Ñ δṼ . For a

given δV , we determine V � δV � V �
0 . Then we find Ṽ by solving the linear system (3.77) in D, with

boundary conditions (3.83) and (3.87), to determine pw̃, p̃q. Then determine u1 from (3.70), and ρ from
(3.36) which holds in z-coordinates without change, and the boundary condition (3.86). Final step is
to use solution pδu1, δρ, δw, δpq and U�

σ̂ defined by (3.75) in the right-hand side of (3.78) to update

the δσ̂1. This defines of the iteration map Q from V to Ṽ , except we discuss below how we solve the
boundary-value problem for (3.77) in D, with boundary conditions (3.83) and (3.87).

As we discussed above, we perform iteration in the spaces from (3.68) for Problem 3.2 (ST) and
similar norms with appropriate growth for Problem 3.2 (WT), expressed in z-coordinates (3.74). We
discuss below the case of Problem 3.2 (WT), another case is similar. For τ ¡ 0, define:

Στ1 � tv : }v}p�α;L1q
2,α;p0,1�βq;D � }vz1}p1�α;L1q

2,α;p1�β,1q;D ¤ τu
Στ2 � tv : }v}p�α;Oqp�1�α;L1q

2,α;p1�β,0q;D ¤ τu, Στ3 � tv : }v}p�α;0q
2,α;p1�βq;R� ¤ τu,

Στ � tpδU1, δU2, δσ̂
1q : δU1 P Στ1 � Στ1 , δU2 P Στ2 � Στ2 , δσ̂1 P Στ3u.

(3.88)

The condition on vz1 in Στ1 is added for technical reasons.

It remains to discuss how we find pδw̃, δp̃q P ΣC0ε
2 � ΣC0ε

2 which solve (3.77) in D, with boundary
conditions (3.83) and (3.87). From system (3.77), we obtain

pδp̃qz1 �
pλR � δσ̂1q

eλI
pδw̃qz1 �

pλR � δσ̂1q2 � λ2I
eλI

pδw̃qz2 , (3.89)

pδp̃qz2 � � 1

eλI
pδw̃qz1 �

pλR � δσ̂1q
eλI

pδw̃qz2 . (3.90)

Now, differentiating and subtracting the equations, we eliminate δp̃, and obtain a second order equation
for δw̃ of the form

2̧

i,j�1

paijpδw̃qzj qzi � 0, (3.91)

where the coefficients are computed explicitly from (3.89)–(3.90). Note that, at the subsonic background
solution (3.59), we obtain λR0 � 0, λI0 ¡ 0, e0 ¡ 0, where the left-hand sides are constants, and also
δσ̂0 � 0. Then, computing the coefficients at the background solution, equation (3.91) becomes

1

λI0
pδw̃qz1z1 � λI0pδw̃qz2z2 � 0,

i.e. the equation is uniformly elliptic. Then for the coefficients computed at pU�
10� δU1, U

�
20� δU2, δσ̂

1q
for pδU1, δU2, δσ̂

1q P ΣC0ε, the equation (3.91) is uniformly elliptic if ε is small. This allows to obtain

the unique solution δw̃ P ΣC0ε
2 of (3.91) in D with boundary conditions (3.83) and (3.87). Note that

the inclusion δw̃ P ΣC0ε
2 involves the asymptotic condition at infinity, and this makes the boundary-

value problem well-defined and allows to prove uniqueness. After δw̃ is determined, we find δp̃ by
z2-integration from (3.90) with the initial condition (3.83), where it can be shown that b1 � 0. Then

we show that δp P ΣC0ε
2 . This completes the definition of the iteration map.

Iteration set for Problem 3.2 (WT) is ΣC0ε. We show that if ε is small, then QpΣC0εq � ΣC0ε, and
obtain a fixed point by the Schauder fixed point theorem, by considering the set ΣC0ε as a compact
subset in the Banach space defined by the same norms as in the definition of Στ , except that α is
replaced by α1 P p0, αq and showing that the map Q is continuous in this norm.
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3. Fixed point: Asymptotic limit in y-coordinates Let pδU1, δU2, δσ̂
1q P ΣC0ε be a fixed point of

the iteration map, and let pU1, U2, σ̂
1q � pU�

10 � δU1, U
�
20 � δU2, δσ̂

1q.
We change from z to y coordinates by inverting (3.74):

pz1, z2q Ñ py1, y2q :� pz1, z2 � δσ̂pz1qq.
Note that since δσ̂1 P ΣC0ε

3 , then both (3.74) and its inverse are close to the identity map in C2,αpDσ̂;R2q
and C2,αpD;R2q resp. Then it follows that, in y-coordinates, pδU1, δU2, δσ̂

1q P Σ̃2C0ε if ε is small, where

Σ̃τ1 � tv : }v}p�α;L1q
2,α;p0,1�βq;Dσ̂

� }vz1}p1�α;L1q
2,α;p1�β,1q;Dσ̂

¤ τu, Σ̃τ2 � tv : }v}p�α;Oqp�1�α;L1q
2,α;p1�β,0q;Dσ̂

¤ τu,
Σ̃τ � tpδU1, δU2, δσ̂

1q : δU1 P Σ̃τ1 � Σ̃τ1 , δU2 P Σ̃τ2 � Σ̃τ2 , δσ̂1 P Στ3u.
(3.92)

In particular, this proves the estimate of second and third terms in the left-hand side of (3.67).

Note that for v P Σ̃τ2 , we have v Ñ 0 as |y| Ñ 8 in Dσ̂, with rate |y|�pβ�1q. But for v P Σ̃τ1 , no
asymptotic limit as |y| Ñ 8 in Dσ̂ is defined.

Then, from (3.59)–(3.60) it follows that U2 � pw, pq Ñ p0, p�0 q as |y| Ñ 8 in D, but for U1 � pu1, ρq
the limit is no determined by the spaces Στ1 , and pu1, ρq does not converge to pu�10, ρ�0 q in general, as
we will see below. Then we determine the limiting profiles pu81 py2q, ρ8py2qq.

To determine ρ8py2q, we note that from (3.7)–(3.10) we obtain (3.36), and thus (3.37). Since function
σ̂py1q is determined, the function Apy2q in (3.37) is determined by the upstream state U�pyq from the
Rankine-Hugoniot conditions (3.27)–(3.30). Then, noting that pÑ p80 , we obtain formally

ρÑ ρ8py2q �
�

p�0
Apy2q


 1
γ

as |y| Ñ 8 in Dσ̂.

Similarly, we use (3.70) to obtain

u1 Ñ u81 py2q �
d
2Bpy2q � 2γp�0

pγ � 1qρ8py2q as |y| Ñ 8 in Dσ̂.

Then, defining U8py2q � pu81 py2q, we can show that estimate of the first and the last terms in the
left-hand side of in (3.67) holds. This completes the argument for case (i) of Theorem 3.3.

Case (ii) is handled similarly. Note that the slower decay at infinity for case (ii), i.e. |y|�β , comes
from elliptic estimates even if we require faster decay at infinity in (3.25). The reason for the difference
in the rates in cases (i) and (ii) is (3.85).

4. Return to x-coordinates
We obtain Theorem 3.2 from Theorem 3.3 by changing coordinates. Recall that when we define the

Lagrangian coordinates for Theorem 3.3, we use the rotated coordinates x in (3.6), see the discussion
in the paragraph before Theorem 3.3.

From estimates in Theorem 3.3, it follows that in the Lagrangian coordinates, |U �U�
0 | ¤ Cε in Dσ̂,

where C depends only on pU�
0 , U

�
0 q. Thus the same is true in x-coordinates in Ω. Then it follows from

(3.5), (3.6) and (3.59) where u�10, ρ
�
0 are positive, that the change of coordinates xÑ y given by (3.6)

is bi-Lipschitz. Then (3.66) follows from (3.68) directly.
Similarly, estimates of the second and third terms in the left-hand side of (3.64) follow from (3.67)

directly. In order to obtain the estimates of the remaining terms in the left-hand side of (3.64), we
need to identify U8px2q.

Note that on the shock S, using (3.6) and the estimate of the third term in the left-hand side of
(3.64), we have that for small ε,

BτSψ � ρu � νS ¥ ρu�0 � νS0 � Cε ¥ 1

2
ρu�0 � νS0 ¡ 0.
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Recall also that ψp0q � 0 by (3.5). Then for each y2 ¡ 0 there exists a unique xinpy2q � pxin1 py2q, xin2 py2qq P
S such that ψpxinpy2qq � y2, and it satisfies

}xin}C2,αpr0,8qq ¤ C and pxinq1 ¥ 1

C
¡ 0 on r0,8q.

From this and (3.5), it follows that for each y2 ¡ 0, we have

ΩX tx : ψpxq � y2u � tpx1, x�2px1; y2qq : x1 ¡ xin1 py2qu,
where x�2p�; y2q is the solution of the initial-value problem for ODE:

Bx1x�2px1; y2q � wpx1, x�2px1; y2qq,
x�2pxin1 py2q; y2q � xin2 py2q,

(3.93)

where w � u2
u1

by (3.60). Since we have obtained the estimate of the second term in the left-hand side

of (3.24), and using (3.59), we have

|Dkwpxq| ¤ C0εp1� |x|q�1�β in Ω, for k � 0, 1, 2. (3.94)

In particular, for each y2 ¥ 0 and k � 0, 1, 2» 8

xin1 py2q
|Dkwpx1, x�2px1; y2qq|dx1 ¤ C0ε

» 8

0
p1� x1q�1�βdx1 ¤ Cε. (3.95)

Applying this with k � 0, we obtain that limx1Ñ8 x�2px1; y2q exists for each y2 ¥ 0; we denote it x82 py2q.
Differentiating (3.93) two times with respect to y2 and using C2 estimate of xin and(3.95), we obtain

}x�2pT ; �q}C2pr0,8qq ¤ C, and from this

x�2pT ; �q Ñ x82 p�q in C1 on compact subsets on r0,8q, and }x82 }C2pr0,8qq ¤ C. (3.96)

x�2px1; �q Ñ x82 p�q in C1 on compact subsets on r0,8q as x1 Ñ8,
with }x82 }C2pr0,8qq ¤ C.

(3.97)

Also, by
Also, by a similar argument, using C2,α regularity of xin and estimate w in the second term in (3.64),

we get x82 P C2,αpr0,8qq.
Furthermore, we note that for the background solution, using (3.59), the potentials ψ�0 of U�

0 , ψ�0
of U�

0 , and ψ0 of the transonic shock solution pU�
0 , U

�
0 q in tx1 ¡ 0, x2 ¡ 0u are:

ψ�0 pxq � ρ�0 u
�
10px1 � x2 tan θwq, ψ�0 pxq � ρ�0 u

�
10x1, ψ0pxq �

"
ψ�0 pxq, if x2   s̃x1
ψ�0 pxq, if x2 ¡ s̃x1,

where ψ0 is Lipschitz. Then, estimating ψ � ψ�0 in Ω� using (3.63), where the polynomial decay is
of degree �p1� βq and so we can use calculations similar to (3.95), and then using Rankine-Hugoniot
condition on S, we obtain

|pxinq1 � pxin0 q1| ¤ Cε on r0,8q, where xin0 py2q �
y2

ρ�0 u
�
10

p1, s̃0q.

Here xin0 is the function xin of the background solution.
Denote by x�20px1; y2q the function x�2px1; y2q of the background solution. We have x�20px1; y2q � y2

ρ�0 u
�
10

on x1 ¡ y2
ρ�0 u

�
10s̃0

for each y2 ¥ 0. Thus x�20px1; y2q does not depend on x1, so x
�
20px1; y2q � x�20py2q.

Then, denoting

gpx1; y2q � x�2px1; y2q � x�20py2q,
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we obtain that g satisfies

Bx1gpx1; y2q � wpx1, x�2px1; y2qq,
|gpxin1 py2q; y2q| ¤ Cε.

(3.98)

Then, from (3.95) and (3.97), we get |px82 q1�px820q1| ¤ Cε, where px820q1py2q � px�20q1py2q � 1
ρ�0 u

�
10

. Thus

we obtain

px82 q1 ¥
1

2ρ�0 u
�
10

on r0,8q
if ε is small. In particular, noting that x82 p0q � 0 since BW is a streamline corresponding to ψ � 0 and
limx1Ñ8 brotpx1q � 0 by (3.63), we obtain x82 pr0,8qq � r0,8q. Then there exists the inverse to x82 p�q
function y�2 : r0,8q Ñ r0,8q and y�2 P C2,αpr0,8q with y�2 p0q � 0 and py�2 q1 ¥ 1

C ¡ 0.
Then we show that defining U8px2q � U8py�2 px2qq, we obtain (3.64) from (3.67).

For more details, see Chen-Chen-Feldman [27].

Remarks. ??

1. The nozzle problem (infinite nozzle, uniform nozzle) for the 2-D full Euler equations; [25] (2007)

2. Other results: Wedges, Nozzles,... Some further works on transonic shocks in nozzles include the
study of shocks in de Laval nozzles [79], and uniqueness of transonic shocks [63].

3. Euler-Poisson: Bae, Park, ....

4. Two-Dimensional Transonic Shocks and Free Boundary Problems for the
Self-Similar Euler Equations for Potential Flow

In §2–§3, we have discussed free boundary problems for steady transonic shock solutions of the
compressible Euler equations. Now we discuss free boundary problems for time-dependent solutions.

General time-dependent solutions of the compressible Euler equations are of extremely complicated
structure, so that very few results are currently available. On the other hand, many fundamental
physical phenomena, including shock reflection/diffraction, are determined by time-dependent solutions
of self-similar structure. In this section, we focus on this case. More precisely, we describe transonic
shocks and free boundary problems for self-similar shock reflection/diffraction for the Euler equations
for potential flow.

The compressible potential flow is governed by the conservation law of mass and the Bernoulli law
for R� :� p0,8q and x P R2:

Btρ�∇x � pρ∇xΦq � 0, (4.1)

BtΦ� 1

2
|∇xΦ|2 � hpρq � B (4.2)

for density ρ and velocity potential Φ, where B is the Bernoulli constant, and hpρq is given by

hpρq � ργ�1 � 1

γ � 1
for the adiabatic exponent γ ¡ 1. (4.3)

By (4.2)–(4.3), ρ can be expressed as

ρpBtΦ,∇xΦq � h�1pB � BtΦ� 1

2
|∇xΦ|2q. (4.4)

Then system (4.1)–(4.2) can be rewritten as the following second-order nonlinear wave equation:

BtρpBtΦ,∇xΦq �∇x �
�
ρpBtΦ,∇xΦq∇xΦ

� � 0 (4.5)
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with ρpBtΦ,∇xΦq determined by (4.4).
Note that system (4.1)–(4.2) is invariant under the self-similar scaling:

pt,xq Ñ pαt, αxq, pρ,Φq Ñ pρ, Φ
α
q for α � 0, (4.6)

and thus it admits self-similar solutions in the form of

ρpt,xq � ρpξq, Φpt,xq � tϕpξq for ξ � x

t
. (4.7)

Then the pseudo-potential function

φpξq � ϕpξq � 1

2
|ξ|2

and the density function ρpξq satisfy the following Euler equations for self-similar solutions:

divpρDφq � 2ρ � 0,
ργ�1 � 1

γ � 1
� �1

2
|Dφ|2 � φ

� � B, (4.8)

where the divergence div and gradient D are with respect to ξ P R2. From this, we obtain the following
equation for the pseudo-potential function φpξq:

divpρp|Dφ|2, φqDφq � 2ρp|Dφ|2, φq � 0 (4.9)

for

ρp|Dφ|2, φq � �
B0 � θp|Dφ|2 � 2φq� 1

γ�1 , (4.10)

where B0 � pγ � 1qB � 1 and θ � γ�1
2 . Equation (4.9) written in the non-divergence form is

pc2 � φ2
ξ1qφξ1ξ1 � 2φξ1φξ2φξ1ξ2 � pc2 � φ2

ξ2qφξ2ξ2 � 2c2 � |Dφ|2 � 0, (4.11)

where the sonic speed c � cp|Dφ|2, φq is determined by

c2p|Dφ|2, φq � ργ�1p|Dφ|2, φq � B0 � pγ � 1q�1
2
|Dφ|2 � φ

�
. (4.12)

Another form of (4.11), which uses both the potential ϕ and the pseudo-potential φ is:

pc2 � φ2
ξ1qϕξ1ξ1 � 2φξ1φξ2ϕξ1ξ2 � pc2 � φ2

ξ2qϕξ2ξ2 � 0. (4.13)

Equation (4.9) is a nonlinear PDE of mixed elliptic-hyperbolic type. It is elliptic at ξ if and only if

|Dφ|   cp|Dφ|2, φq at ξ, (4.14)

and is hyperbolic if the opposite inequality holds. This can be seen more clearly from the rotational
invariance of (4.11), by fixing ξ and choosing coordinates pξ1, ξ2q so that ξ1 is along the direction of
Dφpξq.

Moreover, from (4.11)–(4.12), equation (4.9) satisfies the Galilean invariance property: If φpξq is a
solution, then its shift φpξ�ξ0q for any constant vector ξ0 is also a solution. Furthermore, φpξq�const.
is a solution of (4.9) with adjusted constant B correspondingly in (4.10), (4.12).

One class of solutions of (4.9) is that of constant states that are the solutions with constant velocities
v � pu, vq. This implies that the pseudo-potential of a constant state satisfies Dφ � v � ξ so that

φpξq � �1

2
|ξ|2 � v � ξ � C, (4.15)

where C is a constant. For such φ, the expressions in (4.10), (4.12) imply that the density and sonic
speed are positive constants ρ and c, i.e., independent of ξ. Then, from (2.4) and (4.15), the ellipticity
condition for the constant state is

|ξ � v|   c.
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Thus, for a constant state v, equation (4.9) is elliptic inside the sonic circle, with center v and radius
c, and hyperbolic outside this circle.

We also note that, if density ρ is a constant, then the solution is a constant state; that is, the
corresponding pseudo-potential φ is of form (4.15).

Since the problem involves transonic shocks, we have to consider weak solutions of equation (4.9),
which admits shocks. As in [35], it is defined in the distributional sense.

Definition 4.1. A function φ PW 1,1
loc pΩq is called a weak solution of (4.9) if

(i) ργ�1
0 � pγ � 1qpφ� 1

2 |Dφ|2q ¥ 0 a.e. in Ω;

(ii) pρp|Dφ|2, φq, ρp|Dφ|2, φq|Dφ|q P pL1
locpΩqq2;

(iii) For every ζ P C8
c pΩq,»

Ω

�
ρp|Dφ|2, φqDφ �Dζ � 2ρp|Dφ|2, φqζ�dξ � 0. (4.16)

A shock is a curve across which Dφ is discontinuous. If Ω� and Ω�p:� ΩzΩ�q are two nonempty
open subsets of a domain Ω � R2, and S :� BΩ� X Ω is a C1-curve where Dφ has a jump, then
φ PW 1,1

loc XC1pΩ�Y Sq XC2pΩ�q is a global weak solution of (4.9) in Ω if and only if φ is in W 1,8
loc pΩq

and satisfies equation (4.9) and the Rankine-Hugoniot condition on S:
ρp|Dφ|2, φqDφ � ν|Ω�XS � ρp|Dφ|2, φqDφ � ν|Ω�XS . (4.17)

Note that the condition, φ PW 1,8
loc pΩq, requires that

φΩ�XS � φΩ�XS , (4.18)

which is consistent with curlp∇φq � 0 in the distributional sense. The front, S, is called a shock if
density ρ increases in the pseudo-flow direction across S, i.e., in the direction of Dφ|Ω�XS . A piecewise
smooth solution whose discontinuities are all shocks is called an entropy solution.

4.1. von Neumann’s Problem for Shock Reflection-Diffraction. We now describe von Neu-
mann’s problem proposed for mathematical analysis first in [118–120]. When a vertical planar shock
perpendicular to the flow direction x1 and separating two uniform states (0) and (1), with constant
velocities pu0, v0q � p0, 0q and pu1, v1q � pu1, 0q and constant densities ρ1 ¡ ρ0 (state (0) is ahead or to
the right of the shock, and state (1) is behind the shock), hits a symmetric wedge:

W :� tpx1, x2q : |x2|   x1 tan θw, x1 ¡ 0u
head on at time t � 0, a reflection-diffraction process takes place when t ¡ 0. Then a fundamental ques-
tion is what types of wave patterns of reflection-diffraction configurations may be formed around the
wedge. The complexity of reflection-diffraction configurations was first reported by Ernst Mach [93]
in 1878, who first observed two patterns of reflection-diffraction configurations: Regular reflection
(two-shock configuration; see Figs. 4.1–4.2) and Mach reflection (three-shock/one-vortex-sheet con-
figuration); also see [9, 37, 56, 116]. The issues remained dormant until the 1940s when John von
Neumann [118–120], as well as other mathematical/experimental scientists (cf. [9, 37, 56, 66, 116] and
the references cited therein) began extensive research into all aspects of shock reflection-diffraction
phenomena, due to its importance in applications. It has been found that the situations are much
more complicated than what Mach originally observed: The Mach reflection can be further divided
into more specific sub-patterns, and various other patterns of shock reflection-diffraction configurations
may occur such as the double Mach reflection, the von Neumann reflection, and the Guderley reflection;
see [9, 37,56,66,116] and the references cited therein. Then the fundamental scientific issues include:

(i) Structure of the shock reflection-diffraction configurations;
(ii) Transition criteria between the different patterns of shock reflection-diffraction configurations;



38 GUI-QIANG G. CHEN AND MIKHAIL FELDMAN

(iii) Dependence of the patterns upon the physical parameters such as the wedge angle θw, the
incident-shock-wave Mach number, and the adiabatic exponent γ ¡ 1.

In particular, several transition criteria between the different patterns of shock reflection-diffraction
configurations have been proposed, including the sonic conjecture and the detachment conjecture by
von Neumann [118–120].

Careful asymptotic analysis has been made for various reflection-diffraction configurations in Lighthill
[86, 87], Keller-Blank [73], Hunter-Keller [71], Harabetian [70], Morawetz [99], and the references cited
therein; also see Glimm-Majda [66]. Large or small scale numerical simulations have been also made; cf.
[9,66,122] and the references cited therein. However, most of the fundamental issues for shock reflection-
diffraction phenomena have not been understood, especially the global structure and transition between
the different patterns of shock reflection-diffraction configurations. This is partially because physical
and numerical experiments are hampered by many difficulties and have not yielded clear transition
criteria between the different patterns. In particular, numerical dissipation or physical viscosity smear
the shocks and cause boundary layers that interact with the reflection-diffraction patterns and can
cause spurious Mach steams; cf. [122]. Furthermore, some different patterns occur when the wedge
angles are only fractions of a degree apart, a resolution even by sophisticated experiments has not
been able to reach (cf. [9, 92]). For this reason, it is almost impossible to distinguish experimentally
between the sonic and detachment criteria, as pointed out in [9]. In this regard, the necessary approach
to understand fully the shock reflection-diffraction phenomena, especially the transition criteria, is
via rigorous mathematical analysis. To achieve this, it is essential to formulate the shock reflection-
diffraction problem as a free boundary problem and establish the global existence, regularity, and
structural stability of its solution.

Mathematically, the shock reflection-diffraction problem is a two-dimensional lateral Riemann prob-
lem in domain R2zW .

Problem 4.2 (Two-Dimensional Lateral Riemann Problem). Piecewise constant initial data, consisting
of state p0q on tx1 ¡ 0uzW̄ and state p1q on tx1   0u connected by a shock at x1 � 0, are prescribed
at t � 0. Seek a solution of the Euler system (4.1)–(4.2) for t ¥ 0 subject to these initial data and the
boundary condition ∇Φ � ν � 0 on BW .

In order to define the notion of weak solutions of Problem 4.2, it is noted that the boundary condition
can be written as ρ∇Φ � ν � 0 on BW , which is spatial conormal to the equation (4.5). Then we have

Definition 4.3 (Weak Solutions of Problem 4.2). A function Φ PW 1,1
loc pR��pR2zW qq is called a weak

solution of Problem 4.2 if Φ satisfies the following properties:

(i) B0 �
�BtΦ� 1

2 |∇xΦ|2
� ¥ hp0�q a.e. in R� � pR2zW q;

(ii) For ρpBtΦ,∇xΦq determined by (4.4),

pρpBtΦ, |∇xΦ|2q, ρpBtΦ, |∇xΦ|2q|∇xΦ|q P pL1
locpR� � R2zW qq2;

(iii) For every ζ P C8
c pR� � R2q,» 8

0

»
R2zW

�
ρpBtΦ, |∇xΦ|2qBtζ � ρpBtΦ, |∇xΦ|2q∇Φ �∇ζ

	
dxdt�

»
R2zW

ρp0,xqζp0,xqdx � 0,

where

ρ|t�0 �
#
ρ0 for |x2| ¡ x1 tan θw, x1 ¡ 0,

ρ1 for x1   0.

Remark 4.4. Since ζ does not need to be zero on BΛ, the integral identity in Definition 4.3 is a weak
form of equation (4.5) and the boundary condition ρ∇Φ � ν � 0 on BW .
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Notice that Problem 4.2 is invariant under scaling (4.6), so it admits self-similar solutions determined
by equation (4.9) with (4.10), along with the appropriate boundary conditions, through (4.7). We now
show how such solutions in self-similar coordinates ξ � pξ1, ξ2q � x

t can be constructed.
First, by the symmetry of the problem with respect to the ξ1–axis, we consider only the upper half-

plane tξ2 ¡ 0u and prescribe the boundary condition: φν � 0 on the symmetry line tξ2 � 0u. Note
that state (1) satisfies this condition. Then Problem 4.2 is reformulated as a boundary value problem
in unbounded domain

Λ :� R2
�ztξ : |ξ2| ¤ ξ1 tan θw, ξ1 ¡ 0u

in the self-similar coordinates ξ � pξ1, ξ2q, where R2� � R2 X tξ2 ¡ 0u. The incident shock in the
self-similar coordinates is the half-line S0 � tξ � ξ01u X Λ, where

ξ01 � ρ1

d
2pc21 � c20q

pγ � 1qpρ21 � ρ20q
� ρ1u1
ρ1 � ρ0

, (4.19)

which is determined by the Rankine-Hugoniot conditions between states (0) and (1) on S0. Now
Problem 4.2 for self-similar solutions is:

Problem 4.5 (Boundary Value Problem). Seek a solution φ of equation (4.9)–(4.10) in the self-similar
domain Λ with the slip boundary condition Dφ �ν|BΛ � 0 on the wedge boundary BΛ and the asymptotic
boundary condition at infinity:

φÑ φ̄ �
#
φ0 for ξ1 ¡ ξ01 , ξ2 ¡ ξ1 tan θw,

φ1 for ξ1   ξ01 , ξ2 ¡ 0,
when |ξ| Ñ 8,

where φ0 � �1
2ξ|2 and φ1 � �1

2 |ξ|2 � u1pξ1 � ξ01q.
A weak solution of Problem 4.5 is defined by taking Ω � Λ in Definition 4.1 and using ζ P C8

c pR2q in
Definition 4.1(iii) to take into account the boundary condition, which can be written in the conormal
form ρDφ � ν � 0 on BΛ; see Remark 4.4.

Figure 4.1. Supersonic regular shock
reflection-diffraction configuration

Figure 4.2. Subsonic regular shock
reflection-diffraction configuration

If a solution has one of the regular shock reflection-diffraction configurations as shown in Figs. 4.1–
4.2, and if its pseudo-potential φ is smooth in the subregion D between the wedge and the reflected
shock, then it should satisfy both the slip boundary condition on the wedge and the Rankine-Hugoniot
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conditions with state p1q across the flat shock S1 � tφ1 � φ2u, which passes through point P0 where
the incident shock meets the wedge boundary. We define the uniform state (2) with pseudo-potential
φ2pξq such that

φ2pP0q � φpP0q, Dφ2pP0q � lim
PÑP0, PPD

DφpP q.

Then the constant density ρ2 of state (2) is equal to ρp|Dφ|2, φqpP0q defined by (4.9):

ρ2 � ρp|Dφ|2, φqpP0q.
From the properties of φ discussed above, it follows that Dφ2 � ν � 0 on the wedge boundary and the
Rankine-Hugoniot conditions (4.17)–(4.18) hold on the flat shock S1 � tφ1 � φ2u between states (1)
and (2), which passes through P0. In particular, φ2 satisfies the following three conditions at P0:

Dφ2 � νw � 0, φ2 � φ1, ρp|Dφ2|2, φ2qDφ2 � νS1 � ρ1Dφ1 � νS1 ,

for νS1 �
Dpφ1 � φ2q
|Dpφ1 � φ2q| ,

(4.20)

where νw is the outward normal to the wedge boundary.

Solution φ, and correspondingly state (2), can be either supersonic or subsonic at P0. This de-
termines the supersonic or subsonic type of regular shock reflection-diffraction configurations. Regular
reflection solution in the supersonic region is expected to consist of the constant states separated by
straight shocks, in some cases this is proved, cf. [106, Theorem 4.1]. Then, when state (2) is supersonic
at P0, the constant state (2), extended up to arc P1P4 of the sonic circle of state (2) between the wall
and the straight shock P0P1 � S1 separating it from state (1), as shown in Fig. 4.1, is expected to
be a part of the regular reflection configuration. The supersonic regular shock reflection-diffraction
configuration on Fig. 4.1 consists of three uniform states (0), (1), (2), and a non-uniform state in
domain Ω � P1P2P3P4, where the equation (4.9) is elliptic. The reflected shock P0P1P2 has a straight
part P0P1. The elliptic domain Ω is separated from the hyperbolic region P0P1P4 of state (2) by the
sonic arc P1P4 which lies on the sonic circle of state (2), and the ellipticity in Ω degenerates on the
sonic arc P1P4. The subsonic regular shock reflection-diffraction configuration as shown in Fig. 4.2
consists of two uniform states (0) and (1), and a non-uniform state in domain Ω � P0P2P3, where the
equation is elliptic, and φ|ΩpP0q � φ2pP0q and Dpφ|ΩqpP0q � Dφ2pP0q.

For the supersonic regular shock reflection-diffraction configurations in Fig. 4.1, we use Γsonic, Γshock,
Γwedge, and Γsym for the sonic arc P1P4, curved part of the reflected shock P1P2, wedge boundary P3P4,
and symmetry line segment P2P3, respectively.

For the subsonic regular shock reflection-diffraction configurations in Fig. 4.2, Γshock, Γwedge, and
Γsym denote P0P2, P0P3, and P2P3, respectively. We unify the notations with the supersonic reflection
case by introducing points P1 and P4 for the subsonic reflection case as

P1 :� P0, P4 :� P0, Γsonic :� tP0u. (4.21)

The corresponding solution for θw � π
2 is called normal reflection. In this case, the incident shock

normally reflects from the flat wall, see Fig. 4.3. The reflected shock is also a plane tξ � ξ̄1u, where
ξ̄1   0.

From the discussion above, it follows that a necessary condition for the existence of a regular reflection
solution is the existence of the uniform state (2) with pseudo-potential φ2 determined by the boundary
condition Dφ2 � ν � 0 on the wedge and the Rankine-Hugoniot conditions (4.17)–(4.18) across the flat
shock S1 � tφ1 � φ2u separating it from state (1), and satisfying the entropy conditions ρ2 ¡ ρ1.
These conditions lead to the system of algebraic equations (4.20) for the constant velocity pu2, v2q and
density ρ2 of state (2). System (4.20) has solutions for some but not all of the wedge angles. More
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Figure 4.3. Normal reflection configuration

specifically, for any fixed densities 0   ρ0   ρ1 of states (0) and (1), there exist a sonic angle θsw and a
detachment angle θdw satisfying

0   θdw   θsw  
π

2

such that the algebraic system (4.20) has two solutions for each θw P pθdw, π2 q, which become equal when

θw � θdw. Thus, for each θw P pθdw, π2 q, there exist two states (2), called weak and strong, with densities

ρweak2   ρstrong2 . The weak state (2) is supersonic at the reflection point P0pθwq for θw P pθsw, π2 q, sonic
for θw � θsw, and subsonic for θw P pθdw, θ̂swq for some θ̂sw P pθdw, θsws. The strong state (2) is subsonic at
P0pθwq for all θw P pθdw, π2 q.

There had been a long debate to determine which of the two states (2) for θw P pθdw, π2 q, weak or
strong, is physical for the local theory; see [9,37,56] and the references cited therein. It was conjectured
that the strong shock reflection-diffraction configuration would be non-physical; indeed, it is shown as
in Chen-Feldman [35, 37] that the weak shock reflection-diffraction configuration tends to the unique
normal reflection in Fig. 4.3, but the strong reflection-diffraction configuration does not, when the
wedge angle θw tends to π

2 . The entropy condition and the definition of weak and strong states (2)

imply that 0   ρ1   ρweak2   ρstrong2 , which shows that the strength of the corresponding reflected shock
near P0 in the weak shock reflection-diffraction configuration is relatively weak, compared to the other
shock given by the strong state (2).

If the weak state (2) is supersonic, the propagation speeds of the solution are finite, and state (2)
is completely determined by the local information: state (1), state (0), and the location of point P0.
That is, any information from the reflection-diffraction region, especially the disturbance at corner P3,
cannot travel towards the reflection point P0. However, if it is subsonic, the information can reach P0

and interact with it, potentially altering a different reflection-diffraction configuration. This argument
motivated the following conjecture by von Neumann in [118,119]:

The Sonic Conjecture: There exists a supersonic regular shock reflection-diffraction configuration
when θw P pθsw, π2 q for θsw ¡ θdw. That is, the supersonicity of the weak state (2) implies the existence of
a supersonic regular reflection solution, as shown in Fig. 4.1.

Another conjecture is that global regular shock reflection-diffraction configuration is possible when-
ever the local regular reflection at the reflection point is possible:

The von Neumanm Detachment Conjecture: There exists a regular shock reflection-diffraction
configuration for any wedge angle θw P pθdw, π2 q. That is, the existence of state (2) implies the existence
of a regular reflection solution, as shown in Figs. 4.1–4.2.
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It is clear that the supersonic/subsonic regular shock reflection-diffraction configurations are not
possible without a local two-shock configuration at the reflection point on the wedge, so the detach-
ment conjecture is the weakest possible criterion for the existence of supersonic/subsonic regular shock
reflection-diffraction configurations.

We now show how the solutions of regular shock reflection-diffraction configurations can be con-
structed to solve the von Neumann’s conjectures. Note that the weak state (2) is obtained from the
algebraic conditions described above, which determines point P0, line S1, and the sonic arc P1P4 in
the case when the weak state (2) is supersonic at P0. Thus, the unknowns are domain Ω (or equiv-
alently, the curved part of the reflected shock Γshock) and the pseudo-potential φ in Ω. Then, from
(4.17)–(4.18), in order to construct a solution of Problem 4.5 of the supersonic or subsonic regular
shock reflection-diffraction configuration, it suffices to solve the following problem:

Problem 4.6 (Free Boundary Problem). For θw P pθdw, π2 q, find a free boundary pcurved reflected shockq
Γshock � ΛX tξ1   ξ1P1u (Γshock � P1P2 on Fig. 4.1 and Γshock � P0P2 on Fig. 4.2q and a function φ
defined in region Ω as shown in Figs. 4.1–4.2 such that

(i) Equation (4.9) is satisfied in Ω, and the equation is strictly elliptic for φ in ΩzΓsonic,
(ii) φ � φ1 and ρDφ � νs � Dφ1 � νs on the free boundary Γshock,
(iii) φ � φ2 and Dφ � Dφ2 on P1P4 in the supersonic case as shown in Fig. 4.1 and at P0 in the

subsonic case as shown in Fig. 4.1,
(iv) Dφ � νw � 0 on Γwedge, and Dφ � νsym � 0 on Γsym,

where νs, νw, and νsym are the interior unit normals to Ω on Γshock, Γwedge, and Γsym, respectively.

Indeed, if φ is a solution of Problem 4.6, define its extension from Ω to Λ by setting:

φ �

$''&''%
φ0 for ξ1 ¡ ξ01 and ξ2 ¡ ξ1 tan θw,

φ1 for ξ1   ξ01 and above curve P0P1P2,

φ2 in region P0P1P4,

(4.22)

where we have used the notational convention (4.21) for the subsonic reflection case, in which region
P0P1P4 is one point and curve P0P1P2 is P0P2; see Figs. 4.1 and 4.2. Also, ξ01 used in (4.22) is the
location of the incident shock (cf. (4.19)), and the extension by (4.22) is well-defined because of the
requirement that Γshock � ΛX tξ1   ξ1P1u in Problem 4.6.

Note that the conditions in Problem 4.6(ii) are the Rankine-Hugoniot conditions (4.17)–(4.18) on
Γshock between φ|Ω and φ1. Since Γshock is a free boundary and equation (4.9) is strictly elliptic for

φ in ΩzΓsonic, then two conditions — the Dirichlet and oblique derivative conditions — on Γshock are
consistent with one-phase free boundary problems for elliptic equations of second order (cf. [1, 3]).

In the supersonic case, the conditions in Problem 4.6(iii) are the Rankine-Hugoniot conditions on
Γsonic between φ|Ω and φ2. Indeed, since state (2) is sonic on Γsonic, then it follows from (4.17)–(4.18)
that no gradient jump occurs on Γsonic.

Then, if φ is a solution of Problem 4.6, its extension by (4.22) is a weak solution of Problem 4.5.
From now on, we consider a solution of Problem 4.6 to be a function defined in Λ by extension via
(4.22).

Since Γsonic is not a free boundary (its location is fixed), it is not possible in general to prescribe two
conditions given in Problem 4.6(iii) on Γsonic for an elliptic equation of second order. In the iteration
problem, we prescribe the condition: φ � φ2 on Γsonic, and then prove that Dφ � Dφ2 on Γsonic by
using the elliptic degeneracy on Γsonic, as we describe below.

We observe that the key obstacle to the existence of regular shock reflection-diffraction configurations
as conjectured by von Neumann [118, 119] is an additional possibility that, for some wedge angle
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θaw P pθdw, π2 q, shock P0P2 may attach to the wedge-vertex P3, as observed by experimental results
(cf. [116, Fig. 238]). To describe the conditions of such an attachment, we note that

ρ1 ¡ ρ0, u1 � pρ1 � ρ0q
d

2pργ�1
1 � ργ�1

0 q
ρ21 � ρ20

, c1 � ρ
γ�1
2

1 .

Then, for each ρ0, there exists ρc ¡ ρ0 such that

u1 ¤ c1 if ρ1 P pρ0, ρcs; u1 ¡ c1 if ρ1 P pρc,8q.
If u1 ¤ c1, we can rule out the solution with a shock attached to the wedge vertex. This is based on

the fact that, if u1 ¤ c1, then the wedge vertex P3 � p0, 0q lies within the sonic circle Bc1ppu1, 0qq of
state (1), and Γshock does not intersect Bc1ppu1, 0qq, as we show below.

If u1 ¡ c1, there would be a possibility that the reflected shock could be attached to the wedge vertex
as the experiments show pe.g., [116, Fig. 238]q.

Thus, in [35,37], we have obtained the following results:

Theorem 4.1. There are two cases:

(i) If ρ0 and ρ1 are such that u1 ¤ c1, then the supersonic/subsonic regular reflection solution exists
for each wedge angle θw P pθdw, π2 q. That is, for each θw P pθdw, π2 q, there exists a solution φ of
Problem 4.6 such that

Φpt,xq � t φpx
t
q � |x|2

2t
for

x

t
P Λ, t ¡ 0

sssssss

Φpt,xq � t φpx
t
q � |x|2

2t
for

x

t
P Λ, t ¡ 0

with

ρpt,xq �
�
ργ�1
0 � pγ � 1q�Φt � 1

2
|∇xΦ|2

�	 1
γ�1

is a global weak solution of Problem 4.2 in the sense of Definition 4.3 satisfying the entropy
condition; that is, pΦ, ρqpt,xq is an entropy solution.

(ii) If ρ0 and ρ1 are so that u1 ¡ c1, then there exists θaw P rθdw, π2 q such that the regular reflection
solution exists for each wedge angle θw P pθaw, π2 q, and the solution is of self-similar structure

described in (i) above. Moreover, if θaw ¡ θdw, then, for the wedge angle θw � θaw, there exists an
attached solution, i.e., φ is a solution of Problem 4.6 with P2 � P3.

The type of regular shock reflection-diffraction configurations psupersonic as in Fig. 4.1 or subsonic as
in Fig. 4.2q is determined by the type of state (2) at P0.

(a) For the supersonic and sonic reflection case, the reflected shock P0P2 is C2,α–smooth and its curved
part P1P2 is C8 away from P1. The solution satisfies φ P C1,αpΩq X C8pΩq, and φ is C1,1 across
the sonic arc which is optimal; that is, φ is not C2 across sonic arc.

(b) For the subsonic reflection case pFig. 4.2q, the reflected shock P0P2 and the solution in Ω is C1,α

near P0 and P3, and C
8 away from tP0, P3u.

Moreover, the regular reflection solution tends to the unique normal reflection pas in Fig. 4.3) when
the wedge angle θw tends to π

2 . In addition, for both supersonic and subsonic reflection cases,

φ1 ¡ φ ¡ φ2 in Ω. (4.23)

Furthermore, φ is an admissible solution in the sense of Definition 4.10 below, so that φ satisfies further
properties listed in Definition 4.10.
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Theorem 4.1 is proved by solving Problem 4.6. The first results on the existence of global solutions
of the free boundary problem (Problem 4.6) were obtained for the wedge angles sufficiently close to π

2
in Chen-Feldman [35]. Later, in Chen-Feldman [37], these results were extended up to the detachment
angle as stated in Theorem 4.1. For this extension, the techniques developed in [35], notably the
estimates near the sonic arc, were the starting point.

Case I: The Wedge Angles close to π
2 . Let us first discuss the techniques in [35], where we

employ the approach of Chen-Feldman [31] to develop an iteration scheme for constructing a global
solution of Problem 4.6, when the wedge angle is close to π

2 . For this case, the solutions are of the
supersonic regular shock reflection-diffraction configuration as in Fig. 4.1. The general procedure is
similar to the one described in §2.2, which can be presented in the following four steps:

1. Fix θw sufficiently close to π
2 so that various constants in the argument can be controlled. The

iteration set consists of functions defined on a region D, where D contains all possible Ω for the fixed θw.
Specifically, an important property of the regular shock reflection-diffraction configurations is (4.23),
which implies that Ω � tφ2   φ1u; that is, Ω lies “below” line S1 passing through P0 and P1 on Fig.
4.1. Note that, when θw close to π

2 , this line is close to the vertical reflected shock of normal reflection
on Fig. 4.3. Then D is defined as a region bounded by S1, Γsonic � P1P4, Γwedge � P3P4, and the
symmetry line ξ � 0. The iteration set is a set of functions φ on D, defined by φ ¥ φ2 on D and the
bound of norm of φ � φ2 on D in the scaled and weighted C2,α space defined in (4.38) below. Such
functions satisfy

}φ� φ2}C1,αpDq ¤ Cpπ
2
� θwq,

which is small when π
2 � θw ! 1, and

}φ� φ2}C1,1pDXNεpΓsonicqq ¤ C1.

However, }φ � φ2}C1,1pDXNεpΓsonicqq is not small even if π
2 � θw is small; the reasons for that will be

discussed below.
Given a function φ̂ from the iteration set, we define domain Ωpφ̂q :� tφ̂   φ1u so that the iteration

free boundary is Γshockpφ̂q � BΩpφ̂qXD. This is similar to (2.40), and the corresponding non-degeneracy
similar to (2.39) in the present case is: Bξ1pφ1 � φ2 � ϕq ¥ u1{2 in D if }ϕ}C1pDq and

π
2 � θw are small.

Then we define the iteration equation by using form (4.13) of equation (4.9), by making an elliptic
truncation (which is somewhat different from Step 1 in §2.2) and substituting φ̂ in some terms of the
coefficients of (4.13). The iteration boundary condition on Γshockpφ̂q is an oblique derivative condition
obtained by combining two conditions in Problem 4.6(ii) and making some truncations. On Γsonic, we
prescribe φ � φ2, i.e., one of two conditions in Problem 4.6(iii). On Γwedge and Γsympφ̂q, we prescribe
the conditions given in Problem 4.6(iv). The iteration map φ̂ Ñ φ is defined by solving the iteration
problem to obtain φ and then extending φ from Ωpφ̂q to D.

The fundamental differences between the iteration procedure in the shock reflection-diffraction prob-
lem and the previous procedures on transonic shocks in the steady case in §2–§3 (such as [31,32,34,123]
and further works) include:

(i) The procedures on steady transonic shocks in §2–§3 are for the perturbation case. In particular,
the ellipticity of the iteration equation and the removal of the elliptic cutoff are achieved by making
the iteration set sufficiently close to the background solution in C1 or a stronger norm. For the
regular reflection problem, this cannot be done because of elliptic degeneracy near the sonic arc.

(ii) Only one condition on Γsonic is prescribed; however, both φ � φ2 and Dφ � Dφ2 on Γsonic are
required to be matched to obtain a global weak solution. This is resolved by using the elliptic
degeneracy on Γsonic.
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2. In order to see the elliptic degeneracy on Γsonic more explicitly, we fix the wedge angle θw and the

corresponding pseudo-potential φ2 � φ
pθwq
2 of the weak state (2), and rewrite equation (4.11) in terms

of the function:

ψ � φ� φ2

in the following coordinates flattening Γsonic:

x � c2 � r, y � θ � θw,

where pr, θq are the polar coordinates centered at center O2 � pu2, v2q of the sonic circle of state (2).
Then

Ωε :� ΩXNεpΓsonicq � tx ¡ 0u for small ε ¡ 0, Γsonic � tx � 0u.
Below we always assume that φ P C1,1pΩεq as in Theorem 4.1 for the supersonic case. Then, by the
conditions in Problem 4.6(iii) and the definition of ψ,

ψ � 0 on Γsonic, (4.24)

Dψ � 0 on Γsonic. (4.25)

Moreover, we apriori assume that the solutions, φ, satisfy (4.23) in Ω to derive the required estimates
of the solutions; with these estimates, we then construct such solutions. The heuristic motivation of
(4.23) is the following: From Figs. 4.1–4.2, it appears that Γshock (and hence Ω) is located “below” line
S1, i.e., in the half-plane tφ1 ¡ φ2u. Thus, φ � φ1 ¡ φ2 on Γshock, and φ1 ¡ φ2 � φ on Γsonic. Also,
the potentials ϕ1 and ϕ2 of states (1) and (2) are linear functions, thus they satisfy equation (4.13)
with coefficients determined by φ, considered as a linear equation for ϕ. Then, taking into account the
inequalities on Γshock and Γsonic noted above, and the oblique boundary conditions on Γwedge and Γsym,
we obtain (4.23) by the maximum principle. Then, from (4.23), we have

ψ ¡ 0 in Ω. (4.26)

The previous argument is heuristic, but the fact that it comes from the structure of the problem allows
to include the condition that ψ ¥ 0 in the definition of the iteration set and close the iteration argument
for constructing the solutions within this set.

Equation (4.11) in ΩXNεpΓsonicq for ψ in the px, yq–coordinates is�
2x� pγ � 1qψx �O1

�
ψxx �O2ψxy � p 1

c2
�O3qψyy � p1�O4qψx �O5ψy � 0, (4.27)

where

O1p∇ψ,ψ, xq � �x
2

c2
� γ � 1

2c2
p2x� ψxqψx � γ � 1

c2

�
ψ � 1

2pc2 � xq2ψ
2
y

�
,

O2p∇ψ,ψ, xq � �2pψx � c2 � xqψy
c2pc2 � xq2

O3p∇ψ,ψ, xq � 1

c2pc2 � xq2
�
xp2c2 � xq � pγ � 1qpψ � pc2 � xqψx � 1

2
ψ2
xq �

γ � 1

2pc2 � xq2ψ
2
y

	
,

O4p∇ψ,ψ, xq � 1

c2 � x

�
x� γ � 1

c2

�
ψ � pc2 � xqψx � 1

2
ψ2
x �

pγ � 1qψ2
y

2pγ � 1qpc2 � xq2
�	
,

O5p∇ψ,ψ, xq � �2pψx � c2 � xqψy
c2pc2 � xq3 .

(4.28)

From (4.24)–(4.25), and since ψ P C1,1pΩεq, it follows that |ψpx, yq| ¤ Cx2 and

|Dψpx, yq| ¤ Cx in Ωε, (4.29)
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so that

|O1pDψ,ψ, xq| ¤ N |x|k, |OkpDψ,ψ, xq| ¤ N |x| for k � 2, . . . , 5, (4.30)

which shows that Okp∇ψ,ψ, xq are small perturbations of the leading terms of equation (4.27) in
Ωε � ΩXNεpΓsonicq. Also, if (4.29) holds, equation (4.27) is strictly elliptic in ΩεzΓsonic if

ψxpx, yq ¤ 2µ

γ � 1
x (4.31)

for µ P p0, 1q, when ε � εpµ,Nq is small. For θw close to π
2 , it can be shown that any solution of

Problem 4.6 (with some natural regularity properties) satisfies that, for any small δ ¡ 0,

|ψxpx, yq| ¤ 1� δ

γ � 1
x in Ωε for small ε � εpδq. (4.32)

3. The iteration equation near Γsonic is defined based on the above facts. The iteration set KM used
in [35] is such that every ψ̂ � φ̂ � φ2 P KM satisfies (4.24) and (4.29) for some N, ε ¡ 0. Then the
iteration equation for ψ is�

2x� pγ � 1qxηpψx
x
q �O

pψ̂q
1

�
ψxx �O

pψ̂q
2 ψxy � p 1

c2
�O

pψ̂q
3 qψyy � p1�O

pψ̂q
4 qψx �O

pψ̂q
5 ψy � 0, (4.33)

where the cutoff function η P C8pRq satisfies |η| ¤ 5
3pγ�1q , η

1 ¥ 0, and ηpsq � s if |s| ¤ 4
3pγ�1q , and some

other technical conditions. The terms, O
pψ̂q
k for k � 1, . . . , 5, are obtained from Ok by substituting ψ̂ into

certain terms in (4.28) and performing the ellipticity cutoff in the remaining terms, so that estimates
(4.30) with k � 3

2 hold. Then (4.33) is strictly elliptic in ΩεzΓsonic for small ε, and the ellipticity

degenerates on Γsonic. Since the solution of Problem 4.6 satisfies equation (4.27) and (4.32) with δ � 1
3

in Ωε for small ε, then it satisfies equation (4.33) in Ωε with ψ̂ � ψ. Indeed, we have the estimate:

|ψx| ¤ 4
3pγ�1qx, so that xη

�
ψx

x

	
� ψx; and the cutoffs in the terms of O

pψ̂q
k are removed similarly.

We also note that the degenerate ellipticity structure of equation (4.33) is the following: Writing
(4.33) in the form

2̧

i,j�1

AijpDψ,ψ, xqDijψ �
2̧

i�1

AipDψ,ψ, xqDiψ � 0 (4.34)

with A12 � A21, we have

λ|ξ|2 ¤ A11pp, z, xqξ
2
1

x
� 2A12pp, z, xqξ1ξ2

x1{2
�A22pp, z, xqξ22 ¤

1

λ
|ξ|2 (4.35)

for all pp, zq P R2 � R and x P p0, εq.
We consider the solutions of (4.33) in Ωε satisfying (4.24) and (4.26). Note that condition (4.25)

can not be prescribed in the iteration problem as discussed above, so we have to obtain (4.25) from the
estimates of the solutions by exploiting the elliptic degeneracy. The estimates for the positive solutions
of (4.33) with (4.24) in Ωε are based on the fact that, for any δ ¡ 0, the function

wδpx, yq � 1� δ

2pγ � 1qx
2

is a supersolution of (4.33) in Ωε if ε � εpδq is small; that is, N pwδq   0 in Ωε, where N p�q denotes the
operator in the left-hand side of (4.33). Using this, the boundary conditions on Γshock and Γwedge, and
(4.26), we obtain

0 ¤ ψ ¤ Cx2 in Ωε, (4.36)
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where ε and C are uniform for the wedge angles near π
2 . Note that �wδ is not a subsolution of (4.27) so

that it cannot be used to bound ψ from below. Thus, (4.26), which is derived from the global structure
of the solution, is crucially used in this argument. Then, in (4.36), the upper bound comes from the
local estimates near Γsonic, while the lower bound is from the global structure of the problem.

In particular, (4.36) with (4.24) implies that Dψ � 0 on Γsonic, which resolves the issue described in
(ii) above. Furthermore, from (4.36), using the non-isotropic “parabolic” rescaling corresponding to the
elliptic degeneracy (4.35) of equation (4.33) near x � 0, we obtain the estimates in the appropriately
weighted and scaled Hölder norm in Ωε, which in particular imply the uniform C1,1 estimates:

|D2ψ| ¤ C in Ωε. (4.37)

More precisely, we denote this norm by }ψ}pparq2,α,Ωε
, and define it as follows: Denote z � px, yq and

z̃ � px̃, ỹq with x, x̃ P p0, 2εq and
δpparqα pz, z̃q :� �|x� x̃|2 �maxpx, x̃q|y � ỹ|2�α{2 .

Then, for ψ P C2pΩεq X C1,1pΩεq written in the px, yq–coordinates, we define

}ψ}pparq2,0,Ωε
:�

¸
0¤k�l¤2

sup
zPΩε

�
xk�l{2�2|BkxBlyψpzq|

	
,

ruspparq2,α,Ωε
:�

¸
k�l�2

sup
z,z̃PΩε,z�z̃

�
minpxk�l{2�2, x̃k�l{2�2q |B

k
xBlyψpzq � BkxBlyψpz̃q|

δ
pparq
α pz, z̃q



,

}ψ}pparq2,α,Ωε
:� }ψ}pparq2,0,Ωε

� rψspparq2,α,Ωε
.

(4.38)

Now we obtain estimates in the norm (4.38), assuming that (4.36) holds in Ω2ε. For every z0 �
px0, y0q P ΩεzΓsonic (thus x0 P p0, εs), we define

Rz0 �
!
px, yq : |x� x0|   x0

10
, |y � y0|  

?
x0
10

)
X Ω. (4.39)

Note that distpRz0 ,Γsonicq � 3
4x0 ¡ 0. We rescale the rectangle in (4.39) to the unit square Q1 �

p�1, 1q2:
Q
pz0q
1 :�

"
pS, T q P Q1 : px0 � x0

10
S, y0 �

?
x0
10

T q P Ω

*
, (4.40)

and define the scaled version of ψ in the pS, T q coordinates in Qpz0q
1 :

ψpz0qpS, T q :� 1

x20
ψpx0 � x0

10
S, y0 �

?
x0
10

T q for pS, T q P Qpz0q
1 . (4.41)

Note that this rescaling is non-isotropic with respect to x and y variables. By (4.36), we have

}ψpz0q}
L8pQpz0q

1 q
¤ C for any z0 � px0, y0q P ΩεzΓsonic. (4.42)

Rewriting equation (4.33) in terms of ψpz0q in the pS, T q–coordinates and noting the degenerate elliptic-

ity structure (4.35), we find that ψpz0q satisfies a uniformly elliptic equation in Q
pz0q
1 with the ellipticity

constants and certain Hölder norms of coefficients independent of z0. We also rescale the boundary
conditions on ΓshockXBΩε and ΓwedgeXBΩε in the similar way, when z0 is on the corresponding part of

the boundary. Then we apply the local elliptic C2,α estimates for ψpz0q in Qpz0q
1 in the following cases:

(i) Interior rectangles Rz0 , i.e., all z0 such that Q
pz0q
1 � Q1 holds;

(ii) Rectangles Rz0 centered on the shock: z0 P Γshock X BΩε;
(iii) Rectangles Rz0 centered on the wedge: z0 P Γwedge X BΩε,
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where, in the last two cases, we have used the local estimates for the corresponding boundary-value
problems. Using (4.42), we obtain

}ψpz0q}
C2,αpQpz0q

1{2
q
¤ C with C independent of z0,

where Q
pz0q
1{2 � Q

pz0q
1 X p�1{2, 1{2q2. Rewriting in terms of ψ in the px, yq–coordinates and combining

the estimates for all z0 as above, we obtain the estimate }ψ}pparq2,α,Ωε
¤ C in the norm (4.38), which in

particular implies the C1,1 estimates (4.37).

Remark 4.7. Note that ψ
pz0q
SS pS, T q � 1

100ψxxpx0 � x0
10S, y0 �

?
x0
10 T q. It follows that }D2ψ}L8 cannot

be made small by choosing parameters, e.g. choosing ε small or θw close to π
2 .

Remark 4.8. The above argument, beginning from (4.39), is also used for the apriori estimates of the
positive solutions of (4.27)–(4.28) with condition (4.24), satisfying (4.29) and the ellipticity condition
(4.31) with some µ P p0, 1q. Note that (4.24), (4.29), and ψ ¥ 0 imply (4.36), which is used in the
argument.

Remark 4.9. Remark 4.8 applies only to the positive solutions of (4.27) with condition (4.24). For
the negative solutions of (4.27) with condition (4.24), the equation is uniformly elliptic up to tx � 0u
and, similar to Hopf’s lemma, the negative solutions have linear growth: |ψpx, yq| ¥ 1

Cx, in a contrast
with (4.36). This feature is used in proving certain geometric properties of the free boundary for the
wedge angles away from π

2 , where we note that φ� φ1   0 by (4.23).

4. In order to remove the elliptic cutoff in (4.33), i.e., to show that the fixed point solution of (4.33)

(i.e., with ψ � ψ̂) actually satisfies (4.27), we need to show that |ψx| ¤ 4
3pγ�1qx, as we discussed in

the lines after (4.33). Combining (4.37) with Dψ � 0 on Γsonic, we obtain that |Dψpx, yq| ¤ Cx in Ωε,
which does not remove the ellipticity cutoff, unless we show the explicit bound C ¤ 4

3pγ�1q . However,

this bound does not follow from our estimates, cf. Remark 4.7.
Note that the only explicit solution we have known is the normal reflection for θw � π

2 , for which

φ � φ
pπ
2
q

2 , i.e., ψ � 0 in Ω. Also, the analysis by Bae-Chen-Feldman [6] shows that the solutions of
Problem 4.6 of supersonic reflection-diffraction structure satisfy, for small ε,

ψx ∼
x

γ � 1
in Ωε X tpx, yq : dist ppx, yq,Γshockq ¡

?
xu,

but
Dψ � opxq in Ωε X tpx, yq : dist ppx, yq,Γshockq   x2u.

This shows that the convergence of solutions φpθwq of Problem 4.6 to φp
π
2
q as θw Ñ π

2
� does not hold

in the norm sufficiently strong to capture the behaviour near Γsonic described above. In particular, this
convergence does not hold in C2 (but holds in C1,α) after mapping Ωpθwq to a fixed domain for all θw.
Thus, there is no clear background solution such that the appropriate iteration set would lie in its small
neighborhood in the norm sufficiently strong to remove the cutoff by the smallness of the norm. Then,
in order to remove elliptic cutoff for the fixed point of the iteration, we derive an equation in Ωε and
boundary conditions and estimates on Γshock X tx   εu and Γwedge X tx   εu for ψx in Ωε, and prove
that

ψx ¤ 4

3pγ � 1qx
from this boundary value problem. The estimate from below

ψx ¥ � 4

3pγ � 1qx
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is proved from the global setting of Problem 4.6. This use of the local and global structure is similar
to that in the proof of (4.36).

Note that, in this argument, for the wedge angles near π
2 , the non-perturbative nature of the problem

is seen only in the estimates of the solution near Γsonic. The free boundary Γshock in this case is near
S1pθwq, and also close to the reflected shock of the normal reflection as in Fig. 4.3, which is the vertical

line S1pπ2 q. Also, }φ� φ
pθwq
2 }C1pΩq ¤ Cpπ2 � θwq, which is small. Thus, away from Γsonic, the argument

is perturbative for the wedge angles near π
2 . In the case of general wedge angles in Theorem 4.1, the

free boundary Γshock is no longer close to a line, its structure is not known apriori, thus the study of
geometric properties of the free boundary is a part of the argument.

Case II. General Wedge Angles up to the Detachment Angle. For this case and the proof
of Theorem 4.1, we follow the approach introduced in Chen-Feldman [37]. Similar to the case of wedge
angles near π

2 where we restricted consideration to the class of solutions satisfying ψ ¥ 0 in Ω and
showed the existence of such solutions, for the general case, we define a class of admissible solutions,
make apriori estimates of such solutions, and prove the existence of solutions in this class. Motivation
for the definition of admissible solutions comes from the following properties of supersonic regular
reflection solutions φ for the wedge angles close to π

2 , or more generally, for the supersonic regular

reflection solutions satisfying that }φ�φpθwq2 }C1pΩq is small: If (4.9) is strictly elliptic for φ in ΩzΓsonic,
then it satisfies (4.23) and the monotonicity properties:

Bξ2pφ1 � φq ¤ 0, Dpφ1 � φq � eS1 ¤ 0 in Ω (4.43)

where eS1 � P0P1
|P0P1| .

We present the outline of the proof of Theorem 4.1 in the following four steps:

1. Motivated by the discussion above, for the general wedge angles, we define the admissible solutions
as the solutions of Problem 4.6 (thus the solutions with weak regular reflection-diffraction configuration
of either supersonic or subsonic type) satisfying the following properties:

Definition 4.10. Let θw P pθdw, π2 q. A function φ P C0,1pΛq is an admissible solution of the regular
reflection problem if φ is a solution of Problem 4.6 extended to Λ by (4.22) pwhere P0P1P4 is a point
in the subsonic and sonic casesq and satisfies the following properties:

(i) The structure of solutions:


 If |Dφ2pP0q| ¡ c2, then φ is of the supersonic regular shock reflection-diffraction configuration
shown on Fig. 4.1 and satisfies that the curved part of reflected-diffracted shock Γshock is C2 in
its relative interior; curves Γshock, Γsonic, Γwedge, and Γsym do not have common points except

their endpoints; φ P C0,1pΛqXC1pΛzpS0YP0P1P2qq and φ P C1pΩqXC3pΩzpΓsonicYtP2, P3uqq.

 If |Dφ2pP0q| ¤ c2, then φ is of the subsonic regular shock reflection-diffraction configuration
shown on Fig. 4.2 and satisfies that the reflected-diffracted shock Γshock is C2 in its relative
interior; curves Γshock, Γwedge, and Γsym do not have common points except their endpoints;

φ P C0,1pΛq X C1pΛzpS0 Y Γshockqq and φ P C1pΩq X C3pΩztP0, P3uq.
Moreover, in both the supersonic and subsonic cases, the curve Γext

shock :� Γshock Y tP0u Y Γ�shock
is C1 in its relative interior, where Γ�shock is the reflection of Γshock with respect to the ξ1–axis.

(ii) Equation (4.9) is strictly elliptic in ΩzΓsonic, i.e., |Dφ|   cp|Dφ|2, φq in ΩzΓsonic.

(iii) Bνφ1 ¡ Bνφ ¡ 0 on Γshock, where ν is the normal to Γshock, pointing to the interior of Ω.

(iv) Inequalities hold:

φ1 ¥ φ ¥ φ2 in Ω, (4.44)
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(v) (4.43) is satisfied, where the vector eS1 is defined as the unit vector parallel to S1 and pointing
into Λ at P0 for the general case.

Note that (4.43) implies that

Dpφ1 � φq � e ¤ 0 in Ω for all e P Conepeξ2 , eS1q, (4.45)

where Conepeξ2 , eS1q � ta eξ2 � b eS1 : a, b ¡ 0u with eξ2 � p0, 1q. Notice that eξ2 and eS1 are not
parallel if θw � π

2 .

2. To prove the existence of admissible solutions for each wedge angle in Theorem 4.1, we derive
uniform a priori estimates for admissible solutions with any wedge angle θw P rθdw�σ, π2 s for each small
σ ¡ 0, show compactness of this subset of admissible solutions in the appropriate norm, and then apply
the degree theory to obtain the existence of admissible solutions for each θw P rθdw � σ, π2 s, starting
from the unique normal reflection solution for θw � π

2 . To derive the a priori estimates for admissible
solutions, we first obtain the required estimates related to the geometry of the shock and domain Ω, as
well as the basic estimates of solution φ. We show:

(a) The inequality in (4.45) is strict for any e P Conepeξ2 , eS1q. Combined with (4.44) and the fact
that φ � φ1 on Γshock, this implies that Γshock is a Lipschitz graph with uniform Lipschitz estimate
for all admissible solutions.

(b) The uniform bounds on diampΩq, }φ}C0,1pΩq, and the directional monotonicity of φ � φ2 near the
sonic arc for a cone of directions;

(c) The uniform positive lower bound for the distance between the shock and the wedge, and the
uniform separation of the shock and the symmetry line (that is, Γshock is away from a uniform
conical neighborhood of Γsym with vertex at their common endpoint P2);

(d) The uniform positive lower bound for the distance between the shock and the sonic circle Bc1ppu1, 0qq
of state (1), by using the properties described in Remark 4.9. This allows to estimate the ellipticity
of (4.9) for φ in Ω (depending on the distance to the sonic arc P1P4 for the supersonic regular shock
reflection-diffraction configuration and to P0 for the subsonic regular shock reflection-diffraction
configuration).

(e) Estimate (4.29) holds in the supersonic case, by using the monotonicity of ψ � φ � φ2 near the
sonic arc in a cone of directions shown in (b) and the conditions on Γsonic in Problem 4.6.

The results of (a)–(c) are obtained by the maximum principle, by considering equation (4.13) as a
linear elliptic equation for ϕ and using the boundary conditions on Γshock, Γsonic, Γwedge, and Γsym in
Problem 4.6 and (4.44)–(4.45). The results of (c), combined with (a), show the structure of Ω which
allows to perform the uniform local elliptic estimates in various parts of Ω: the interior, near a point
P in a relative interior of Γshock, Γwedge, and Γsym, and locally near the corners P2 and P3.

Based on estimates (a)–(d), we show the uniform regularity estimates for the solution and the free
boundary in weighted/scaled C2,α norms away from the sonic arc in the supersonic case and away from
P0 in the subsonic case, i.e., in ΩzΩε, for any small ε ¡ 0. The equation is uniformly elliptic in this
region, with ellipticity constant depending on ε. Thus, the estimates depend on ε.

3. Below we discuss the estimates near Γsonic (resp. near P0 in the subsonic/sonic case), i.e., the
estimates in Ω2ε for some ε independent of θw P rθdw � σ, π2 s, which allows to complete uniform apriori

estimates for admissible solutions with wedge angles θw P rθdw � σ, π2 s. We obtain the estimates near

Γsonic (or P0 for the subsonic reflection), i.e., in Ω2ε, in scaled and weighted C2,α for φ and the free

boundary Γshock X BΩ2ε, by considering separately four cases depending on |Dφ2|
c2

at P0:

(i) Supersonic: |Dφ2|
c2

¥ 1� δ;
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(ii) Supersonic (almost sonic): 1   |Dφ2|
c2

  1� δ;

(iii) Subsonic (almost sonic, including sonic): 1 � δ ¤ |Dφ2|
c2

¤ 1;

(iv) Subsonic: |Dφ2|
c2

¤ 1� δ,

for a small δ ¡ 0 chosen so that the estimates can be obtained. The choice of δ determines ε.
For cases (i)–(ii), equation (4.9) is degenerate elliptic in Ω near P1P4 on Fig. 4.1. For case (iii),

except the sonic case |Dφ2pP0q|
c2

� 1, the equation is uniformly elliptic in Ω, but the ellipticity constant is

small and tends to zero near P0 on Fig. 4.2 as
|Dφpθwq2 pP0q|

c2
Ñ 1�, i.e. for subsonic angles θw which tend

to the sonic angle. Thus, for cases (i)–(iii), we use the local elliptic degeneracy, which allows to find a
comparison function in each case, to show the appropriately fast decay of φ�φ2 near P1P4 for cases (i)–
(ii) and near P0 for case (iii); furthermore, combining with appropriate local non-isotropic rescaling to
obtain the uniform ellipticity, we obtain the a priori estimates in the weighted and scaled C2,α–norms.
In cases (i)–(ii), the norms are (4.38). For the case (iii), we use the different norms, and the estimates
we obtain implysa the standard C2,α–estimates for case (iii). To obtain these estimates, in case (i) we
use the argument developed in Chen-Feldman [35] and described above (see Remark 4.8), where we note
that the ellipticity estimate (4.31) follows from the estimates described in (d) above, and (4.29) was
obtained in (e). These estimates hold in Ωε with ε À plengthpΓsonicqq2 because the “rectangles” Rpx0,y0q
defined by (4.39) do not fit into Ω for larger x0, which means, for example, that Rpx0,y0q X Γwedge � H
for px0, y0q P ΓshockXBΩε with x0 ¥ CplengthpΓsonicqq2 if C is large and lengthpΓsonicq is small, because

the length of y-side of Rpx0,y0q is
?
x0
10 , and Γshock and Γwedge are smooth curves which intersect Γsonic

transversally. However, lengthpΓsonicqq tends to zero, as
|Dφpθwq2 pP0q|

c2
Ñ 1�, i.e. when the supersonic

wedge angle tends to the sonic angle. Thus, a different argument, involving an appropriate scaling,
is employed for case (ii) in order to keep ε uniform for all θw P rθdw � δ, π2 s. Another version of that
argument (with a different scaling) is applied for case (iii). For both cases (ii)–(iii), we need to use
smaller rectangles than those for case (i), but this requires stronger growth estimates than (4.36) to
obtain a bound in C1,1 from the corresponding weighted and scaled estimates. We obtain such growth
estimates by using the conditions of cases (ii)–(iii) for sufficiently small δ. For case (iv), the equation is
uniformly elliptic in Ω for the admissible solution, where the ellipticity constant is not small, and the
estimates are more technically challenging than those for cases (i)–(iii). This can be seen as follows: For
all cases (i)–(iv), the free boundary has a lower apriori regularity in the sense that only the Lipschitz
estimate of Γshock is obtained in (a) above; however, for case (iv), the uniform ellipticity combined
with oblique boundary conditions does not allow a comparison function that leads to the fast decay of
|φ � φ2| near P0. Thus, we prove the Cα–estimates of Dpφ � φ2q near P0, by deriving the equations
and boundary conditions for two directional derivatives of φ� φ2 near P0, and performing hodograph
transform to flatten the free boundary.

4. In order to prove the existence of solutions, we perform an iteration, which is an extension of the
iteration process used in Chen-Feldman [35]. First, given an admissible solution φ for the wedge angle
θw, we map its elliptic domain Ωpφ, θwq to a unit square Q � p0, 1q2 so that, for the supersonic case,
the boundary parts Γshock, Γsonic, Γwedge, and Γsym are mapped to the respective sides of Q, and other

properties of this map are satisfied. For the subsonic case, the map is discontinuous at P0 � Γsonic

(mapping the triangular domain to a square). Moreover, we define a function u on Q by expressing

φ � φ̃
pθwq
2 in the coordinates on Q, where φ̃

pθwq
2 is a function determined by θw and equal to φ2 near

Γsonic; we skip the complete technical definition here. For appropriate functions u on Q and the wedge
angle θw, this mapping can be inverted, i.e., the elliptic domain Ωpu, θwq and the iteration free boundary
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Γshockpu, θwq can be determined, and a function φpu,θwq on Ωpu, θwq is defined by expressing u in the

coordinates on Ωpu, θwq and adding φ̃
pθwq
2 so that, if u is obtained from the admissible solution φ with

elliptic domain Ω as described above, then Ωpu, θwq � Ω and φpu,θwq � φ in Ω. Moreover, the map:
Ωpu, θwq Ñ Q and its inverse satisfy certain continuity properties with respect to pu, θwq. The iteration
is performed in terms of functions defined on Q. The iteration set consists of pairs pu, θwq, where u is

in a weighted and scaled C2,α space on Q, denoted as C2,α
�� (its definition is technical and we skip it

here), and satisfy

(i) }u}
C2,α
��

¤ Mpθwq, where Mpθwq is defined explicitly, based on the apriori estimates discussed

above;
(ii) Ωpu, θwq, Γshockpu, θwq, and function φpu,θwq on Ωpu, θwq satisfy some geometric and analytical

properties.

The iteration map: pû, θwq Ñ pu, θwq is defined by solving the iteration problem in Ωpu, θwq and then
mapping the solution, φ, to a function u on Q. This mapping includes additional steps comparing to the
one described above to modify the iteration free boundary by using solution φ of the iteration problem,
and using this modified domain Ω in the mapping: pφ, θwq Ñ u, so that the resulting function u on Q
keeps the regularity gain obtained from solving the iteration problem. This yields the compactness of
the iteration map. We show that, for a fixed point pu, θwq of the iteration map, φpu,θwq on Ωpu, θwq is
an admissible solution. We use the degree theory to show the existence of admissible solutions for each
θw P rθdw � δ, π2 s, starting from the unique normal reflection solution for θw � π

2 . The compactness of
the iteration map described above is necessary for that. The apriori estimates of admissible solutions
discussed above are used in the degree theory argument in order to define the iteration set such that a
fixed point of the iteration map (i.e., admissible solution) cannot occur on the boundary of the iteration
set, since that would contradict the apriori estimates. With all of these arguments, we complete the
proof of Theorem 4.1. This provides a solution to the von Neumann’s conjectures.

More details can be found in Chen-Feldman [37]; also see [35].

4.2. Prandtl-Meyer Problem for Shock Reflection. As we discussed in §2–§3, steady shocks
appear when a steady supersonic flow hits a straight wedge; see Figure 3.1. Since both weak and
strong steady shock solutions are stable in the steady regime, the static stability analysis alone is
not able to single out one of them in this sense, unless an additional condition is posed on the speed
of the downstream flow at infinity. Then the dynamic stability analysis becomes more significant to
understand the non-uniqueness issue of the steady oblique shock solutions. However, the problem for
the dynamic stability of the steady shock solutions for supersonic flow past solid wedges involves several
additional mathematical difficulties. The recent efforts have been focused on the construction of the
global Prandtl-Meyer configurations in the self-similar coordinates for potential flow.

As we discussed earlier, if a supersonic flow with a constant density ρ0 ¡ 0 and a velocity u0 �
pu10, 0q, u10 ¡ c0 :� cpρ0q, impinges toward wedge W in (3.11), and if θw is less than the detachment
angle θdw, then the well-known shock polar analysis shows that there are two different steady weak
solutions: the steady weak shock solution Φ̄ and the steady strong shock solution , both of which satisfy
the entropy condition and the slip boundary condition (see Fig. 3.1).

Then the dynamic stability of the weak transonic shock solution for potential flow can be formulated
as the following problem:

Problem 4.11 (Initial-Boundary Value Problem). Given γ ¡ 1, fix pρ0, u10q with u10 ¡ c0. For a fixed

θw P p0, θdwq, let W be given by (3.11). Seek a global weak solution Φ P W 1,8
loc pR� � pR2zW qq of Eq.

(4.5) with ρ determined by (4.4) and B � u210
2 � hpρ0q so that Φ satisfies the initial condition at t � 0:

pρ,Φq|t�0 � pρ0, u10x1q for x P R2zW, (4.46)
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and the slip boundary condition along the wedge boundary BW :

∇xΦ � νw|BW � 0, (4.47)

where νw is the exterior unit normal to BW .
In particular, we seek a solution Φ PW 1,8

loc pR� � pR2zW qq that converges to the steady weak oblique

shock solution Φ̄ corresponding to the fixed parameters pρ0, u10, γ, θwq with ρ̄ � h�1pB� 1
2 |∇Φ̄|2q, when

tÑ8, in the following sense: For any R ¡ 0, Φ satisfies

lim
tÑ8 }p∇xΦpt, �q �∇xΦ̄, ρpt, �q � ρ̄q}L1pBRp0qzW q � 0 (4.48)

for ρpt,xq given by (4.4).

Since the initial data functions in (4.46) do not satisfy the boundary condition (4.47), a bound-
ary layer is generated along the wedge boundary starting at t � 0, which forms the Prandtl-Meyer
configurations, as proved in Bae-Chen-Feldman [7].

Notice that the initial-boundary value problem, Problem 4.11, is invariant under the scaling (4.6), so
we may study the existence of self-similar solutions determined by equation (4.9) with (4.10) through
(4.7).

As the upstream flow has the constant velocity pu10, 0q, and noting the choice of B in Problem 4.11,
the corresponding pseudo-potential φ0 has the expression of

φ0 � �1

2
|ξ|2 � u10ξ1 (4.49)

in self-similar coordinates ξ � x
t , as shown directly from (4.15). Notice also the symmetry of the

domain and the upstream flow in Problem 4.11 with respect to the x1–axis. Problem 4.11 can then be
reformulated as the following boundary value problem in the domain:

Λ :� R2
�ztξ : ξ2 ¤ ξ1 tan θw, ξ1 ¥ 0u

in the self-similar coordinates ξ, which corresponds to domain tpt,xq : x P R2�zW, t ¡ 0u in the
pt,xq–coordinates, where R2� � tξ : ξ2 ¡ 0u.

Problem 4.12 (Boundary Value Problem). Seek a solution φ of equation (4.9) in the self-similar
domain Λ with the slip boundary condition:

Dφ � ν|BΛ � 0 (4.50)

and the asymptotic boundary condition at infinity:

φ� φ0 ÝÑ 0 (4.51)

along each ray Rθ :� tξ1 � ξ2 cot θ, ξ2 ¡ 0u with θ P pθw, πq as ξ2 Ñ8 in the sense that

lim
rÑ8 }φ� φ0}CpRθzBrp0qq � 0. (4.52)

In particular, we seek a global entropy solution of Problem 4.12 with two types of Prandtl-Meyer
configurations whose occurrence is determined by the wedge angle θw for the two different cases: One
contains a straight weak oblique shock S0 attached to the wedge vertex O and connected to a normal
shock S1 through a curved shock Γshock when θw   θsw, as shown in Fig. 4.4; the other contains a curved
shock Γshock attached to the wedge vertex and connected to a normal shock S1 when θsw ¤ θw   θdw, as
shown in Fig. 4.5, in which the curved shock Γshock is tangential to the straight weak oblique shock S0

at the wedge vertex.
To seek a global entropy solution of Problem 4.12 with the structure of Fig. 4.4 or Fig. 4.5, one

needs to compute the pseudo-potential function φ below S0.
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Figure 4.4. Self-similar solutions for θw P p0, θswq in the self-similar coordinates ξ (cf. [7])

Figure 4.5. Self-similar solutions for θw P rθsw, θdwq in the self-similar coordinates ξ (cf. [7])

Given M0 ¡ 1, ρ1, and u1 are determined by using the shock polar in Fig. 3.1 for steady potential
flow. For any wedge angle θw P p0, θswq, line u2 � u1 tan θw and the shock polar intersect at a point u1

with |u1| ¡ c1 and u11   u10; while, for any wedge angle θw P rθsw, θdwq, they intersect at a point u1

with u11 ¡ u1d and |u1|   c1. The intersection state u1 is the velocity for steady potential flow behind
an oblique shock S0 attached to the wedge vertex with angle θw. The strength of shock S0 is relatively
weak compared to the other shock given by the other intersection point on the shock polar, thus we
call S0 weak oblique shock, and the corresponding state u1 is a weak state.

We also note that states u1 depend smoothly on u10 and θw, and such states are supersonic when
θw P p0, θswq and subsonic when θw P rθsw, θdwq.

Once u1 is determined, by (4.18) and (4.49), the pseudo-potentials φ1 and φ2 below the weak oblique
shock S0 and the normal shock S1 are respectively in the form of

φ1 � �1

2
|ξ|2 � u1 � ξ, φ2 � �1

2
|ξ|2 � u2 � ξ � k2 (4.53)

for constant states u1 and u2, and constant k2; see (4.15). Then it follows from (4.10) and (4.53) that
the corresponding densities ρ1 and ρ2 are constants, respectively. In particular, we have

ργ�1
k � ργ�1

0 � γ � 1

2

�
u210 � |uk|2

�
for k � 1, 2. (4.54)

Denote Γwedge :� BWXBΛ. Next we define the sonic arcs Γ1
sonic � P1P4 on Fig. 4.4 and Γ2

sonic � P2P3

on Figs. 4.4–4.5. The sonic circle BBc1pu1q of the uniform state φ1 intersects line S0, where c1 � ρ
γ�1
2

1
by (4.12). For the supersonic case θw P p0, θswq, there are two arcs of this sonic circle between S0

and Γwedge in Λ. We denote by Γ1
sonic the lower arc (i.e., located to the left from another arc) in the

orientation on Fig. 4.4. Note that Γ1
sonic tends to point O as θw Õ θsw, and is outside of Λ for the

subsonic case θw P rθsw, θdwq. Similarly, the sonic circle BBc2pu2q of the uniform state φ2 intersects line

S1, where c2 � ρ
γ�1
2

2 . There are two arcs of this circle between S1 and the line containing Γwedge. For



TRANSONIC SHOCKS AND FREE BOUNDARY PROBLEMS FOR THE EULER EQUATIONS 55

all θw P p0, θdwq, the upper arc (i.e., located to the right of the other arc) in the orientation on Figs.
4.4–4.5 is within Λ, which is denoted as Γ2

sonic.
Then Problem 4.12 can be reformulated into the following free boundary problem.

Problem 4.13 (Free Boundary Problem). For θw P p0, θdwq, find a free boundary (curved shock) Γshock

and a function φ defined in domain Ω, as shown in Figs. 4.4–4.5, such that φ satisfies

(i) Equation (4.9) in Ω;
(ii) φ � φ0 and ρDφ � νs � ρ0Dφ0 � νs on Γshock;
(iii) φ � φ̂ and Dφ � Dφ̂ on Γ1

sonicYΓ2
sonic when θw P p0, θswq and on Γ2

sonicYtOu when θw P rθsw, θdwq
for φ̂ :� maxpφ1, φ2q;

(iv) Dφ � νw � 0 on Γwedge,

where νs and νw are the interior with respect to Ω unit normals to Γshock and Γwedge, respectively.

Remark 4.14. Similar as in Problem 4.6, the conditions in Problem 4.13(ii)–(iii) are the Rankine-
Hugoniot conditions (4.17)–(4.18) on Γshock and Γ1

sonic Y Γ2
sonic, respectively; see the discussions in the

paragraphs after Problem 4.6.

Let φ be a solution of Problem 4.13 such that Γshock is a C1–curve up to its endpoints and φ P C1pΩq.
To obtain a solution of Problem 4.12 from φ, we have two cases:

For the supersonic case θw P p0, θswq, we divide region Λ into four separate regions; see Fig. 4.4. We
denote by S0,seg the line segment OP1 � S0, and by S1,seg the portion (half-line) of S1 with left endpoint

P2 so that S1,seg � Λ. Let ΩS be the unbounded domain below curve S0,seg Y Γshock Y S1,seg and above
Γwedge (see Fig. 4.4). In ΩS , let Ω1 be the bounded domain enclosed by S0,Γ

1
sonic, and Γwedge. Set

Ω2 :� ΩSzpΩ1 Y Ωq. Define a function φ� in Λ by

φ� �

$'''&'''%
φ0 in ΛzΩS ,

φ1 inΩ1,

φ in Γ1
sonic Y ΩY Γ2

sonic,

φ2 inΩ2.

(4.55)

By Problem 4.13(ii)–(iii), φ� is continuous in ΛzΩS and C1 in ΩS . In particular, φ� is C1 across
Γ1
sonic Y Γ2

sonic. Moreover, using Problem 4.13(i)–(iii), we obtain that φ� is a global entropy solution of
equation (4.9) in Λ.

For the subsonic case θw P rθsw, θdwq, region Ω1 Y Γ1
sonic in φ� reduces to one point tOu; see Fig. 4.5.

The corresponding φ� is a global entropy solution of equation (4.9) in Λ.

The first rigorous unsteady analysis of the steady supersonic weak shock solution as the long-time
behavior of an unsteady flow is due to Elling-Liu [61], in which they succeeded in establishing a stability
theorem for an important class of physical parameters determined by certain assumptions for the wedge
angle θw less than the sonic angle θsw P p0, θdwq for potential flow.

Recently, in Bae-Chen-Feldman [7], we have successfully removed the assumptions in Elling-Liu’s
theorem [61] and established the stability theorem for the steady (supersonic or transonic) weak shock
solutions as the long-time asymptotics of the global Prandtl-Meyer configurations for unsteady potential
flow for all the admissible physical parameters even up to the detachment angle θdw (beyond the sonic
angle θsw   θdw).

To achieve this, we solve the free boundary problem (Problem 4.13), involving transonic shocks, for
all wedge angles θw P p0, θdwq by employing the techniques developed in Chen-Feldman [37], described
in §4.1 above. Similar to Definition 4.10, we define admissible solutions in the present case:
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Definition 4.15. Let θw P pθdw, π2 q. A function φ P C0,1pΛq is an admissible solution of Problem 4.13
if φ is a solution of Problem 4.13 extended to Λ by (4.55) and satisfies the following properties:

(i) The structure of solutions is as follows:


 If θw P p0, θswq, then φ has the configuration shown on Fig. 4.4 such that the reflected-diffracted
shock Γshock is C2 in its relative interior, φ P C0,1pΛq X C1pΛzpS0,seg Y Γshock Y S1,segqq, and
φ P C1pΩq X C2pΩzpS0,seg Y S1,segqq X C3pΩq.


 If θw P rθsw, θdwq, then φ has the configuration shown on Fig. 4.5 such that the reflected-
diffracted shock Γshock is C2 in its relative interior, φ P C0,1pΛq X C1pΛzpΓshock Y S1,segqq,
and φ P C1pΩq X C2pΩzptOu Y S1,segqq X C3pΩq.

(ii) Equation (4.9) is strictly elliptic in ΩzΓsonic, i.e., |Dφ|   cp|Dφ|2, φq in ΩzΓsonic.

(iii) Bνφ0 ¡ Bνφ ¡ 0 on Γshock, where ν is the normal to Γshock, pointing to the interior of Ω.

(iv) The inequalities hold:
maxtφ1, φ2u ¤ φ ¤ φ0 in Ω, (4.56)

(v) The monotonicity properties hold:

Dpφ0 � φq � eS1 ¥ 0, Dpφ0 � φq � eS0 ¤ 0 in Ω, (4.57)

where eS0 and eS1 are the unit tangential directions to lines S0 and S1, respectively, pointing to
the positive ξ1–direction.

Similar to (4.45), we note that (4.57) implies that

Dpφ1 � φq � e ¤ 0 in Ω for all e P Conep�eS1 , eS0q, (4.58)

where Conep�eS1 , eS0q � t�a eS1 � b eS0 : a, b ¡ 0u. We note that eS0 and eS1 are not parallel if
θw � 0.

Then we establish the following theorem.

Theorem 4.2. Let γ ¡ 1 and u10 ¡ c0. For any θw P p0, θdwq, there exists a global entropy solution φ
of Problem 4.13 such that the following regularity properties are satisfied:

(i) If θw P p0, θswq, the reflected shock S0,seg Y Γshock Y S1,seg is C2,α–smooth, and φ P C1,αpΩq X
C8pΩzpΓ1

sonic Y Γ2
sonicqq,

(ii) If θw P rθsw, θdwq, the reflected shock Γshock Y S1,seg is C1,α near O and C2,α away from O, and

φ P C1,αpΩq X C8pΩzptOu Y Γ2
sonicqq.

Moreover, in both cases, φ is C1,1 across the sonic arcs, and Γshock is C8 in its relative interior.
Furthermore, φ is an admissible solution in the sense of Definition 4.15, so φ satisfies further prop-

erties listed in Definition 4.15.

We follow the argument described in §4.1 so that, for any small δ ¡ 0, we obtain the required
uniform estimates of admissible solutions with wedge angles θw P r0, θdw� δs. Using these estimates, we
apply the Leray-Schauder degree theory to obtain the existence for each θw P r0, θdw � δs in the class
of admissible solutions, starting from the unique normal solution for θw � 0. Since δ ¡ 0 is arbitrary,
the existence of a weak solution for any θw P p0, θdwq can be established. More details can be found in
Bae-Chen-Feldman [7]; see also Chen-Feldman [37].

The existence results in Bae-Chen-Feldman [7] indicate that the steady weak supersonic/transonic
shock solutions are the asymptotic limits of the dynamic self-similar solutions, the Prandtl-Meyer
configurations, in the sense of (4.52) in Problem 5.1.

On the other hand, it is shown in Elling [60] and Bae-Chen-Feldman [7] that, for each γ ¡ 1, there
is no self-similar strong Prandtl-Meyer configuration for the unsteady potential flow in the class of
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admissible solutions (cf. [7]). This means that the situation for the dynamic stability of the strong
steady oblique shocks is more sensitive.

5. Convexity of Self-Similar Transonic Shocks and Free Boundaries

We now discuss some recent developments in the analysis of geometric properties of transonic shocks
as free boundaries in two-dimensional self-similar coordinates for compressible fluid flows. In Chen-
Feldman-Xiang [38], we have developed a general framework for the analysis of the convexity of the
transonic shocks as free boundaries. For both applications discussed above, the regular reflection
problem in §4.1 and the Prandtl-Meyer reflection problem in §4.2, admissible solutions satisfy the
conditions of this abstract framework, as shown in [38]. For simplicity, we present below the results on
the convexity properties of transonic shocks for these two problems (without discussing the abstract
framework).

For the regular shock reflection-diffraction configurations, we recall that, for admissible solutions in
the sense of Definition 4.10, the inequality in (4.45) is shown to be strict for any e P Conepeξ2 , eS1q.
From this, it is proved that, for admissible solutions, the shock is a graph in the coordinate system
pS, T q with respect to basis te, eKu for any unit vector e P Conepeξ2 , eS1q, where eK is the unit vector
orthogonal to e and oriented so that TP1 ¡ TP2 , and we use notation pSP , TP q for the coordinates of
point P . That is, there exists fe P C8ppTP2 , TP1qq X C1prTP2 , TP1sq such that

Γshock � tpS, T q : S � fepT q, TP2   T   TP1u, ΩX tTP2   T   TP1u � tS   fepT qu, (5.1)

where we have used the notational convention (4.21) in the subsonic/sonic case.
Then we have

Theorem 5.1 (Convexity of transonic shocks for the regular shock reflection-diffraction configurations).
If a solution of the regular reflection problem is admissible in the sense of Definition 4.10, then its shock
curve Γshock is a strictly convex graph in the following sense: for any e P Conepeξ2 , eS1q, the function
fe in (5.1) satisfies

f2e   0 on pTP2 , TP1q.
That is, Γshock is uniformly convex on any closed subset of its relative interior.

Moreover, for the solution of Problem 4.6 extended to Λ by (4.22), with pseudo-potential φ P C0,1pΛq
satisfying Definition 4.10(i)–(iv), the shock is strictly convex if and only if Definition 4.10(v) holds.

For the Prandtl-Meyer reflection problem, the results are similar. We first note that, based of
(4.58) (which is strict for e P Conep�eS1 , eS0q) and the maximum principle, it is proved that, for
admissible solutions in the sense of Definition 4.15, the shock is a graph in the coordinate system
pS, T q with respect to basis te, eKu for any unit vector e P Conep�eS1 , eS0q, i.e., (5.1) holds, with
fe P C8ppTP2 , TP1qq X C1prTP2 , TP1sq, where we have used the notational convention P1 � P0 in the
subsonic/sonic case θw P rθsw, θdwq.
Theorem 5.2 (Convexity of transonic shocks for the Prandtl-Meyer reflection configurations). If a
solution of the Prandtl-Meyer reflection problem is admissible in the sense of Definition 4.15, then its
shock curve Γshock is a strictly convex graph in the following sense: function fe in (5.1) satisfies

f2e   0 on pTP2 , TP1q.
That is, Γshock is uniformly convex on any closed subset of its relative interior.

Moreover, for the solution of Problem 4.13 extended to Λ by (4.55) pwith the appropriate modification
in the subsonic/sonic caseq with pseudo-potential φ P C0,1pΛq satisfying Definition 4.15(i)–(iv), the
shock is strictly convex if and only if Definition 4.15(v) holds.
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Now we discuss the techniques developed in [38] by giving the main steps in the proofs of Theorems
5.1–5.2. While the argument in [38] is for a general domain Ω, we focus here on the specific cases of
the regular shock reflection-diffraction and Prandtl reflection configurations; see [38] for the results in
the more general cases and the detailed proofs.

For the regular reflection problem, define

ϕ :� φ� φ1.

For the Prandtl-Meyer reflection problem, define

ϕ :� φ� φ0.

Then, in both cases, ϕ � 0 on Γshock. From this, using Definition 4.10(iii) for the regular reflection
case, and Definition 4.15(iii) for the Prandtl reflection case, it follows that, in both problems, ϕ   0 in
Ω near Γshock. Since Γshock is the zero level set of ϕ, the conclusion of Theorems 5.1–5.2 on the strict
convexity of Γshock is equivalent to the following: ϕττ ¡ 0 along Γ0

shock, where Γ0
shock is the relative

interior of Γshock.
If the conclusion of Theorems 5.1–5.2 holds, then the curvature of Γshock:

κ � � f2e pT q�
1� pf 1epT qq2

�3{2
has a positive lower bound on any closed subset of pTP2 , TP1q.

Now we briefly discuss the proofs of Theorems 5.1–5.2. Below ϕ denotes an admissible solution of
either the regular reflection problem or the Prandtl-Meyer reflection problem. Also, Con denotes the
cone from (4.45) for the regular reflection problem and the cone from (4.58) for the Prandtl reflection
problem.

First, we establish the relation between the strict convexity/concavity of a portion of the shock and
the possibility for Beϕ, with e P Con, to attain its local minimum or maximum with respect to Ω
on that portion of the shock. More precisely, on a portion of “wrong” convexity on which f2e ¡ 0
(equivalently, ϕττ   0), ϕe may attain its local maximum, but not a local minimum. Then, assuming
that a portion of the free boundary has a “wrong” convexity f2e ¡ 0, we show that ϕe for e P Con
attains its local minimum relative to Γshock on the closure of that portion. As we discussed above, it
cannot be a local minimum with respect to Ω. Starting from that, through a nonlocal argument, with
the use of the maximum principle for equation (4.13), considered as a linear elliptic equation for ϕ, in
Ω, and boundary conditions on various parts of BΩ, we reach a contradiction, thus showing that the
shock is convex, possibly non-strictly, i.e., f2e ¤ 0 on pTP2 , TP1q, or equivalently, ϕττ ¥ 0 on Γshock.
Extending the previous argument with use of real analyticity of Γ0

shock, we improve this to the locally
uniform convexity as in Theorems 5.1–5.2.

Furthermore, with the convexity of reflected-diffracted transonic shocks, the uniqueness and stability
of global regular shock reflection-diffraction configurations have also been established in the class of
admissible solutions; see Chen-Feldman-Xiang [39] for the details.

The nonlinear method and related techniques/approaches we have presented above for solving multi-
dimensional transonic shocks and free boundary problems should be useful to analyze other longstand-
ing or newly emerging problems. Examples of such problems include the unsolved multidimensional
steady transonic shock problems for the full Euler equations (including steady detached shock prob-
lems), the unsolved multidimensional self-similar transonic shock problems for potential flow (such as
the two-dimensional Riemann problems and the conic body problems), as well as the longstanding
open transonic shock problems for both the isentropic and the full Euler equations; also see Chen-
Feldman [37]. Certainly, further new ideas, techniques, and methods are still required to be developed
in order to solve these mathematically challenging and fundamental important problems.
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