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Stability Control of Autonomous Ground Vehicles
Using Control-Dependent Barrier Functions

Yiwen Huang ¥, Sze Zheng Yong

Abstract—In the development of autonomous ground vehicles
(AGVs), guaranteeing vehicle driving safety is a major concern.
Among various aspects that need to be thoughtfully considered for
driving safety, vehicle stability is one of the most fundamental and
important factors. In this paper, to describe a guaranteed vehicle
stability control problem, a new time-varying control-dependent
invariant set is introduced. Correspondingly, the concept of a
time-varying control-dependent barrier function (CDBF) is pro-
posed. The proposed time-varying CDBF is more general than
conventional control barrier functions (CBF), since we addition-
ally consider invariant sets that can be time-varying and control-
dependent, which will have broader applications. Then, using the
proposed framework, we design a vehicle stability control algo-
rithm, which guarantees that the vehicle states are always kept in
the time-varying and control-dependent lateral stability regions.
Finally, the correctness and effectiveness of the proposed theory
and control method are verified and discussed through illustrative
simulation results of high-speed J-turn and double lane change
maneuvers for an AGV.

Index Terms—Control-dependent barrier functions,
autonomous ground vehicles, vehicle stability control, four-wheel
steering, safety control.

1. INTRODUCTION

DVANCED autonomous driving technologies bring new
A opportunities to enhance the safety and efficiency of vehi-
cle and transportation systems [1]. Currently, various advanced
driver assistance systems (ADAS) are being developed to make
vehicles safer to drive. For example, the integration of lane-
keeping assist system (LKAS) and adaptive cruise control (ACC)
enables the attainment of level 2 (SAE J3016 [2]) autonomous
driving in many driving scenarios. However, when facing certain
critical driving situations, the existing ADAS are not capable
enough of ensuring vehicle safety due to the lack of effective
vehicle dynamics controls, which makes the realization of the
full autonomous driving at level 5 an even more challenging
task. Therefore, in addition to the perception and planning sys-
tems, a well-developed vehicle control system, which guarantees
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vehicle driving stability, becomes very necessary for all levels
of autonomous driving.

Vehicle stability region, or in general, the stability region of a
dynamical system, can often be described by one or multiple
stability constraints. Thus, the goal of stability control is to
guarantee that all the stability constraints are satisfied at all times
under any conditions. To achieve such a control goal, various
methods, such as model predictive control [3] and dynamic win-
dow approach [4] were proposed and evaluated. Inspired by the
barrier certificate [5], [6] and invariant set [7], the control barrier
function (CBF) [8] is another effective method to guarantee
system stability in a simpler and more computationally-efficient
manner. Generally, the conventional CBF can be divided into two
categories, namely the reciprocal CBF (RCBF) [9]-[14] and the
zeroing CBF (ZCBF) [9], [15], [16]. The RCBF has an infinite
value when the system states are on the set boundary, which may
cause unbounded control efforts. On the other hand, the ZCBF
becomes zero when the states are on the set boundary. Using
CBF (either RCBF or ZCBF), control laws can be designed
to ensure the system states always stay within a defined sta-
bility/safety set. Thus, the invariance of the stability/safety set,
more precisely, a controlled invariant set, can be guaranteed.
CBF has been utilized to solve safety control problems for
autonomous ground vehicles (AGVs) and other mobile systems,
such as lane-keeping [9], [17], adaptive cruise control [9], [17],
obstacle avoidance [18], and collision-free multi-robot systems
[19]. To simultaneously achieve tracking (or stabilizing) and
safety control, CBF can also be integrated with control Lyapunov
functions (CLF) as well as other tracking control methods [9],
[171, [20]-[23]. In [24] and [25], the control Lyapunov-barrier
function (CLBF) was successfully combined with MPC for
both stability and safety control. Further, in some cases when a
safety set is time-varying or dynamic, the time-varying barrier
Lyapunov functions (BLF) [12], time-varying CBF [26] and
invariant control with dynamic constraints [27] were proposed
and utilized to tackle related safety control problems.

To our best knowledge, CBF has never been used to guarantee
the controlled invariance of a stability region. More importantly,
since the stability region in vehicle control problems is defined
by constraints that are control-dependent, the existing conven-
tional controlled invariant set concept is not directly suitable to
describe such a stability region/set, and the corresponding CBFs
cannot properly resolve the associated control problems. For
example, in a region-based stability control problem for AGVs,
the vehicle stability set is typically defined with respect to both
time-varying variables (e.g., a desired longitudinal speed and/or
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a reference path) and control inputs (e.g., a feedback steering
angle). Based on the authors’ previous study [28] and a similar
observation in [29], as the vehicle longitudinal speed and steer-
ing angle (front and/or rear) change, the size and location of the
vehicle lateral stability region also change. Namely, the vehicle
lateral stability region, which is selected as a controlled invariant
set, is actually both time-varying and control-dependent. In this
paper, to handle the region-based stability control problem for
AGVs, where the vehicle states are required to be always inside
a stability region (see an example of vehicle dynamics in [30]),
a novel time-varying control-dependent (TVCD) invariant set
and the corresponding time-varying control-dependent barrier
function (CDBF) are proposed and studied.

A preliminary study of the control-dependent invariant set
and CDBF was presented in the authors’ conference paper [31],
and this paper contains three additional contributions. First, the
definition of the invariant set is extended to be both time-varying
and control-dependent. Second, a novel integral control strategy
is proposed and a corresponding new framework of time-varying
CDBF is proposed with rigorous proofs. Third, a more realistic
region-based vehicle lateral stability control problem based on
nonlinear vehicle and tire models is formulated, in contrast to the
linear models utilized in [31]. In addition, more simulation sce-
narios are considered to verify the correctness and effectiveness
of the proposed theory and control methods.

The remainder of this paper is organized as follows. In sec-
tion II, the concept of a TVCD invariant set is presented. In
section III, the proposed time-varying CDBF is defined and the
corresponding proofs are presented in detail. In section IV, based
on the proposed time-varying CDBF, a stability control problem
for vehicle lateral dynamics is formulated. The simulation results
are presented and discussed in section V. Concluding remarks
are given in section VL.

Notation: A continuous function « : [0,a) — [0, c0) is said
to belong to class K if it is strictly increasing and «(0) = 0. A
continuous function « : (—a, b) — (—o00, 00)is said to belong
to extended class K for positive a and b if it is strictly increasing
and a(0) = 0[32]. A continuous function o : [0,a) x [0,00) —
[0,00) is said to belong to class KL if, for each fixed s, the
mapping o(r, s) belongs to class K with respect to r and, for
each fixed r, the mapping o (r, s) is decreasing with respect to s
and o(r,s) — 0as s — oo [32].

In this paper, the first-order Lie derivative of a scalar function

h(z) : R™ — R in the direction of f(z) = [f1(x), - , fn(x)]T
is, as in [33], given by
= oh
L) =Y o) 52 m
k=1

II. TIME-VARYING CONTROL-DEPENDENT INVARIANT SET

In this section, for the sake of completeness, the concepts of
invariant set and controlled invariant set are first reviewed in
the following Definition 1 and 2, respectively. Then, the novel
concept of a TVCD invariant set is introduced.

Definition 1 [7]: A set yp C R™ is said to be positively
invariant with respect to a nonlinear system

jj:f(x)’ (2)
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Fig. 1. Variations of the vehicle lateral stability region with respect to control
inputs (d7 and/or d,-) and time-varying parameters (V).

where z € R" is the system state vector, if for any ¢y > 0 and
all z(tg) € 1, the solution x(t) € 1 for t > to.

Remark 1: The positive invariance of a set implies that the
system states always remain in the set for all times. A positively
invariant set is also commonly called as a forward invariant
set. Unless otherwise specified, we will simply refer to posi-
tively/forward invariant sets as invariant sets in the remainder of
this paper as a shorthand.

Definition 2 [7]: Consider a nonlinear control system of the
form

&= f(z,u), ©)

where x € R™ and u € R™are the system state and control
input, respectively.! The set ¢» C R™ is said to be controlled
invariant with respect to (3), if, forany ¢y > Oand all 2(¢g) € ¥,
there exists a feedback control law u = ¢(x), which assures the
existence and uniqueness of the solution x(t) € ¢ for t > t.

Remark 2: In Definition 2, although the set, 1, is controlled
to be invariant with a properly designed control u, the set itself
is independent of u.

The (controlled) invariant set concept was usually applied
to guarantee the safety of dynamic systems [9], [15], [26].
For control problems with safety sets defined only by system
states, the controlled invariant set in Definition 2 is useful for
control design. However, for control problems with safety sets
defined by time-varying and control-dependent variables, the
above definitions may not be directly applicable.

For example, in the vehicle lateral stability control problem,
the control objective is to always keep vehicle states (e.g.,
yaw rate and lateral velocity) within an estimated or a defined
stability region [34], [35]. Such a stability region depicts the
vehicle directional stability (e.g., neither oversteering nor too
understeering) by analyzing both vehicle and tire stability [30].
Inthe authors’ previous study [28], as shown in Fig. 1, the vehicle
lateral stability region was found to shift with respect to the front

IThe signals « and w are functions of time ¢, but for brevity, this explicit
dependence is omitted throughout the paper when it is clear from context.

Authorized licensed use limited to: ASU Library. Downloaded on May 03,2022 at 17:03:40 UTC from IEEE Xplore. Restrictions apply.



HUANG et al.: STABILITY CONTROL OF AUTONOMOUS GROUND VEHICLES USING CONTROL-DEPENDENT BARRIER FUNCTIONS 701

(0f) and/or rear (6,) wheel steering angles. In addition, when
the longitudinal velocity (V) changes, the size of the stability
region also changes although the shape almost remains the same.
For lateral dynamics control of AGVs, the vehicle longitudinal
velocity and/or the front wheel steering angle are often given
by a high-level path planner as reference or feedforward signals
(but not system states) that are time-varying. Meanwhile, addi-
tional front and/or rear wheel steering angles, actuated by active
steering systems, are typically added as feedback control inputs
[37]. Therefore, the vehicle lateral stability region in Fig. 1, if
defined or selected as an invariant set, is both time-varying and
control-dependent.

Remark 3: Although the specific shapes and areas of vehicle
lateral stability regions in Fig. 1 were originally estimated in
the authors’ previous work by considering both vehicle and tire
stabilities [28], [30], the general shrinking/expanding and shift-
ing features of lateral stability regions with respect to steering
angles and the vehicle longitudinal speed were also observed
and well-documented in literature [29], [39], [40].

Moreover, the (ground) front and rear wheel steering an-
gles are assumed, without loss of generality, to have limits
dy € [-0.35 rad,0.35 rad] and ¢, € [—0.2 rad,0.2 rad], re-
spectively, and the maximum vehicle longitudinal speed is
V,: = 25 m/s (these parameters can be easily changed to get
different stability regions). Thus, an extended envelope of sta-
bility regions can be defined by the area outlined by pink
dashed lines in Fig. 1 based on the stability region shifting and
shrinking/expanding feature, no matter how the steering angles
and longitudinal speed change within the limits. This enveloped
area, as a set consisting of all the possible stability regions, is
a time-invariant and control-independent set, which could be
described by the existing concept of the controlled invariant set
in Definition 2. However, the invariance of the whole enveloped
area does not necessarily imply the invariance of the shifted
and shrunk/expanded stability regions as the subsets, which are
discussed more in Remark 4. Therefore, to describe such an
invariance set that is time-varying and control-dependent, a new
concept is introduced as follows.

Definition 3: Consider a nonlinear control system in (3),
a set ¢(u,t) C R™ is said to be time-varying and control-
dependent (TVCD) invariant if there exist a control v € U and
a ug € U such that for any ¢ty > 0 and all z(to) € 1(uo, o),
x(t) € Y(u,t)forallt € T = [tg, tend) , Wwhere U C R™ is the
vector space or set of all feasible u.

Remark 4: In Definition 3, T' = [to, teng) is the maximum
time interval that the set can be guaranteed to be TVCD invariant.
Note that for any time intervals in 7, if the controlled invariant
set does not change with time, a TVCD invariant set becomes
a control-dependent invariant set [31]. For the set 1(u,t) in
Definition 3, a set 9 = Uyev,ter ¥(u,t), which is a union
of all possible ¥ (u,t) for any v € U and ¢t € T, could be a
controlled invariant set with a properly designed control « [15],
[26]. However, since the 1(u,t) is a subset of 1, a control
u, which makes v controlled invariant, does not necessarily
make the subset ©(u,t) TVCD invariant. On the contrary, a
control u, which makes each subset ¢)(u, t) TVCD invariant, can
sufficiently make the set ¢ controlled invariant since v (u,t) C
1. Therefore, the determination of the control u that makes the

set ¢(u, t) TVCD invariant is different from the determination
of  in Definition 2.

Inspired by an AGV lateral stability control problem, the
necessity and definition of a new concept on a TVCD invariant
set is proposed for general dynamic systems. The application
of the new concept in system control design is discussed in the
next section.

III. TIME-VARYING CONTROL-DEPENDENT
BARRIER FUNCTION

In this section, existing definitions of a barrier function (BF)
and a CBF are first reviewed. Then, the new concept of a time-
varying CDBF is introduced and the corresponding properties
are described.

Based on the definitions of the invariant set and controlled
invariant set, the corresponding BF and CBF were proposed to
describe the conditions of an invariant set and a controlled invari-
ant set, respectively [7], [9]. Generally, the BF corresponding to
an invariant set is defined as follows.

Definition 4 [9]: Considering a nonlinear system in (2), a
set ¢ is defined by a continuously differentiable function h(z) :
R™ — R as,

h(z) >0,z € 1, 4)
h(z) =0,z € 0y, (5)
h(z) > 0,2 € Int (v), (6)

where 9¢ and Int(v) denote the boundary and the interior of
1, respectively. If there exists an extended class K function «
[32], such that for all = € 1,

Lgh(z) = —a (h(2)), ™

then the set ¢/ is an invariant set. h(x) is called a zeroing barrier
function (ZBF) [9]. The existence of ZBF is a sufficient and
necessary condition for the invariance of v [9].

Inspired by the definition of the CBF for an affine control
system in [9], the CBF for a general nonlinear control system is
defined as follows.

Definition 5 (Extended from Definition 4 in [9]) Consider a
nonlinear control system in (3) and a set ¢ defined by (4)—(6) in
Definition 4, if there exist a control v and an extended class K
function « such that for all x € 1,

Lyh(z) +a(h(z)) >0, ®)

then the ¢ is a controlled invariant set and h(z) is a zeroing CBF
(ZCBF).

Note that although (7) have the same form as (8), the system
function f in (8) is depicted by (3), which contains control input
and thus makes (8) different from (7) when Lie derivatives are
calculated.

If h(z) is a CBF, any Lipschitz continuous control v that
satisfies (8) will make the set 1/ controlled invariant. Hence, the
existence of CBF is sufficient for a set to be controlled invariant.
Similar to the relationship between a BF and an invariant set,
the existence of a control v and a ZCBF is both sufficient and
necessary for ¢ to be controlled invariant [9].
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Following the definition of BF and CBF, the corresponding
definition of a time-varying CDBF for the newly defined TVCD
invariant set in Definition 3 is presented as follows.

Definition 6: Consider a nonlinear control system in (3),
where u is differentiable with a Lipschitz continuous , e.g.,
4 =w and w € Q(u), & C R™. Let u be a new system state,
then the system is augmented as

safe| | f(zu)| s

2 []-[ 50 o
where # = [27 T ]T. For a TVCD set 9 (u, t)(Definition 3)
defined by a continuous and differentiable function h(&,t) as

h(z,t) >0,V € ¥ (u,t), (10)
h(z,t) =0,Vx € 09 (u,t), (11
h(&,t) > 0,Ya € Int (¢ (u,t)), (12)

if there exist a control © € U, where @ € €, and an extended
class K function « such that for all © € ¥ (u, t),

Lih(#,t) +a(h(i,t) >0, (13)
where
R . Oh(2,t)
Lih(2,t) :Zf(x)aTt
N W T .
_ Oh (Z,t) . Oh (&,t) it Oh(Z,t) (14)

ox ou o’

then the set ¥ (u, t) is a TVCD invariant set. h(Z,t) is a time-
varying zeroing control-dependent barrier function (ZCDBF).
Moreover, the solution z(t), u(t) exists and is unique by Peano’s
Theorem [41].

Remark 5: When the invariance conditions in (14) are applied
in the optimization problem, % is suggested to be the auxiliary
control variable and u can be obtained by integrating w, i.e., we
are introducing an integral control action. The reasons are two-
fold. First, by selecting « as the control variable, the continuity
and differentiability of the formal control u can be guaranteed.
Second, if uis selected as the control variable in optimization, %
should be determined in advance or bounded to avoid extreme
values, which may violate the invariance conditions in (13). In
addition, by comparing with the authors’ previous study [31]
that selects w as the control variable, it was found that its control
performance is limited and conservative because the variable % in
(14) was simply replaced by their upper and lower limits in [31].
Therefore, u is suggested to be the control variable in CDBF.
Q(u) is defined to be control-dependent to ensure u € U. (48)
and (49) are illustrative examples to further clarify the selection
of Q(u).

Proposition 1: Given a nonlinear control system in (9) and
a TVCD set defined by (10)—(12), if there exists a time-varying
ZCDBF h(,t) defined on the set ¥ (u,t) in Definition 6, then
¥ (u,t) is a TVCD invariant set.

Proof: Following a similar proof procedure to [9] and based
on some definitions in [7] and references therein, the complete
proofs of Proposition 1 are provided in the Appendix. |

Remark 6: The condition in (13) to make ¢ (u,t) TVCD
invariant is more general than the condition in (8), which

Fig. 2.

Single-track 4WS vehicle model.

only makes v controlled invariant. The definition of the time-
varying CDBF s different from the concept of time-varying CBF
(TCBF) in the literature since the control input determined by
the time-varying CDBF also has impacts on the stability/safety
constraints. Differently, in TCBF, the stability/safety constraints
could be time-varying but remain unchanged with respect to
different control inputs. One can easily verify that if h(Z,t)
is independent of v and time-invariant, the term %T and
% in (14) are eliminated. Thus, (13) is reduced to the same
form as in (8). Further, to enable the invariance control via 7 in

(14), %T in Definition 6 is assumed to be non-zero.

For a TVCD set described by (10)-(12), any control that
satisfies the constraints (13) in Definition 6 will make the TVCD
set invariant. Thus, a quadratic programming (QP) problem can
be formulated to find a control derivative % (and the corre-
sponding control u by integration) that satisfy one or multiple
invariance constraints [15]. Since the QP is linear with respect to
u, the algorithm is real-time implementable without additional
computational effort.

Note that although the proposed new concepts on the TVCD
invariant set and time-varying CDBF are inspired by AGVs,
these new concepts and theoretical work, including Proposi-
tion 1, are generally applicable to any other dynamic systems
((3) or (9)), whose safety or stability regions (constraints) are
varying with respect to control and time. On that note, the vehicle
dynamics and application are introduced in the next section.

IV. GUARANTEED VEHICLE LATERAL STABILITY CONTROL
USING TIME-VARYING CDBF

For a four-wheel steering (4WS) vehicle equipped with two
steer-by-wire systems, the steering angles of the front and rear
wheels can be separately controlled by two steering motors. In
this study, an AGV with a 4WS system is considered, in which
both the front and rear wheel steering systems are adopted as the
actuators (control inputs) to guarantee vehicle lateral stability
(analogous to a safety specification). Selecting the lateral veloc-
ity and yaw rate as two system states, the single-track model of
vehicle lateral dynamics, as shown in Fig. 2, is written as

Vy + Vyr = (Fypcos (05 + daps) + Fyr cosd,)/my

7= (leJf CcOoS (5f + 5AFS) - lT‘EJT‘ COS5T)/IZ7
(15)

where m,, I, 0, 6arg, and J, are the vehicle mass, yaw
moment inertia, feedforward front steering angle, and feedback
front and rear steering angles, respectively. V,,, V,, and r are
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the vehicle longitudinal velocity, lateral velocity, and yaw rate,
respectively. [y and [, are the front and rear wheelbases, respec-
tively. Iy and Fy, are the lateral forces of the front and rear
tires, which are calculated based on a nonlinear LuGre tire model
as Fyy = f(ay, », A, Fp, p)(see Appendix C) [38]. To calculate
the lateral tire forces by the tire model, the tire slip angles are
calculated in (16) and (17):

ap = [0f (1) + daps] — tan™" ((Vy + 1y -1)/Va (1)),

Vy =l 1)/ Ve (1)),

where 07 (t) and V, (¢) are time-varying, given by either a driver
or an upper-level feedforward control. The two feedback control
inputs are selected as u1 = dopg and us = 0.

To describe the region-based vehicle lateral stability control
problem using the proposed time-varying CDBF, the boundaries
of the stability region are first formulated. In Fig. 1, taking the
region depicted by the solid red curves as the stability set, which
is estimated at a zero steering angle and a constant longitudinal
velocity, the corresponding four boundaries are described by
four independent functions as

(16)

a, =0, —tan"* (( (17)

hi () = b1 (V) —, (18)
ho (x) = by (Vy) — 1, (19)
hs () =1 — b3 (Vy), (20)
ha (x) =1 —bs (Vy), 21

where by, bo, bs, by are the polynomial functions to describe the
boundaries as r = b;(V})),j = 1,2,3,4. However, the safety
set defined by (18)—(21) is not enough to describe dynamic
characteristics of the vehicle lateral stability region. Based on
the authors’ previous work [28], the region-based vehicle lateral
stability control problem involves time-varying and control-
dependent features, which are from the following two sources.
First, when the front and rear steering angles are applied, the ve-
hicle lateral stability region shifts along with specific directions
[28], which is formulated in a shifting vector as

S =51 (85 (1), Vi (1) ur,uz) 52 (65 (t), Vi (), ur,u) |,
(22)
where

Ve (t) [l,- (5]0 (t) + ul) + lfUQ]

s1(05 (1), Va

(t) 7ul7u2) =

Iy + 1, ’
(23)
f 0 _
s2(0f (), Vi (1) yur,ug) = Ve () [( ‘]}‘f(ti‘;_ uy) Uz].
(24)

Second, when the vehicle longitudinal velocity decreases or
increases, the size of the stability region shrinks or expands cor-
respondingly. Using the stability region estimated at V,, = 25m/s
as a reference, a scaling function is derived to describe the size
variation when V,, changes. Based on the characteristics of the
stability region boundaries, the scaling functions are formulated

separately for the different boundary pairs as shown in (25).

ki (Ve (t)—25), i=1,3
a; (Vp (1)) = {k2 (Ve (t) —25), i=2,4"

where k1 and ko are the scaling factors. If V,, < 25 m/s, the
stability region shrinks to be smaller (e.g., the region depicted
by the black dotted curves in Fig. 1) than the reference region,
and if V,, > 25 m/s, the stability region expands to be larger than
the reference region. Note that the above time-varying feature
is realized by setting the system parameters as time-varying
variables. In more general cases, the stability/safety set can be
explicitly dependent on time-varying variables.

Based on both the shifting vector and the scaling function,
the four boundaries in (18)—(21) are reformulated as four time-
varying and control-dependent functions in (26)—(29):

(25)

hy (@,u,t) = by (Vy — s1)) — (r = s2) + a1 (Va (1)), (26)

(2, u,t) = by (Vy = 51)) = (r — s2) + a2 (Vo (1)), (27)
hs (z,u,t) = (r — s2) = b3 (Vy — s1)) + as (Va (1)), (28)
hy (z,u,t) = (r—s2) —bs (V, —s1)) +as (Vi (1), (29)

To sum up the problem description, since the shifting vector
in (22) consists of two time-varying variables (d; and V) and
two control inputs (u; and us), and the scaling function in (25)
contains one time-varying variable (1), the guaranteed vehicle
stability control problem using the stability region depicted in
(26)—(29) is an instance of a TVCD invariant set as described
in Definition 3. To resolve this control problem, the vehicle
dynamic model in (15) is first augmented with the state vector
as @ = [V, rug ug]t,

[£1(2) fo(#) w1 wa],

where f; and f5 are the vehicle dynamics in (15), wy and wo are
the control input dynamics that will be determined and discussed
later.

Based on Definition 6, the vehicle stability region is defined
as a TVCD invariant set C' as follows:

b=V i) = (30)

C={z eR*|h; (&,1) >0, = 1,2,3,4}, 31)
8C:{xER2|hj (j:,t):07j:1’2,3,4}’ (32)
Int(C) = {z € R*|h; (2,t) >0,j=1,2,3,4}, (33)

Then, the set invariance conditions using the time-varying
ZCDBF in (13) with respect to the stability region bound-
ary functions in (26)—(29) are given by the following four
constraints:

Lihj (2,t) + aj (hy (2,t)) > 0,5 =1,2,3,4, (34)
where
. Ohy (Z,t) - Ohj (&,t) . Ohj(%,1)
Lyhs (@:1) = v, e T T ey @
8h (z,1) Oh; (z,t) .
oy wa + o ,7=1,2,3,4.
(35)
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Without loss of generality, we assume that the boundary
functions r = b;(V})),j = 1,2, 3,4 are depicted by four linear
functions as r = b;V}, +¢;,j = 1,2,3,4, where ¢; are con-
stants. Then, by substituting the shifting function in (22) and the
scaling function in (25) into (26)—(29), the complete forms of
the four time-varying and control-dependent boundary functions
are rewritten as:

hy (£,t) = bV, — 7
(1 bil,)
+ [ @)+

(1= b4l;)
lf + 1

(=1 —bily)
lf-i-lr

Va (t)] (>

O7 (8) Var (8) + ar (Va (1)), (36)

(1= bol,)

ho (Z,t) = bV, —r + [ PESE

—1 — bl

n [( 2ly)
lf-i-lr

(1 —bol;)
lf—‘rlr

Vi (t)] uy
Va (t)] Uy

O (8) Vi (8) + az (Vz (1)), 37

(1 — b3lr)

h3(§:‘,t)=—b3Vy+’l“+|: I rl

+ {WVT (t)] us

(bsl, — 1)
lf + 1,

wuﬂm

O (8) Vo () +as (Vo (1)), (38)

(1 — byly)

hy (Z,t) = =b4Vy + 1+ { TSR

Ve (t)} uy
.

(baly — 1)
lf + I,

Vo) e

by () Vo () + aa (Vi (1)) - (39

Taking the first boundary function hq(Z,t) in (36) as an
example, the partial derivatives of hq(Z,t) in (35) are

Ohy (2,1)
v, by, (40)
ahl (‘@7t) _
o =L 41
Oy (#,8) (1 —bil,)
P R Ve (1), (42)
Ohy (2,1) (=1 —bily)
R R Vi (1), (43)
and
8h1 ((i‘) - (1—bllr> Uy (—l—bllf)UQ .
o+, Va (D) + ly +1, Va(t)
(1—bil,) /- :
T (0o 0+ Ve @ )
+a1 (Va (1)) - (44)

Substituting (40)~(44) into (35) yields
V, () (1 — byl
Lphy (&,t) = by f1 (&) +(=1) f2 (&) + ((’3(1)) o

lf+l7,
Ve (t) (<1 bily)
+< TEe
S (V008 0+ Vo (055 0)

(1 — bll7-) Uq -
i e

Yo+ ar (V2 )

(—1 — bllf) u2V$ (t)
lf-l-lr

(45)

The final constraint for hi(Z,t) is obtained by substitut-
ing (45) into (34). For the other three boundary functions
hj(Z,t),7 = 2, 3,4, the same procedure can be applied.

As described in Proposition 1, the control design, which
ensures that the inequalities in (34) are always satisfied, can
guarantee system stability/safety. The key issue of solving this
guaranteed stability control problem is the determination wq
and wo in (45). Instead of directly applying u; and us as the
control inputs, we consider w; and ws as the virtual control
inputs, which, by integration, will give u; and wuy as the real
control inputs of the vehicle lateral dynamics in (15). Note that in
addition to the constraint derived for the first boundary function
as an example, the determination of w; and ws should also satisfy
the constraints derived with respect to the other three boundary
functions in (37)—-(39).

Based on all the constraints that guarantee vehicle lateral
stability, a QP problem is formulated to calculate the optimal
virtual control inputs. Specifically, for a given stability region
as a TVCD set, the four time-varying CDBFs and the corre-
sponding constraints can be integrated with a QP problem as
follows:

1
i (&,t) = argmin =’ Hi + FTa, (46)
ueR? 2
S.t.
4
Oh; (a.,1) . . Oh; (#,) . Oh; (&,1)
o f“””; o ‘T T "
+aj (hy (2,1)) = 0,7 =1,2,3,4, 47)
U1 € Q1 (u1) = [€1,min, U1 max], U2 € Q2 (u2)
== [uQ,minv u2,max]; (48)
ul,max = 07 Zf U1 = U1, max,
U1,min = 0,7 f w1 = U1 min,
u2,max = 07 Zf U2 = U2 max,
'L.L2,min = 07 Zf U2 = U2 min, (49)

where 4 = [ U3]T = [w1 w2]T denotes the virtual con-

trol inputs, U1 max = U2 max = T?Sax and U1 min = U2,min =
—1U1,max 10 (48), H € R2*2 is positive definite, and F € R2.
Note that in (47), the constraints are written with respect to
the virtual control inputs, where the real control u; and wuy are
treated as the state variables. cv; are appropriately selected class
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TABLE I
VEHICLE AND SIMULATION PARAMETERS

Symbol Parameters Values
m, Vehicle mass 1270 kg
L Yaw inertia 1500 kg'm?
I Front wheelbase 1.1l m
I Rear wheelbase 1.8 m
o(x) & asx) Class K function 20x
oo(x) & ayx) Class K function 100x
k; Scaling factor 0.024
k, Scaling factor 0.028
L . 50 0
H Weighting matrix [ 0 50}
F Weighting matrix [o o]
Toax Maximum steering torque 24 Nm
UL minfmax Min/Max front wheel steering angle +0.6rad(34°)
U2, min/max Min/Max rear wheel steering angle +0.1rad(5.7°)
L Moment of inertia of the steering 3 ket
system
& Slack number 0.01
k Bounds on disturbances 0.1

K functions based on the sharing property among multiple CBFs
[15]. The sharing property ensures the feasibility of the QP
problem when multiple invariance conditions are applied. Note
that, the constraints in (48) and (49) are not considered in the
sharing property but simply considered as the upper and lower
bounds of the control input. Specifically, the constraints in (48)
denote the upper and lower limits of «, which, in practice, are the
steering rate bounds determined by the maximum torque of the
steering motor Ty, and the moment of inertia of the steering
system /g. The constraints in (49) ensure u; € U andug € Us,
where U1 = (U1, min, U1,max) and Uz = [U2 min, U2 max] denote
the feasible control input sets. For vehicle systems, such feasible
sets can be determined by the mechanical structures of steering
systems.

Remark 7 (Proof of feasibility): Following the feasibil-
ity discussions in [16], the optimization in (46)—(49) is fea-
sible if the vector field of system dynamics in (15) and
the TVCDBF in (36)—(39) are locally Lipschitz with the
assumption of a non-zero V,. The feasibility can also be
guaranteed based on the sharing property among multi-
ple invariant constraints [15]. As shown in Table I, the
Class K functions for h; and hs are selected as the same
and the Class K functions for s and h, are selected as the same.
For the boundaries that have an intersection (e.g., ho and hs),
different class K functions are selected. The system dynamics,
barrier functions, and Class K functions adopted in this paper
satisfy the required conditions. Therefore, the feasibility of QP
in (46)—(49) can be guaranteed.

After the optimal virtual control  are obtained, the real
control inputs w are then determined by integration. It is also
worth noting that by integrating %, and 19, we have u; and uq
at the current time, which gives us a priori information to decide
whether or not to include any of the constraints in (49). Hence,
the problem is still a QP at run-time. Finally, in vehicle systems,
uy is typically combined with d 7 as the total front wheel steering
angle. A framework of the proposed guaranteed vehicle lateral
stability control using time-varying CDBF is shown in Fig. 3 .

V\’
5 — | Vehicle |5, v v, »
A ("->\
+ 0—o0
S s (1) 6,(u,) 0
] QP-Controller
I i, |(time-varying
— CDBF)
Fig. 3. Framework of vehicle lateral stability control.
. 02f ! ' ' ‘ .
=
<
E o1t i
0

Vx (m/s)

10 . | | | . . . .
3 s 6 7 8 9 10
1(s)

Fig. 4. Time-varying profiles (the front wheel steering angle and the longitu-
dinal velocity) in the J-turn maneuver.
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4 \
4r / e T
g /T T T T g "\,\\
8 2 Y \]
of ‘/
2 T
4t a) ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, vt i
0 1 2 3 4 5 6 7 8 9 10
AN f
S
< Outt b) e

0 1 2 3 4 6 7 8 9 10

S
1 (s)

Fig.5. Feedforward case simulation results in the J-turn maneuver, a) CDBFs
values, b) vehicle stability status.

Note that during the QP implementation for the sampled
system, signal delays due to the sampling may occur. Such
delays could cause a short period of CDBF violation, especially
when the system states are controlled close to the boundaries of
the stability set. To solve this issue, in (13), a small positive
slack number ¢ could be added to the time-varying CDBF
in the extended class K function as «(h(Z,t) — ). The slack
number ecan be also applied to overcome possible robustness
issues in practical applications. In [16], it was found that if the
disturbance is vanishing or sufficiently small, the control barrier
function can still guarantee the set invariance. For any bounded
disturbance (e.g., |||~ < k), by adding % to the slack number
€, set invariance can be robustly guaranteed. Although the value
of k could be difficult to find a priori for a general disturbance, it
can be estimated for specific systems and operation conditions,
such as vehicle systems [43].
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V. SIMULATION RESULTS AND DISCUSSIONS

In this section, the proposed new definitions and the corre-
sponding vehicle stability control design are verified through
simulation results of high-speed J-turn and double lane change
(DLC) maneuvers. The vehicle parameters shown in Table I are
selected based on the database of a C-class hatchback vehicle
model in CarSim. To ensure the feasibility of the QP problem
(46)—(49), the selected Class K functions in Table I were verified
by the sharing property in [15]. Specifically, as shown in Table I,
the Class K functions for hq and hs3 are selected as the same and
the Class K functions for ho and hy are selected as the same.
The reason for this selection is, for h; and hg, the corresponding
stability region boundaries do not have intersections (the upper
left and lower right boundaries of any of the three regions
in Fig. 1), which reduces the possibility of conflicts. For the
boundaries that have an intersection (e.g., hy and hs), different
Class K functions are selected. The real-time feasibility of the
proposed control method for both scenarios below was veri-
fied by implementing the proposed control algorithm on a real
vehicle test platform equipped with a dSPACE MicroAutobox
II, where we observed that the computations can be completed
in real-time without delays when the main processor runs at a
900MHz clock frequency.

A. High-Speed J-Turn Maneuver

Two simulation cases are conducted and compared to demon-
strate the effectiveness of the control design based on the
proposed time-varying CDBF. Given the same steering and
longitudinal velocity profile, the first case simulates the vehicle
driving behavior based on the feedforward steering angle dy.
The second case simulates the feedback vehicle control with
the guaranteed vehicle stability control design. The feedforward
front wheel steering angle 07 and the longitudinal velocity V,
are given in Fig. 4 as time-varying variables. Specifically, the
time-varying functions of d4(¢) and V() are given as

0.2t —-017rad 05<t<1.5

5 (t) = 0.2rad 15<t<85,
—0.2t+1.97rad 85<t<9.5
—10t+30m/s 0.5 <t <1.5

V. (1) = 15m/s 15<t<85.  (50)

10t —70m/s 85 <t<9.5

Note that when the vehicle inputs are zeros, the proposed
control design will not be applied since there will be no vehi-
cle movement, i.e., V,(¢) = 0. In this simulation, the tire-road
friction coefficient is set to 0.85 for road conditions to ensure
sufficient friction forces.

In the first case, the feedback control inputs are all zeros,
namely, u; = ug = 0. Thus, the stability region is time-varying
with respect to the feedforward steering angle and vehicle lon-
gitudinal speed. As shown in Fig. 5a), negative time-varying
CDBEF values are clearly observed for hq and h4, which indicate
that the system states are not kept within the defined TVCD
invariant (stability) set, as described in Definition 6. The corre-
sponding unstable statuses are also verified by the vehicle status

y
o

V. (m/s)

r (rad/s)

L L . 1 I I I I
0 1 2 3 4 5 6 7 8

t(s)

Vehicle states in the J-turn maneuver: feedforward control.

Fig. 6.

CDBFs

2 In
=
“ Out b) L

0 1 2 3 4 5 6 7 8 9 10

T T T T
= 0.2 U ———u,
E e
N
02*0)
0 1 2 3 4 5 6 7 8 9 10

Fig. 7. Feedback case simulation results in the J-turn maneuver, a) CDBFs
values, b) vehicle stability status, ¢) control inputs.

check results, shown in Fig. 5b). The vehicle status “in” or “out”
the TVCD stability set in Fig. 5b) is checked by whether the
instantaneous vehicle states are located in the TVCD stability
region, which is an independent evaluation process based on the
instantaneous check of state and region locations in the phase
plane [28]. Moreover, the vehicle states (V, and r) are shown in
Fig. 6 for the J-turn maneuver, with relatively large values.

In the second case, the feedback front and rear wheel steering
angles are calculated using the QP problem with respect to the
constraints derived from the proposed time-varying CDBFs. As
shown in Fig. 7a), all the four time-varying CDBFs are well
controlled to be positive during the whole maneuver, which
indicates that the vehicle states are always within the TVCD
stability region. Since the vehicle stability region is both time-
varying and control-dependent, the control design based on the
proposed time-varying CDBF is verified. In Fig. 7b), the vehicle
status check always shows ‘in’ status for the whole maneuver,
which is consistent with the meaning of positive time-varying
CDBF values. In Fig. 7c), the rear wheels are slightly steered to
the same direction of the front wheels to keep the vehicle stable,
which demonstrates the same idea that the rear wheels should
turn to the same direction of the front wheels to keep a 4WS
vehicle stable at high speeds [37]. In addition, by comparing
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Fig. 8. Vehicle states in the J-turn maneuver: feedback control.
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Fig. 9. Vehicle trajectories comparison in the J-turn maneuver.

the vehicle states in Fig. 8 with those in Fig. 6, 1}, and r for
the feedback control case are both smaller than those in the
feedforward case, which indicates a more stable and safer vehicle
status. Such a stability improvement can also be demonstrated
by comparing the vehicle planar trajectories between these two
cases. As shown in Fig. 9, the vehicle trajectory in the feedback
case is much less extreme than that of the feedforward case,
which could easily cause the vehicle to spin or collide with
other vehicles. In Fig. 9, the desired trajectory is the path of
a vehicle with an ideal tire model when the same feedforward
traces in Fig. 4 are given. The tire cornering stiffness coefficients
in a linear tire model are calibrated based on the nonlinear tire
model in Appendix C. From the comparison shown in Fig. 4, the
vehicle trajectory of feedback case with CDBF is much closer
to the desired trajectory, also indicating a better vehicle driving
performance.

To further verify the proposed time-varying CDBF method,
another simulation is conducted by using a fixed stability region
(common in literature) as the invariant set, bounded by the
pink dotted lines in Fig. 10 (similar to that in Fig. 1). The
four straight lines are represented by four time-invariant and
control-independent barrier functions in linear forms. As ob-
served in Fig. 10, the vehicle state trajectory is well covered by
the fixed region. The four BFs, as shown in Fig. 11a), are also
positive during the whole maneuver since the trajectory is always

10 Stability Region § =0 rad, § =0 rad, Vx=25m/s | ]
————— Stability Region 6[20.2 rad, (Sr:O rad, Vx=15m/s
8r Vehicle States Trajectory T
= = = Fixed "Stability Region"
6 - 4
4 J
P
£
=
E 20
~
0 [ 4
2+ J
4t J
_6 L 1 1 1 L 1 1 1 1
-8 -6 -4 -2 0 2 4 6 8
vV (m/s)
y
Fig. 10.  Vehicle state trajectory with regard to the fixed “stability region” in

the J-turn maneuver.

2 I T T T T T T T T T I’
= I
@ Out -b) 3
0 1 2 3 4 5 6 7 8 9 10
x 10710
4+ _ 1
e \
=3
0
3
_270) Y= 4
L L L L L L
0 1 2 3 4 5 6 7 8 9 10
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Fig. 11.  Feedback case simulation results in the J-turn maneuver based on the
fixed stability region, a) BFs values, b) vehicle stability status, ¢) control inputs.

in the fixed region. Moreover, since the vehicle state trajectory
is far away from the boundaries, the feedback control inputs, as
shown in Fig. 11c), are pretty small and negligible. Such small
feedback control inputs barely influence the vehicle dynamics,
and thus the vehicle states are very similar to those shown in
Fig. 6 in the feedforward simulation. However, as mentioned
in Remark 4, the fixed region is too large to precisely describe
vehicle stability. By checking the vehicle status with respect to
the TVCD stability region, as shown in Fig. 11b), it is revealed
that the vehicle is not always “in” the stability region. This
observation demonstrates that using the fixed stability region
as the invariant set cannot guarantee vehicle stability.

Note that since the fixed stability region is not control-
dependent, the stability constraints do not contain u. In such
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TABLE II
PARAMETERS OF NOISE IN SIMULATIONS

Noise level

Noise (in percent of nominal values) Frequency
v, 5% 200 Hz
r 5% 200 Hz
Vi 3% 200 Hz
S, 3% 200 Hz
_ oosf : : : : 7
=
<
E 0
= “ﬂ-/\/\w
7005 L L L L L Il 1 1 1
0 1 2 3 4 5 6 7 8

t(s)

Fig. 12.  Time-varying profiles (the front wheel steering angle and the longi-
tudinal velocity) in the DLC maneuver.

a case, the control input u is selected as the control variable in
the QP, where the constraints in (48) and (49) are not applied.

B. Double Lane Change Maneuver

A double lane change maneuver is a commonly adopted
scenario for the test of vehicle stability in extreme conditions.
From a practical point of view, to verify the robustness of the
proposed control method, measurement and estimation noises
on vehicle states are added in the simulation. The parameters
of the added noise signals (listed in Table II) are determined
based on experimental data [44], [45]. All noise signals are
assumed to follow a Gaussian probability distribution with a
frequency of 200 Hz. In this simulation, the tire-road friction
coefficient is set to 0.5 to simulate wet road conditions. Similar
to the J-turn maneuver, two simulation cases (feedforward and
feedback cases) are conducted and compared. As shown in
Fig. 12, the profiles of the front wheel steering angle and the
longitudinal velocity are given as two time-varying variables.
Note that the longitudinal velocity is intentionally selected to
be larger than 25 m/s to illustrate the generality of the proposed
method.

In the feedforward case, the stability region is varying with
respect to the feedforward steering angle and vehicle longitu-
dinal speed. As shown in Fig. 13a), negative CDBF values are
clearly observed, indicating that the system states are out of the
TVCD stability region. Such unstable statuses are also verified
by the vehicle status check shown in Fig. 13b).

In the feedback case, the vehicle is controlled by the proposed
stability controller. All four time-varying CDBFs, as shown in
Fig. 14a), are positive, indicating that the vehicle states are
always controlled to stay within the TVCD stability region.
Since the vehicle stability region is both time-varying and

T
CDBF-h1 -—— CDBF-h2 -------- CDBF-h

CDBFs

Status

1(s)

Fig. 13.  Feedforward case simulation results in the DLC maneuver, a) CDBFs
values, b) vehicle stability status.
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Fig. 14. Feedback case simulation results in the DLC maneuver, a) CDBFs

values, b) vehicle stability status, ¢) control inputs.

— = =Feedforward case , S
Feedback case with CDBF 7’

= = = = Lane boundaries

Fig. 15.  Vehicle trajectories comparison in the DLC maneuver.

control-dependent, the control design based on the proposed
time-varying CDBF is verified. In Fig. 14b), the vehicle statuses
are always ‘in’ the stability region during the whole maneuver,
which is consistent with the meaning of all four positive CDBF
values. In Fig. 14c¢), the real control inputs u after the integration
of the virtual control @ are presented.
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The stability improvement is also demonstrated by comparing
the vehicle planar trajectories. As shown in Fig. 15, with only
feedforward control, the vehicle cannot complete a DLC ma-
neuver due to the loss of stability on a slippery road. However,
with the proposed stability control design, the vehicle is able to
successfully realize the DLC maneuver.

VI. CONCLUSION

This paper presents a new concept of a TVCD invariant set
and a novel control algorithm to guarantee the invariance of a
TVCD set. By involving the TVCD properties, the proposed
time-varying CDBF is more general than the (time-varying)
CBFs studied in the literature. The newly developed theory
and control methods are applied to solve a guaranteed region-
based vehicle lateral stability control problem, where the vehicle
lateral stability region, as the controlled invariant set, is both
time-varying and control-dependent. Finally, through realistic
simulation results of high-speed J-turn and DLC maneuvers, the
proposed new concepts and control design are verified.

APPENDIX

The complete proof of Proposition 1 is given as follows.

A. Proof of the TVCD Invariant Set Using the Time-Varying
ZCDBF

Based on the definition of the tangent cone [42] and Nagumo’s
theorem [7], the invariance condition in (13) indicates that when
x € O, the derivative & points inside or is tangent to 1 [7],
then the trajectory x(¢) remains in . Thus, if the system state
is initially in the set, it then follows that the system state is
always kept inside the set and h(Z,t) > 0. According to (10),
if h(z,t) >0, € (u,t) for all w € Uand t € T is proved,
which indicates that the ¢)(u, t) is a TVCD invariant set. [ |

B. 2D LuGre Tire Model
A 2D LuGre tire model is described as in [38] as follows:

Fy = f()‘*vaf,T7Fn>M)
(e—aiLi _ e—ai(Li—CLi)

2, )
:Fn{giv” [1—/8;
7 (vr, 1) a; CLi
e~ ai(Li—Cri) _ 1
Iqém>:| + U2ivri} )

where A, oy, ., I}, and p are the tire slip ratio, front or rear wheel
slip angle, vertical load, and friction coefficient, respectively.
The parameters in the curly brackets are calibrated based on the
CarSim tire database to describe the Stribeck effect, trapezoidal
load distribution, and the viscous damping property of tire
materials. The definitions of the rest of the parameters in (51)
(Gi» Vri, U, Biy @iy Liy Criy Cri, 02;) and more details about the
nonlinear and coupled LuGre tire model can be found in [38].

(51

[1]

[2]

[3]

[4

flnar

[5

—_

[6

=

[7

—

[8

—

[9]

[10]

(1]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

709

REFERENCES

B. Paden, M. Cép, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Trans. Intell. Veh., vol. 1, no. 1, pp. 33-55, Mar. 2016.

On-Road Automated Driving (ORAD) committee, Taxonomy and defini-
tions for terms related to driving automation systems for on-road motor
vehicles, SAE International, Jun. 2018.

K. D. Kim and P. R. Kumar, “An MPC-based approach to provable
system-wide safety and liveness of autonomous ground traffic,” IEEE
Trans. Autom. Control, vol. 59, no. 12, pp. 3341-3356, Dec. 2014.

P. Ogren and N. E. Leonard, “A convergent dynamic window approach
to obstacle avoidance,” IEEE Trans. Robot., vol. 21, no. 2, pp. 188-195,
Apr. 2005.

S. Prajna, “Optimization-based methods for nonlinear and hybrid systems
verification,” Ph.D. thesis, California Inst. Technl., Pasadena, CA, USA,
2005.

S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using
barrier certificates,” in Hybrid Systems: Computation and Control. Berlin,
Germany: Springer-Verlag, pp. 477-492, 2004.
F. Blanchini, “Set invariance in control,”
pp. 1747-1767, 1999.

P. Wieland and F. Allgower, “Constructive safety using control
barrier functions,” in Proc. IFAC Nonlinear Control Syst., 2007,
pp. 473-478.

A.D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs for safety critical systems,” IEEE Trans. Autom.
Control, vol. 62, no. 8, pp. 3861-3876, Aug. 2017.

K.B.Ngo, R. Mahony, and Z. Jiang, “Integrator backstepping using barrier
functions for systems with multiple state constraints,” in Proc. IEEE Conf.
Decis. Control, 2005, pp. 8306-8312.

K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier lyapunov functions for the
control of output-constrained nonlinear systems,” Automatica, vol. 45,
no. 4, pp. 918-927, 2009.

K. P. Tee, B. Ren, and S. S. Ge, “Control of nonlinear systems with time-
varying output constraints,” Automatica, vol. 47, pp. 2511-2516, 2011.
W. He, C. Sun, and S. S. Ge, “Top tension control of a flexible marine riser
by using integral-barrier lyapunov function,” IEEE Trans. Mechatronics,
vol. 20, no. 2, pp. 497-505, Apr. 2015.

Y. Liu and S. Tong, “Barrier Lyapunov functions-based adaptive control
for a class of nonlinear pure-feedback systems with full state constraints,”
Automatica, vol. 64. pp. 70-75, 2016.

X. Xu, “Constrained control of input-output linearizable system using
control sharing barrier functions,” Automatica, vol. 87, pp. 195-201,2018.
X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of control
barrier functions for safety critical control,” in Proc. IFAC Conf. Anal. Des.
Hybrid Syst., 2015, pp. 54-61.

X.Xu, J. W. Grizzle, P. Tabuada, and A. D. Ames, “Correctness guarantees
for the composition of lane keeping and adaptive cruise control,” IEEE
Trans. Automat. Sci. Eng., vol. 15, no. 3, pp. 1216-1229, Jul. 2018.

Y. Chen, H. Peng, and J. Grizzle, “Obstacle avoidance for low-speed
autonomous vehicles with barrier function,” IEEE Trans. Control Syst.
Technol., vol. 26. no. 1, pp. 194-206, Jan. 2018.

L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates
for collision multirobot system,” IEEE Trans. Robot., vol. 33, no. 3.
pp. 661-674, Jun. 2017.

S. Grammatico, F. Blanchini, and A. Caiti, “Control-sharing and merging
control Lyapunov functions,” IEEE Trans. Autom. Control, vol. 59, no. 1,
pp. 107-119, Jan. 2014.

M. Z. Romdlony and B. Jayawardhana, “Stabilization with guaranteed
safety using control lyapunov-barrier function,” Automatica, vol. 66,
pp. 3947, 2016.

G. Fan and K. Sreenath, “Safety-critical and constrained geometric control
synthesis using control lyapunov and control barrier functions for systems
evolving on manifolds,” in Proc. Amer. Control Conf., pp. 2038-2044,
2015.

M. Jankovic, “Combining control lyapunov and barrier functions for con-
strained stabilization of nonlinear systems,” in Proc. IEEE Amer. Control
Conf., pp. 1916-1922, 2017.

Z. Wu, F. Albalawi, Z. Zhang, J. Zhang, H. Durand, and P. D. Christofides,
“Control Lyapunov-barrier function-based model predictive control of
nonlinear systems,” Automatica, vol. 109, 2019, Art. no. 108508.

Z. Wu and P. D. Christofides, “Control Lyapunov-barrier function-based
predictive control of nonlinear processes using machine learning model-
ing,” Comput. Chem. Eng., vol. 134, 2020, Art. no. 106706.

Automatica, vol. 35,

Authorized licensed use limited to: ASU Library. Downloaded on May 03,2022 at 17:03:40 UTC from IEEE Xplore. Restrictions apply.



710

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 6, NO. 4, DECEMBER 2021

L.Lindemann and D. V. Dimarogonas, “Control barrier functions for signal
temporal logic tasks,” IEEE Control Syst. Lett., vol. 3, no. 1, pp. 96-101,
Jan. 2019.

M. Kimmel and S. Hirche, “Invariance control for safe human-robot
interaction in dynamic environments,” IEEE Trans. Robot., vol. 33, no. 6.
pp. 1327-1342, Dec. 2017.

Y. Huang and Y. Chen, “Estimation and analysis of vehicle lateral stability
region with both front and rear wheel steering,” in Proc. ASME Dyn. Syst.
Control Conf., No. DSCC2017-5154, Tysons, VA, USA, 2017.

E. Ono, S. Hosoe, H. D. Tuan, and S. Doi, “Bifurcation in vehicle
dynamics and robust front wheel steering control,” IEEE Trans. Control
Syst. Technol., vol. 6, no. 3, pp. 412-420, May 1998.

Y. Huang, W. Liang, and Y. Chen, “Stability regions of vehicle lateral
dynamics: Estimation and analysis,” ASME J. Dyn. Syst., Meas. Control,
vol. 143, no. 5, 2021, Art. no. 051002.

Y. Huang, S. Z. Yong, and Y. Chen, “Guaranteed vehicle safety control
using control-dependent barrier functions,” in Proc. Amer. Control Conf.,
pp. 983-988, Philadelphia, PA, USA, 2019.

H. K. Kahlil, Nonlinear Systems. Upper Saddle River, NJ, USA: Prentice
Hall, 2002.

L. Kocarev, U. Parlitz, and B. Hu, “Lie derivatives and dynamical systems,”
Chaos, Solitons Fractals, vol. 9, no. 8, pp. 1359-1366, 1998.

E. Mousavinejad, Q. Han, F. Yang, Y. Zhu, and L. Vlacic “Integrated
control of ground vehicles dynamics via advanced terminal sliding mode
control,” Veh. Syst. Dyn., vol. 55, no. 2, pp. 268-294, 2017.

C. G. Bobier and J. C. Gerdes, “Staying within the nullcline boundary for
vehicle envelope control using a sliding surface,” Veh. Syst. Dyn., vol. 51,
no. 2, pp. 199-217, 2013.

H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics. Cam-
bridge, U.K.: Cambridge Univ. Press, 1988.

Y. Furukawa, N. Yuhara, S. Sano, H. Takeda, and Y. Matsushita, “A review
of four-wheel steering studies from the viewpoint of vehicle dynamics and
control,” Veh. Syst. Dyn., vol. 18, pp. 151-186, 1989.

W. Liang, J. Medanic, and R. Ruhl, “Analytical dynamic tire model,” Veh.
Syst. Dyn., vol. 46, no. 3, pp. 197-227, 2008.

S. Inagaki, I. Kushiro, and M. Yamamoto, “Analysis on vehicle stability
in critical cornering using phase-plane method,” JSAE Rev., vol. 16, no. 2,
pp. 287-292, 1995.

S. Sadri and C. Wu, “Stability analysis of a nonlinear vehicle model in
plane motion using the concept of lyapunov exponents,” Veh. Syst. Dyn.,
vol. 51, no. 6, pp. 906-924, 2013.

R. P. Agarwal, R. P. Agarwal, and V. Lakshmikantham, Uniqueness and
Nonuniqueness Criteria For Ordinary Differential Equations, Singapore:
World Scientific, vol. 6, 1993.

J. P. Aubin and H. Frankowska, Ser-Valued Analysis. Boston, MA, USA:
Birkhauser, 1990.

C. Funfschilling and G. Perrin, “Uncertainty quantification in vehicle
dynamics,” Veh. Syst. Dyn., vol. 57, no. 7, pp. 1062—-1086, 2019.
A.Rezaeian, A. Khajepour, W. Melek, S.-K. Chen, and N. Moshchuk, “Si-
multaneous vehicle real-time longitudinal and lateral velocity estimation,”
IEEE Trans. Veh. Technol., vol. 66, no. 3, pp. 1950-1962, Mar. 2017.

X. Wang, Vehicle Noise and Vibration Refinement. Cambridge, U.K.:
Woodhead Publishing Limited, 2010.

Yiwen Huang received the B.S. and M.S. degrees
in mechanical engineering from Xi’an Jiaotong Uni-
versity, Xi’an, China, and Arizona State University,
Tempe, AZ, USA, in 2014 and 2016, respectively. He
is currently working toward the Ph.D. degree in me-
chanical engineering with Arizona State University.
His research interests focused on the development of
autonomous vehicle and applications, vehicle dynam-
ics and control, mechanical design and modeling, and
optimization.

Sze Zheng Yong (Member, IEEE) is an Assistant
Professor with the School for Engineering of Mat-
ter, Transport and Energy, Arizona State University.
He received the Dipl.-Ing.(FH) degree in automotive
engineering with a specialization in mechatronics
and control systems from the Esslingen University
of Applied Sciences, Germany in 2008, and the S.M.
and Ph.D. degrees in mechanical engineering from the
Massachusetts Institute of Technology, Cambridge,
\ MA, USA, in 2010 and 2016, respectively. His re-
search interests include the broad areas of control,
estimation, planning, identification and analysis of hybrid systems, with appli-
cations to autonomous, robotic and cyber-physical dynamic systems and their
safety, robustness and resilience. He was the recipient of a DARPA Young
Faculty Award in 2018 as well as NSF CAREER and NASA Early Career Faculty
awards in 2020.

Yan Chen (Member, IEEE) received the B.S. and
M.S. degrees (with Hons.) in control science and
engineering from the Harbin Institute of Technology,
Harbin, China in 2004 and 2006, respectively. He
received his second M.S. degree in mechanical en-
gineering from the Rice University, Houston in 2009,
and the Ph.D. degree in mechanical engineering from
the Ohio State University, Columbus in 2013.

Dr. Chen joined Arizona State University as an
Assistant Professor in 2016, after three years of full-
time automotive industrial research experience. He
has the authored or coauthored more than 55 peer-reviewed publications. His
research interests include design, modeling, estimation, control and optimization
of dynamic systems, specifically for connected and automated vehicle, electric
vehicle, internal combustion engine, powertrain, aftertreatment, energy, and
mechatronic systems.

Dr. Chen is as an Associate Editor for IEEE TRANSACTIONS ON VEHICU-
LAR TECHNOLOGY, IFAC Mechatronics, ASME Dynamic Systems and Control
Conference (DSCC), and American Control Conference. He is the Vice Chair
of ASME Automotive and Transportation Systems Technical Committee since
2020. He was the recipient of 2020 SAE Ralph R. Teetor Educational Award
and 2019 DSCC Automotive and Transportation Systems Best Paper Award.

Authorized licensed use limited to: ASU Library. Downloaded on May 03,2022 at 17:03:40 UTC from IEEE Xplore. Restrictions apply.



