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MULTIDIMENSIONAL TRANSONIC SHOCKS
AND FREE BOUNDARY PROBLEMS FOR
THE EULER EQUATIONS AND RELATED NONLINEAR EQUATIONS

GUI-QIANG G. CHEN AND MIKHAIL FELDMAN

ABSTRACT. We are concerned with free boundary problems originating from the analysis of multidimen-
sional transonic shocks for the Euler equations in compressible fluid dynamics. We survey some recent
developments in the analysis of multidimensional transonic shocks and corresponding free boundaries
for the Euler equations and related nonlinear partial differential equations (PDEs). The nonlinear PDEs
under our analysis include the steady Euler equations for potential flow, the steady full Euler equations,
the unsteady Euler equations for potential flow, and related nonlinear PDEs of mixed elliptic-hyperbolic
type. The transonic shock problems especially include the problem of steady transonic flow past solid
wedges, von Neumann’s problem for shock reflection-diffraction, and the Prandtl-Meyer problem for
unsteady supersonic flow onto solid wedges. We first show how these longstanding multidimensional
transonic problems can be formulated as free boundary problems for the Euler equations and related
nonlinear PDEs of mixed type. Then we present an effective nonlinear method and related techniques
for solving these free boundary problems, which should also be useful to analyze other longstanding or
newly emerging free boundary problems for nonlinear PDEs.
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1. INTRODUCTION

The purpose of this expository paper is to survey some recent developments in the analysis of free
boundary problems originating from the analysis of multidimensional (M-D) transonic shock waves for
the Euler equations in compressible fluid dynamics and related nonlinear nonlinear partial differential
equations (PDEs). We show how several multidimensional transonic problems can be formulated as
free boundary problems for the Euler equations and then present an efficient nonlinear method and
related techniques for solving these free boundary problems.

Shock waves are steep wavefronts that are fundamental in nature, especially in high-speed fluid flows
governed by the compressible Euler equations in fluid mechanics. The time-dependent compressible
Euler equations are a nonlinear second-order nonlinear waves equations for potential flow or a first-order
system of hyperbolic conservation laws for full Euler flow. One of the main features of such nonlinear
PDEs is that, no mater how smooth the initial data starts with, the solution develops singularity in
a finite time to form shock waves generically, so that the notion of solutions has to be extended to
the notion of entropy solutions in order to accommodate the discontinuity waves such as the shock
waves, that is, the weak solutions satisfying the entropy condition that is consistent with the second
law of thermodynamics. The general entropy solutions involving shock waves (shocks for short) for
this system have extremely complicated and rich structures. On the other hand, many fundamental
problems in physics and engineering involve steady solutions (i.e., time-independent solutions) or self-
similar solutions (i.e., the solutions depend only on the self-similar variables with form % for the space
variables x and time-variable t). Such solutions are governed by the steady or self-similar compressible
Fuler equations for potential flow or, more generally, the full Euler flow. These governing PDEs in the
new forms are time-independent and often are of mixed elliptic-hyperbolic type.

Generally speaking, multidimensional transonic shocks are codimension-one discontinuity fronts in
the solutions of the steady or self-similar Euler equations and related nonlinear PDEs of mixed elliptic-
hyperbolic type, which separate two phases: one of them is supersonic phase (i.e., the fluid speed is
larger than the sonic speed) which is hyperbolic, while the other is subsonic phase (i.e., the fluid speed is
smaller than the sonic speed) which is often elliptic (for potential flow) or elliptic-hyperbolic composite
(for full Euler flow; i.e., elliptic equations composited with some hyperbolic transport equations). They
are formed in many physical situations, for example, by smooth supersonic flows or supersonic shock
waves impinging onto solid wedges/cones or passing through a de Laval nozzle, around supersonic or
near-sonic flying bodies, or other natural processes. Mathematical analysis of shock waves (shocks, for
short) can date back Stokes [112], Riemann [101], starting for the one-dimensional case. Mathematical
understanding of multidimensional transonic shocks has been one of the most challenging and long-
standing scientific research directions, since the solutions involved are discontinuous across the shocks.
Such transonic shocks can be formulated as free boundary problems (FBPs) in the mathematical theory
of nonlinear PDEs involving mixed elliptic-hyperbolic type.

General speaking, a free boundary problem is a boundary value problem for a PDE or a system
of PDEs which is defined in a domain, a part of whose boundary is a priori unknown; this part
is accordingly named as a free boundary. The mathematical problem is then to determine both the
location of the free boundary and the solution of the PDE or the system of PDEs in the resulting domain,
which requires to combine Analysis and Geometry in sophisticated ways, together with mathematical
modelling based on Physics and Engineering. FBPs are one of the most important research directions
in the analysis of PDEs, with wide applications across the sciences and real world problems; on the
other hand, it is widely regarded as a truly challenging field of Mathematics.

Transonic shocks problems for steady or self-similar solutions are typically formulated as boundary-
value problems for a nonlinear PDE or system of mixed elliptic-hyperbolic type, where the type of PDE
at a point is determined by the solution (as well as its gradient for some models). For a system, the type
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is more complicated and may be either hyperbolic, or mixed-composite elliptic-hyperbolic (simply also
called “mixed”, for short when no confusion arises). General solutions of such nonlinear PDEs can be
nonsmooth and of complicated structure, and their uniqueness is not known in many cases. However,
in many problems, especially the those motivated by physical phenomena, the expected structure of
solutions is known from the physics. The solutions are expected to be piecewise smooth and to have
some hyperbolic and elliptic regions separated by shocks, or sonic surfaces (or curves in the 2-D case)
with continuous type-transition (i.e., the type of the PDEs changes without discontinuities in the
quantities corresponding to the physical velocities). In this paper, we present the problems in which
the hyperbolic part of the solution is known apriori, or can be determined separately from the elliptic
part, in some larger region. Then the problem is reduced to determining the region in which the solution
is elliptic, with the transonic shock as a part of its boundary is the transonic shock. In other words,
we need to solve a free boundary problem with the transonic shock as a free boundary for the elliptic
phase of the solution. Since the type of the PDE or system depends on the solution, the ellipticity in
the region to be determined is a part of the results to be proved. We note that, in some other problems
involving shocks, a FBP needs to be solved in order to find the hyperbolic part of the solution as well.
We will not discuss such problems in this paper.

For several problems which we discuss below, the PDEs are a single second-order nonlinear equation
of second order, whose type (elliptic or hyperbolic) depend on the gradient of solution. That is, the
quasilinear elliptic PDE of second order, whose coefficients (and thus the type of the PDE) depend on
the gradient of solution. In the other problems, the PDEs are a first-order nonlinear system, whose type
is either hyperbolic or composite elliptic-hyperbolic, and is determined by the solution only. In these
problems as FBPs, the key is to determine the expected elliptic region in which the solution is solved,
while the hyperbolic part of the solution is apriori known. However, since the equation or system is
of mixed type, the ellipticity in the region depends on the solution and thus is not determined apriori,
and needs to be controlled in the process of solving the problem.

In all the problems discussed in the paper, the equation (or a part of the system) is elliptic for
our solution in the region determined by the free boundary problem. That is, we solve an (expected)
elliptic free boundary problem. However, the methods of elliptic FBPs, starting from the variational
methods of Alt-Caffarelli [1] and Alt-Caffarelli-Friedman [2—4], and the Harnack inequality approach of
Caffarelli [14-16] to other methods of many further works, do not directly apply to our problems. One
of the reasons is that the type of equation needs to be controlled in order to apply these methods, which
requires some strong estimates already. Another technical reason is that the mixed elliptic-hyperbolic
problems do not directly fit into a standard variational framework, because the Euler-Lagrange equation
is elliptic for convex functionals. On the other hand, the equations and boundary conditions with
elliptic truncation have a complicated structure, which does not fit in the framework of [1-4] and other
works on variational free boundary problems. The reasons of why methods of [14-16] do not apply
directly include that a boundary comparison principle for positive solutions of nonlinear elliptic PDEs
in Lipschitz domains is unavailable yet, in the case that nonlinear PDEs are not homogeneous with
respect to the unknown function and its derivatives, which is the case for the problem. To overcome
these difficulties, we use the global structure of our problem. It allows to derive certain properties of
the solution (such as monotonicities), which allow to control the type of the PDEs and the geometry
of the problem. With this, we solve the free boundary problem by the iteration procedure.

Because of the nonlinearity and mixed type of the equation/system, it is not clear if general weak
solutions of the problem we consider is unique. On the other hand, we are interested in the solutions of
a specific structure, motivated by physical applications. Thus, we construct the solution in a carefully
defined class of solutions, which we call admissible solutions. This class needs to be defined with two
somewhat opposite features: the conditions determining this class need not only to be flexible enough
so that this class contains all possible solutions of the problem which are of the desired structure,
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but also to be rigid enough so that the conditions in the definition of admissible solutions force the
desired structure of the solution and give the sufficient analytic and geometric control such that one can
derive the estimates for these solutions and eventually construct a solution in this class by the iteration
procedure. In order to define such class, we start with the solutions near some background solutions

(i) to make sure that the solutions obtained are still in the same phase (elliptic) via careful esti-
mates;

(ii) to gain the insight and motivation for the solution structures and properties to form an admis-
sible class of solutions on which the apriori estimates and fixed point argument are based.

In several problems below, we consider only the solutions near the background solution, as in (i) above.
In the other problems, see Section 4, we carry out both steps described above and construct admissible
solutions which are not close to any known background solution.

Furthermore, The elliptic and hyperbolic regions may be separated not only by shocks, which are
discontinuity fronts for velocities, but also by sonic surfaces (or curves in the 2-D case) where the
type of the equation changes without discontinuities in the quantities corresponding to the physical
velocities, as pointed out earlier. This means that the ellipticity and hyperbolicity degenerate near the
sonic surfaces. This introduces additional difficulties in the analysis of such solutions. Also, the sonic
surfaces (or curves) may intersect the transonic shocks (see e.g. Figure 4.1, point P;) so that, near such
points, the analysis of solutions is even more involved.

The organization of this expository paper is as follows: In §2, we start with our presentation of
multidimensional transonic shocks and free boundary problems for the Euler equations in a setup as
simple as possible, and show how a transonic shock problem can be formulated as a free boundary
problem for the corresponding nonlinear PDEs of mixed elliptic-hyperbolic type. Then we describe a
nonlinear method and related ideas/techniques, first developed in Chen-Feldman [31], with focus on
the key points for solving such free boundary problems through this simplest setup. In §3, we describe
how the nonlinear method and related techniques presented in §2 can be applied to solve the existence,
stability, and asymptotic behavior of two-dimensional steady transonic flows with transonic shocks past
curved wedges for the full Euler equations, by reformulating the problems as free boundary problems
via two different approaches. In §4, we describe how transonic shocks and free boundary problems for
self-similar shock reflection/diffraction for the Euler equations for potential flow. In §5, we discuss some
recent developments in the analysis of geometric properties of transonic shocks as free boundaries in
two-dimensional self-similar coordinates for compressible fluid flows with focus on convexity properties
of the self-similar transonic shocks in §4. Finally, in §6, we give several concluding remarks including
some open problems for further developments.

2. MULTIDIMENSIONAL TRANSONIC SHOCKS AND FREE BOUNDARY PROBLEMS FOR THE STEADY
EULER EQUATIONS FOR POTENTIAL FLOW

For clarity, we start with our presentation of multidimensional transonic shocks and free boundary
problems for the Euler equations in a setup as simple as possible, and show how a transonic shock
problem can be formulated as a free boundary problem for the corresponding nonlinear PDEs of mixed
elliptic-hyperbolic type. Then we describe a nonlinear method and related ideas/techniques, first
developed in Chen-Feldman [31], with focus on the key points for solving such free boundary problems
through this simplest setup.

The steady Euler equations for potential flow, consisting of the conservation law of mass and the
Bernoulli law for the velocity, can be written into the following second-order, nonlinear PDE of mixed
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elliptic-hyperbolic type for the velocity potential ¢ : R¢ — R by scaling:
div (p(| D) D) = 0, (2.1)
where the density function p(g?) is
p(@®) = (1 0¢%)% (2.2)
with 6 = VTfl > 0 for the adiabatic exponent v > 1, and D := (0z,,...,0z,), i.e., the gradient with

respect to x = (z1,...,14) € R%
Equation (2.1) can also be written in the non-divergence form:

d
Z |D90| 51] +20 (D] )‘Pm%pxg)‘ﬂxzx] =0, (2.3)

where the coefficients of the second-order PDE (2.3) depend on D¢, the gradient of the unknown
function ¢.

The second-order nonlinear PDE (2.1), or equivalently (2.3) for smooth solutions, is strictly elliptic

at Dy with |Dyp| = ¢ if

p(d) +24°0'(¢°) > 0; (2.4)
and is strictly hyperbolic if

p(q*) +2¢%0'(¢*) < 0. (2.5)
In fluid mechanics, the elliptic regions of equation (2.1) correspond to the subsonic flow, the hyperbolic
regions of (2.1) to the supersonic flow, and the regions with p(q?) + 2¢%p’(¢?) = 0 for ¢ = |D¢| to the
sonic flow.

2.1. Multidimensional Transonic Shocks and Free Boundary Problems. Let Q c R? be a
domain. A function p € WH®(Q) is a weak solution of (2.1) in § if

(i) [Dp(x)| <1/ a.e. xeQ (i.e., physical region after the scaling);
(ii) for any test function ¢ € C§°(£2),

L#MDM%Dwikdx=0 (2.6)

We are interested in the weak solutions with shocks (surfaces of jump discontinuity of the solutions
with codimension-one), motivated from Continuum Physics. More precisely, let Q% and Q7 be open
nonempty subsets of €2 such that

QT =g, QtuQ =Q,
and S := 0Q7\09Q. Let ¢ € WH®(Q) be a weak solution of (2.1) so that ¢ € C2(Q%) n C1(QF) and Dy
has a jump across S.

We now derive the necessary conditions on S that is a C' surface of codimension-one. First, the
requirement that ¢ is in W% (Q) yields curl(Dg) = 0 in the sense of distributions, which implies

ot =, on S, (2.7)
where
o1 = Dp* — (D™ -v)v
are the trace values of the tangential gradients of ¢ on S in the tangential space with (d — 1)-dimension
on the OF sides, respectively, and v is the unit normal to S from Q= to Q. Then we simply write

@7 := % on S and choose
et =~ onS. (2.8)
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Now, for ¢ € Ci°(2), we use (2.6) to compute

(J J ) (|Dg[?) Dy - D¢ dx

_ —f o(IDe2) D - v ¢ dH f p(IDo*) Dy - v ¢ M
o+ 00—

= L (=p(ID¢™|?) D™ v + p(|Dy™|) Dy~ - v) (dH,

where H? ! is the (d — 1)-dimensional Hausdorff measure, i.e., the surface area measure. Thus, the
other condition on &, which measures the trace jump of the normal derivative of ¢ across S, is

p(IDet Yot = p(IDe™|P)¢,  on S, (2.9)

where pt = Dp® - v are the trace values of the normal derivative of ¢ along S on the O sides, and

1
p(IDe* ) = (1= Oloz? — 0oy |2) >,
respectively.
Conditions (2.8)—(2.9) are called the Rankine-Hugoniot conditions for potential flow in fluid mechan-
ics. On the other hand, it can also be shown that any ¢ € C?(2%) n C1(QF) such that Dy has a jump
across S satisfying the Rankine-Hugoniot conditions (2.8)—(2.9), must be a weak solution of (2.1).

Therefore, the necessary and sufficient conditions for ¢ € C2(Q%) n C*(QF) to be a weak solution of
(2.1) are the Rankine-Hugoniot conditions (2.8)—(2.9).

For given K > 0, consider the function:

1

Dy (p) = (K —0p*)* p for p € [0,/ K /0]. (2.10)

This function satisfies
k(p) > 0for pe (0,4/K/0), lim, 0 Px(p) = hmpH\/Ki/e Ox(p) =0, (2.11)
0 < @ (p) < K for pE (O,pgnic), P (p) <0 forpe (pggnic, K/0), (2.12)
@7 (p) < 0 for pe (0,pE ], (2.13)

where

pggnic = K/(Q + 1) (214)

By direct calculation, condition (2.4) is equivalent to ®/(q) > 0, and condition (2.5) is equivalent to
@' (q) < 0. Thus, using (2.12), we obtain that PDE (2.1) is strictly elliptic at Dy if |Dy| < pl. .. and
is strictly hyperbolic if |Dp| > pl. .., where we use the notation (2.14).

Suppose that ¢(x) is a solution satisfying

|D()0| < péonic = 1/V 0 +1 in Q+7 |D90| > pslonic in Q_v (215)
and
De* v >0 onS, (2.16)

besides (2.8) and (2.9). Then ¢(z) is a transonic shock solution with transonic shock S that divides
the subsonic region Q% from the supersonic region Q~. In addition, ¢(x) satisfies the physical entropy
condition (see Courant-Friedrichs [56]; also see [57,76]):

p(IDe™ %) < p(IDe ™) (2.17)
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which implies, by (2.16), that the density p increases in the flow direction. Note that equation (2.1) is
elliptic in the subsonic region Q™ and hyperbolic in the supersonic region Q7.

For clarity of presentation of the nonlinear method, first developed in Chen-Feldman [31], we focus
first on the free boundary problem in the simplest setup, while the method and related ideas and
techniques have been applied to more general free boundary problems involving transonic shocks, which
will be discussed later.

Let (x',24) be the coordinates of R? with 24 € R and x' = (z1,--- ,24 1) € R%"!. From now on, in
this section, we focus on Q := (0,1)4~! x (=1, 1) for simplicity without loss of our main objectives.

Let ¢~ € (Plonics 1/V0) and @ () := ¢~ z4. Then ¢y is a supersonic solution in Q. From (2.11)-
(2.13), there exists a unique ¢* € (0, pl . ) such that

a1 a1
(1—0(a")*)*q" = (1-6(a )*)*q . (2.18)
In particular, ¢* < ¢~. Define o] (x) := ¢*z4 in Q. Then the function
¢o(x) = min(pg (x), ¢y (x)) (2.19)

is a transonic shock solution in €2, in which Qa—r = {z4 = 0} N Q are the subsonic and supersonic regions
of g(x), respectively. Also note that, on 9(0,1)%"! x [~1,1], the boundary condition (¢g), = 0 holds.

We start with perturbations of the background solution ¢g(x) defined in (2.19). We use the following
Hélder norms: For a € (0,1) and any non-negative integer k,

|DPu(x) — DPu(y)]

[ulroo = Y, sup(|IDPu(x),  [ulgao= > sup - . (2.20)
18| =k z€Q2 |8|=k X,y€Q,x#y Ix -yl
k
lulroo = Yluljoe  lulkeo = lulkoo + [ulkao:

j=0
where 8 = (B1,- -, B4), B; = 0 integers, DB = 6511 . --65;‘, and |B| = p1+ -+ Ba-

Then the transonic shock problem can be formulated as:

Problem 2.1. Given a supersonic solution o~ of (2.1) in Q, which is a C*< perturbation of ©p

lo™ —wgl2an <o (2.21)
for some a € (0,1) with small o > 0 and satisfies
¢, =0 on 0(0,1)%1 x [-1,1], (2.22)

find a transonic shock solution  in Q0 such that

p=p" in Q= Q\QT,
where QF = {x € Q : |Dp(x)| < pl .} is the subsonic region of p, which is the complementary set
of the supersonic region of ¢ in 2, and
p=p on (0,1)1 x {~1},
= of on (0,1)%1 x {1}, (2.23)

v, =0 on 0(0,1)% 1 x [-1,1].
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Since ¢ = ¢~ in Q7, |Dp| < pl .. <|Dp~| in QF, |Dp~| ~ 0,,07 > pl . in Q, and it is expected
that QF = {z4 > f(X')} n Q and |Dy| ~ 05,0 < pl .. in QF with (2.8) across the transonic shock
S ={zqg = f(X)} N Q, then ¢ should satisfy

o(x) < ¢ (%), for x € Q. (2.24)

This motivates the following reformulation of Problem 2.1 into a more general free boundary problem
for the subsonic (elliptic) part of the solution:

Problem 2.2 (Free Boundary Problem). Find ¢ € C(Q) such that
(i) ¢ satisfies (2.24) in Q and (2.23) on 09;

(ii) @ € C2%(QT) is a solution of (2.1) in QF = {xe€ Q : p(x) < ¢~ (x)}, the non-coincidence set;

(iil) the free boundary S = 00+ N Q is given by xq = f(X') for x' € (0,1)97! so that QF = {x4 >
FO0) [ '€ (0,111 with € C2([0,]41);

(iv) the free boundary condition (2.9) holds on S.

In the free boundary problem (Problem 2.2) above, phase ¢~ is not required to be a solution of (2.1)
and ¢ is not necessary to be subsonic in QF, although we require the subsonicity in Problem 2.1 so
that the free boundary is a transonic shock.

It is proved in Chen-Feldman [31] that, if the perturbation ¢~ — ¢y is small enough in C?®, then the
free boundary problem (Problem 2.2) has a solution, and this implies that Problem 2.1 has a transonic
shock solution. Furthermore, the transonic shock is stable under any small C*“ perturbation of ¢~.

Theorem 2.1 (Chen-Feldman [31]). Let ¢* € (0,pl ) and ¢~ € (plyie, 1/V0) satisfy (2.18). Then
there exist positive constants og, C1, and Cy depending only on q*, d, v, and Q such that, for every
o < og and any function ¢~ satisfying (2.21) and (2.22), there exists a unique solution ¢ of the free
boundary problem, Problem 2.2, satisfying

lo = @5 2,00+ < Cro.
In addition, QF = {zq > f(x)} n Q with f: R — R satisfying
[l < Coo. Dy f(x) =0 on 20, 1)1,

that is, the free boundary S = {(x',zq) : xq = f(x'),x' € R} A Q is in C** and orthogonal to 02
at their intersection points.

In particular, we obtain

Corollary 2.3. Let ¢& be as in Theorem 2.1, and let oy be the constant defined in Theorem 2.1. If ¢~
satisfies conditions of Theorem 2.1 with o < g, and if ¢~ (X) is a supersonic solution of (2.1) satisfying
the conditions stated in Problem 2.1, then there exists a transonic shock solution ¢ of Problem 2.1 with
the shock S = {(x',zq) : zq = f(X'),x" € R} N Q. Functions ¢ and f have the properties stated in
Theorem 2.1.

Indeed, under conditions of Corollary 2.3, solution ¢ of Problem 2.2 obtained in Theorem 2.1, along
with the free boundary S = {(x/,z4) : z4 = f(x'),x’ € R9™1} 1 Q, forms a transonic shock solution of
Problem 2.1.

The following features of equation (2.1) and the free boundary condition (2.9) are employed in the
proof of Theorem 2.1.
(i) The nonlinear equation (2.1) is uniformly elliptic only if |Dp| < pl, .. —¢& in Q* for some ¢ > 0;
(ii) Dot = (leg* + |g07|2)1/2 on § is subsonic only if ¢, is sufficiently small;
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(iii) The free boundary condition (2.9) is uniformly non-degenerate (i.e., ¢, — ¢} is bounded from
below by a positive constant on S) only if 5, > p& . —c on S for some e > 0 with K = 16|, |*.

By (2.21), these conditions hold if, for any x € S, the unit normal v(x) to S is sufficiently close to
being orthogonal to {z4 = 0}.

2.2. A Nonlinear Method for Solving the Free Boundary Problems for Nonlinear PDEs of
Mixed Type. We now describe an iterative method and related techniques, developed first in Chen-
Feldman [31], for the construction of solutions of free boundary problems for equations of mixed elliptic
hyperbolic type, through Problem 2.2 for the simplest setup. In Theorem 2.1 we construct a solution
which is close to a given background solution, and we describe now the version of the method which
is restricted to this setup. The key ingredient is an iteration scheme, based on the non-degeneracy of
the free boundary condition: the jump of the normal derivative of solutions across the free boundary
has a strict lower bound. Since the equation is of mixed type, we make a cutoff (truncation) of the
nonlinearity near the value related to the background solution in order to fix the type of equation (make
it elliptic) and, at the fixed point of the iteration, we remove the cutoff by an estimate. The iteration
set consists of functions close to the background solution, in the present case in C*® norm. Then,
for each function from the iteration set, the nondegeneracy allows to use one of the Rankine-Hugoniot
conditions, equality (2.8), to define the iteration free boundary, which is a smooth graph. In the domain
Q" determined by the iteration free boundary, we solve a boundary-value problem, with the truncated
PDE, and with the condition on the shock derived from another Rankine-Hogoniot condition, (2.9), by a
truncation similar to the truncation of the equation, to achieve the uniform obliqueness, and with other
appropriate modifications, in some cases with the use of condition (2.8). On the rest of the boundary
of the iteration domain the conditions for the iteration problem are same as in the original problem.
The solution of this iteration problem defines the value of the iteration map. We use estimates for the
iteration problem to prove existence of a fixed point of the iteration map. Then we show that a fixed
point is a solution of the original problem.

In some further problems, we look for solutions which are not close to a known background solution.
Some of these problems, and the corresponding version of the nonlinear method described above, are
discussed in Section 4.

2.2.1. Subsonic Truncations — Shiffmanization. In order to solve the free boundary problem,
we first reformulate Problem 2.2 as a truncated one-phase free boundary problem, motivated by the
argument in Shiffman [109], so called the shiffmanization (cf. Lax [77]); also see [4, pp. 87-90]. This
is achieved by modifying both the nonlinear equation (2.1) and the free boundary condition (2.9), to
make the equation uniformly elliptic away from the elliptic region and the free boundary condition
non-degenerate. Then we solve the truncated one-phase free boundary problem with the modified
equation in the downstream region, the modified free boundary condition, and the given hyperbolic
phase in the upstream region. By a careful gradient estimate later on, we prove that the solution in
fact solves the original problem. We note that for steady potential flow equation (2.1), the coefficients
of it non-divergent form (2.3)) depend on D¢, so the type of equation depends on Dg. Because of this
the iteration procedure has no additional compactness effect, which is different from that in [18].
We first recall that the ellipticity condition for (2.1) at |Dey| = ¢ is (2.4), which is equivalent to

P (q) > 0, (2.25)

where @ (p) is the function defined in (2.10). By (2.12), inequality (2.25) holds for ¢ € (0, p ;.)-

The shiffmanization is done by modifying ®1(¢) so that the new function ®1(q) satisfies (2.25)
uniformly for all ¢ > 0 and, around g%, ®1(q) = ®1(g). More precisely, the procedure is in the following
steps:
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1. Denote ¢ :=
q = pl. ;. —e. Then, using (2.12), we obtain ¢y = @/ (
Define ®; : [0,0) — R as

1
Psonic _q+
D) .

—¢)>0.

1
Psonic

cog+c ifg> psloniC —g,

which satisfies ®; € C1([0, 0)).

2. Define -
0]
p(s) = 1\(/\5/5) for s € [0, 00).
Then j e CH1([0,00)) and
pd*) = p(q®)  if 0< ¢ < plonic — €

By (2.12)-(2.13) and the definition of ®; in (2.26),

/

0<co= (I)l(péonic - 5) < &)ll(q) = ﬁ(qQ) + 2q2ﬁ,(q2) <C for g € (07 OO)
for some constant C' > 0. Then the equation
L := div (p(|D¢|*) D) = 0
is uniformly elliptic, with ellipticity constants depending only on ¢* and +.
3. We also do the corresponding truncation of the free boundary condition (2.9):

A(IDe?)pw = p(|IDe~|*) D™ - v on S.

Let y = coq + ¢1 be the tangent line of the graph of y = ®1(q) at

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

On the right-hand side of (2.30), we use the non-truncated function p since p # p on the range of
|Dp~|2. Note that (2.30), with the right-hand side considered as a known function, is the conormal

boundary condition for the uniformly elliptic equation (2.29).
4. Introduce the function
U= — Q.
Then, by (2.24), the problem is to find u € C'(Q) with u > 0 such that

(i) uwe C%*(Q+) is a solution of

div A(Du,x) = f(x) in Q1 := {u > 0} n Q (the non-coincidence set),
A(Du,x) - v = G(v,x) on § :=dNT\0Q,
and the boundary condition on 0 determined by (2.23) and ¢~ (x):

u=0 on (0,1) 1 x {—1},

u=¢" —pf on (0,1) 1 x {1},

uy = 0; on 9(0,1)1 x [~1,1],

where v is the unit normal to S towards the unknown phase and
A(P,%) = #(1D¢~(x) - PR)(Dg (x) — P) — i(IDg~ (x))Dg~(x),  PeRY,
F(x) = —div (3 Dy~ ()2 Dy (x)),
G(v,%) = (p(IDg=(X)?) — 5| D™ (3)2)) D™ () - w.

Note that we used (2.22) to determine the condition on third line of (2.33).

(2.31)
(2.32)

(2.33)

(ii) the free boundary S := 00" N Q = {xg = f(x') : X' € (0,1)71}, so that QF = {xg > f(X)} N Q

with f e C%%([0,a]?!) and Dy f = 0 on 9((0,1)4"! x [~1,1]);
(iii) the free boundary condition (2.32) holds on S.
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2.2.2. Domain Extension. We then extend domain {2 of the truncated free boundary problem in
§2.2.1 above to domain €2, so that the whole free boundary lies in the interior of the extended domain.
This is possible because we consider the simple geometry of the domain in this section.

Notice that, for a function ¢ € C>*(Q) with Q := (0,1)?"! x (=1,1) and
¢ =0  on 8(0,1)47 x [-1,1], (2.34)
we can extend ¢ to R¥™! x [—1,1] so that the extension (still denoted) ¢ satisfies
¢e O R x [-1,1]),
and, for every m=1,--- ,n—1,and k =0, +1,+2,---,

¢($17 Ly Tm—1, k— 2y Tm+1,""" ,.’Ed) = ¢(.’E1, oy Tm—1, k+ 2y Tm+1,""" ,l’d), (235)
that is, ¢ is symmetric with respect to every hyperplane {z,, = k}. Indeed, for k = (ki,--- ,k4_1,0)
with k1, -+, kq_1 integers, we define

o(x+ k) =o(n(x1, k1), - ,n(xg_1,ka1),xq) for x e (0,1)1 x [~1,1],

with
t if k£ is even,
it k) = { 1=t if ks odd.
It follows from (2.35) that ¢(x’, z4) is 2a-periodic in each variable of (z1,--- ,24-1):

d(x + 2ep,) = ¢(x), for xe RC L x [-1,1], m=1,---,d -1,

where e, is the unit vector in the direction of .

Thus, with respect to this 2-periodicity, we can consider ¢ as a function on Q, := T4 x [~1,1],
where T¢! is an (d — 1)-dimensional flat torus with its coordinates given by cube (0,2)%~!. Note that
(2.35) represents an extra symmetry condition, in addition to ¢ € C?*(T9"! x [~1,1]), and (2.35)
implies (2.34).

Then, by (2.22), we can extend ¢~ in the same way, that is, ¢~ € C2%(Q,) satisfies (2.35). Also, @7
can be also considered as the functions in 2, satisfying (2.35), since i (x) = ¢*xy in R¥! x [—1,1],
which is independent of x'.

Therefore, we have reduced the transonic shock problem, Problem 2.2, into the following free bound-
ary problem:

Problem 2.4. Find u € C() with u > 0 such that

(i) ue C?*(Qe™) is a solution of (2.31) in Qe := {u(x) > 0} N Qe, the non-coincidence set;
(ii) First two conditions in (2.33) hold on 08, i.e. u =0 on 0Qe N {x, = —1} and

u=p" —pg on 0% N {z, =1} (2.36)

(iii) the free boundary S = 0QF N Qe is given by the equation: xq = f(x') for x' € T, so that
O ={xg > f(x) | X' € T4} with fe C>*(T9 ) and Dy f =0 on o(T! x [-1,1]);
(iv) the free boundary condition (2.32) holds on S.

As indicated in §2.1, similarly, one of the main difficulties for solving the modified free boundary
problem, Problem 2.4, is that the methods of previous works on elliptic free boundary problems do not
directly apply to it. Indeed, equation (2.31) is quasilinear, uniformly elliptic, but does not have a clear
variational structure, while the function G(v, x) in (2.32) depends on v. Because of these features, the
variational methods in [1, 3] do not directly apply to Problem 2.4. Moreover, the nonlinearity in our
problem makes it difficult to apply the Harnack inequality approach of Caffarelli [14-16]. In particular,
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a boundary comparison principle for positive solutions of elliptic equations in Lipschitz domains is
unavailable yet in our case that nonlinear equations are not homogeneous with respect to (D?u, Du,u)
here. Therefore, a different nonlinear method is required to overcome these difficulties for solving
Problem 2.4.

2.2.3. Iteration Scheme for Solving Free Boundary Problems. The iteration scheme, developed
in Chen-Feldman [31], is based on the non-degeneracy of the free boundary condition: the jump of the
normal derivative of a solution across the free boundary has a strictly positive lower bound.

Denote ug 1= ¢~ — <par . Note that g satisfies the nondegeneracy condition: d,,up = ¢~ —¢" > 01in

Q. Assume that (2.21) holds with o < q_l_()q+. Let function v on Qe be given such that ||v — (¢~ —

gog )| C2o(00) < %, then v satisfies the nondegeneracy condition: 0,,v = q7§q+ > 0 in Q.. Define

domain Q*(v) = {v > 0} € Q.. Then QF(v) = {zg > f(X/) | X' € T* 1} and S(v) := QT (v)\0Qe =
{zg = f(X)) | X' € T4 '} with f e C**(T9"!). We solve the oblique derivative problem (2.31)-(2.32)
and (2.36) in Q*(v) to obtain the solution u € C**(Q*(v)). However, u is not identically zero on S(v)
in general, and then u is not a solution of the free boundary problem. Next, estimates for the problem

(2.31)—(2.32) and (2.36) in Q7 (v) show that |u — (¢~ — @8’)“027&(9?@)) is small. Then we extend u to

the whole domain Qe so that |u— (¢~ — @) c2.0(qy) 1s small. This defines iteration v — u. The fixed
point u = v of this process determines a solution of the free boundary problem, since u is a solution
of (2.31)-(2.32) and (2.36) in Q% (u), and u satisfies u = v > 0 on Q7 (u) = Q*(v) := {v > 0}, and
u=v=0o0n8 := 00" (v)\0Q. Then we need to show existence of a fixed point. Because of the
dependence on v on the right-hand side of the free boundary condition (2.32), the elliptic estimates
alone are not sufficient for that. However, the structure of our problem allows to obtain better estimates
for the iteration and to prove the existence of a fixed point. More precisely, the nonlinear method can
be described in the following five steps:

1. Tteration set. Let M > 1. Set
Ky ={weC** Q) : |w— (¢ —¢f)

where ¢ (x) = ¢Tx4. According to the definition, Ky is convex and compact in C?*8(0),0 < B < a.
Let w € Kps. Since ¢~ > ¢7, it follows that, if

20,0 < Mo, w satisfies (2.35)}, (2.37)

- _ gt
< % (2.38)
then (2.37) and (2.21) imply
Wy, (X) = q_;(ﬁ > 0. (2.39)
Then, by the implicit function theorem, Q% (w) := {w(x) > 0} N Q2 has the form:
OH(w) = fra = f) | X €T, [ flyapin < CMo <1, (2.40)

with C' depending upon ¢~ — ¢, and the last inequality is obtained by choosing small o. The corre-
sponding unit normal
(—Dy f(x'),1)

V14 [Dy f(x)?

lv —volly o ga-1 < CMo, (2.41)

V(XI) _ c Cfl,oz(r]rdfl;gdfl)7

and

where vy is defined by

-+
vy = D(%_—(p(jr) =(0,---,0,1)". (2.42)
|D(<P0 —<P0)|
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Also, v(+) can be considered as a function on S, := {zg = f(x’)}. From the definition of f(x’) in (2.40),
it follows that, for x € S,

Dw(x)
v(x) = ——. (2.43)
| Dw(x)]
By the definition of Ky and (2.38) with (2.21), v(x) can be extended to €2 via formula (2.43) and
lv — w100, < CMo (2.44)

with C = C(q",q™). Motivated by the free boundary condition (2.30), we define the function, G,,, on
Qe:
Gu(x) = (p(IDe~(x)|*) = p(IDe™ (x)*)) D™ (%) - v(x), (2.45)
where v(-) is defined by (2.43).
We now solve the following fixed-boundary value problem for u in domain Q% (w):

div A(Du,x) = f(x) in Q" := {w > 0}, (2.46)
A(Du,x) -v = G(v,x) on S := 0T\, (2.47)
u=¢ —q" on {xg =1} = 00" (w)\Suw, (2.48)

and show that its unique solution u can be extended to the whole domain €, so that u € K.

2. Existence and uniqueness of the solution for the fixed boundary value problem (2.46)—
(2.48). We establish the existence and uniqueness of solution u for problem (2.46)—(2.48) and show
that u is close in C%*(QF(w)) to the unperturbed subsonic solution ¢~ — ¢ : Let M > 1. There exists
oo > 0, depending only on M, ¢*, Q, d, and v such that, if o € (0,0¢) so that ¢~ satisfies (2.21) and
w € Ky, there exists a unique solution u € C*%(Q*(w)) of problem (2.46)—(2.48) that satisfies (2.35)
and

lu = (o™ = @0 l2,0.0+(w) < Co, (2.49)
where C' depends only on (¢*,Q,d,~), and is independent of M, w € Ky, and o € (0, 09).
To achieve this, it requires to combine the existence arguments with careful Schauder estimates for
nonlinear oblique boundary value problems for nonlinear elliptic equations, based on the results in
Gilbarg-Trudinger [65], Lieberman [84], Lieberman-Trudinger [85], and the references cited therein.

3. Construction and continuity of the iteration map. Then we construct the iteration map by
an extension of the unique solution of (2.46)—(2.48), which satisfies (2.49), and show the continuity of
the iteration map: Let u(x) be a solution of problem (2.46)-(2.48) in domain Q% (w) established in
Step 2 above. Then u(x) can be extended to the whole domain 2. in such way that this extension,
denoted as P,u(x), satisfies the following two properties:
(i) There exists Cy > 0, which depends only on (¢*,€Q,d,~) and is independent of (M, o) and w(x),
such that
[Pwt = (™ = @5) 20,0, < Coo (2.50)
(ii) Let 3 € (0,a). Let a sequence w; € Ky converge in C25(Q,) to w € K. Let uj € C2(Q+ (w;))
and u € C%(Q " (w)) be the solutions of problems (2.46)—(2.48) for w;(z) and w(x), respectively.
Then Py, u;j — Pyu in C*P(Qe).

Define the iteration map J : Ky — C**(Q.) by
Jw = Pyu, (2.51)

where u(x) is the unique solution of problem (2.46)—(2.48) for w(x). By (2.50), J is continuous in the
C%P(Qe)-norm for any positive 3 < a.
Now we denote by u(x) both the function u(x) in QF(w) and its extension Pyu(x).
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Choose M to be the constant Cy from (2.50). Then, for u € Kps, we see that u := Jwe Ky if 0 >0
is sufficiently small, depending only on ¢*, €, d, and +, since M is now fixed. Thus, (2.51) defines the
iteration map J : Kps — Kps and, from (2.50), J is continuous on Kps in the C?#(Q,)-norm for any
positive 8 < a.

4. Existence of a fixed point of the iteration map. We then prove the existence of solutions of
the free boundary problem, Problem 2.2.

First, in order to solve Problem 2.4, we seek a fixed point of map J. We use the Schauder fixed point
theorem (cf. [65, Theorem 11.1]) in the following setting:

Let 0 > 0 satisfy the conditions in Step 3. Let 5 € (0,«). Since {2 is a compact manifold with
boundary and Kjs is a bounded convex subset of Cz’a(ﬁe), it follows that KCp; is a compact convex
subset of C%2#(Q.). We have shown that J(Ky;) = Kys, and J is continuous in the C?#(£2,)-norm.
Then, by the Schauder fixed point theorem, J has a fixed point ¢ € Kjy.

If u(x) is such a fixed point, then

(x) := max(0, u(x))
is a classical solution of Problem 2.4, and S(u) is its free boundary.

It follows that ¢ := ¢~ — @ is a solution of Problem 2.2, provided that o is small enough so that
(2.49) implies that |Dy| = |D(¢p~ —u)(x)| < pl, ;. —€ on QT (u), where e = % defined in §2.2.1.
Indeed, then (2.28) implies that ¢(x) lies in the non-truncated region for equation (2.29). Note also
that boundary condition ¢, = 0 on 0(0,1)?! x [—1, 1] is satisfied because u and ¢~ satisfy (2.35) on
T x [-1,1].

For such values of o, if ¢~ (x) is a supersonic solution of (2.1) satisfying the conditions stated in
Problem 2.1, the function ¢(x) is a solution of Problem 2.1. Indeed, |Dg| = |D(p~ — @)| < pl . — €
on Q' (p) i= { < ¢ } = {a(x) > 0} since & = u on Q* (@), and | D] = [D(g | > plorze on NQ (),
and equation (2.1) is satisfied in Q% () and in Q\Q"(p), and Rankine-Hugoniot conditions (2.8)—(2.9)
are satisfied on & = 0Q7 (¢)\00.

This completes the construction of the global solutions. The uniqueness and stability of solutions of
the free boundary problem are obtained by using the regularity and nondegeneracy of solutions.

Remark 2.5. For clarity, in this section, we focus on the simplest setup of the domain as Q =
(0,1)1 x (=1,1), which can be extended directly to Qp = H?;%(O, a;) x (=1, R) for any R > 0, then to
QOp = H?;i x (—1,00) by analysing the asymptotic behavior of the solution when R — oo, as well as to
Q = R4 x (—1,00); see Chen-Feldman [31-33]. See also Chen [47] for the extension to the isentropic
Euler case.

If the hyperbolic phase is C®, then the solution and the corresponding free boundary in Theorem 2.1
are also C®. Furthermore, our results can be extended to the problem with a steady C* a € (0,1),
perturbation of the upstream supersonic flow and/or general Dirichlet data h(x'),x’ € R, at g =1
satisfying

17 =g h,0,re1 < Co.
Also, the Dirichlet data in Problem 2.2 may be replaced by the corresponding Neumann data satisfying
the global solvability condition.

The global uniqueness of the piecewise constant transonic shocks in straight ducts modulo translations
was analyzed in [42,63].

Remark 2.6. The setup domains have also been extended to multidimensional infinite nozzles of arbi-
trary cross-section in Chen-Feldman [34]; also see Xin-Yin [123] and Yuan [125] for the two-dimensional
case with the downstream pressure exit.
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For the analysis of geometric effects of the nozzles on the uniqueness and stability of steady transonic
shocks, see Bae-Feldman [5], Chen-Yuan [43], Liu-Yuan [89], Liu-Xu- Yuan [90], Li-Xin-Yin [79],and the
references cited therein.

Remark 2.7. The iteration scheme can also be reformulated such that the free boundary normal v as

unknown in the iteration by replacing in (2.43) the known function w by the unknown u, i.e. defining
Du(x)

v(x) Dulx)] (2.52)

Note that, at the fized point, when u = w, (2.52) coincides with (2.43), i.e. defines the normal to S.

By using expression (2.52) for v in the iteration boundary condition, we improve the regularity and

structure of the boundary condition, in particular make it independent of the regqularity and constants

in the iteration set. This is useful in many cases, see e.g. [35]. Moreover, this allows to obtain the
compactness of the iteration map, which was used in [37].

This nonlinear method and related techniques described above for free boundary problems has played
a key role in many recent developments in the analysis of multidimensional transonic shock problems,
as shown in §3-85.

3. TwO-DIMENSIONAL TRANSONIC SHOCKS AND FREE BOUNDARY PROBLEMS FOR THE STEADY
FuLL EULER EQUATIONS

We now describe how the nonlinear method and related techniques presented in §2 can be applied to
prove the existence, stability, and asymptotic behavior of two-dimensional steady transonic flows with
transonic shocks past curved wedges for the full Euler equations, by reformulating the problems as free
boundary problems via two different approaches.

The two-dimensional steady Euler equations for polytropic gases are of the form (cf. [37,56]):

div(pu) = 0,
div(pu®u) + Vp = 0, (3.1)
div(pu(E + %)) =0,
where u = (u1,u9) is the velocity, p the density, p the pressure, and F = %|u|2 + e the total energy
with internal energy e.

Choose density p and entropy S as the independent thermodynamical variables. Then the constitutive
relations can be written as (p,e,T) = (p(p, S),e(p,S),T(p,S)) governed by

TdS = de — Ldp,
p
where T represents the temperature. For a polytropic gas,

_ — kpleS/en _ = B -1S/e _ __ "
p=p(p,5) = rpe?, e =elp,§) = 7o e, T—T(p,S)—(,y_l)CU
where v > 1 is the adiabatic exponent, ¢, > 0 is the specific heat at constant volume, and k > 0 is any
constant under scaling.
System (3.1) can be written as a first-order system of conservation laws:

a:mF(U) + aJZZG(U) =0, U= (u7p7 p) e R% (33)
Solving det(AVy F(U) — VyG(U)) = 0 for A\, we obtain four eigenvalues:
—1)Vea/lul2 = ¢2
Mgtz ot CD eV = oy

Uy’ J u? — 2

pv_les/c“, (3.2)
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where
P
c p; (3.4)
is the sonic speed of the flow for a polytropic gas.

The repeated eigenvalues A\; and A\ are real and correspond to the two linear degenerate characteristic
families which generate vortex sheets and entropy waves, respectively. The eigenvalues A3 and A4 are
real when the flow is supersonic (i.e., [u| > ¢), and complex when the flow is subsonic (i.e., |u| < ¢) in
which case the elliptic equations are involved,

For a transonic flow, in which both the supersonic and subsonic phases occur in the flow, system
(3.1) is of mixed-composite hyperbolic-elliptic type, which consists of two equations of mixed elliptic-
hyperbolic type and two equations of hyperbolic type (i.e., two transport-type equations).

In the regimes with p|u| > 0, from the first equation in (3.1), considered in simply-connected domain
containing the origin, there exists a unique stream function v such that

Dy = (—puz, pu1) with (0) = 0. (3.5)
We use the following coordinate transformation to the Lagrangian coordinates:
(z1,22) = (y1,92) = (21, ¥ (21, 22)), (3.6)

under which the original curved streamlines become straight. In the new coordinates y = (y1,y2), we
still denote the unknown variables U(x(y)) by U(y) for simplicity of notation. Then the original Euler
equations in (3.1) become the following equations in divergence form:

() = (), =0 1)
(ur + ﬁ)yl - (%2)% — 0, (3.8)
(u2)y, + Py, =0, (3.9)
(%|u|2 v jpl)p)yl _ (3.10)

One of the advantages of the Lagrangian coordinates is to straighten the streamlines so that the
streamline may be employed as one of the coordinates to simplify the formulations, since the Bernoulli
variable and entropy are conserved along the streamlines.

3.1. Supersonic Flow onto Solid Wedges and Free Boundary Problems. For an upstream
steady uniform supersonic flow past a symmetric straight-sided wedge (see Fig. 3.1):

W= {x = (z1,29) e R? : |z]| < z1 tan b,z > 0} (3.11)

whose angle 6y, is less than the detachment angle 6, there exists an oblique shock emanating from the
wedge vertex. Since the upper and lower subsonic regions do not interact with each other, it suffices
to study the upper part. More precisely, if the upstream steady flow is a uniform supersonic state, we
can find the corresponding constant downstream flow along the straight-sided upper wedge boundary;,
together with a straight shock separating the two states. The downstream flow is determined by the
shock polar whose states in the phase space are governed by the Rankine-Hugoniot conditions and the
entropy condition; see Fig. 3.1. Indeed, Prandtl in [100] first employed the shock polar analysis to
show that there are two possible steady oblique shock configurations when the wedge angle 6, is less
than the detachment angle #3 — The steady weak shock with supersonic or subsonic downstream flow
(determined by the wedge angle that is less or larger than the sonic angle 6,) and the steady strong
shock with subsonic downstream flow, both of which satisfy the entropy condition, provided that no
additional conditions are assigned at downstream. See also [13,56,97] and the references cited therein.
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FIGURE 3.1. The shock polar in the u-plane and uniform steady (weak/strong) shock
flows (see [24])

The fundamental issue — whether one or both of the steady weak and strong shocks are physically
admissible — has been vigorously debated over the past eight decades (cf. [56,57,91,106,120]). Exper-
imental and numerical evidence has strongly indicated that the steady weak shock solution would be
physically admissible, as Prandtl conjectured in [100]. One natural approach to single out the physi-
cally admissible steady shock solutions is via the stability analysis: The stable ones are physical. See
Courant-Friedrichs [56] and von Neumann [120]; see also [91,106].

A piecewise smooth solution U = (u,p,p) separated by a front & := {x : x2 = o(z1),21 = 0}
becomes a weak solution of the Euler equations (3.1) as in §2.1 if and only in the Rankine-Hugoniot
conditions are satisfied along S:

,$1

)

(z1)[pur] = [puz],
o' (x1)[ pui + p] = [ puauz ],
o' (x1)[ purug ] = [ pus + p],
o' (x1)[pur(E + B)] = [puz(E + L) ],

where [ -] denotes the jump between the quantity of two states across front S as before.
Such a front S is called a shock if the entropy condition holds along S: The density increases in the
fluid direction across S.

(3.12)

For given state U, where we use notation (3.3), all states U that can be connected with U~ through
the relations in (3.12) form a curve in the state space R*; the part of the curve whose states satisfy the
entropy condition is called the shock polar. The projection of the shock polar onto the u—plane is shown
in Fig. 3.1. In particular, for an upstream uniform horizontal flow Uj = (u,,0,py , py ) past the upper
part of a straight-sided wedge whose angle is 0, the downstream constant flow can be determined
by the shock polar (see Fig. 3.1). Note that downstream flow must be parallel to the wedge and the
upstream flow is parallel to the axis of wedge, so the angle between the upstream and downstream flow
is equal to the wedge (half)-angle. According to the shock polar, the two flow angles (or, equivalently,
wedge angles) are important:

One is the detachment angle 09, such that line us = ujtan6< is tangential to the shock polar at
point T" and there is no intersection between line us = wu; tan fy, and the shock polar when 6, > 951\,.
For wedge angles 6, € (0, 9@) there are two intersection points of the line uo = wuq tan 6y, and the shock
polar, one intersection point is on the arc TH and it determines velocity (u1,usz) of the downstream flow
corresponding to the strong shock, and another intersection point is on the arc TQ and it corresponds
to the weak shock. Thus for wedge angles 6., € (0,6%), shock polar ensures the existence of two attached
shocks at the wedge: strong and weak.

Other important angle is the sonic angle 65, < 64 such that line us = uj tan 65, intersects with the
shock polar at point S on the circle of radius cg, for which the downstream fluid velocity is at the sonic
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speed. Point S divides arc HS, which corresponds to the weak shocks, into the two open arcs T'S and
TH; see Fig. 3.1. The nature of these two cases, as well as the case for arc SQ, is very different. When
the wedge angle 6y, is between 63, and 6%, there are two subsonic solutions (corresponding to the strong
and weak shocks); while for the wedge angle 0y, is smaller than 65, there one subsonic solution (for the
strong shock) and one supersonic solution (for the weak shock). Such an oblique shock Sy is straight,
described by x2 = sgx;. The question is whether the steady oblique shock solution is stable under a
perturbation of both the upstream supersonic flow and the wedge boundary.

Since we are interested in determining the downstream flow, we can restrict the domain to the first
quadrant, see Fig. 3.2.

Fix a constant upstream flow U™, a wedge angle 6y, € (0,62), and a constant downstream state Uy
which is one of downstream states (weak or strong) determined by the shock polar. States U; and U
determine the oblique shock 9 = sgx1, and the transonic shock solution Uy in {x | 1 > 0, zo > 0O}\IW
such that U = U, in Q, = {xeR? : 29 > sgxy, 21 >0} and U = U, in Q) = {xeR? : soxy > a0 >
z1 tan by, 1 > 0}, see Fig. 3.1. We will refer to this solution as constant transonic solution (U, Uy ).

Assume that the perturbed upstream flow U, is close to U, , thus U, is supersonic and almost
horizontal, and that the wedge is close to a straight-sided wedge. Then, for any suitable wedge angle
(smaller than a detachment angle), it is expected that there should be a shock attached to the wedge
vertex, see Fig. 3.2. We now use a function b(x1) = 0 to describe the upper perturbed wedge boundary:

oW = {xeR? : zy = b(x1), 21 >0}, where b(0) = 0. (3.13)
Then the wedge problem can be formulated as the following problem:

Problem 3.1 (Initial-Boundary Value Problem). Find a global solution of system (3.1) in Q := {z3 >
b(x1),z1 > 0} such that the following conditions hold:

(i) Cauchy condition at xy = 0:

Ulzi=0 = U; (22); (3.14)

(ii) Boundary condition on OW as the slip boundary:
u - vylow =0, (3.15)

where vy is the outer unit normal vector to oW .
Assume that the background shock is the straight line given by x2 = og(z1) for og(z1) := soxi.
When the upstream steady supersonic perturbation U; (z2) at 1 = 0 is suitably regular and small,
the upstream steady supersonic smooth solution U~ (x) exists in region Q7 = {x : x2 > Pz1,21 > 0},

beyond the background shock, but is still close to Uy .
Assume that the shock front (the free boundary) S we seek is

S={x: 29 =0(x1), zt1 20}, where o(0) =0, o(x1) >0 for z; > 0. (3.16)
The domain for the downstream flow behind S is denoted by
Q={xeR?: b(x) <x9 < a(x1),21 > 0}. (3.17)

Then Problem 3.1 can be further reformulated into the following free boundary problem:

Problem 3.2 (Free Boundary Problem; see Fig. 3.2). Let (U, ,U,) be a constant transonic solution
for wedge angle 0y, € (0,0%), with transonic shock Sy := {xa = oo(x1) : x1 > 0} for oo(z1) := spxy.
For any upstream flow U™ for system (3.1) in domain Q= which is a small perturbation of U, , and
any wedge boundary function b(x1), which is a small perturbation of bo(z1) = x1tan by, find a shock
S as a free boundary T2 = o(x1) and a solution U in Q, which are small perturbations of Sy and U,
respectively, such that

(i) U satisfies (3.1) in domain §;
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FIGURE 3.2. The leading steady shock xo = o(x1) as a free boundary under the per-
turbation (see [24])

(ii) The slip condition (3.15) holds along the wedge boundary oW,
(iii) The Rankine-Hugoniot conditions (3.12) as free boundary conditions hold along the transonic
shock-front S.
UO+ corresponding to a state on arc 8Q gives a weak supersonic shock (i.e., both the upstream and
downstream states are supersonic) (see Fig. 3.1), the problem is denoted by Problem 3.2 (WS); Uy
corresponding to a subsonic state on arc TS gives a weak transonic shock (i.e., the upstream state is
supersonic and the downstream state is subsonic) (see Fig. 3.1), the problem is denoted by Problem 3.2
(WT); while the strong transonic shock problem corresponds to arc TH, denoted by Problem 3.2 (ST).

In general, uniqueness in the initial-boundary value problem (Problem 3.1) is not known (as it is
problem for a nonlinear system of a composite elliptic-hyperbolic type), so is possible that (Problem
3.1) has solutions which are not of steady oblique shock structure, i.e. which are not solutions of
(Problem 3.2). On the other hand, the global solution of the free boundary problem (Problem 3.2)
provides the global structural stability of the steady oblique shock, as well as more detailed structure
of the solution.

Supersonic (i.e., supersonic-supersonic) shocks correspond to arc SQ (which is a stronger shock) (see
Fig. 3.1). The local stability of such shocks was first established in [67,81,102]. The global stability of
the supersonic shocks for potential flow past piecewise smooth perturbed curved wedges was established
in Zhang [129]; also see [45,52,53] and the references therein. The global stability and uniqueness of
the supersonic shocks for the full Euler equations, Problem 3.2 (WS), was solved for more general
perturbations of both the initial data and wedge boundary even in BV in Chen-Zhang-Zhu [44] and
Chen-Li [40].

For transonic (i.e., supersonic-subsonic) shocks, the strong shock case corresponding to arc TH was
first studied in Chen-Fang [52] for the potential flow (see Fig. 3.1). In Fang [62], the full Euler equations
were studied with a uniform Bernoulli constant for both weak and strong transonic shocks. Because
the framework is a weighted Sobolev space, the asymptotic behavior of the shock slope or subsonic
solution was not derived. In Yin-Zhou [124], the Holder norms were used for the estimates of solutions
of the full Euler equations with the assumption on the sharpness of the wedge angle, which means that
the subsonic state is near point H in the shock polar, by Approach I, first introduced in [25] which
will described §3.2. In Chen-Chen-Feldman [26], the weaker transonic shock, which corresponds to arc
TS, was first investigated by Approach I. Then, in [27], the weak and strong transonic shocks, which
correspond to arcs T'S and TH , respectively, were solved, by Approach IT which will described in §3.3,
so that the existence, uniqueness, stability, and asymptotic behavior of subsonic solutions of Problem
3.2 (WT) & (ST) in a weighted Holder space were obtained.
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We now describe two approaches for the wedge problem, based on the nonlinear method and related
techniques presented in §2. First, we need to introduce the weighed Holder norms in the subsonic
domain €2, where €2 is either a truncated triangular domain or an unbounded domain with the vertex
at origin O and one side as the wedge boundary. There are two weights: One is the distance function
to origin O and the other is to the wedge boundary 0. For any x,x’ € ), define

0% »=min(|x[, 1), &%, = min(dg,dy), & = min(dist(x,dW),1), 6} := min(dy, o),

Ay = |x]+1, Axyx :=min(Ax, Ay), Ay := dist(x, OW) + 1, ﬁ,gx/ .= min(Ax, Ay).

Let a € (0,1), and I1,l2,7v1,72 € R with 71 > 72, and let k£ > 0 be an integer. Let k = (k1, k2) be an
integer-valued vector, where k1, ke > 0, |k| = k1 + k2, and Dk 8k1 6k2 We define

) ;0OW W\ max
[ = sup {(3g) 0@tk 0) AL ALK DX F(x)]}, (3.18)
e i
71;0) (7 ,6W) o (SW  ymax{k+oa L0} AL l+k+a|D f( ) Dkf(xl)|
A6 sw {(5;,(,)7 (8 rextire a0l Al izt = } (3.19)
x#x,|k|=k
k
(711;0)(72:0W) _ (11;0)(72;0) (71;0)(72;0W)

1 iy = Z;) FLitiimye  + Ul e s (3.20)
where 45 = max{y; + min{k + 8, —2},0} for 8 € [0,1). Similarly, the Holder norms for a function of
one variable on (0,00) R with the weight near {0} and decay at infinity are denoted by | f HI:;’(()Z)) (0,00)°

For a vector-valued function f = (fi, fa,-- -, fn), we define

; ,5W ; ;OW
LA 2 il
Let k,as(11,12) :0)(72;0W)
7a; K ’Y ’ 7 )
0(71;0)1(722;91/\/)(9) { Hf”k (l)z (11, 122) o < oo} . (3.21)

The requirement that 3 > 2 in the definition above means that the regularity up to the wedge
boundary is no worse than the regularity up to the wedge vertex. When 7y; = -3, the §°—terms disappear
so that (y1,0) can be dropped in the superscript. If there is no weight (y2,0%V) in the superscript,
the 6-terms for the weights should be understood as (62)™@xk+71.0} and (§9)maxtk+a+71.0} iy (3.18) and
(3.19), respectively. Moreover, when no weight appears in the superscripts of the seminorms in (3.18)

and (3.19), it means that neither 6° nor 0% is present. For a function of one variable defined on (0, o),

the weighted norm ||f||(%

{0} and the decay at mﬁmty
In the study of Problem 3.2 for a transonic solution (U, UJ ) with wedge angle 0y, the variables in
U are expected to have different levels of regularity, so we distinguish these variables by defining

Uy

)R+ is understood in the same as the definition above with the weight to

u- 70 p) and Us = (w, p) for

= (
u- v (3.22)

W 0 _ X Q@ 0 _ (coc 13
where vy, = (—sinfy,cosfy), T, = (cosby,sinby).

w = ,
u-1d
Note that U, = (Juf],pd) and Uy, = (0,pg) are the corresponding quantities for the background
subsonic state.

Note that v/ is the interior (for Q) unit normal to 0Wj, and 7 is the tangential to 0Wj unit vector,
where W, and g are defined by (3.13) and (3.17) for the background solution (U, ,Uy ), i.e. u- 70

w
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and u -2 are components u; and uy of u in the coordinates rotated clockwise by angle 6y, so that the

background downstream flow becomes horizontal.

Theorem 3.1 (Chen-Chen-Feldman [27]).  Let (U, ,Uy") be a constant transonic solution for wedge
angle Oy, € (0,0%). There are positive constants o, B, Cy, and €, depending only on the background states
(U, Ug"), such that:

(i) If (Uy,Ug) corresponds to the state on arc TS, and
U~ = U lossopa- + ¥ —tan 6, 1050 o <, (3.23)
then there exists a solution (U,o) of Problem 3.2 (WT) and a function U* = (u{,0,pg, p®) =
Z%®(—z18in by + x9cosby) for an appropriate function Z© : [0,00) — R* such that Uy and Us
defined by (3.22) satisfy

(—a;0W (—a;0)(—1—c;0W —a;0
|01 = UL 50V 4 U — U | L P e

2,0;(3,1);Q2 ,o;(145,0);Q 2,a;(1+8);R+ 394
—a;0) _ «;0) ( : )
+HU1 UlOHza (1+3);[0,00) CO (HU - U() H2a (1+3,0);Q— + Hb —tan@ H1 a;(148); ]R+> )
where we have denoted U{° := (uX, p*);
(i) If (U, ,Uy") corresponds to the state on arc TH, and
_ a—1;0
[U~ = Ug la.aqaopo- + 16— tan 0§ 2y < e (3.25)

then there exists a solution (U,o) of Problem 3.2 (ST), such that U; and Uz defined by (3.22)

satisfy
—1—a;0W 1-a;0) 1—a;0
U1 = Uil o’ + 102 = Uil iy + 107 = sols gy (3.26)
_ _ 1—a;0 ’
< (||U = Uj l2,a508)0- + o' — tan O, ||2 «(8) R)+) :

The solution, (U,0), is unique within the class of solutions such that the left-hand side of (3.24) for
Problem 3.2 (WT) or (3.26) for Problem 3.2 (ST) is less than Coe.

The dependence of constants «, 3,Cy, and € in Theorem 3.1 is as follows: « and § depend on
(U5, Ug"), but are independent of (Cy,e); Cp depends on (U, Uy, v, B), but is independent of ; and
e depends on all (Uy, Uy, o, 3, Co).

The difference in the results of the two problems is that the solution of Problem 3.2 (WT) has less
regularity at corner O and decays faster with respect to |x| (or the distance from the wedge boundary)
than the solution of Problem 3.2 (ST).

Note that part (i) of Theorem 3.1 gives asymptotics os the solution U as |x| — oo within €2, and
U® is an asymptotic profile. Moreover, convergence of Uy to Us® = Uy as |x| — o0 is of polynomial
rate |x|~(#*+1 | which is faster than convergence rate of Uy, which is |x|~%. But as z5 — +00, both U;

and Us decay to Ufg and UQJ{) resp. with the rate x;(6+1)7 which for Uy can be seen by combining the
estimates of the first and last terms in the right-hand side of (3.24). Part (ii) of Theorem 3.1 does not
give asymptotic limit of U; as |x| — oo, while Uy converges to to U,y with the rate |x| #. Also, both
both Uy and U, decay to Ul and U, resp. with the rate xgﬁ in case (ii).

Furthermore, for both cases (i) and (ii) of Theorem 3.1, the asymptotic profile in Lagrangian coor-
dinates is given in Theorem 3.3.
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3.2. Approach I for Problem 3.2 (WT). We now describe Approach I for solving Problem 3.2 (WT).

We work in Lagrangian coordinates introduced in (3.6). From the slip condition (3.15) on the wedge
boundary oW it follow that dW is a streamline, and so in the Lagrangian coordinates, 0W becomes
the half-line £1 = {(y1,92) : y1 > 0,y2 = 0}. Let S = {y2 = 6(y1)} be a shock-front. Then, from
equations (3.7)-(3.10), we can derive the Rankine-Hugoniot conditions along S:

&) [—1 = -[22], 3.27
(yl)[pul] [u1] (3.27)
& () [ug + L1 = —[P2], 3.98
)l + L] = -[22] 329
&' (y))[uz] = [p], (3.29)
Lo P
—|u + _— | = 0‘ 3-30
[2| | (v — 1)p] (3.30)
The background shock-front in the Lagrangian coordinates is Sy = {y2 = s1y1} with s1 = pduiy(so —

tanfy) > 0.
Without loss of generality, we assume that, in the Lagrangian coordinates, the supersonic solution
U~ exists in domain D™ defined by

D™ = {y Dy > %yl, Y > O}. (3.31)

For a given shock function 6(y;), let
D, = {y:y2>6(y), y1 >0}, (3.32)
Dy = {y:0<y2<6(y), y1 >0} (3.33)

Then Approach I consists of three steps:

1. Potential function ¢(y). We first use a potential function to reduce the full Euler equations
to a scalar nonlinear elliptic equation of second-order in the subsonic region. This method was first
proposed in [25] in which the advantage of the conservation properties of the Euler system is taken for
the reduction.
More precisely, since pu; # 0 in either the supersonic or subsonic region, using (3.7), there exists a
potential function of the vector field (32, p%l) such that
N U 1

D= (2 ) with 9(0) =0. (3.34)

Equation (3.10) implies the Bernoulli law:

S 2, = B, (3.35)

where B = B(y2) is known, in fact it is completely determined by the incoming flow U~ at the initial

position Z, because of the Rankine-Hugoniot condition (3.30), and ¢ = |u| = y/u? + u3.
From equations (3.7)-(3.10), we find

)
R — 3.36
()., (3.36)
which implies

p = A(y2)p” in the subsonic region Ds. (3.37)
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With equations (3.34) and (3.37), we can rewrite the Bernoulli law (3.35) as

¢32/1 +1 v
+ Ap"T! = Bp?. 3.38
2¢32/2 y—1 ( )
In the subsonic region, ¢ = [u| < c:= ,/2E. Therefore, the Bernoulli law (3.35) implies
2(y—-1)B
vt u. (3.39)
(v +1)A

Condition (3.39) guarantees that p can be solved from (3.38) as a smooth function of (D¢, A, B).
Assume that A = A(y2) has been known. Then (u,p, p) can be expressed as functions of D¢:

p=p(Dé,A.B), u=(—

: . p=Ap, 3.40
P p%) p (3.40)

since B = B(y2) is given by the incoming flow.
Similarly, in the supersonic region D™, we employ the corresponding variables (¢~, A, B) to replace
U™, where B is the same as in the subsonic region because of the Rankine-Hugoniot condition (3.30).

We now choose (3.9) to derive a second-order nonlinear elliptic equation for ¢ so that the full Euler
system is reduced to this equation in the subsonic region:

(N' (D¢, A, B))y, + (N*(D¢, A, B))y, =0, (3.41)
where (N1, N2)(D¢, A, B) = (ua,p)(Dé, A, B) are given by
N'(Do, A, B) = O N2(Dé, A, B) = A(y)p(Dé Ale), Blua))?.  (3.42)

B ¢y2p(D¢a A(yQ)a B(?/Q)) ’
Then a careful calculation shows that the discriminant

NLONZ N N2 SR 3.43

by Py T Py ¢y1_c2_q2> ( )

in the subsonic region with pu; # 0. Therefore, when ¢ is sufficiently close to ¢f (determined by the

subsonic background state Ugr ) in the C'-norm, equation (3.41) is uniformly elliptic, and the Euler

system (3.7)—(3.10) is reduced to the elliptic equation (3.41) in domain D, where ¢ is the function for

the free boundary (transonic shock).

The boundary condition for ¢ on the wedge boundary {yo = 0} is derived from the fact that

d(y1,y2) = z2(y1,y2) by (3.5), (3.6), (3.34). Then, recalling that dW = {x : x93 = b(x1),z1 > 0}
in x-coordinates, which is {y : y2 = 0,y; > 0} in y-coordinates, and y; = x; by (3.6), we get

¢(y1,0) = b(y1). (3.44)

The condition on S is derived from the Rankine-Hugoniot conditions (3.27)-(3.29). Condition (3.27)
is equivalent to the continuity of ¢ across S:

[¢]ls =0, (3.45)
which also gives
&' (y1) = — {zyﬁ (y1,5(y1))- (3.46)
Y2
Replacing 6'(y1) in (3.28) and (3.29) with (3.46) gives rise to the conditions on S:
G(D6.A.U™) = [l =+ A7 0] = [0 ][40 0,1] = 0. (3.47)
Y2

H(D$, A,U™) = [¢y,JIN'] + [y, ][N?] = 0. (3.48)
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We now combine the above two conditions into the boundary condition for (3.41) by eliminating A. By
calculation, we have

2

~lug [u P+ 5[ 1
Hy = N} Nildy,] = =222 o U | s
A A[¢y1]+ A[¢y2] ’y—lcQ—qQ Uy cz_q2 puy ’

and

Nl
GA = [¢y1](¢yA + ¢y2N34) - [¢y2]¢y1N31

2
] o) 2]
ui(c?—¢?)  [pur] w(c*—¢?) v=1/)[u] 7
since [p%l] < 0 and ug_ is close to 0. Therefore, both equations (3.47) and (3.48) can be solved for A

to obtain A = g1(D¢,U ) and A = go(D¢,U ), respectively. Then we obtain our desired condition on
the free boundary (i.e., the shock-front):

§(Do,U") := (92 — q1) (D9, U™) = 0. (3.49)

Then the original free boundary problem, Problem 3.2, is reduced to the following free boundary
problem for the elliptic equation (3.41):

Problem 3.3 (Free Boundary Problem). Seek (6, ¢, A) such that ¢ is a solution of the elliptic equation
(3.41) in the region with the fixed boundary condition (3.44), and the free boundary conditions (3.45)
and (3.49), and equalities (3.47) and (3.48) hold.

2. Hodograph transformation and fixed boundary value problem. In order to solve the free
boundary problem, we employ the hodograph transformation to make the shock-front a fixed boundary.
This allows to find ¢ for each A from an appropriately chosen set. After that, we only need to perform
iteration for the unknown function A, to satisfy (3.47) and (3.48).

Note that the solutions in Theorem 3.1 satisfy that |U — Uy |1 < Coe. Then, denoting by ¢g
the potential function (3.34) for the subsonic background state UJ, we obtain that ¢ is close to qﬁg
in C! on the closure of the subsonic region. Then on the iteration, we will consider (and eventually
obtain) solutions U for which the same property holds. Thus below we assume that ¢ is close to ¢g in
C1(Dy), see (3.33).

We now extend the domain of ¢~ from D™ to the first quadrant D™ U Ds. Let ¢, = ﬁyg, which
is the the potential function (3.34) for the supersonic background state U, . Then ¢~ is close to ¢, in
CY(D) since U~ is close to Uy in L*® (and in stronger norm, see Theorem 3.1). We can extend ¢~

into D™ U5 so that it remains close to ¢, in C'! on the closure of D~ uD;. We then use the following
partial hodograph transformation:

(W1, 92) = (21,22) = (¢ — 97, y2). (3.50)
Note that, using (3.34), we have 0y, (¢g — &) = u—§2 > 0. Thus, since ¢ and ¢~ are close in C* to
U1

¢g and ¢j resp., then the transformation (3.50) is invertible, that is y; is a function of z := (21, 22):
y1 = ¢(2).

Let

N?(D¢, A, B
MI(D¢5A7U_) = NI(D¢5A7B) + N2(D¢)A7-B) {Zy%v M2(D¢7A7U_) = ([qzb’]’)v
3! Y1
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and

) i — 1 — z — .
M (D(’D, @, A7Z) =—-M (ay1¢ ((:07 22) + ?aamgb ((:07 22) - ? 2aA7U (Soa 22))7 1= 172-

21 21

Then equation (3.41) becomes
—1 2
(M (D, p,A,2)), + (M (D, p,A,2)), =0. (3.51)

Notice that
1 FViR 2(a71 A72 1 32
ooy ¥ My )" = 007 (NG, N, — (N, )?) >0,
which implies that equation (3.51) is uniformly elliptic, for any solution ¢ that is close to goar (determined
by (3.50) with ¢ = ¢) in the C'-norm.
Under the transform (3.50), the unknown shock-front S becomes a fixed boundary, which is the

=1
M,

—9 1 ,—
1M<Pz2 B Z(M

z9-axis (where we use that ¢ is close in C! to ¢ in Ds and to ¢, in H)T; to conclude from (3.34) that
¢ is Lipschitz across S, and then that ¢ = ¢~ on S but ¢ # ¢~ in Ds\S). Along the zp-axis, condition
(3.49) is now

3D, 2) 1= 9(0 0™ (0r22) + —— 00 (122) = 22,0 (p,20)
=0 on {z =0, > 0}. 1 (3.52)
We also convert condition (3.48) into z—coordinates:
f(Dg. o, A.2) 1= H@u0 (9.22) + ——00 (012) = Z2 AU () =0 (359
along the zo-axis.
The condition on the zj-axis can be derived from (3.44) as follows: Restricted on z3 = 0, the

coordinate transformation (3.50) becomes
z1=b(y1) — ¢-(y1,0).
Then y; can be expressed in terms of z1 as y; = 3(21) so that ¢(z1,0) = y; satisfies
©(21,0) = b(z1) on {22 =0, z > 0}. (3.54)
Therefore, the original wedge problem is now reduced to the following problem on the first quadrant
Q.

Problem 3.4 (Fixed Boundary Value Problem). Seek (y, A) such that ¢ is a solution of the second-
order nonlinear elliptic equation (3.51) in the unbounded domain Q with the boundary conditions (3.52)
and (3.54), and such that (3.53) holds.

3. Solution to the fixed boundary value problem — Problem 3.4. Through the shock polar, we
can determine the values of U at the origin, and hence A(0) is fixed, depending on the values of U~(0)
and b'(0). Then we solve (3.53) to obtain a unique solution A = h(z, ¢, D¢) that defines the iteration
map.

This is achieved by the following fixed point arguments. Consider a Banach space:

X = {A: A©0) =0, A 25T < o).

1,05(1+);(0,00)

Then we define our iteration map J : X — X through the following;:
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First, we define a smooth cutoff function x on [0, c0) such that
1, 0<s<1,
x(s) =
0, s>2.

Set
A(0) := t(w(0),1(0)) forw=U"-U,, (3.55)

where t is a function determined by the Rankine-Hugoniot conditions (3.47)—(3.48). Then we define
wy(z2) as

wy(z2) = AF + (¢(w(0),8'(0)) — Af ) x(22). (3.56)
Consider any A = A(z3) so that A — w; € X satisfying
(—a);{0}
A — A(J)FHLQ;(HB);(&OO) < Cpe (3.57)
for some fixed constant Cy > 0, where A} = ( Ijﬂgw.
0

With this A, we solve equation (3.51) for ¢ = ¢4 in the unbounded domain Q with the boundary
conditions (3.52) and (3.54), and with the asymptotic condition ¢ — ¢® as x — oo, where the limit is
understood in the appropriate sense, where ©® is the solution of

Rl = (¢w - gb—)(woov 22)7 (358)

+
with ¢*° = Z%yl + (y2), where [(y2) is determined by the Bernoulli law (3.38), replacing ¢ and p with
10
1
+
Po

their asymptotic values ¢® and p®(yz) = (A(y2)> ", and noting that B = B(ys) is determined by the

upstream state U~ . Specifically, we show existence of a solution ¢ in the set:

(—=1—a);oWw
lrapoye <9}

which is compact and convex subset of the Banach space:

Ss={e:lle—¢ for sufficiently small § > 0,

oo”(—l—a');aW

oo <©F  with 0<ad/ <a,0<p <8

B={¢:llg—¢

Equation (3.51) is uniformly elliptic for ¢ € X5 if § > 0 is small. This allows to solve the problem for
@ = @4 € Y5 by the Schauder fixed point theorem if the perturbation is small, i.e. if € is small in the
conditions of Theorem 3.1 and in (3.57). Then, with this ¢ = ¢4, we solve (3.53) to obtain a unique
A that defines the iteration map J by J (A —w;) := A — wy.

Finally, by the implicit function theorem, we prove that J has a fixed point A — wy, for which A
satisfies (3.57).

For more details for this approach, see Chen-Chen-Feldman [25,26]. This approach can also be
applied to Problem 3.2 (ST); see [124] for the case when the wedge angle is sufficiently small.

3.3. Approach II for Problem 3.2 (ST) & (WT). We now describe the second approach, Approach
II. It allows to handle both cases in Theorem 3.1: case of Problem 3.2 (WT) and of Problem 3.2 (ST).
Moreover, in case of Problem 3.2 (WT), this approach yields a better asymptotic decay rate, as stated
in (3.24).

It will be convenient to rotate the x-coordinates clockwise by angle 6, so that the background
downstream flow becomes horizontal, as discussed in the paragraph before Theorem 3.1. We still use
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the same notations in the rotated coordinates, in particular we write x = (x1,x2) and u = (uy,uz) in
the rotated basis. Then in the new coordinates:
Ugy . . . -
U—Zf) = —tanby, U, = (uy, —uptanby, py, po), U = (uiy, 0, pg, pg)- (3.59)
10
And since the new coordinates (1, x2) are along the vectors (70,00), i.e. up = u- 72, us = u-v2, we

have by (3.22) o
Ui = (u1,p) and Us = (w, p) for w = Z—i (3.60)
Furthermore, we have from (3.13) and (3.23) or (3.25) with small ¢, that in the rotated coordinates
W = {xeR?: 23 = byot(21), brot(0) = 0}, (3.61)

and the function b, satisfies the estimates in (3.63) or (3.65) below, resp., with Ce instead of . For
the background solution, b,. 0 = 0, i.e. dWy is the positive z;-axis.

We will construct a solution with a shock front S expressed in the rotated coordinates as (3.16)
with a function 6(z1). The background shock is now expressed as Sy := {z2 = do(x1) : 1 > 0} for
oo(x1) := S9x1, where §y = tan(arctan sy — 6,,). Then the subsonic region of the solution has the form:

= {X S RZ : 5(3;1) < X9 < 5’(1‘1),331 > O}. (3.62)

We can assume that the upstream steady supersonic smooth solution U™ (x) exists in region Q= =
{x : 250 >y > w1, 21 > 0}, beyond the background shock, but is still close to Uy .

Moreover, in part (i) of Theorem 3.1, in the rotated coordinates U® is independent of z1, and
[J® = 7%

Specifically, we will prove the following in the rotated coordinates:
Theorem 3.2 (Chen-Chen-Feldman [27]).  Let (U;,Uy"), given by (3.59), be a constant transonic
solution for wedge angle 0y, € (0,0%). There are positive constants o, 3,Co, and ¢, depending only on
the background states (Uy , Uy ), such that:

(i) If (Uy ,Uy) corresponds to the state on arc TS, and

I o
[0~ = Ug lasa.opa- + ol it gy <& (3.63)

then there exists a solution (U, &) of Problem 3.2 (WT) and a function U®(y2) = (uy (y2),0, pg , p*(y2)),
and we denote UY® = (u, p*), such that Uy and Us defined by (3.22) satisfy

oW 1—c;0W =1 _ = (=0
U1 — U{’OH2 1))9 + (U2 - U20||2 . (1+EB 0);0 4 lo” = 80”g a~(1)+,3)‘R+ (3.64)
0 _ a;0 '
+ [ U7° Ul()“Qa 1)+5) 0.0y S €0 (“U e TOtHl ol I)Jrﬁ) R+> |
(i) If (U, U0 ) corresponds to the state on arc TH, and
_ - a—1;0
[0 = Uy Iaasqs.0p0- + Wrotlls gy << (3:65)
then there exists a solution (U,&) of Problem 3.2 (ST), such that U; and Us defined by (3.22)
satisfy
1—a;0W 1—-a;0) 1—a30
[0 = U5 oy + 102 = Usplls iaorts + 18" = Bolls e (3.66)
_ o 1—0a;0 ‘
< Co (U™ = Ug la.astaya- + oot s ) -

The solution, (U,d), is unique within the class of solutions such that the left-hand side of (3.24) for
Problem 3.2 (WT) or (3.26) for Problem 3.2 (ST) is less than Coe.
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Clearly, Theorem 3.1 follows from Theorem 3.2 if ¢ is small so that from the estimates of & in (3.64)
or (3.66) shock remains graph xo = o(z1) after rotating coordinates back.

To prove Theorem 3.2, we will work in the Lagrangian coordinates (3.6) defined for the rotated
coordinates x = (z1,22). Then, as in the previous case, using that, from the slip condition (3.15) on
the wedge boundary, the curve 0W is a streamline, we obtain that in the present Lagrangian coordinates,
O0W becomes the half-line

Ly ={(y1,52) : y1>0,y2 = 0}.
We can assume that, in the Lagrangian coordinates, the supersonic solution U™ exists in domain D™
defined by (3.31). Shock S is given by y2 = (y1), y1 > 0, where the function & differs from the one
in Approach 1 because Lagrangian coordinates are now defined differently. Supersonic region D and
subsonic region Dy of the solution are given by (3.32) and (3.33) resp., with the present function 4.
Background shock front Sy is now given by y2 = s1y1, y1 > 0, where s1 = pg uj,30.
We prove first existence and estimates of solution in Lagrangian coordinates:

Theorem 3.3. Let (Uy ,U") be a constant transonic solution for wedge angle 6y € (0,0%). There are
positive constants o, ,Co, and €, depending only on the background states (U, UJ), such that if OW
n (3.61) and U~ satisfy

(i) (3.63) for Problem 3.2 (WT)

(ii) (3.65) for Problem 3.2 (ST)
then there exists a transonic shock Sp = {y2 = 6(y1), y1 > 0} and a subsonic solution U = U(y)
of (3.7)~(3.10) in Ds, satisfying Rankine-Hugoniot conditions (3.27)—(3.30) along Sy with U~ ex-
pressed in Lagrangian coordinates in Dy, and the slip condition w)z, = bl..1, and there exists a function

U™ (y2) = (uP(y2),0,pg , 0™ (y2)), where we denote UL (y2) := (u(y2), p™(y2)), such that U(y) satisfies
the following estimates:

(i) For Problem 3.2 (WT):

c O)(—1—a;L —a;0
It _“fo”wa(li)ﬂ,o)ﬂ»& 102 = Usills it tgoyme 16" = sl it e (3.67)
_ — —a;0 ’
+ Hul UIOHQ o 1+g) R+ CO (”U - Uo Hz,a;(1+570);]]); + |\blmt\|g,ao:(115);]g+> ;
(ii) For Problem 3.2 (ST)
1—;dW) 1-a;0 —1-a;0
[0 = UL i + 102 = Ul oo, + 16" = 5115 oo 565)
1—a;0 - - —1-0 ’
e = Ul e < Co (107 = U by gayms + 0ot i ) -
The function U*(y2) can be understood as asymptotic limit of U(y) as y1 — 0.
Now we describe the proof of Theorem 3.3, which is the main part of Approach 2.
Rewrite system (3.7)—(3.10) into the following nondivergence form for U = (u,p, p) '
AWU)Uy, + B(U)U,, =0, (3.69)
where
—s 00— wo L o0 0
pus pun up
_ _p_ 1 __p puz  _p _uz
A(U) _ pu? pul p2uq , B(U) _ u? u1 u1
0 1 0 0 0 0 1 0
uy U2 0 0 0 0



TRANSONIC SHOCKS AND FREE BOUNDARY PROBLEMS FOR THE EULER EQUATIONS 29

Solving det(AA — B) = 0 for A, we obtain four eigenvalues:
c ; . .
AL = A2 =0, Aj = _c2—pu%(cu2 + (1) u1n/c? — ¢%) for j = 3,4,
where ¢ = \/u? + u3 < c in the subsonic region. The corresponding left eigenvectors are
11 = (0707071)7 12 = (—pU17U17U27_1)>
. =:(p(7p-—pU?) VP us
’ (v = Dpur (y = Dur’

vp Ypus p
JA34 —

—(uy + ———— ,
(v = 1)pus (y=Dur’ v-1

— U234, A3,4)-

)

Then

(i) Multiplying equations (3.69) from the left by 1; leads to the same equation (3.10). This, together
with the Rankine-Hugoniot condition (3.30), implies the Bernoulli law (3.35) in both supersonic
and subsonic domains, and across the shock-front. Therefore, B(y2) can be computed from the
upstream flow U~. If u; is a small perturbation of uf,, then u; > 0. Therefore, we can solve
(3.35) for wy:

2B — 2P

(v=Dp . u
Tt with w = 2. (3.70)

(ii) Multiplying system (3.69) from the left by ly also gives (3.36).
(iii) Multiplying equations (3.69) from the left by 13 and separating the real and imaginary parts of
the equation lead to the elliptic system:

Drw +eDip =0,
Diw—eDgp =0,

uy =

(3.71)

2 2_ 42 2__ 42
where D = 0y, + AROy,, D1 = A0y, Ap = — 522, Ay = PN land e = Y20

c2—u?’ c2—u? cpu?
Therefore, equations (3.7)—(3.10) are decomposed into (3.70)—(3.71).

We solve this problem by iterations. Given U™ which is close to U, as defined in Theorem 3.3,
working in Lagrangian coordinates, we solve for U. However, since U™ is not known, we cannot
directly solve for U satisfying (3.67) for Problem 3.2 (WT) or (3.68) for Problem 3.2 (ST). Instead, we
solve for U which is close to U;" as in (3.26) for Problem 3.2 (ST) and similar norms with appropriate
growth for Problem 3.2 (WT), but using these norms in Lagrangian coordinates (more precisely, in
(21, z2)-coordinates defined by (3.74)). Note that these norms are weaker than the ones in (3.67) or
(3.68) resp., in particular they do not determine any limit for U; = (ui,p) as |y| — oo within the
subsonic region. On the other hand, these norms determine that the quantities (w,p) have the limit
(0, p:{ ) at infinity within the subsonic region, and this asymptotic condition is sufficient to have the
iteration problem well-defined (in fact, we use only the asymptotic decay of w, then we can prove the
asymptotic decay of p— pg ), and obtain existence and uniqueness in the iteration problem. After we find
by iteration (the unique) solution U of the problem stated in Theorem 3.3, we identify U7® = (p*, ui®),
and show the faster convergence of (p,u1) to (p™,u{®), thus prove (3.67) or (3.68) resp. Note that in
estimates discussed above, U — U (rather than U itself) lies in weighted spaces (3.21). For this reason,
it is convenient to perform iteration in terms of

5U1 =U — UfB, 5U2 =U — UQJB and 06 = 6 — 5’0 =0 — S1Y1, (372)

where Uy, Uy are defined by (3.60).
Then we follow the steps below to solve this problem:

1. Introduce a linear boundary value problem for iteration. For a given shock-front &, the
subsonic domain D? is fixed, and depends on &. We make the coordinate transformation to transform
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the domain from D° to I, where D = D with G¢(y2) = s1y1 is the domain corresponding to the
background solution:
D= {y 0<ys < slyl}, with 0D = £, U Lo where
L1={(y1,92) : 11> 0,92 =0}, Lo2={(y1,92) : 11> 0,92 = 5131}

This transformation is:

(3.73)

(y1,92) = (21,22) := (y1, 92 — 66(y1)), (3.74)
where d6(y1) = 6(y1) — 6o(y1). In the z—coordinates, £; corresponds to 0W, and Ly corresponds to
0S. Also, U(y) becomes Us(z), depending on 6. Then the upstream flow U~ involves an unknown
variable explicitly depending on &:

UT(Z) = Ui(Zl,Zg + 56’(21)), (375)

g

where U™ is the given upstream flow in the y—coordinates. Equations (3.71) in z-coordinates are:
ZNDRw + elNDIp =0,

~ ~ (3.76)
Drw —eDgp =0,

in D. where ﬁR =0y +(Ar—066")0,, and l~?1 = \10,,. Since UO+ is a constant vector and wo+ = 0, then
the same system holds for dp, dw, where we use notation (3.72). Moreover, as we consider iteration
(8U, w) — (8U,60), we use U = U™ + 6U to determine the coefficients in (3.76), and dp, i for the
unknown functions. Thus we have

ﬁR(s’LT) + 65[(5}3 =0,

- N (3.77)
D6 — eDgpép = 0,

in D. We use system (3.77) as a linear system for iterations.

In the z-coordinates, the Rankine-Hugoniot conditions (3.27)—(3.30) keep the same form, except
that 6'(y1) is replaced by 6'(21) and U~ is replaced by U, along line 2z = s12;. Among the four
Rankine-Hugoniot conditions, (3.30) is used in the Bernoulli law. From condition (3.29), we have

At _ [p]
g (21) = [UIw]

which will be used to update the shock-front later. Now, because of (3.70), we can use U = (w, p, p) as
the unknown variables along zo = s1z;. Using (3.78) to eliminate ¢’ in conditions (3.27)—(3.28) gives

(2178121), (3.78)

GL(U, ,T) = [p] [plul] 4 [w][urw] = 0, (3.79)
Ga(U5,0) = [p] [ + i] + [pw][urw] = 0, (3.80)

on L. We use conditions (3.79)-(3.80) to define the linear conditions for iteration U — U, such that

at a fixed point U = U these iteration conditions imply that the original conditions (3.79)—(3.80) hold.
Specifically, we define conditions

VoGiUy, U - 60 = VGy(Uy , UF) - 60 — Gy(Us, U)o Ly, (3.81)
which can be written as:
bi10W + b;26p + bisdp = g;(U, ,U)  fori=1,2  on Lo, (3.82)

where (bil,big,big) = VUG,(U(;,UJ) and gi(U;,U) = VUGZ(UJ,UJ) . (5& - Gz(Ug,[j)
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FIGURE 3.3. The shock polar in the (w, p)-variables

Since there are two conditions in (3.82), i = 1,2, we can eliminate Jp, thus obtain

ow + bléﬁ = g3 on Lo, (383)
where b12b boob b b
by — 12023 — 022 13, _ 2391 — 01392 3.84
b11b23 — ba1b13 93 b11bag — b21b13 (3:84)
with
+ — +
_ Py Do 1 YPo
bi1bas — ba1b1z = (—u )[Po]( + — + ) > 0.
20 (v =)o) ?udy  ug ((/)S)2 (v - 1)(03)3(u1+o)2)

Notice that the shock polar is a one-parameter curve determined by the Rankine-Hugoniot conditions.
If p is used as the parameter, by equation (3.83), we obtain that dw = —b1dp + ¢3(dp), which shows
that —b16p is the linear term and g3(dp) is the higher order term. From Fig. 3.3, we know that w(p) is
decreasing in p on arc TH and increasing on T'S. Therefore, it is easy to see that

b1 > 0 corresponds to the state on arc TH, by <0 to TS, and by = 0 at the tangent point T. (3.85)

This difference in the sign of b; is the reason of different rates of decay at infinity and near the origin
in cases (i) and (ii) of Theorems 3.1 and 3.3.
We compute

+ +
Py TPg
big = —[po]( + ) <0.
(pg)?ulp (v = D(pg )3 (ufp)?
Thus condition (3.82) for i = 1 can be rewritten as
(5ﬁ = g4 — bQ(SQD — bgdﬁ on EQ, (3.86)
where g4 = bgl;,bg = m and b3 bi;

We notice that cond1t10ns (3.83)—(3.86) are equivalent to conditions (3.82) for i = 1, 2.

Boundary condition on £; comes from the slip condition (3.15) on dW. Specifically, using (3.61)
and (3.15), we obtain w = b, on 0W. Then, in z-coordinates, this must hold on £y. Also, for the
background solution, b, = by — by = 0 by (3.61). Then we prescribe

sw =10,  oncL. (3.87)
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2. Design the iteration map O and existence of a fixed point for Q. We perform iteration
in terms of 0Ug, k = 1,2 and d6 as defined by (3.72), in z-coordinates defined in (3.74). In fact,
for &, we only need ¢’ since 5(0) = 0, i.e. shock is attached to the tip of wedge. Note also that
66" = 6" — s1. We thus denote V = (Uy, Uy, §6"), and perform the following iteration 6V — 6V. For a
given 0V, we determine V = 6V + V;". Then we find V by solving the linear system (3.77) in D, with
boundary conditions (3.83) and (3.87), to determine (w, p). Then determine u; from (3.70), and p from
(3.36) which holds in z-coordinates without change, and the boundary condition (3.86). Final step is
to use solution (dui,dp, dw,dp) and U, defined by (3.75) in the right-hand side of (3.78) to update
the 6. This defines of the iteration map Q from V to V, except we discuss below how we solve the
boundary-value problem for (3.77) in D, with boundary conditions (3.83) and (3.87).

As we discussed above, we perform iteration in the spaces from (3.68) for Problem 3.2 (ST) and
similar norms with appropriate growth for Problem 3.2 (WT), expressed in z-coordinates (3.74). We
discuss below the case of Problem 3.2 (WT), another case is similar. For 7 > 0, define:

(—a;L1) (1—a;L1)
2,0;(0,1+8);D +H”Zl”2a 1+61)JD) <7}

T ;0 1—a;L1)
53 ={v s ol Y < Th

Y7 = {(6U1,6Us,66") : 6Uy € ] x X7, dUz € ¥F x X3, 66 € ¥I}.
The condition on v, in X7 is added for technical reasons.

It remains to discuss how we find (810, dp) € £T°° x £5°¢ which solve (3.77) in D, with boundary
conditions (3.83) and (3.87). From system (3.77), we obtain

X ={v: vl

= {U : Hnga (1+B8)R+ = T} (388)

N Ap — 66’ - Ap — 062+ )02

(5p)z1 = (Re)\])((sw)m + ( & 6)\1) I(aw)zw (3'89)
N 1 . Ap — 06’ 5

(0P)z = —E(éw)z1 - (IZAI)(cSw)ZZ. (3.90)

Now, differentiating and subtracting the equations, we eliminate dp, and obtain a second order equation

for dw of the form )

D, (ai(8@)s,)= =0, (3.91)
ij=1
where the coefficients are computed explicitly from (3.89)-(3.90). Note that, at the subsonic background
solution (3.59), we obtain Arg = 0, A7g > 0, eg > 0, where the left-hand sides are constants, and also
969 = 0. Then, computing the coefficients at the background solution, equation (3.91) becomes

1 N -
Tm(dw)fnm + )‘IU(éw)Zzza =0,

i.e. the equation is uniformly elliptic. Then for the coefficients computed at (U;, + Uy, Usy + 6Uz, §6”)
for (6Uy,0Us,86") € X% the equation (3.91) is uniformly elliptic if & is small. This allows to obtain
the unique solution Jw € Zg"s of (3.91) in D with boundary conditions (3.83) and (3.87). Note that
the inclusion dw € Egoe involves the asymptotic condition at infinity, and this makes the boundary-
value problem well-defined and allows to prove uniqueness. After dw is determined, we find dp by
zo-integration from (3.90) with the initial condition (3.83), where it can be shown that b; # 0. Then
we show that op € Zg‘)g. This completes the definition of the iteration map.

Iteration set for Problem 3.2 (WT) is X“°¢. We show that if € is small, then Q(X¢0¢) = %= and
obtain a fixed point by the Schauder fixed point theorem, by considering the set 3¢°¢ as a compact
subset in the Banach space defined by the same norms as in the definition of 7, except that « is
replaced by o' € (0, @) and showing that the map Q is continuous in this norm.
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3. Fixed point: Asymptotic limit in y-coordinates Let (6U7, 6Us, 66") € X0 be a fixed point of
the iteration map, and let (Uy,Us,6") = (Usfy + 6Ur, Usy + 80U, 667).
We change from z to y coordinates by inverting (3.74):

(21,22) = (y1,92) := (21,22 + 66 (21)).

Note that since 66" € X$°%, then both (3.74) and its inverse are close to the identity map in C2*(Ds; R?)
and C?%(ID; R?) resp. Then it follows that, in y-coordinates, (6Uy, 6Us, §6") € £2C0¢ if ¢ is small, where

L 1 L1) ST ;0)(—1—a; L
T={v ol o iam, + 10 i, <7h 55 ={v o5 o0 i < ), 592)

TZ{((SUl,(SUQ,(SO') : 5UleZT><Z, 5U2€ET><ET (50 EZ}

In particular, this proves the estimate of second and third terms in the left- hand side of (3.67).

Note that for v € X3, we have v — 0 as |y| — o in Ds, with rate |y|=**1). But for v € X7, no
asymptotic limit as |y| — o0 in D; is defined.

Then, from (3.59)—(3.60) it follows that Us = (w,p) — (0,pg) as |y| — oo in D, but for Uy = (uy, p)
the limit is no determined by the spaces X7, and (u1,p) does not converge to (ujy, pf) in general, as
we will see below. Then we determine the limiting profiles (u°(y2), p*(y2))-

To determine p®(y2), we note that from (3.7)—(3.10) we obtain (3.36), and thus (3.37). Since function
d(y1) is determined, the function A(y2) in (3.37) is determined by the upstream state U~ (y) from the
Rankine-Hugoniot conditions (3.27)—(3.30). Then, noting that p — p°, we obtain formally

po \”
p— pP(y2) = <A(?32)> as |y| > oo in Ds.
Similarly, we use (3.70) to obtain
2ypt .
up — ul(y2) = \/QB(yg) ECESIoN) SP%O(?JQ) as |y| > oo in Ds.

Then, defining U*(y2) = (u{(y2), we can show that estimate of the first and the last terms in the
left-hand side of in (3.67) holds. This completes the argument for case (i) of Theorem 3.3.

Case (ii) is handled similarly. Note that the slower decay at infinity for case (i), i.e. |y|=?, comes
from elliptic estimates even if we require faster decay at infinity in (3.25). The reason for the difference
in the rates in cases (i) and (ii) is (3.85).

4. Return to x-coordinates

We obtain Theorem 3.2 from Theorem 3.3 by changing coordinates. Recall that when we define the
Lagrangian coordinates for Theorem 3.3, we use the rotated coordinates x in (3.6), see the discussion
in the paragraph before Theorem 3.3.

From estimates in Theorem 3.3, it follows that in the Lagrangian coordinates, |U — UOJr | < Ce in Dy,
where C depends only on (U, , U ). Thus the same is true in x-coordinates in Q. Then it follows from
(3.5), (3.6) and (3.59) where uf,, pg are positive, that the change of coordinates x — y given by (3.6)
is bi-Lipschitz. Then (3.66) follows from (3.68) directly.

Similarly, estimates of the second and third terms in the left-hand side of (3.64) follow from (3.67)
directly. In order to obtain the estimates of the remaining terms in the left-hand side of (3.64), we
need to identify U®(x2).

Note that on the shock S, using (3.6) and the estimate of the third term in the left-hand side of
(3.64), we have that for small ¢,

1
Orst) = pu-vg = pug -vs, — Ce > §puar-1/50 > 0.
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Recall also that 1/(0) = 0 by (3.5). Then for each y2 > 0 there exists a unique x™(ys) = (x1*(y2), 25 (32)) €
S such that ¥ (x™(y2)) = y2, and it satisfies

n n 1
X" 200,00y € C and (x™)" = c> 0 on [0,00).

From this and (3.5), it follows that for each y2 > 0, we have
Q0 {xPx) =2} = {(z1, 25 (21592)) + 21> 27" (32)},
where 3 (+; y2) is the solution of the initial-value problem for ODE:
Ony 3 (213 y2) = w(wy, 23 (715 Y2)),
23 (21" (y2); 42) = 25" (2),
where w = 72 by (3.60). Since we have obtained the estimate of the second term in the left-hand side
of (3.24), and using (3.59), we have

|D*w(x)| < Coe(1 + |x)1# inQ, for k=0,1,2. (3.94)

In particular, for each o > 0 and £ =0,1,2

(3.93)

0 Q0
J _ |DRw(zy, 25 (215 y2))|dey < C'()Ef (1+21) ' Pde; < Ce. (3.95)
=" (y2) 0
Applying this with k£ = 0, we obtain that limg, 0 23 (215 y2) exists for each ya > 0; we denote it z5°(y2).
Differentiating (3.93) two times with respect to y2 and using C? estimate of x'™ and(3.95), we obtain
|23 (15 )| 2([0,00)) < € and from this

25(T;-) — 23 (-) in C' on compact subsets on [0,00), and [|25°] 20,00y < C. (3.96)

x3(z1;) = 2 (-) in C! on compact subsets on [0, 00) as x1 — o0, (3.97)
with [|25°[c2(jo,0)) < C- '
Also, by A
Also, by a similar argument, using C>“ regularity of x’" and estimate w in the second term in (3.64),
we get ¥ € C%([0,0)).
Furthermore, we note that for the background solution, using (3.59), the potentials 5 of U, wa”
of Uy, and 1y of the transonic shock solution (U, Uy") in {1 > 0,22 > 0} are:

_ _ Yy (x), if x9 < 5z
05 (0 = (e —aatanf), 0G0 = pfufyen, () = { Do RS

where 1)y is Lipschitz. Then, estimating ¢ — 1, in 7 using (3.63), where the polynomial decay is
of degree —(1 + ) and so we can use calculations similar to (3.95), and then using Rankine-Hugoniot
condition on &, we obtain

(x™) — (x5)'| < Ce  on [0,0), where x§(y2) = —=r(1,50).
Po U1

Here xé” is the function x of the background solution.
Y2

Denote by x5,(x1;y2) the function =5 (x1;y2) of the background solution. We have x5,(x1;y2) = pre:

0 *10

on ] > p+3i§ for each y2 > 0. Thus z3)(z1;y2) does not depend on x1, so x5y (z1;y2) = x55(y2).
0 %10°0

Then, denoting
9(@1;3y2) = 25 (215 92) — 30(y2),
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we obtain that g satisfies
02, 9(w15y2) = w(w1, x3(21592)),
l9(z1"(y2); y2)| < Ce.

Then, from (3.95) and (3.97), we get |[(z5°)" — (25)'| < Ce, where () (y2) = (23) (y2) = %qu Thus

Po Y10
we obtain .
0\/
(IQ ) > QPSFUTO on [07 OO)
if £ is small. In particular, noting that x5°(0) = 0 since 0W is a streamline corresponding to ¢ = 0 and
limy, 00 brot(x1) = 0 by (3.63), we obtain x5°([0,0)) = [0,00). Then there exists the inverse to z3°(-)
function y3 : [0,00) — [0,00) and y5 € C**([0, ) with y3(0) = 0 and (y3)' > & > 0.
Then we show that defining U (z2) = UP(y5 (z2)), we obtain (3.64) from (3.67).

For more details, see Chen-Chen-Feldman [27].

Remarks. 7?7

1. The nozzle problem (infinite nozzle, uniform nozzle) for the 2-D full Euler equations; [25] (2007)

2. Other results: Wedges, Nozzles,... Some further works on transonic shocks in nozzles include the
study of shocks in de Laval nozzles [79], and uniqueness of transonic shocks [63].

3. Euler-Poisson: Bae, Park, ....

4. TwWO-DIMENSIONAL TRANSONIC SHOCKS AND FREE BOUNDARY PROBLEMS FOR THE
SELF-SIMILAR EULER EQUATIONS FOR POTENTIAL FLOW

In §2-83, we have discussed free boundary problems for steady transonic shock solutions of the
compressible Euler equations. Now we discuss free boundary problems for time-dependent solutions.

General time-dependent solutions of the compressible Euler equations are of extremely complicated
structure, so that very few results are currently available. On the other hand, many fundamental
physical phenomena, including shock reflection/diffraction, are determined by time-dependent solutions
of self-similar structure. In this section, we focus on this case. More precisely, we describe transonic
shocks and free boundary problems for self-similar shock reflection/diffraction for the Euler equations
for potential flow.

The compressible potential flow is governed by the conservation law of mass and the Bernoulli law
for R* := (0,0) and x € R%:

Oip + Vx - (pVx®) =0, (4.1)
0 ® + %|vx<1>|2 +h(p) =B (4.2)
for density p and velocity potential ®, where B is the Bernoulli constant, and h(p) is given by
h(p) = W;: for the adiabatic exponent v > 1. (4.3)
By (4.2)—(4.3), p can be expressed as
p(0,®,Vy®) = h~ (B — 6,® — %|vxc1>|2). (4.4)

Then system (4.1)—(4.2) can be rewritten as the following second-order nonlinear wave equation:
Orp(0r®, Vx®) + Vx - (p(0:®, VxP) V@) =0 (4.5)
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with p(0;®, Vx®) determined by (4.4).
Note that system (4.1)—(4.2) is invariant under the self-similar scaling:

)
(t,x) = (at,ax), (p,®) — (p, E) for o # 0, (4.6)
and thus it admits self-similar solutions in the form of
X
pLX) = plE), B(tX) =10(6)  for €= (4.7)

Then the pseudo-potential function

o(&) = 6(6) — €P

and the density function p(&) satisfy the following Euler equations for self-similar solutions:

P -1

div(pDy) + 2p = 0, —

1
+ (51D¢l* +¢) = B, (4.8)

where the divergence div and gradient D are with respect to &€ € R%. From this, we obtain the following
equation for the pseudo-potential function ¢(€):

div(p(|Del?, ¢) Dg) +2p(|Dgf*, ) = 0 (4.9)
for )
p(IDel, ) = (Bo = 0(|De|* + 29)) 77, (4.10)
where Bp = (y—1)B+ 1 and 0 = 77_1 Equation (4.9) written in the non-divergence form is
(® — @2 Perer — 206, PerPeres + (¢ — 03, )pese, + 2¢° — |Dopl” = 0, (4.11)
where the sonic speed ¢ = ¢(|Dy|?, ¢) is determined by
_ 1
(D¢l 0) = P~ (1Dl ) = Bo = (v = D (5|Del* + ). (4.12)
Another form of (4.11), which uses both the potential ¢ and the pseudo-potential ¢ is:
(¢ = 98P — 206, PeaPerca + (¢ — 0E,)besey = 0. (4.13)
Equation (4.9) is a nonlinear PDE of mixed elliptic-hyperbolic type. It is elliptic at &€ if and only if
1De| < c(|Dpl? ) at g, (4.14)

and is hyperbolic if the opposite inequality holds. This can be seen more clearly from the rotational
invariance of (4.11), by fixing & and choosing coordinates (£1,&2) so that &; is along the direction of
De(§).

Moreover, from (4.11)—(4.12), equation (4.9) satisfies the Galilean invariance property: If p(€) is a
solution, then its shift (& —&p) for any constant vector & is also a solution. Furthermore, ¢(&) + const.
is a solution of (4.9) with adjusted constant B correspondingly in (4.10), (4.12).

One class of solutions of (4.9) is that of constant states that are the solutions with constant velocities
v = (u,v). This implies that the pseudo-potential of a constant state satisfies Dy = v — & so that

pl&) = —5leP +v-E+C, (115)

where C' is a constant. For such ¢, the expressions in (4.10), (4.12) imply that the density and sonic
speed are positive constants p and ¢, i.e., independent of £. Then, from (2.4) and (4.15), the ellipticity
condition for the constant state is

€ —v| <ec.
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Thus, for a constant state v, equation (4.9) is elliptic inside the sonic circle, with center v and radius
¢, and hyperbolic outside this circle.

We also note that, if density p is a constant, then the solution is a constant state; that is, the
corresponding pseudo-potential ¢ is of form (4.15).

Since the problem involves transonic shocks, we have to consider weak solutions of equation (4.9),
which admits shocks. As in [35], it is defined in the distributional sense.

Definition 4.1. A function ¢ € VV&)’;(Q) is called a weak solution of (4.9) if
0) oy ' = (v =D+ 3IDel?) 20 ae. in

(i) (p(ID¢l?, 0), p(|D@l?, )| D) € (L}, ()%
(iii) For every ¢ € CF(Q),

L (PPl 2) Do - DC — 2p(| D, 9)C) € = 0. (4.16)

A shock is a curve across which Dy is discontinuous. If QF and Q= (:= Q\Q7) are two nonempty
open subsets of a domain Q < R? and S := QT N Q is a C'-curve where Dy has a jump, then
pE Wi)’cl N CHOE U S) N C?(QF) is a global weak solution of (4.9) in  if and only if ¢ is in VV&)’;O(Q)
and satisfies equation (4.9) and the Rankine-Hugoniot condition on S:

p(ID¢?,0) Dy - Vg ns = p(IDeI?, 0) D - vg-ns: (4.17)
Note that the condition, ¢ € I/VI})COO(Q), requires that

Po+tng = PO-nS (4.18)
which is consistent with curl(Vy) = 0 in the distributional sense. The front, S, is called a shock if

density p increases in the pseudo-flow direction across S, i.e., in the direction of Dp|a+~g. A piecewise
smooth solution whose discontinuities are all shocks is called an entropy solution.

4.1. von Neumann’s Problem for Shock Reflection-Diffraction. We now describe von Neu-
mann’s problem proposed for mathematical analysis first in [118-120]. When a vertical planar shock
perpendicular to the flow direction z; and separating two uniform states (0) and (1), with constant
velocities (ug,vo) = (0,0) and (u1,v1) = (u1,0) and constant densities p; > po (state (0) is ahead or to
the right of the shock, and state (1) is behind the shock), hits a symmetric wedge:

W= {(z1,22) : |22| < w1 tan by, z1 > 0}

head on at time ¢ = 0, a reflection-diffraction process takes place when ¢ > 0. Then a fundamental ques-
tion is what types of wave patterns of reflection-diffraction configurations may be formed around the
wedge. The complexity of reflection-diffraction configurations was first reported by Ernst Mach [93]
in 1878, who first observed two patterns of reflection-diffraction configurations: Regular reflection
(two-shock configuration; see Figs. 4.1-4.2) and Mach reflection (three-shock/one-vortex-sheet con-
figuration); also see [9,37,56,116]. The issues remained dormant until the 1940s when John von
Neumann [118-120], as well as other mathematical /experimental scientists (cf. [9,37,56,66,116] and
the references cited therein) began extensive research into all aspects of shock reflection-diffraction
phenomena, due to its importance in applications. It has been found that the situations are much
more complicated than what Mach originally observed: The Mach reflection can be further divided
into more specific sub-patterns, and various other patterns of shock reflection-diffraction configurations
may occur such as the double Mach reflection, the von Neumann reflection, and the Guderley reflection;
see [9,37,56,66,116] and the references cited therein. Then the fundamental scientific issues include:

(i) Structure of the shock reflection-diffraction configurations;
(ii) Transition criteria between the different patterns of shock reflection-diffraction configurations;
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(iii) Dependence of the patterns upon the physical parameters such as the wedge angle 6y, the
incident-shock-wave Mach number, and the adiabatic exponent v > 1.

In particular, several transition criteria between the different patterns of shock reflection-diffraction
configurations have been proposed, including the sonic conjecture and the detachment conjecture by
von Neumann [118-120].

Careful asymptotic analysis has been made for various reflection-diffraction configurations in Lighthill
[86,87], Keller-Blank [73], Hunter-Keller [71], Harabetian [70], Morawetz [99], and the references cited
therein; also see Glimm-Majda [66]. Large or small scale numerical simulations have been also made; cf.
[9,66,122] and the references cited therein. However, most of the fundamental issues for shock reflection-
diffraction phenomena have not been understood, especially the global structure and transition between
the different patterns of shock reflection-diffraction configurations. This is partially because physical
and numerical experiments are hampered by many difficulties and have not yielded clear transition
criteria between the different patterns. In particular, numerical dissipation or physical viscosity smear
the shocks and cause boundary layers that interact with the reflection-diffraction patterns and can
cause spurious Mach steams; cf. [122]. Furthermore, some different patterns occur when the wedge
angles are only fractions of a degree apart, a resolution even by sophisticated experiments has not
been able to reach (cf. [9,92]). For this reason, it is almost impossible to distinguish experimentally
between the sonic and detachment criteria, as pointed out in [9]. In this regard, the necessary approach
to understand fully the shock reflection-diffraction phenomena, especially the transition criteria, is
via rigorous mathematical analysis. To achieve this, it is essential to formulate the shock reflection-
diffraction problem as a free boundary problem and establish the global existence, regularity, and
structural stability of its solution.

Mathematically, the shock reflection-diffraction problem is a two-dimensional lateral Riemann prob-
lem in domain R?\W.

Problem 4.2 (Two-Dimensional Lateral Riemann Problem). Piecewise constant initial data, consisting
of state (0) on {x1 > OP\W and state (1) on {x1 < 0} connected by a shock at x1 = 0, are prescribed
at t = 0. Seek a solution of the Euler system (4.1)—(4.2) for t = 0 subject to these initial data and the
boundary condition V® -v =0 on dW.

In order to define the notion of weak solutions of Problem 4.2, it is noted that the boundary condition
can be written as pV® - v = 0 on ¢W, which is spatial conormal to the equation (4.5). Then we have

Definition 4.3 (Weak Solutions of Problem 4.2). A function ® € VVlzcl (R x (RA\W)) is called a weak
solution of Problem 4.2 if ® satisfies the following properties:

(i) Bo— (0:® + 3|Vx®[%) = h(0+) a.e. in Ry x (RA\W);
(ii) For p(01®,Vx®) determined by (4.4),
(p(:®, [Vx®[?), p(0:®, [Vx®[*)[Vx®|) € (Lioo (R x R2\W))*;
(iii) For every ( € C¥ (R, x R?),
e 0]
| L (p@, 900 + plod,[9:0P) Ve - 9¢) dxdt + | p(0.306(0, x)dx = 0
0 JRAW R2\W
where

Plico = 00 for |xa| > z1 tan by, x1 > 0,
- for z1 < 0.

Remark 4.4. Since ¢ does not need to be zero on 0A, the integral identity in Definition 4.3 is a weak
form of equation (4.5) and the boundary condition pNV® -v =0 on oW.
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Notice that Problem 4.2 is invariant under scaling (4.6), so it admits self-similar solutions determined
by equation (4.9) with (4.10), along with the appropriate boundary conditions, through (4.7). We now
show how such solutions in self-similar coordinates £ = ({1,&2) = ¥ can be constructed.

First, by the symmetry of the problem with respect to the £;—axis, we consider only the upper half-
plane {{3 > 0} and prescribe the boundary condition: ¢, = 0 on the symmetry line {2 = 0}. Note
that state (1) satisfies this condition. Then Problem 4.2 is reformulated as a boundary value problem
in unbounded domain

A:=R2\{€ : |&] < & tanby, & > 0}
in the self-similar coordinates & = (£1,&), where R2 = R? n {& > 0}. The incident shock in the
self-similar coordinates is the half-line Sy = {€ = £)} n A, where

2(cf - ¢§) p1u1

& =m = : (4.19)
' (v=D(p1 =p5) 1= po

which is determined by the Rankine-Hugoniot conditions between states (0) and (1) on Sp. Now

Problem 4.2 for self-similar solutions is:

Problem 4.5 (Boundary Value Problem). Seek a solution ¢ of equation (4.9)—(4.10) in the self-similar
domain A with the slip boundary condition Do -v|on = 0 on the wedge boundary A and the asymptotic
boundary condition at infinity:

_Jeo  for &> €),6 > & tan by,
Y —=>P= 0
o1 for &1 <&, &2>0,
where o = —%£|2 and @1 = —%|£|2 +ur (& —&)).

A weak solution of Problem 4.5 is defined by taking = A in Definition 4.1 and using ¢ € C°(R?) in
Definition 4.1(iii) to take into account the boundary condition, which can be written in the conormal
form pDy -v =0 on 0A; see Remark 4.4.

when |&| — oo,

Incident Shock

Incident Shock

(1[0

3
P2 P3 P P3
FIGURE 4.1. Supersonic regular shock FIGURE 4.2. Subsonic regular shock
reflection-diffraction configuration reflection-diffraction configuration

If a solution has one of the regular shock reflection-diffraction configurations as shown in Figs. 4.1—
4.2, and if its pseudo-potential ¢ is smooth in the subregion D between the wedge and the reflected
shock, then it should satisfy both the slip boundary condition on the wedge and the Rankine-Hugoniot
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conditions with state (1) across the flat shock S1 = {¢1 = @2}, which passes through point Py where
the incident shock meets the wedge boundary. We define the uniform state (2) with pseudo-potential
©2(&) such that

Py) = ¢(P Dya(Py) = lim  Dy(P).
p2(Po) = (), pa(Po) = |, lim _ Do(P)

Then the constant density ps of state (2) is equal to p(|D¢l|?, ¢)(Py) defined by (4.9):

p2 = p(|1 Do, 9) (Pp).

From the properties of ¢ discussed above, it follows that Dy - v = 0 on the wedge boundary and the
Rankine-Hugoniot conditions (4.17)—(4.18) hold on the flat shock S1 = {¥1 = @2} between states (1)
and (2), which passes through Py. In particular, ¢y satisfies the following three conditions at Fj:

Dyy - vy, = 0, V2 = @1, p(IDg2|?, p2)Dps - vs, = p1Depy - v,
for vg, = 7D(¢1 — ¢2) (4.20)
b D(per = p2)l

where vy, is the outward normal to the wedge boundary.

Solution ¢, and correspondingly state (2), can be either supersonic or subsonic at Fy.  This de-
termines the supersonic or subsonic type of regular shock reflection-diffraction configurations. Regular
reflection solution in the supersonic region is expected to consist of the constant states separated by
straight shocks, in some cases this is proved, cf. [106, Theorem 4.1]. Then, when state (2) is supersonic
at Py, the constant state (2), extended up to arc P; Py of the sonic circle of state (2) between the wall
and the straight shock PyP; < S; separating it from state (1), as shown in Fig. 4.1, is expected to
be a part of the regular reflection configuration. The supersonic regular shock reflection-diffraction
configuration on Fig. 4.1 consists of three uniform states (0), (1), (2), and a non-uniform state in
domain 2 = P, P, P3Py, where the equation (4.9) is elliptic. The reflected shock PyP; P, has a straight
part PyP;. The elliptic domain {2 is separated from the hyperbolic region PyP; Py of state (2) by the
sonic arc P} Py which lies on the sonic circle of state (2), and the ellipticity in 2 degenerates on the
sonic arc P;Py. The subsonic regular shock reflection-diffraction configuration as shown in Fig. 4.2
consists of two uniform states (0) and (1), and a non-uniform state in domain (2 = PP P3, where the
equation is elliptic, and p|o(Fo) = p2(Fo) and D(p)q)(Fo) = Dp2(Fo).

For the supersonic regular shock reflection-diffraction configurations in Fig. 4.1, we use I'sonic, I'shocks
Iyedge, and T'syry, for the sonic arc P Py, curved part of the reflected shock P P, wedge boundary P3Py,
and symmetry line segment P, P3, respectively.

For the subsonic regular shock reflection-diffraction configurations in Fig. 4.2, I'shock; I'wedge, and
I'sym denote PyFPs, PyPs, and P> P3, respectively. We unify the notations with the supersonic reflection
case by introducing points P, and Py for the subsonic reflection case as

P1 = PO, P4 = P(), Fsonic = {P[)} (421)

The corresponding solution for 6y, = 7 is called normal reflection. In this case, the incident shock
normally reflects from the flat wall, see Fig. 4.3. The reflected shock is also a plane {¢ = &}, where
51 < 0.

From the discussion above, it follows that a necessary condition for the existence of a regular reflection
solution is the existence of the uniform state (2) with pseudo-potential o determined by the boundary
condition Dy - v = 0 on the wedge and the Rankine-Hugoniot conditions (4.17)—(4.18) across the flat
shock S1 = {p1 = 2} separating it from state (1), and satisfying the entropy conditions ps > p;.
These conditions lead to the system of algebraic equations (4.20) for the constant velocity (ug,v2) and
density po of state (2). System (4.20) has solutions for some but not all of the wedge angles. More
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Eo A
Reflected Location of
shock ( 2 ) incident shock
(1)
&1 0 3 &1

FI1GURE 4.3. Normal reflection configuration

specifically, for any fixed densities 0 < pg < p; of states (0) and (1), there exist a sonic angle 6, and a
detachment angle 09 satisfying

.o

0<6d <6 < 5
such that the algebraic system (4.20) has two solutions for each 0y, € (6%, Z), which become equal when
fw = 0%. Thus, for each 6y, € (%, F), there exist two states (2), called weak and strong, with densities

pyeak < 5" The weak state (2) is supersonic at the reflection point Py(6y) for 6y € (65, %), sonic

for B = 6%, and subsonic for 0y, € (03,63 for some 65, € (09,65 ]. The strong state (2) is subsonic at
Py(0y) for all 6y, € (64, Z).

There had been a long debate to determine which of the two states (2) for 6y € (0%, %), weak or
strong, is physical for the local theory; see [9,37,56] and the references cited therein. It was conjectured
that the strong shock reflection-diffraction configuration would be non-physical; indeed, it is shown as
in Chen-Feldman [35,37] that the weak shock reflection-diffraction configuration tends to the unique
normal reflection in Fig. 4.3, but the strong reflection-diffraction configuration does not, when the

s

wedge angle 6y, tends to 5. The entropy condition and the definition of weak and strong states (2)

2
weak strong

imply that 0 < p1 < py*** < p, , which shows that the strength of the corresponding reflected shock
near Py in the weak shock reflection-diffraction configuration is relatively weak, compared to the other
shock given by the strong state (2).

If the weak state (2) is supersonic, the propagation speeds of the solution are finite, and state (2)
is completely determined by the local information: state (1), state (0), and the location of point Fj.
That is, any information from the reflection-diffraction region, especially the disturbance at corner Ps,
cannot travel towards the reflection point FPy. However, if it is subsonic, the information can reach P,
and interact with it, potentially altering a different reflection-diffraction configuration. This argument
motivated the following conjecture by von Neumann in [118,119]:

The Sonic Conjecture: There exists a supersonic reqular shock reflection-diffraction configuration
when Oy, € (6%, %) for 65, > 0%, That is, the supersonicity of the weak state (2) implies the existence of
a supersonic reqular reflection solution, as shown in Fig. 4.1.

Another conjecture is that global regular shock reflection-diffraction configuration is possible when-

ever the local regular reflection at the reflection point is possible:

The von Neumanm Detachment Conjecture: There exists a reqular shock reflection-diffraction

configuration for any wedge angle 0y, € (6, 5). That is, the existence of state (2) implies the existence

of a regular reflection solution, as shown in Figs. 4.1-4.2.
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It is clear that the supersonic/subsonic regular shock reflection-diffraction configurations are not
possible without a local two-shock configuration at the reflection point on the wedge, so the detach-
ment conjecture is the weakest possible criterion for the existence of supersonic/subsonic regular shock
reflection-diffraction configurations.

We now show how the solutions of regular shock reflection-diffraction configurations can be con-
structed to solve the von Neumann’s conjectures. Note that the weak state (2) is obtained from the
algebraic conditions described above, which determines point Fy, line S7, and the sonic arc PPy in
the case when the weak state (2) is supersonic at Py. Thus, the unknowns are domain € (or equiv-
alently, the curved part of the reflected shock I'ghoek) and the pseudo-potential ¢ in €. Then, from
(4.17)—(4.18), in order to construct a solution of Problem 4.5 of the supersonic or subsonic regular
shock reflection-diffraction configuration, it suffices to solve the following problem:

Problem 4.6 (Free Boundary Problem). For 6, € (0%,%), find a free boundary (curved reflected shock)
Fahock € AN {1 <&ip} (Dshock = PiPa on Fig. 4.1 and Ugpock = PoPe on Fig. 4.2) and a function ¢
defined in region §2 as shown in Figs. 4.1-4.2 such that

(i) Equation (4.9) is satisfied in ), and the equation is strictly elliptic for ¢ in Q\Tsonic,

(ii) ¢ = 1 and pDy -vs = Dy - vg on the free boundary Tshock,

(iii) ¢ = @2 and Dy = Dy on Py Py in the supersonic case as shown in Fig. 4.1 and at Py in the

subsonic case as shown in Fig. 4.1,
(iv) Dy - vy =0 on Iyedge; and Dy - Vsyy = 0 on Ly,

where Vs, Vy, and Vsyy, are the interior unit normals to € on Ushock, I'wedge, and sym, respectively.
Indeed, if ¢ is a solution of Problem 4.6, define its extension from 2 to A by setting:

©o for & > &7 and & > & tan by,
=< ¢ for & < 5(1) and above curve PyP P, (4.22)
V2 in region PyP; Py,

where we have used the notational convention (4.21) for the subsonic reflection case, in which region
PyP1 Py is one point and curve PyP1 Py is PyPs; see Figs. 4.1 and 4.2. Also, f? used in (4.22) is the
location of the incident shock (cf. (4.19)), and the extension by (4.22) is well-defined because of the
requirement that I'ypock € A N {&1 < &1p,} in Problem 4.6.

Note that the conditions in Problem 4.6(ii) are the Rankine-Hugoniot conditions (4.17)—(4.18) on
Fanock between g and ¢1. Since Tgpock is a free boundary and equation (4.9) is strictly elliptic for
¢ in Q\sonic, then two conditions — the Dirichlet and oblique derivative conditions — on Igyek are
consistent with one-phase free boundary problems for elliptic equations of second order (cf. [1,3]).

In the supersonic case, the conditions in Problem 4.6(iii) are the Rankine-Hugoniot conditions on
Csonic between ¢ and s. Indeed, since state (2) is sonic on I'sonic, then it follows from (4.17)—(4.18)
that no gradient jump occurs on I'gopic-

Then, if ¢ is a solution of Problem 4.6, its extension by (4.22) is a weak solution of Problem 4.5.
From now on, we consider a solution of Problem 4.6 to be a function defined in A by extension via
(4.22).

Since T'sonic s not a free boundary (its location is fixed), it is not possible in general to prescribe two
conditions given in Problem 4.6(iii) on I'sopic for an elliptic equation of second order. In the iteration
problem, we prescribe the condition: ¢ = @9 on I'sopnic, and then prove that Dy = Dyg on T'gopic by
using the elliptic degeneracy on I'sonic, as we describe below.

We observe that the key obstacle to the existence of regular shock reflection-diffraction configurations
as conjectured by von Neumann [118,119] is an additional possibility that, for some wedge angle
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02 e (09, 5), shock PyP» may attach to the wedge-vertex P3, as observed by experimental results
(cf. [116, Fig. 238]). To describe the conditions of such an attachment, we note that

92 y—1 = -1 L*]
p1 > Pos U 2(01—00)\/(/)12?)7 ca=p?.
P1 ~ Po
Then, for each pg, there exists p® > pg such that
up < ¢ if p1 € (po, p°I; up > c1 if p1 € (p°, 00).

If uy < ¢1, we can rule out the solution with a shock attached to the wedge vertex. This is based on
the fact that, if u; < ¢1, then the wedge vertex P3 = (0,0) lies within the sonic circle B, ((u1,0)) of
state (1), and T'ghocx does not intersect By, ((u1,0)), as we show below.

If uy > ¢1, there would be a possibility that the reflected shock could be attached to the wedge vertex
as the experiments show (e.g., [116, Fig. 238]).

Thus, in [35,37], we have obtained the following results:

Theorem 4.1. There are two cases:

(i) If po and p1 are such that uy < c1, then the supersonic/subsonic reqular reflection solution exists
for each wedge angle 0y, € (03,%). That is, for each Oy € (0%,%), there exists a solution ¢ of
Problem 4.6 such that

x.  |x|? x
P(t =tp(— — —eA t>
0 =16+ EE o Xen >0
5555588 ,
x, x| X
O(t =tp(— — —eANt>0
() =t + BE o X e
with

ot = (5" = (= D)(@+ V@) T

s a global weak solution of Problem 4.2 in the sense of Definition 4.3 satisfying the entropy
condition; that is, (®, p)(t,x) is an entropy solution.

(i) If po and p1 are so that uy > c1, then there exists 0% € [0S, %) such that the regular reflection
solution exists for each wedge angle Oy € (05,%), and the solution is of self-similar structure
described in (i) above. Moreover, if 02 > 63 then, for the wedge angle 0y, = 02, there exists an

attached solution, i.e., p is a solution of Problem 4.6 with P, = Pj.

The type of regular shock reflection-diffraction configurations (supersonic as in Fig. 4.1 or subsonic as
in Fig. 4.2) is determined by the type of state (2) at Py.

(a) For the supersonic and sonic reflection case, the reflected shock PyPy is C*®—smooth and its curved
part PPy is C® away from Py. The solution satisfies o € CH*(Q) n C*®(Q), and ¢ is C1' across
the sonic arc which is optimal; that is, ¢ is not C? across sonic arc.

(b) For the subsonic reflection case (Fig. 4.2), the reflected shock PyPy and the solution in § is C1
near Py and P3, and C* away from {Py, Ps}.

Moreover, the regular reflection solution tends to the unique normal reflection (as in Fig. 4.3) when

the wedge angle Oy, tends to 5. In addition, for both supersonic and subsonic reflection cases,

01> Q> Py in €. (4.23)

Furthermore, ¢ is an admissible solution in the sense of Definition 4.10 below, so that ¢ satisfies further
properties listed in Definition 4.10.
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Theorem 4.1 is proved by solving Problem 4.6. The first results on the existence of global solutions
of the free boundary problem (Problem 4.6) were obtained for the wedge angles sufficiently close to 3
in Chen-Feldman [35]. Later, in Chen-Feldman [37], these results were extended up to the detachment
angle as stated in Theorem 4.1. For this extension, the techniques developed in [35], notably the

estimates near the sonic arc, were the starting point.

Case I: The Wedge Angles close to 7. Let us first discuss the techniques in [35], where we
employ the approach of Chen-Feldman [31] to develop an iteration scheme for constructing a global
solution of Problem 4.6, when the wedge angle is close to 5. For this case, the solutions are of the
supersonic regular shock reflection-diffraction configuration as in Fig. 4.1. The general procedure is

similar to the one described in §2.2, which can be presented in the following four steps:

1. Fix 6y sufficiently close to 5 so that various constants in the argument can be controlled. The

iteration set consists of functions defined on a region D, where D contains all possible €2 for the fixed 60,.
Specifically, an important property of the regular shock reflection-diffraction configurations is (4.23),
which implies that Q < {pa < p1}; that is,  lies “below” line S; passing through Py and P; on Fig.
4.1. Note that, when 6y, close to 7, this line is close to the vertical reflected shock of normal reflection
on Fig. 4.3. Then D is defined as a region bounded by Si, I'sonic = P1Ps, I'wedge = 3P4, and the
symmetry line £ = 0. The iteration set is a set of functions ¢ on D, defined by ¢ > ¢ on D and the
bound of norm of ¢ — o on D in the scaled and weighted C?® space defined in (4.38) below. Such
functions satisfy
7r

l — <P2Hcl,a(5) <C(35

2 - 0W)7

which is small when § — 6, « 1, and

I = P2l ot @Dant (ruome)) < C1-

However, [ — @2l cra@on (ron)) 15 Rot small even if § — 6y, is small; the reasons for that will be
discussed below.

Given a function ¢ from the iteration set, we define domain Q(¢) := {¢ < ¢1} so that the iteration
free boundary is I'spock (¢) = 092(p) nD. This is similar to (2.40), and the corresponding non-degeneracy
similar to (2.39) in the present case is: 0¢, (p1 — 2 — ¢) = u1/2 in D if Hd)”cl(T)) and § — 0, are small.
Then we define the iteration equation by using form (4.13) of equation (4.9), by making an elliptic
truncation (which is somewhat different from Step 1 in §2.2) and substituting ¢ in some terms of the
coefficients of (4.13). The iteration boundary condition on I'gheck(¢) is an oblique derivative condition
obtained by combining two conditions in Problem 4.6(ii) and making some truncations. On Isopic, we
prescribe ¢ = 9, i.e., one of two conditions in Problem 4.6(iii). On I'yedge and I'sym (), we prescribe
the conditions given in Problem 4.6(iv). The iteration map ¢ — ¢ is defined by solving the iteration
problem to obtain ¢ and then extending ¢ from Q(p) to D.

The fundamental differences between the iteration procedure in the shock reflection-diffraction prob-
lem and the previous procedures on transonic shocks in the steady case in §2-83 (such as [31,32,34,123]
and further works) include:

(i) The procedures on steady transonic shocks in §2-§3 are for the perturbation case. In particular,
the ellipticity of the iteration equation and the removal of the elliptic cutoff are achieved by making
the iteration set sufficiently close to the background solution in C' or a stronger norm. For the
regular reflection problem, this cannot be done because of elliptic degeneracy near the sonic arc.

(ii) Only one condition on I'gopic is prescribed; however, both ¢ = p9 and Dy = Dys on Igopic are
required to be matched to obtain a global weak solution. This is resolved by using the elliptic
degeneracy on I'gopic.
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2. In order to see the elliptic degeneracy on I'sonic more explicitly, we fix the wedge angle 6y, and the
corresponding pseudo-potential po = cpga‘”) of the weak state (2), and rewrite equation (4.11) in terms
of the function:

V=9 —p
in the following coordinates flattening I'sonic:
T =co—T, y =0 — 0y,

where (r,0) are the polar coordinates centered at center Oz = (ug,v2) of the sonic circle of state (2).
Then

Qe = QN Ne(Tsonic) € {x > 0} for small € > 0, TCsonic € {x = 0}.
Below we always assume that ¢ € C*!(€Q.) as in Theorem 4.1 for the supersonic case. Then, by the
conditions in Problem 4.6(iii) and the definition of 1,

=0 on Cgonic, (4.24)
D=0 on Teonic. (4.25)

Moreover, we apriori assume that the solutions, ¢, satisfy (4.23) in Q to derive the required estimates
of the solutions; with these estimates, we then construct such solutions. The heuristic motivation of
(4.23) is the following: From Figs. 4.1-4.2, it appears that I'ypock (and hence 2) is located “below” line
Sy, i.e., in the half-plane {¢1 > po}. Thus, ¢ = @1 > p2 on Tgheck, and @1 > w2 = ¢ on Lgopic. Also,
the potentials ¢; and ¢o of states (1) and (2) are linear functions, thus they satisfy equation (4.13)
with coefficients determined by ¢, considered as a linear equation for ¢. Then, taking into account the
inequalities on I'gpoex and I'sonie noted above, and the oblique boundary conditions on I'yeqge and I'sym,
we obtain (4.23) by the maximum principle. Then, from (4.23), we have

Y>>0 inQ. (4.26)

The previous argument is heuristic, but the fact that it comes from the structure of the problem allows
to include the condition that ) > 0 in the definition of the iteration set and close the iteration argument
for constructing the solutions within this set.

Equation (4.11) in © n Nz (Tsonic) for ¢ in the (z,y)-coordinates is

(23: =+ Dt + 01)¢m + O2tpgy + (012 + O3)¢yy — (1 4+ O4)y + Os1pyy, = 0, (4.27)
where
_ ?  y+1 v—1 1 )
Or(V¥,9,7) = o * 2¢o (22 = o)¥e - o (v+ 2(co — x)? W)
02V, 1), 7) = _2(1#;(4;;2_ - )1’2)%
1 1 1
O3(V), ¢, x) = m<1¢(202 —z) = (v = D)@+ (c2 — )by + 51#2) - 2(;42‘%‘)2%), (4.28)
1 —1 1 + 1)y2

(1% +c2 — x)wy
ca(ca —x)3
From (4.24)-(4.25), and since 1 € C11(€.), it follows that |(x,y)| < Cx? and
|DY(z,y)| < Cx in Q, (4.29)

Os(Vip, ,2) = —>
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so that
|01(DY, ¥, z)| < Nl|z|F, |On(Dip, 1, z)| < N|z| for k=2,...,5, (4.30)

which shows that Oy (V1,1 z) are small perturbations of the leading terms of equation (4.27) in
Q. = Q A N(Tsonic)- Also, if (4.29) holds, equation (4.27) is strictly elliptic in Qc\lsonic if

2n
< —
s

for € (0,1), when € = e(u, N) is small. For 6y, close to §, it can be shown that any solution of
Problem 4.6 (with some natural regularity properties) satisfies that, for any small ¢ > 0,

|V (z,y)| < flyi(ix in Q, for small € = £(9). (4.32)

(4.31)

3. The iteration equatior} near I'sonic 1s defined based on the above facts. The iteration set Kps used
in [35] is such that every ¢ = @ — @9 € Ky satisfies (4.24) and (4.29) for some N,e > 0. Then the
iteration equation for 1) is

Yz

(20— (v + D) + O ) + Oy + (- + Oy — (14 0 ) + 0, =0, (4.33)
2

where the cutoff function n € C*(R) satisfies |n| < and some

n' =0, and n(s) = sif |s] < 3(++1)’

other technical conditions. The terms, O,(Cw) for k =1,...,5, are obtained from Oy, by substituting 1& into
certain terms in (4.28) and performing the ellipticity cutoff in the remaining terms, so that estimates
(4.30) with k = 2 hold. Then (4.33) is strictly elliptic in Q-\sonic for small e, and the ellipticity
degenerates on 'yopic. Since the solution of Problem 4.6 satisfies equation (4.27) and (4.32) with § = é

5
3(y+1)’

in Q. for small g, then it satisfies equation (4.33) in Q. with ) = 1. Indeed, we have the estimate:
|| < )x so that an ( ) = 1),; and the cutoffs in the terms of O,(;p) are removed similarly.

We also note that the degenerate ellipticity structure of equation (4.33) is the following: Writing
(4.33) in the form

2 2
D1 Ay(D,ap, ) Digtp + Y. Af(Dy, b, 2) Dih = 0 (4.34)
i,j=1 i=1
with Ao = Ao, we have
2

NP < An(p,2,n) S 4+ 2410(p, 2, 0) 52

1
1 AP 2 2) & < X|€|2 (4.35)

for all (p,z) € R?2 x R and x € (0, ¢).

We consider the solutions of (4.33) in 2. satisfying (4.24) and (4.26). Note that condition (4.25)
can not be prescribed in the iteration problem as discussed above, so we have to obtain (4.25) from the
estimates of the solutions by exploiting the elliptic degeneracy. The estimates for the positive solutions
of (4.33) with (4.24) in Q. are based on the fact that, for any § > 0, the function

1+46
P a—
2(v+1)
is a supersolution of (4.33) in €. if € = () is small; that is, N'(ws) < 0 in Q., where N () denotes the

operator in the left-hand side of (4.33). Using this, the boundary conditions on I'ghoek and I'yedge, and
(4.26), we obtain

ws(z,y) =

0 < < Ca? in Q, (4.36)
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where € and C' are uniform for the wedge angles near 7. Note that —wjs is not a subsolution of (4.27) so
that it cannot be used to bound 1 from below. Thus, (4.26), which is derived from the global structure
of the solution, is crucially used in this argument. Then, in (4.36), the upper bound comes from the
local estimates near I'sopic, while the lower bound is from the global structure of the problem.

In particular, (4.36) with (4.24) implies that D1 = 0 on I'sopic, which resolves the issue described in
(ii) above. Furthermore, from (4.36), using the non-isotropic “parabolic” rescaling corresponding to the
elliptic degeneracy (4.35) of equation (4.33) near x = 0, we obtain the estimates in the appropriately
weighted and scaled Holder norm in )., which in particular imply the uniform C! estimates:

ID?y| <C  in Q.. (4.37)
More precisely, we denote this norm by Hi/)ngg'g)zs and define it as follows: Denote z = (z,y) and
zZ = (Z,y) with z,Z € (0, 2¢) and
67 (2,2) := (ja — & + max(z, &)y — §2)*
Then, for ¢ € C?(2.) n CY1(Q.) written in the (x,%y)-coordinates, we define

s, = Y, sup (F2dkalu(2)])
T Ochrix2 €

ol (3
W = Y aup (mm( k+i/2-2 ghtfa- Q)IOLUW(( ))—o W(Z)I) (4.38)
Hydce (51)(“ ( )

ktl=2 % ,2€Qe ,2H£2Z

191820, = Il Sy, + [W15e), .

Now we obtain estimates in the norm (4.38), assuming that (4.36) holds in Q.. For every zp =
(z0,Y0) € Qc\'sonic (thus xg € (0,¢]), we define
/T
R., :{(x,y) P <170 ly— ol < Y5 }mQ (4.39)
Note that dist(R.,, I'sonic) = %xg > 0. We rescale the rectangle in (4.39) to the unit square @ =

(—1,1)2:

Qi) = {(S, T)eQ : (zo+ %5, Yo + *g T)e Q} (4.40)
and define the scaled version of ¢ in the (S,7T) coordinates in Ql z0)
Y0)(8,T) = 2w( 0+ E Yo + \{;T) for (S,T) e Q*. (4.41)
Note that this rescaling is non-isotropic with respect to = and y variables. By (4.36), we have
||¢(zo)HLw(@) <C for any 29 = (20, y0) € L\Tsonic- (4.42)

Rewriting equation (4.33) in terms of 1)(*) in the (S, T)-coordinates and noting the degenerate elliptic-

ity structure (4.35), we find that (#0) gatisfies a uniformly elliptic equation in QSZO) with the ellipticity
constants and certain Holder norms of coefficients independent of zy. We also rescale the boundary
conditions on I'gpock M 082 and I'yedge N 0€): in the similar way, when zg is on the corresponding part of

the boundary. Then we apply the local elliptic C%® estimates for ¢)(%0) in ngo) in the following cases:
(i) Interior rectangles R, i.e., all zg such that ngo) = Q1 holds;

(ii) Rectangles R, centered on the shock: zg € I'shock M 082¢;
(ili) Rectangles R, centered on the wedge: 2o € I'yedge M 0€2,
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where, in the last two cases, we have used the local estimates for the corresponding boundary-value
problems. Using (4.42), we obtain

[

<C ith C' ind dent of
2 ngo)) wl independent of zp,

where ng‘; = gzo) N (=1/2, 1/2)2. Rewriting in terms of 1 in the (z,y)-coordinates and combining
the estimates for all zp as above, we obtain the estimate Hz/)ng ((:'5)7 < C in the norm (4.38), which in
particular implies the C1! estimates (4.37).

Remark 4.7. Note that ngzg)(S, T) = tt5¥aa(z0 + 285, yo + ‘ﬁT) It follows that | D*y| = cannot
be made small by choosing parameters, e.g. (’hoosmg e small or Oy close to 5.

Remark 4.8. The above argument, beginning from (4.39), is also used for the apriori estimates of the
positive solutions of (4.27)—(4.28) with condition (4.24), satisfying (4.29) and the ellipticity condition
(4.31) with some pu € (0,1). Note that (4.24), (4.29), and » = 0 imply (4.36), which is used in the
argument.

Remark 4.9. Remark 4.8 applies only to the positive solutions of (4.27) with condition (4.24). For
the negative solutions of (4.27) with condition (4.24), the equation is uniformly elliptic up to {x = 0}
and, similar to Hopf’s lemma, the negative solutions have linear growth: |y (z,y)| = %x, in a contrast
with (4.36). This feature is used in proving certain geometric properties of the free boundary for the
wedge angles away from 3, where we note that ¢ — @1 <0 by (4.23).

4. In order to remove the elliptic cutoff in (4.33), i.e., to show that the fixed point solution of (4.33)

(i.e., with ¢ = 1) actually satisfies (4.27), we need to show that |ih,]| < ﬁx, as we discussed in

the lines after (4.33). Combining (4.37) with D1 = 0 on I'sonic, we obtain that |Dy(z,y)| < Cx in Q,
which does not remove the ellipticity cutoff, unless we show the explicit bound C < ﬁ. However,
this bound does not follow from our estimates, cf. Remark 4.7.

Note that the only explicit solution we have known is the normal reflection for 6y, = 7, for which

p = gpég), i.e., ¥ = 0 in Q. Also, the analysis by Bae-Chen-Feldman [6] shows that the solutions of

Problem 4.6 of supersonic reflection-diffraction structure satisfy, for small ¢,

T . .
Ve g nQen (@) ¢ dist (@), Taoa) > V),

but
Dy = o(x) in Q. n {(z,y) : dist ((2,%), Tshoek) < 2}

This shows that the convergence of solutions () of Problem 4.6 to cp(%) as Oy — 5 does not hold
in the norm sufficiently strong to capture the behaviour near I'gopic described above. In particular, this
convergence does not hold in C? (but holds in C*®) after mapping Q) to a fixed domain for all .
Thus, there is no clear background solution such that the appropriate iteration set would lie in its small
neighborhood in the norm sufficiently strong to remove the cutoff by the smallness of the norm. Then,
in order to remove elliptic cutoff for the fixed point of the iteration, we derive an equation in §2. and
boundary conditions and estimates on I'shoek N {z < €} and T'yeqge N {z < €} for 9, in ., and prove

that
4

< -
Ty
from this boundary value problem. The estimate from below

4
2 -
Ve 3v+ 1)
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is proved from the global setting of Problem 4.6. This use of the local and global structure is similar
to that in the proof of (4.36).

Note that, in this argument, for the wedge angles near 7, the non-perturbative nature of the problem
is seen only in the estimates of the solution near I'gonic. The free boundary ['ghocc in this case is near
S1(0w), and also close to the reflected shock of the normal reflection as in Fig. 4.3, which is the vertical

line S1(%). Also, | — QDQGW)HCl(Q) < O(F — Oy), which is small. Thus, away from I'sonic, the argument
is perturbative for the wedge angles near 5. In the case of general wedge angles in Theorem 4.1, the
free boundary I'gock is no longer close to a line, its structure is not known apriori, thus the study of
geometric properties of the free boundary is a part of the argument.

Case 11I. General Wedge Angles up to the Detachment Angle. For this case and the proof
of Theorem 4.1, we follow the approach introduced in Chen-Feldman [37]. Similar to the case of wedge
angles near 5 where we restricted consideration to the class of solutions satisfying ¢ > 0 in 2 and
showed the existence of such solutions, for the general case, we define a class of admissible solutions,
make apriori estimates of such solutions, and prove the existence of solutions in this class. Motivation
for the definition of admissible solutions comes from the following properties of supersonic regular
reflection solutions ¢ for the wedge angles close to 7, or more generally, for the supersonic regular
reflection solutions satisfying that |¢ — gog)w) ey is small: If (4.9) is strictly elliptic for ¢ in Q\Tsonic,
then it satisfies (4.23) and the monotonicity properties:

Oe,(p1 =) <0, D(p1—¢)-es; <O inQ (4.43)
PoPy

[PoPrl”
We present the outline of the proof of Theorem 4.1 in the following four steps:

where eg, =

1. Motivated by the discussion above, for the general wedge angles, we define the admissible solutions
as the solutions of Problem 4.6 (thus the solutions with weak regular reflection-diffraction configuration
of either supersonic or subsonic type) satisfying the following properties:

Definition 4.10. Let 0, € (6%,%). A function p € COY(A) is an admissible solution of the regular

reflection problem if ¢ is a solution of Problem 4.6 extended to A by (4.22) (where PyPy Py is a point
in the subsonic and sonic cases) and satisfies the following properties:
(i) The structure of solutions:

o If |Dpa(Fo)| > ca, then ¢ is of the supersonic regular shock reflection-diffraction configuration
shown on Fig. 4.1 and satisfies that the curved part of reflected-diffracted shock Tgnock is C? in
its relative interior; curves Ishock, L'sonics ['wedges and I'symy do not have common points except
their endpoints; o € COV(A)NCH(A\(So U Py PLP,)) and ¢ € C*(Q) nC3(Q\ (Tsonic U{ P2, P3})).

o If |Dpa(Py)| < co, then ¢ is of the subsonic regular shock reflection-diffraction configuration
shown on Fig. 4.2 and satisfies that the reflected-diffracted shock Tgnoak is C? in its relative
interior; curves Ishock, 'wedge, and L'sym do not have common points except their endpoints;
@ € COL(A) n CHA\(So U Tshock)) and ¢ € CH(Q) n C*(Q\{ Py, Ps}).

Moreover, in both the supersonic and subsonic cases, the curve F:ﬁgck = Ishock U {FPo} U L hock
is C' in its relative interior, where [ ok 8 the reflection of Ushock with respect to the & —amis.

(i) Equation (4.9) is strictly elliptic in Q\ Tsonic, i-¢., |De| < c¢(|D¢|?, ) in O\ Tsonic-
(iil) dpp1 > O > 0 on Lghock, where v is the normal to Ugpock, pointing to the interior of Q.

(iv) Inequalities hold:
Y1 ==y in (4'44)
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(v) (4.43) is satisfied, where the vector eg, is defined as the unit vector parallel to S1 and pointing
into A at Py for the general case.

Note that (4.43) implies that
D(p1 —p)-e<0 in Q for all e € Cone(eg,,eg,), (4.45)

where Cone(eg,,es,) = {aeg, + bes, : a,b > 0} with eg, = (0,1). Notice that eg, and eg, are not
parallel if 0y, # 7.

2. To prove the existence of admissible solutions for each wedge angle in Theorem 4.1, we derive
uniform a priori estimates for admissible solutions with any wedge angle 6., € [0S + o, 5] for each small
o > 0, show compactness of this subset of admissible solutions in the appropriate norm, and then apply
the degree theory to obtain the existence of admissible solutions for each 6y, € [0 + o, 5], starting
from the unique normal reflection solution for 6 = 5. To derive the a prior: estimates for admissible
solutions, we first obtain the required estimates related to the geometry of the shock and domain €2, as

well as the basic estimates of solution ¢. We show:

(a) The inequality in (4.45) is strict for any e € Cone(eg,,eg,). Combined with (4.44) and the fact
that ¢ = 1 on I'ghoek, this implies that I'gpock is a Lipschitz graph with uniform Lipschitz estimate
for all admissible solutions.

(b) The uniform bounds on diam(£2), [l¢[co.1(q), and the directional monotonicity of ¢ — 2 near the
sonic arc for a cone of directions;

(¢) The uniform positive lower bound for the distance between the shock and the wedge, and the
uniform separation of the shock and the symmetry line (that is, Igpock i away from a uniform
conical neighborhood of I'sym, with vertex at their common endpoint P);

(d) The uniform positive lower bound for the distance between the shock and the sonic circle B, ((u1,0))
of state (1), by using the properties described in Remark 4.9. This allows to estimate the ellipticity
of (4.9) for ¢ in Q (depending on the distance to the sonic arc P; Py for the supersonic regular shock
reflection-diffraction configuration and to Py for the subsonic regular shock reflection-diffraction
configuration).

(e) Estimate (4.29) holds in the supersonic case, by using the monotonicity of 1) = ¢ — @9 near the
sonic arc in a cone of directions shown in (b) and the conditions on I'sopie in Problem 4.6.

The results of (a)—(c) are obtained by the maximum principle, by considering equation (4.13) as a
linear elliptic equation for ¢ and using the boundary conditions on I'shock, I'sonics I'wedge, and I'sym in
Problem 4.6 and (4.44)—(4.45). The results of (c), combined with (a), show the structure of € which
allows to perform the uniform local elliptic estimates in various parts of €2: the interior, near a point
P in a relative interior of I'shock, I'wedge, and I'sym, and locally near the corners P, and Ps.

Based on estimates (a)—(d), we show the uniform regularity estimates for the solution and the free
boundary in weighted /scaled C*% norms away from the sonic arc in the supersonic case and away from
Py in the subsonic case, i.e., in Q\Qg, for any small ¢ > 0. The equation is uniformly elliptic in this
region, with ellipticity constant depending on e. Thus, the estimates depend on ¢.

3. Below we discuss the estimates near I'sopic (resp. near Py in the subsonic/sonic case), i.e., the
estimates in Qy. for some ¢ independent of 6y, € [0 + o, 5], which allows to complete uniform apriori
estimates for admissible solutions with wedge angles 0y, € [9&, + 0, %]. We obtain the estimates near
Tsonic (or Py for the subsonic reflection), i.e., in g, in scaled and weighted C%® for ¢ and the free

boundary I'ghock N 0€22¢, by considering separately four cases depending on % at Py:

; ‘oo (Do .
(i) Supersonic: =2 =1 4 0
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| Depa|

(ii) Supersonic (almost sonic): 1 < =22 <14 6;

(iii) Subsonic (almost sonic, including sonic): 1 — ¢ < ‘Dfﬂ <1
2

(iv) Subsonic: % <1-9,

for a small § > 0 chosen so that the estimates can be obtained. The choice of § determines .
For cases (i)-(ii), equation (4.9) is degenerate elliptic in 2 near P;P; on Fig. 4.1. For case (iii),
M = 1, the equation is uniformly elliptic in €, but the ellipticity constant is

Ow
DS (Po)

except the sonic case

small and tends to zero near Py on Fig. 4.2 as — 17, i.e. for subsonic angles 6y, which tend

C
to the sonic angle. Thus, for cases (i)—(iii), we use the local elliptic degeneracy, which allows to find a
comparison function in each case, to show the appropriately fast decay of ¢ — o near P Py for cases (i)—
(ii) and near Py for case (iii); furthermore, combining with appropriate local non-isotropic rescaling to
obtain the uniform ellipticity, we obtain the a priori estimates in the weighted and scaled C?®-norms.
In cases (i)—(ii), the norms are (4.38). For the case (iii), we use the different norms, and the estimates
we obtain implysa the standard C?“—estimates for case (iii). To obtain these estimates, in case (i) we
use the argument developed in Chen-Feldman [35] and described above (see Remark 4.8), where we note
that the ellipticity estimate (4.31) follows from the estimates described in (d) above, and (4.29) was
obtained in (e). These estimates hold in . with ¢ < (length(Tsonic))? because the “rectangles” Riz.40)
defined by (4.39) do not fit into €2 for larger z(, which means, for example, that Rizo,y0) N I'wedge # &

for (x0,v0) € Ishock N 0 with zg = C(length(Tsonic))? if C is large and length(Tsonic) is small, because

the length of y-side of R(xo,yo) is —VIQSO, and I'spock and I'yeqge are smooth curves which intersect I'sonic
D™ (Py)| . .
transversally. However, length(Tgopnic)) tends to zero, as ——2——" — 17 i.e. when the supersonic
C2

wedge angle tends to the sonic angle. Thus, a different argument, involving an appropriate scaling,
is employed for case (ii) in order to keep ¢ uniform for all 6y € [0S + 6,%]. Another version of that
argument (with a different scaling) is applied for case (iii). For both cases (ii)—(iii), we need to use
smaller rectangles than those for case (i), but this requires stronger growth estimates than (4.36) to
obtain a bound in C*! from the corresponding weighted and scaled estimates. We obtain such growth
estimates by using the conditions of cases (ii)—(iii) for sufficiently small 6. For case (iv), the equation is
uniformly elliptic in € for the admissible solution, where the ellipticity constant is not small, and the
estimates are more technically challenging than those for cases (i)—(iii). This can be seen as follows: For
all cases (i)—(iv), the free boundary has a lower apriori regularity in the sense that only the Lipschitz
estimate of I'yock is obtained in (a) above; however, for case (iv), the uniform ellipticity combined
with oblique boundary conditions does not allow a comparison function that leads to the fast decay of
| — 2| near Py. Thus, we prove the C%—estimates of D(p — ¢2) near Fy, by deriving the equations
and boundary conditions for two directional derivatives of ¢ — o near Py, and performing hodograph
transform to flatten the free boundary.

4. In order to prove the existence of solutions, we perform an iteration, which is an extension of the
iteration process used in Chen-Feldman [35]. First, given an admissible solution ¢ for the wedge angle
0w, we map its elliptic domain (¢, fy) to a unit square @ = (0,1)? so that, for the supersonic case,
the boundary parts I'shocks I'sonics I'wedge, and I'syy, are mapped to the respective sides of @), and other
properties of this map are satisfied. For the subsonic case, the map is discontinuous at Py = Tgonic
(mapping the triangular domain to a square). Moreover, we define a function u on @ by expressing

p— @gﬁw) in the coordinates on (), where @gew) is a function determined by 6y and equal to ¢o near
T'sonic; we skip the complete technical definition here. For appropriate functions v on ) and the wedge

angle 6y, this mapping can be inverted, i.e., the elliptic domain Q(u, fy,) and the iteration free boundary
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Dshock(u, Oy) can be determined, and a function (wbw) on Q(u, by) is defined by expressing u in the

(Ow)

coordinates on Q(u, fy,) and adding @5’ so that, if u is obtained from the admissible solution ¢ with
elliptic domain €2 as described above, then Q(u,6y) = © and go(u’GW) = ¢ in ). Moreover, the map:
Q(u, by) — Q and its inverse satisfy certain continuity properties with respect to (u, ). The iteration
is performed in terms of functions defined on ). The iteration set consists of pairs (u, 6y ), where u is
in a weighted and scaled C*® space on @, denoted as o (its definition is technical and we skip it
here), and satisfy

(i) Julg20 < M(0y), where M(6y) is defined explicitly, based on the apriori estimates discussed
koK

above;
(i) Q(u,0y), Tshock(u,by), and function (%) on Q(u,6,,) satisfy some geometric and analytical

properties.
The iteration map: (4, 0y) — (u,0y) is defined by solving the iteration problem in Q(u,6y) and then
mapping the solution, ¢, to a function u on (). This mapping includes additional steps comparing to the
one described above to modify the iteration free boundary by using solution ¢ of the iteration problem,
and using this modified domain 2 in the mapping: (¢, 6,,) — u, so that the resulting function u on Q
keeps the regularity gain obtained from solving the iteration problem. This yields the compactness of
the iteration map. We show that, for a fixed point (u,60y) of the iteration map, ¢(*%) on Q(u, ) is
an admissible solution. We use the degree theory to show the existence of admissible solutions for each
O € [69 + 9, 5], starting from the unique normal reflection solution for 6 = 5. The compactness of
the iteration map described above is necessary for that. The apriori estimates of admissible solutions
discussed above are used in the degree theory argument in order to define the iteration set such that a
fixed point of the iteration map (i.e., admissible solution) cannot occur on the boundary of the iteration
set, since that would contradict the apriori estimates. With all of these arguments, we complete the
proof of Theorem 4.1. This provides a solution to the von Neumann’s conjectures.

More details can be found in Chen-Feldman [37]; also see [35].

4.2. Prandtl-Meyer Problem for Shock Reflection. As we discussed in §2-83, steady shocks
appear when a steady supersonic flow hits a straight wedge; see Figure 3.1. Since both weak and
strong steady shock solutions are stable in the steady regime, the static stability analysis alone is
not able to single out one of them in this sense, unless an additional condition is posed on the speed
of the downstream flow at infinity. Then the dynamic stability analysis becomes more significant to
understand the non-uniqueness issue of the steady oblique shock solutions. However, the problem for
the dynamic stability of the steady shock solutions for supersonic flow past solid wedges involves several
additional mathematical difficulties. The recent efforts have been focused on the construction of the
global Prandtl-Meyer configurations in the self-similar coordinates for potential flow.

As we discussed earlier, if a supersonic flow with a constant density pp > 0 and a velocity ug =
(u10,0), u1g > ¢o := ¢(po), impinges toward wedge W in (3.11), and if 6y, is less than the detachment
angle 64 then the well-known shock polar analysis shows that there are two different steady weak
solutions: the steady weak shock solution ® and the steady strong shock solution, both of which satisfy
the entropy condition and the slip boundary condition (see Fig. 3.1).

Then the dynamic stability of the weak transonic shock solution for potential flow can be formulated
as the following problem:

Problem 4.11 (Initial-Boundary Value Problem). Given v > 1, fix (po,u10) with uig > co. For a fized
Oy € (0,0%), let W be given by (3.11). Seek a global weak solution ® € W'*(R, x (R2\W)) of Eq.

loc

(4.5) with p determined by (4.4) and B = UT%O + h(po) so that ® satisfies the initial condition at t = 0:
(p, ®)|t=0 = (po,u1071) for x e RAW, (4.46)
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and the slip boundary condition along the wedge boundary oW
Vx® - vylow =0, (4.47)

where Vy is the exterior unit normal to OW .
In particular, we seek a solution ® € Wllofo (R x (R2\W)) that converges to the steady weak oblique

shock solution ® corresponding to the fized parameters (po, uig,7y, 0w) with p = h~ (B — %|V<f>|2), when
t — oo, in the following sense: For any R > 0, ® satisfies

I [[(Vi®(t, ) = Ve, p(t, ) = P) L1 Bropw) = 0 (4.48)
for p(t,x) given by (4.4).

Since the initial data functions in (4.46) do not satisfy the boundary condition (4.47), a bound-
ary layer is generated along the wedge boundary starting at ¢ = 0, which forms the Prandtl-Meyer
configurations, as proved in Bae-Chen-Feldman [7].

Notice that the initial-boundary value problem, Problem 4.11, is invariant under the scaling (4.6), so
we may study the existence of self-similar solutions determined by equation (4.9) with (4.10) through
(4.7).

As the upstream flow has the constant velocity (u19,0), and noting the choice of B in Problem 4.11,
the corresponding pseudo-potential ¢y has the expression of

1
Yo = —§|E|2 + u10&1 (4.49)

in self-similar coordinates § = ¥, as shown directly from (4.15). Notice also the symmetry of the

domain and the upstream flow in Problem 4.11 with respect to the x1—axis. Problem 4.11 can then be
reformulated as the following boundary value problem in the domain:

A:=RI\{E : & < &itanfy, & > 0}
in the self-similar coordinates &, which corresponds to domain {(t,x) : x € R2Z\W, ¢t > 0} in the

(t,x)-coordinates, where R2 = {£ : & > 0}.

Problem 4.12 (Boundary Value Problem). Seek a solution ¢ of equation (4.9) in the self-similar
domain A with the slip boundary condition:

D(p : I/|5A =0 (4.50)
and the asymptotic boundary condition at infinity:
@ —pg—0 (4.51)

along each ray Ry := {&1 = & cot 6,& > 0} with 0 € (B, m) as o — 0 in the sense that
lim [ = ol c(ro\B.(0)) = 0- (4.52)

In particular, we seek a global entropy solution of Problem 4.12 with two types of Prandtl-Meyer
configurations whose occurrence is determined by the wedge angle 6y, for the two different cases: One
contains a straight weak oblique shock Sy attached to the wedge vertex O and connected to a normal
shock &) through a curved shock I'gpocx when 6y, < 65,, as shown in Fig. 4.4; the other contains a curved
shock I'ghock attached to the wedge vertex and connected to a normal shock &1 when 65, < 6, < egiv, as
shown in Fig. 4.5, in which the curved shock 'k is tangential to the straight weak oblique shock &g
at the wedge vertex.

To seek a global entropy solution of Problem 4.12 with the structure of Fig. 4.4 or Fig. 4.5, one
needs to compute the pseudo-potential function ¢ below Sy.
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Fslllguek’ -

FIGURE 4.4. Self-similar solutions for 0y € (0, 6%,) in the self-similar coordinates & (cf. [7])

FIGURE 4.5. Self-similar solutions for 6y, € [65,,09) in the self-similar coordinates & (cf. [7])

W YW

Given My > 1, p1, and u; are determined by using the shock polar in Fig. 3.1 for steady potential
flow. For any wedge angle 0y, € (0,65, ), line ug = u; tan 6y, and the shock polar intersect at a point uy
with [ui| > ¢; and w11 < u1; while, for any wedge angle 6, € [65,,09), they intersect at a point uy
with w17 > u1q and |u;| < ¢1. The intersection state u; is the velocity for steady potential flow behind
an oblique shock Sy attached to the wedge vertex with angle 6,,. The strength of shock Sy is relatively
weak compared to the other shock given by the other intersection point on the shock polar, thus we
call Sy weak oblique shock, and the corresponding state uy is a weak state.

We also note that states u; depend smoothly on w19 and 0y, and such states are supersonic when
0w € (0,6%) and subsonic when 6., € [05,603).

Once u; is determined, by (4.18) and (4.49), the pseudo-potentials ¢1 and 9 below the weak oblique
shock Sp and the normal shock S; are respectively in the form of

1 1
pr= P +m-E = —lEf Hua €4k (4.53)

for constant states u; and us, and constant ka; see (4.15). Then it follows from (4.10) and (4.53) that
the corresponding densities p; and po are constants, respectively. In particular, we have

_ _ -1
oy b= o '+ VT(U%O — Jug?) for k =1,2. (4.54)
Denote I'yeqge := 0W ndA. Next we define the sonic arcs I‘;Omc = PPy on Fig. 4.4 and Fgonic = P P;
~y—1

on Figs. 4.4-4.5. The sonic circle 0B, (u;) of the uniform state ¢; intersects line Sy, where ¢; = p; 2
by (4.12). For the supersonic case Oy, € (0,65 ), there are two arcs of this sonic circle between Sy
and I'yegge in A. We denote by It the lower arc (i.e., located to the left from another arc) in the

sonic

orientation on Fig. 4.4. Note that I'l . tends to point O as 6, " 65, and is outside of A for the

sonic W)

subsonic case 0y, € [02,04). Similarly, the sonic circle dB,,(uz) of the uniform state sy intersects line

=1
81, where c3 = py® . There are two arcs of this circle between &1 and the line containing I'yedge. For
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all Oy, € (0,0%), the upper arc (i.e., located to the right of the other arc) in the orientation on Figs.
4.4-4.5 is within A, which is denoted as I'2 . .
Then Problem 4.12 can be reformulated into the following free boundary problem.

Problem 4.13 (Free Boundary Problem). For 6y, € (0,60%), find a free boundary (curved shock) Tghocx
and a function ¢ defined in domain ), as shown in Figs. 4.4-4.5, such that ¢ satisfies
(i) Equation (4.9) in £
(ii) ¢ = o and pDep - vs = pgDpg - Vs 0on Dshock;
(iii) ¢ = ¢ and Dp = D@ onTL . UT2 . when by € (0,65) and on T2, ;.
for ¢ := max(e1, p2);
(iv) Dy - vy =0 on I'yedges

u{O} when 0y € [65,,09)

W YW

where Vs and vy, are the interior with respect to Q0 unit normals to spock and T'ywedge, respectively.

Remark 4.14. Similar as in Problem 4.6, the conditions in Problem 4.13(ii)(iii) are the Rankine-
Hugoniot conditions (4.17)—(4.18) on T'ghock and F;onic U Fgonic, respectively; see the discussions in the
paragraphs after Problem 4.6.

Let ¢ be a solution of Problem 4.13 such that I'gpeex is a C''—curve up to its endpoints and ¢ € C*(Q).
To obtain a solution of Problem 4.12 from ¢, we have two cases:

For the supersonic case 6y, € (0, 65,), we divide region A into four separate regions; see Fig. 4.4. We
denote by Sp seg the line segment OP; Sy, and by Sj geg the portion (half-line) of S with left endpoint
P, so that Sy geg © A. Let €25 be the unbounded domain below curve Spseg U I'shock U S1,seg and above
[ywedge (see Fig. 4.4). In Qgs, let Q1 be the bounded domain enclosed by So, '} and I'yedge. Set

sonic?

Qg := Q5\(21 U Q). Define a function ¢, in A by

2] in A\Q$7
@1 in Q1,
_ 4.55
o ¥ in F;onic u v Fgoniw ( )
Y2 in Q2.

By Problem 4.13(ii)—(iii), ¢« is continuous in A\Qg and C! in Qg. In particular, ¢, is C! across
rl .. uT? .. Moreover, using Problem 4.13(i)—(iii), we obtain that ¢, is a global entropy solution of
equation (4.9) in A.

For the subsonic case Oy € [65,,03), region Q; UTL . in ¢, reduces to one point {O}; see Fig. 4.5.
The corresponding ¢, is a global entropy solution of equation (4.9) in A.

The first rigorous unsteady analysis of the steady supersonic weak shock solution as the long-time
behavior of an unsteady flow is due to Elling-Liu [61], in which they succeeded in establishing a stability
theorem for an important class of physical parameters determined by certain assumptions for the wedge
angle 0y, less than the sonic angle 65, € (0,6¢) for potential flow.

Recently, in Bae-Chen-Feldman [7], we have successfully removed the assumptions in Elling-Liu’s
theorem [61] and established the stability theorem for the steady (supersonic or transonic) weak shock
solutions as the long-time asymptotics of the global Prandtl-Meyer configurations for unsteady potential
flow for all the admissible physical parameters even up to the detachment angle 6% (beyond the sonic
angle 65 < 64).

To achieve this, we solve the free boundary problem (Problem 4.13), involving transonic shocks, for
all wedge angles 6y, € (0,69) by employing the techniques developed in Chen-Feldman [37], described
in §4.1 above. Similar to Definition 4.10, we define admissible solutions in the present case:



56 GUI-QIANG G. CHEN AND MIKHAIL FELDMAN
Definition 4.15. Let 0y, € (63,%). A function ¢ € C®'(A) is an admissible solution of Problem 4.13
if ¢ is a solution of Problem 4.13 extended to A by (4.55) and satisfies the following properties:

(i) The structure of solutions is as follows:

o IfOy € (0,05, then ¢ has the configuration shown on Fig. 4.4 such that the reflected-diffracted
shock Tgnock is C? in its relative interior, ¢ € CO1(A) N CI(A\(So,Seg U Dghock U St seg)), and
v € CY(Q) N C*(Q\(Soseg U S1se5)) N C2(Q).

o If O, € [65,0%), then ¢ has the configuration shown on Fig. 4.5 such that the reflected-
diffracted shock Tspock is C? in its relative interior, p € C%YH(A) A CH(A\(Tshock Y S1seg)),
and ¢ € CH(Q) N C?(Q\({O} U Siseg)) N C3(9).

(ii) Equation (4.9) is strictly elliptic in O\ Tsonic, i-e., |De| < c(|Dp]?, ) in O\ Tgonic-
(iii) Oppo > Opp > 0 on Tghock, where v is the normal to Tgpock, pointing to the interior of Q.

(iv) The inequalities hold:
max{y1, 2} < ¢ < o in Q, (4.56)
(v) The monotonicity properties hold:
D(po—¢)-es, 20, D(po—¢)-es <0 in €2, (4.57)

where es, and es, are the unit tangential directions to lines Sy and S1, respectively, pointing to
the positive & —direction.

Similar to (4.45), we note that (4.57) implies that
D(p1 —¢)-e<0 in Q for all e € Cone(—es,,es,), (4.58)

where Cone(—egs,,es,) = {—aes, +bes, : a,b > 0}. We note that es, and es, are not parallel if
Oy # 0.
Then we establish the following theorem.

Theorem 4.2. Let v > 1 and uyg > co. For any Oy, € (0,09), there exists a global entropy solution ¢

of Problem 4.13 such that the following reqularity properties are satisfied:
(i) If 0w € (0,65), the reflected shock Spseg U Tshock U Siseg 18 C**—smooth, and ¢ € CH*(Q) n
COO(Q\(Igonic Y Fgonic))’

(ii) If Oy € [65,03), the reflected shock Tspock U Siseg 18 CH® near O and C* away from O, and
pe 0L Q) N CP\{O}uTZ ).

sonic

Moreover, in both cases, @ is CY' across the sonic arcs, and Ugyocc 15 C® in its relative interior.
Furthermore, ¢ is an admissible solution in the sense of Definition 4.15, so ¢ satisfies further prop-
erties listed in Definition 4.15.

We follow the argument described in §4.1 so that, for any small § > 0, we obtain the required
uniform estimates of admissible solutions with wedge angles 6y, € [0, 0% — §]. Using these estimates, we
apply the Leray-Schauder degree theory to obtain the existence for each 6y, € [0,6¢ — 4] in the class
of admissible solutions, starting from the unique normal solution for 6 = 0. Since § > 0 is arbitrary,
the existence of a weak solution for any 6y € (0,60%) can be established. More details can be found in
Bae-Chen-Feldman [7]; see also Chen-Feldman [37].

The existence results in Bae-Chen-Feldman [7] indicate that the steady weak supersonic/transonic
shock solutions are the asymptotic limits of the dynamic self-similar solutions, the Prandtl-Meyer
configurations, in the sense of (4.52) in Problem 5.1.

On the other hand, it is shown in Elling [60] and Bae-Chen-Feldman [7] that, for each v > 1, there
is no self-similar strong Prandtl-Meyer configuration for the unsteady potential flow in the class of
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admissible solutions (cf. [7]). This means that the situation for the dynamic stability of the strong
steady oblique shocks is more sensitive.

5. CONVEXITY OF SELF-SIMILAR TRANSONIC SHOCKS AND FREE BOUNDARIES

We now discuss some recent developments in the analysis of geometric properties of transonic shocks
as free boundaries in two-dimensional self-similar coordinates for compressible fluid flows. In Chen-
Feldman-Xiang [38], we have developed a general framework for the analysis of the convexity of the
transonic shocks as free boundaries. For both applications discussed above, the regular reflection
problem in §4.1 and the Prandtl-Meyer reflection problem in §4.2, admissible solutions satisfy the
conditions of this abstract framework, as shown in [38]. For simplicity, we present below the results on
the convexity properties of transonic shocks for these two problems (without discussing the abstract
framework).

For the regular shock reflection-diffraction configurations, we recall that, for admissible solutions in
the sense of Definition 4.10, the inequality in (4.45) is shown to be strict for any e € Cone(eg,,eg, ).
From this, it is proved that, for admissible solutions, the shock is a graph in the coordinate system
(S,T) with respect to basis {e,el} for any unit vector e € Cone(eg,,es,), where et is the unit vector
orthogonal to e and oriented so that Tp, > Tp,, and we use notation (Sp,Tp) for the coordinates of
point P. That is, there exists fo € C*((Tp,,Tp,)) n CY([Tpr,, Tp,]) such that

Fshock = {(S, T) i fe(T), Tp2 <T< Tpl}, Qn {Tp2 <T< Tpl} C {S < fe(T)}, (51)

where we have used the notational convention (4.21) in the subsonic/sonic case.
Then we have

Theorem 5.1 (Convexity of transonic shocks for the regular shock reflection-diffraction configurations).
If a solution of the regular reflection problem is admissible in the sense of Definition 4.10, then its shock
curve Dsnock 5 a strictly convex graph in the following sense: for any e € Cone(eg,,egs,), the function
fe in (5.1) satisfies

fi<o0 on (Tp,, Tp,).

That 1s, I'shock %S uniformly convex on any closed subset of its relative interior.
Moreover, for the solution of Problem 4.6 extended to A by (4.22), with pseudo-potential o € C%'(A)
satisfying Definition 4.10(i)—(iv), the shock is strictly convex if and only if Definition 4.10(v) holds.

For the Prandtl-Meyer reflection problem, the results are similar. We first note that, based of
(4.58) (which is strict for e € Cone(—egs,,es,)) and the maximum principle, it is proved that, for
admissible solutions in the sense of Definition 4.15, the shock is a graph in the coordinate system
(S,T) with respect to basis {e,e'} for any unit vector e € Cone(—es,,es,), i.c., (5.1) holds, with
fe € C*°((Tp,, Tp,)) N CY([Tp,, Tp,]), where we have used the notational convention P, = P, in the

subsonic/sonic case 6, € [65,,0%).

Theorem 5.2 (Convexity of transonic shocks for the Prandtl-Meyer reflection configurations). If a
solution of the Prandtl-Meyer reflection problem is admissible in the sense of Definition 4.15, then its
shock curve Tgpock 18 a strictly convex graph in the following sense: function fe in (5.1) satisfies

g <0 on (Tp2,Tp1).

That 1s, I'shock %S uniformly convex on any closed subset of its relative interior.

Moreover, for the solution of Problem 4.13 extended to A by (4.55) (with the appropriate modification
in the subsonic/sonic case) with pseudo-potential p € CYY(A) satisfying Definition 4.15(i)—(iv), the
shock is strictly convex if and only if Definition 4.15(v) holds.
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Now we discuss the techniques developed in [38] by giving the main steps in the proofs of Theorems
5.1-5.2. While the argument in [38] is for a general domain €2, we focus here on the specific cases of
the regular shock reflection-diffraction and Prandtl reflection configurations; see [38] for the results in
the more general cases and the detailed proofs.

For the regular reflection problem, define

¢ =@ =1
For the Prandtl-Meyer reflection problem, define
¢ = ¢ — 0.

Then, in both cases, ¢ = 0 on I'gock. From this, using Definition 4.10(iii) for the regular reflection
case, and Definition 4.15(iii) for the Prandtl reflection case, it follows that, in both problems, ¢ < 0 in
Q near I'gpock. Since I'gpock is the zero level set of ¢, the conclusion of Theorems 5.1-5.2 on the strict
convexity of I'ghock is equivalent to the following: ¢, > 0 along thock, where thock is the relative
interior of I'ghock-

If the conclusion of Theorems 5.1-5.2 holds, then the curvature of I'gyock:

e(T)

(14 (1))

has a positive lower bound on any closed subset of (Tp,, Tp,).
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Now we briefly discuss the proofs of Theorems 5.1-5.2. Below ¢ denotes an admissible solution of
either the regular reflection problem or the Prandtl-Meyer reflection problem. Also, Con denotes the
cone from (4.45) for the regular reflection problem and the cone from (4.58) for the Prandtl reflection
problem.

First, we establish the relation between the strict convexity/concavity of a portion of the shock and
the possibility for de¢, with e € Con, to attain its local minimum or maximum with respect to
on that portion of the shock. More precisely, on a portion of “wrong” convexity on which fZ > 0
(equivalently, ¢+ < 0), ¢e may attain its local maximum, but not a local minimum. Then, assuming
that a portion of the free boundary has a “wrong” convexity fZ > 0, we show that ¢ for e € Con
attains its local minimum relative to I'ghocc On the closure of that portion. As we discussed above, it
cannot be a local minimum with respect to Q. Starting from that, through a nonlocal argument, with
the use of the maximum principle for equation (4.13), considered as a linear elliptic equation for ¢, in
2, and boundary conditions on various parts of 02, we reach a contradiction, thus showing that the
shock is convex, possibly non-strictly, i.e., ff < 0 on (Tp,,Tp,), or equivalently, ¢+ = 0 on Tgyock-
Extending the previous argument with use of real analyticity of thock, we improve this to the locally
uniform convexity as in Theorems 5.1-5.2.

Furthermore, with the convexity of reflected-diffracted transonic shocks, the uniqueness and stability
of global regular shock reflection-diffraction configurations have also been established in the class of
admissible solutions; see Chen-Feldman-Xiang [39] for the details.

The nonlinear method and related techniques/approaches we have presented above for solving multi-
dimensional transonic shocks and free boundary problems should be useful to analyze other longstand-
ing or newly emerging problems. Examples of such problems include the unsolved multidimensional
steady transonic shock problems for the full Euler equations (including steady detached shock prob-
lems), the unsolved multidimensional self-similar transonic shock problems for potential flow (such as
the two-dimensional Riemann problems and the conic body problems), as well as the longstanding
open transonic shock problems for both the isentropic and the full Euler equations; also see Chen-
Feldman [37]. Certainly, further new ideas, techniques, and methods are still required to be developed
in order to solve these mathematically challenging and fundamental important problems.
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