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ABSTRACT: The binding of the active form of Remdesivir (RTP) to RNA-dependent RNA 

Polymerase (RdRp) of SARS-CoV-2 was studied using molecular dynamics (MD) simulation. The 

RTP maintained the interactions observed in the experimental cryo-EM structure. Next, we 

designed new analogues of RTP, which not only binds to the RNA primer strand in a similar pose 

as that of RTP, but also binds more strongly than RTP does as predicted by MM-PBSA binding 

energy. This suggest that these analogues might be able to covalently link to the primer strand as 

RTP, but their 3’ modification would terminate the primer strand growth.   
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INTRODUCTION 

The world today faces difficult times with the current coronavirus pandemic. As of September 

2021, there are almost 219 million people infected by the SARS-CoV-2 virus with approximately 

4.55 million deaths spread in 220 countries around the globe. The lack of effective therapeutics 

and rapid transmission of the virus has exacerbated the course of infection, which left a huge 

burden on almost all aspects of human life. There is some hope with SARS-CoV-2 vaccine 

development, however, due to the fact that not every individual may develop neutralizing 

antibodies, as well as the possibility of side effects which may emerge in the future, the 

development of small molecule antiviral drugs is urgently needed.  

SARS-CoV-2 has many viral proteins that can be targeted by small molecules. Among them, 

RNA-dependent RNA polymerase (RdRp) has become an attractive target, as it exists only in 

viruses and not in humans, and it exhibits active site conservation around coronavirus. Remdesivir, 

an analogue of adenosine triphosphate (ATP) which targets RdRp, was originally a drug developed 

for the treatment of Ebola virus[1, 2], but has recently undergone emergency clinical authorization 

for the treatment of Covid-19. Although it performed well in the previous in-vitro and in-vivo 

preclinical studies[3, 4], its clinical use in treating Covid-19 patients has been halted because it 

failed to show the significant improvement that was initially expected.[5-7] Therefore, the 

development of more potential analogues is an urgent research priority. 

Studies have indicated that the active form of Remdesivir (Remdesivir triphospahate, RTP) 

works by delayed chain termination mechanism, in which the RTP halt RNA primer strand 

extension at the i+3 site after Remdesivir monophosphate (RMP) is incorporated into the RNA 

primer strand and translocated +3 steps, through stalling the further translocation of the primer 

strand [8, 9]. In that scheme, a nucleotide addition-inhibition cycle (NAC) consists of several 
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sequential states in term of the active site of the primer strand, i.e., an open active site conformation 

without NTP substrate binding (S1, PDB ID 6M71) [10], initial binding mode of NTP substrate 

(S2) to the active site of the primer strand, the conformational changes of the active site transition 

from an open state (S2) to a closed state accompanied by repositioning of the NTP (S3) and the 

key catalytic residues, the phosphoryl transfer reaction leading to a reaction product (S4, PDB ID 

7BV2)  [11], and finally i to i+3 translocation of the primer strand (S5) [12-14]. In a similar way, 

it was implied by some groups that the mechanism of a NTP substrate loading includes its adoption 

of the pre-insertion state and its binding to an open active center conformation and further folding 

of the trigger loop of the primer strand then leading to a closure of the active center, delivery of 

the NTP to the insertion site, and formation of all key contacts required for catalysis [15, 16]. More 

recently, Romero et al. (2021) studied the active-site open state of SARS-CoV-2 RdRp using apo  

form RdRp (PDB ID 7BTF) for the nucleotide initial binding and an closed active site of the 

polymerase using a reaction product (PDB ID 7BV2) for the stabilized nucleotide insertion, prior 

to catalytic addition of the nucleotide to the synthesizing primer RNA chain[17]. They implied 

that the initial binding and nucleotide insertion were guided by base stacking and base pairing with 

the template nucleotide, respectively [17]. In this study, we used the reaction product structure 

(PDB ID 7BV2) as a starting structure for building the initial complex structure of the non-covalent 

binding step of RTP and its analogues to SARS-CoV-2 RdRp and monitoring their conformational 

stabilities using molecular dynamics simulation (MDS). It is worth to mention that the reactant 

complex structure (i.e. Remdesivir in the closed-active state of RdRP) is not yet available.  Only 

2 SARS-CoV-2 RdRp structures complexed with Remdesivir available in Protein Data Bank at 

present, i.e., 7BV2 and 7L1F, which are the reaction product and delayed translocation structures 

of RdRp-Remdesivir complexes, respectively.  
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We previously obtained mechanistic binding insight of the active form of Remdesivir (RTP) to 

SARS-CoV-2 RdRp through homology modeling structure and the semiempirical method in 

deriving RTP ligand force field parameters.[18] Currently, we studied the system by using SARS-

CoV-2 RdRp cryo-EM structure and the quantum mechanics method in deriving ligand force field 

parameters. The quantum mechanics method was selected due to its high accuracy in deriving 

force field parameters. The conformational change of the RdRp-RTP/protein-ligand system was 

monitored for 1 µs a using MDS. In addition, we designed new analogues (R1T, R2T and R3T) of 

RTP not only to cap the RNA polymerization, but also to enhance the binding affinity toward 

RdRp. Indeed, we discovered that our designed compounds exhibited a similar binding mode to 

RTP but with a much higher affinity.  

 

MATERIALS AND METHODS 

The RdRp complex structure was retrieved from the RCSB data bank with PDB ID 7BV2 [11],  

which was the closed active site conformation as indicated by the highly stabilized base pairing 

with template [17]. From this structure, it was necessary to only select the chain that had the 

catalytic site, so although the 7BV2 structure consists of multiple protein chains, only protein chain 

A plus two RNA chains (chains P and T) were selected. The protein-RNA complex was prepared 

using the Protein Preparation Wizard of Maestro software,[19] where it was pre-processed and 

optimized at pH=7 using default settings. 

The RTP structure was downloaded from the PubChem database. In order to produce RTP-like 

compounds, we performed combinatorial synthesis using combinatorial library enumeration of the 

Maestro CombiGlide module.[20] Three compounds, i.e. R1T, R2T, and R3T, were selected based 

on RTP binding mode. The force field for RTP, R1T, R2T, and R3T molecules (Figure S1) were 
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developed in-house by generating charge models of nucleosides RN, R1N, R2N, and R3N (Figure 

S2) using the standard AMBER protocol,[21, 22] and merging them with the tri-phosphate force 

field developed by Carlson and coworkers (Figure S1).[23] In addition, 5’-form (R5), 3’-form 

(R3), and the middle-in-chain form (R) of Remdesivir nucleosides were created based on the 

AMBER protocol (Figure S3). RNA OL3 and triphosphate parameters were assigned to each 

molecule and the GAFF force field was used to determine the remaining parameters (e.g. bond, 

bond angle, torsion, proper and improper dihedral angles).[23-25]  

First, only the molecular electrostatic potential (MEP) of the nucleosides (Figure S2) were 

calculated at the HF/6-31G* methodology level using Gaussian 09. Then, geometry optimization 

was performed at the same level. MEP was then used to calculate the partial charges of all atoms 

in the nucleosides using the Restrained Electrostatic Potential (RESP) method with two-stage 

fitting and the use of multiple molecular orientations.[21] Partial charge constraints on each 

molecule is shown (Figure S1-3), which retains necessary solved partial charges of RNA 

nucleosides.[22] After successful RESP calculations, the finalized nucleosides were merged with 

the triphosphate parameters from PARM94 and ATP to construct RTP, R1T, R2T, and R3T 

(Figure S1). Geometry optimization, MEP, and RESP were not done on the RTP and its 

derivatives because an additional triphosphate group is too computationally-expensive and is thus 

why we opted to merge the triphosphate group and its parameters with each RNA nucleoside 

following the AMBER protocol.  

 Five systems in complex with the covalent form of R3 and non-covalent forms of RTP, R1T, 

R2T, and R3T were created for molecular dynamics simulation (MDS) (Table S1). While R3 was 

based on the solved crystal structure, RTP, R1T, R2T, and R3T were docked to i site (Figure S15) 

of crystal structure of RdRp employing Maestro’s extra precision (XP) docking procedure with 
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the restraints to keep the R3 crystal conformation as much as possible. RTP pose is consistent with 

the pose of R3 (Figure S16), as for R1T, R2T, and R3T. Therefore, our dock pose is a good starting 

pose for sampling the reactant state of the complex structure. AMBER protein ff14SB[26] and 

RNA OL3[27, 28] force fields were used to represent protein and RNA, respectively. The protein-

RNA net negative charges were neutralized by K+ ions. In addition, the salt was added to achieve 

0.15 M KCl concentration. 

AMBER16 was employed to perform Molecular Dynamics Simulation (MDS), following the 

protocol used in our previous studies.[29-37] Three independent runs of 1 µs for the RTP-RdRp 

system were performed to assess their conformational changes. Each system for R3, R1T, R2T, 

and R3T underwent MDS for 1 µs in addition to three independent runs of 200 ns for each R1T, 

R2T, and R3T; hence in total, 8.8 µs MDS were conducted for all systems. The run included a 1.0 

ns MDS using the NPT ensemble mode (constant pressure and temperature) to equilibrate the 

system’s density, following a 1000 ns dynamics in the equivalent NVT ensemble mode (constant 

volume and temperature). The SHAKE algorithm was used to treat all bonds interconnecting 

hydrogen atoms with a 2.0 fs time step in each simulation. The particle-mesh Ewald method[38] 

was used to treat long-range electrostatic interactions under periodic boundary conditions (charge 

grid spacing of ~1.0 Å, the fourth order of the B-spline charge interpolation; and direct sum 

tolerance of 10–5). Short-range non-bonded interactions were defined at 10 Å and long-range 

interactions were treated with the uniform-density approximation. A two-stage RESPA 

approach[39] was used to calculate non-bonded forces. Short-range forces were updated every 

step, and long-range forces were updated every two steps. The Langevin thermostat was used to 

control temperature with a coupling constant of 2.0 ps. Trajectories were saved every 50.0 ps for 

analysis. The RMSD, RMSF, hydrogen bond, and clustering analysis were based on the combined 
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trajectories of MDS using CPPTRAJ module [40]. The clustering analysis was performed using 

DBSCAN [41], in which the RMSD was chosen as the distance metric with distance cutoff for 

forming a cluster (epsilon) and the minimum number of points/structures to form a cluster 

(minpoints) were 2.5 Å and 10, respectively, while other settings followed our previous protocol 

[18]. The H-bond analysis was conducted using default setting (Donor-Acceptor distance:3.5Å, 

and the Donor-Hydrogen-Acceptor angle >90 degree). We further calculated binding free energy 

of each system using the trajectory by employing MM-PBSA methods[42] and then predicted the 

ADME (Absorption, Distribution, Metabolism, Excretion) properties for RTP, R1T, R2T, and R3T 

by using the SwissADME web server (http://www.swissadme.ch).[43] Binding free energies were 

calculated using the python modules on 250 snapshots taken from 0 to 1 µs simulation trajectories 

as implemented in AMBER16. The polar contribution to solvation free energy was calculated by 

solving the Poisson-Boltzmann (PB) equation using a grid size of 0.5 Å, while the non-polar 

contribution was calculated using the solvent accessible surface area (SASA) with solvent-probe 

radius set to 1.4 Å. 

 

Multiple Sequence alignment 

To identify critical residues for catalysis of SARS-CoV2 RdRP, its primary sequence (uniprotein 

ID: QHD43415_NSP11) was used as a query to search its closest protein family (PF00680/Viral 

RdRP family) on the protein families database (pfam 33.1) (http://pfam.xfam.org/)[44]. Next, a 

multiple sequence alignment using MAFFT method [45] in Jalview [46] was performed to identify 

conserved residues in PF00680 plus SARS-COV2 RdRP (See Figure S18). Four critical Asp 

residues (D618, D623, D760 and D761) near the two Mg2+ ions in the product structure of RdRp 

(PDB 7BV2) were identified to be 100% conserved, likely playing a critical role in catalysis. 

http://www.swissadme.ch/
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RESULTS AND DISCUSSION 

Force Field Development for RTP, R1T, R2T and R3T and validation 

Before developing the force fields for RTP, R1T, R2T and R3T, we took note of the structural 

similarities and differences that RTP and ATP share, which served as the basis for our strategy: 

Restrain the atom properties (atom name, type and partial charges) that RTP and ATP share, and 

change said atom properties where RTP and ATP differ. Fortunately, the AMBER RNA OL3 force 

field contains the full PARM94 parameters of ATP (Figure S1A) and its nucleosides A, A3, A5, 

and AN, in which the force fields of R, R3, R5 (Figure S3), RN, R1N, R2N, R3N (Figure S2), 

RTP, R1T, R2T, and R3T (Figure S1B-E) were derived.  

Validation of the 7BV2 crystal structure with protein, RNA and R3 ligand covalently-bound to 

RNA is represented via a protein-RNA RMSD plot (Figure S13) and a structure comparison figure 

between the reference and last snapshot structure complexes 7BV2 from a 1 μs MD simulation 

(Figure S14); to note, since R3 is covalently-bound to RNA, it is incorporated in the RNA RMSD. 

The simulation system reached convergence quite early at ~200 ns and maintained an RMSD value 

of ~ 2 Å for the remainder of the simulation (Figure S13). This implies that the overall structure 

conformation of 7BV2 changed negligibly, which we show in the next figure (Figure S14). 

Between the reference and last snapshot structure complexes, the protein, RNA and R3 ligand 

show significant overlap with one other. Our simulation thus validates the stability of the crystal 

structure complex.  

RTP binding to RdRp complex 

The SARS-CoV-2 RdRp structure contains 11 bases in the primer strand, 14 bases in the template 

strand, and two Magnesium ions. RTP was docked at the i position of the RdRp catalytic site, 
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where i is the location where RTP is incorporated. The docking pose of RTP was similar to the 

crystal 7BV2 covalently bound R3, in which the phosphate group was positioned at the entry of 

the NTP channel formed by hydrophilic residues (K545, R553, and R555)[10], which would 

inhibit the entry of NTP to the RdRp active site. In addition, the reactant state of SARS-CoV-2 

RdRp was indicated by the coordination of two Magnesium ions with RTP, D618, D623, D760, 

and D761 of RdRp active site [47, 48]. Figure 1 shows the 3D conformation of RTP in the RdRp 

SARS-CoV-2, the detailed interaction of docked RTP with RdRp, and the RTP interactions with 

two Magnesium ions, D618, D623, D760, and D761 of RdRp active site, while Figure S16 depicts 

the superimposed comparison of crystal 7BV2 covalently bound R3 to docked RTP. Our multiple 

sequence alignment of SARS-COV2 RdRP to its protein family (PF00680) suggest these ASP 

residues (D618, D623, D760 and D761)) are 100% conserved in the family (Figure S18),  thus 

likely being key catalytic residues for the catalysis [49].  
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Figure 1. The 3D surface representation of RdRp and conformation of RTP in the RdRp SARS-

CoV-2 (A) and the detailed interaction of docked RTP with RdRp (B). Template and primer RNA 

strands are colored in cyan and red, respectively. The RTP interactions with two Magnesium ions 

(colored in pink), D618, D623, D760, and D761 of RdRp active site, in which distance was 

measured in Angstrom (C). 
 

Gong and Peersen (2010) proposed the sequential catalytic cycle model of poliovirus 

polymerization [50], in which state 1 is an apo form of initial structure without a bound NTP (PDB 

code: 3OL6, which is comparable with 6M71 for SARS-CoV-2). State 2 is an open active site 

with NTP non-covalently bound without Mg ions (PDB code: 3OLB). State 3 is closed active site 

conformation with NTP non-covalently bound and presence of Mg ions. Of note, the crystal 

structure of State 2 and State 3 is not yet available for SARS-CoV-2. Table S2 depicts the 

comparison of RdRp structures of poliovirus, Norwalk virus, and SARS-CoV-2 virus in each state 

recorded in Protein Data Base (PDB). 

Zamyatkin et al (2007) proposed the crystal structure of State 3 of Norwalk virus (PDB ID: 

3BSO), in which MnA ion was coordinated with D671 (D343) (distance 2.15 Å) and Pα (2.18 Å), 

while MnB ion was coordinated with D570 (D242) (distance 2.15 Å), Pα (distance 2.41 Å), Pβ 

(distance 2.08 Å) and Pγ (distance 2.16 Å) groups (Figure S19B) [51]. In our reactant state, the 

distances become longer, in which those between MgA and D760 and between MgB and D618 

were 5.93 Å and 6.94 Å, respectively (Figure 1C). We showed the superimposition of the State 

S3 of Norwalk virus (PDB ID: 3BSO) and the reaction product (State 4) of SARS-CoV-2 (PDB 

code: 7BV2) in Figure S19A and Figure S19D.  

State 4 is a closed active site of post catalysis pre-translocation with NTP bound covalently and 

presence of Mg2+ ions (PDB code for poliovirus: 3OL7, comparable with 7BV2 structure in 

SARS-CoV-2), the superimposition of 7BV2 and 3OL7 was depicted in Figure S20A and Figure 

S20C. As can been seen from Figure S20B, the distances between MgA ion and D328 and between 
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MgB ion and D233 of poliovirus were 2.86 Å and 3.06 Å, respectively, both ions were coordinated 

with phosphate groups. However, the distances become longer in the SARS-CoV-2 virus, in which 

those between MgA ion and D760 and between MgB ion and D618 were 6.25 Å and 6.41 Å, 

respectively (Figure S19C). Thus, the longer distances between metal ions and key residues 

observed in our current study (Figure 1C), is consistent with the longer distances revealed in the 

experimental structure of reaction product (State S4) of SARS-CoV-2 (PDB ID: 7BV2). It is clear 

that while MgB ion positions are conserved in Norwalk, poliovirus, and SARS-CoV-2 viruses, the 

MgA ion of SARS-CoV-2 is located at more upstream site than those found in Norwalk (differing 

by 3.37 Å) and poliovirus (differing by 2.99 Å) (Figure S19D and S20C). It is likely due to the 

protein sequence change from poliovirus and Norwalk virus to SAR-CoV-2 and is a hallmark for 

the latter. However, further experimental study is needed to clarify the issue. 

Adenosine groups of RTP formed H-bond interactions with U10 of the template strand and U20 

of the primer strand. Additionally, Pi-Pi orbital stacking interactions were formed between the 

adenosine motif and U20 of primer strand, which was also observed in the experimental 

structure.[11, 52] The ribose ring 3’-OH atom formed H-bond interactions with N691 and T680 in 

RTP, while the cyano group formed H-bond interactions with S759. The phosphate group of RTP 

formed salt bridge interactions with positively charged amino acid residues K621, R555, and 

R624. The triphosphate group of the ligand was additionally stabilized by Mg2+ ions through metal 

coordination and salt bridge interactions as found in the experimental structure.[11] In the RTP 

complex, D623 and D760 were located close to triphosphate and magnesium ions. In brief, our 

docking pose is consistent with the experimental structures of RTP and RdRp complexes.  

During the 1 µs MDS, several H-bond interactions were retained. The RTP H-bond interactions 

occurring with K621 (K252) and U10 (U542) of the template strand were preserved at high 
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occupancies (79.6% and 64%, respectively), while the H-bond with R555 (R186) was maintained 

at modest occupancy (57.6%). Table S2 showed the H-bond occupancies of RTP during 1 µs 

MDS. Clearly, the RTP was able to maintain H-bond interactions with active site residues of RdRp. 

The trajectory convergence during MDS was checked through the RMSD values averaged over 

three independent 1 µs MDS for protein Cα, RNA, and ligand heavy atoms for RTP complex 

(Figure S19). The receptor Cα achieved stability around 100 ns and remained stable towards the 

end of simulation time. The RMSD of RNA main atoms shows more fluctuation at around 2 Å and 

remains stable during MDS. The ligand RMSD of RTP did not change significantly during the 

simulation time. Fluctuations of RMSD values of ligand-heavy atoms were around 1 Å. The 

RMSD values of the RTP system were shown to be nearly constant during 1 µs MDS, which 

implied that the RTP attained a stable conformation in the RdRp active site. The RMSD values for 

the first, second, and third MDS of RTP show similar patterns (Figure S20). 

The fluctuation of protein amino acid residues during MDS was shown in the RMSF plot (Figure 

S21). The high peaks of residues were observed at V405, G432, T644, and G823, which 

corresponded to the protein loops, while E370 and L895 were the protein carboxy and amino ends. 

The residues R555, K621, D623, R624, T680, N691, S759, and D760, which directly interacted 

with RTP, were found to be stable. 

The fluctuation of RNA O5’ and ligand heavy atoms was depicted in Figure 2. The RMSF 

values of RNA O5’ atoms of the RTP system were observed to be stable under 3 Å. High peaks 

were observed in G10, which is the primer strand end, as well as U8 and C21, which are the 

template strand ends. The U10 and A11 of template strands, which are observed to form the H-

bond interactions with RTP, were observed to be stable, while the RMSF values of RTP heavy 

atoms were observed to be stable under 1 Å, which confirmed the RMSD values of ligands. 
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Figure 2. The RMSF plot of RNA O5’ atoms (black) and ligand heavy atoms (orange) (A) and 

labeled 2D structure of RTP (B). 

Clustering analysis of RTP complex 

Figure 3A shows the representative structure of the most abundant cluster from the cluster 

analysis extracted from MDS trajectories, in which there was only one cluster with 100% 

population. The RTP interactions with two Magnesium ions, D618 (D249), D623 (D254), D760 

(D391), and D761 (D392) of RdRp active site were depicted (Figure 3B). It was shown that RTP 

confirms the H-bond interactions with S759 through O4’ of the ribose ring, and with R555 through 

the triphosphate group while maintaining close distance with D618, D760, and D761. In addition, 

a 3’ hydroxyl group of ribose rings formed H-bond interactions with D623, which was also found 

in the previous experimental study.[53] Researchers Yin et al (2020) indicated that the S759, D760, 

and D761 residues comprise the catalytic active center of RdRp[11], while Gao et al., (2020) 

indicated that R555, V557, and D618 were among the key binding residues.[54] Moreover, 

magnesium ions were located near the triphosphate group of RTP, and aspartate residues which 

indicated their role in stabilizing ligand conformation as indicated in the experimental 

structure.[11] Prior studies have shown that incorporation of RTP at position i will block viral 

RNA synthesis through delayed chain termination mechanism at positions i+3 or i+5, which is 

responsible for antiviral activity of Remdesivir[53, 55, 56], as per present results. 

B A 
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Figure 3. The detailed interaction of the most dominant cluster of RTP with RdRp (A). The RTP 

interactions with two Magnesium ions (colored in pink), D618 (D249), D623 (D254), D760 

(D391), and D761 (D392) of RdRp active site, in which distance was measured in Angstrom (B). 
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Designing New Analogues 

To improve the binding affinity of RTP, we performed combinatorial library enumeration which 

resulted in three RTP analogues, i.e. R1T, R2T, and R3T. The structures of RTP analogues were 

varied in ribose 3’OH group as shown in Figure 4. 

 

 

 

 

Ligand R-Substituent 

RTP OH 

R1T H 

R2T NH2 

R3T NHCH3 

 

Figure 4. The structures of designed RTP analogues (left) and schematic diagram showing the 

inhibition of 3’OH atom attack to the α-phosphate of NTP (right). 

 

The docking conformations of R1T, R2T, and R3T were essentially similar to the RTP pose. 

The H-bond and base stacking interactions were observed between the adenosine parts, template 

strand, and primer strands, respectively. The ribose ring hydroxyl group formed H-bond 
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interactions with N691 in R1T, R2T, and R3T, while the phosphate groups interacted with 

positively charged amino acid residues K621 and R555. The aspartate residues and magnesium 

ions were observed to be close to phosphate groups of ligands. Figure 5 depicts the 3D surface 

representation of RdRp and conformation of R1T, R2T, and R3T analogues in the SARS-CoV-2 

RdRp.  

 

 

 

B 

C 

A 
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Figure 5. The 3D surface representation of RdRp and conformation of R1T (A), R2T (B), and 

R3T (C) analogues in the SARS-CoV-2 RdRp. Template and primer RNA strands are colored in 

cyan and red, respectively. Magnesium ions are colored in pink. 

We then conducted three independent runs of 200 ns for each R1T, R2T, and R3T to evaluate 

the complex stabilities and their binding affinities. We found out that the RTP analogues were all 

very stable during 3x 200 ns (Figure S25-S28) and their binding affinities was also lower than that 

of RTP complex (Table S6).  Further we performed individual MDS for 1 µs for each compound, 

i.e. R1T, R2T, and R3T. Figure S35 shows the RMSD values for protein Cα, RNA and ligand 

heavy atoms for 1 µs. The protein Cα RMSD values for R1T and RTP were nearly identical, while 

those for R2T and R3T were shown to be higher and lower than RTP, respectively. However, these 

two are stable enough despite fluctuation under 3 Å complexes. Some fluctuation was recorded in 

RMSD values of R3T RNA heavy atoms, while those for R1T and R2T were comparable to RTP. 

The RMSD values of ligand heavy atoms are quite stable in all complexes. 

The protein RMSF profiles show that R2T generally enhances more flexibility in protein 

compared to RTP, which is consistent with the RMSD plot of protein Cα, as well as showing 

similar patterns between complexes. Fluctuation occurred at S384, T402, T644, and D824, which 

were protein loops (Figure S36). Other residues were noticed to be stable. 

The RMSF values of RNA O5’ and ligand heavy atoms are shown in Figure 6. The RNA RMSF 

pattern of R1T, R2T, and R3T were very similar to the RTP. High atomic fluctuations were 

recorded in G10 (primer strand end), U8, and C21 (template strands ends), while U10 and A11 of 

the template strands were observed to be stable, as found in the RTP complex. The RMSF values 

of ligand main atoms were observed to be stable under 1.6 Å. The highest peak was observed in 
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O2’ atoms of the ribose hydroxyl group of R3T. However, its fluctuation was considered to be 

stable. 

 

 

 

 

 

Ligand 
Atom number 

R1 R2 

RTP 33 N/A 

R1T N/A N/A 

R2T 33 N/A 

R3T 33 34 
 

Figure 6. The RMSF values for RNA O5’ and ligand heavy atoms for RTP (blue), R1T (green), 

R2T (orange), and R3T (purple) (A). Labeled 2D structure of R1T, R2T, and R3T (B). 

Clustering analysis of analogues complexes  

In the cluster analysis of analogues complexes, each compound, i.e. R1T, R2T, and R3T, was 

able to reproduce the H-bond interactions between amino groups of adenosine part and U10 

(U542) of template strands. The R1T, R2T, and R3T compounds were also able to reproduce H-

bond interactions between phosphate groups and R555 (R186) (64.8%, 70.9%, 85.4%, 

A 

B 
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respectively, for R1T, R2T, and R3T) and K621 (K252) (79.3%, 72.1%, 82.5%, respectively, for 

R1T, R2T, and R3T) (Table S3-S5) as well as pi-stacking interactions between adenosine motif 

and A11 (A543) of the template strand. All of those interactions were observed in RTP 

conformation.  

The presence of amino groups in R2T and R3T would hypothetically block the nucleophilic 

attack on the α-phosphate of an incoming nucleotide as observed in RTP [53, 56]. As a result, we 

speculate that further nucleotide incorporation is still allowed which would lead to a delayed RNA 

synthesis inhibition.[57] In the case of R1T, further nucleotide addition would be prevented due 

to the absence of a ribose 3’OH group, and would eventually lead to classic chain termination.[57, 

58] Figure 4 presents the schematic diagram showing the inhibition of a nucleophilic attack of the 

3’OH group on the α-phosphate atom of NTP, while Figure 7A-C shows the detailed interaction 

of the most dominant clusters of R1T, R2T, and R3T with RdRp.  
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Figure 7. The detailed interaction of the most dominant cluster of R1T (A), R2T (B), and R3T 

(C), each with RdRp. 
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Another interesting finding was that base pairing between RTP and U10 of template strand were 

maintained in 64% and 42.2% occupancies (Table S2), while those were 75.1% and 70.4% 

occurrences in R1T (Table S3), 70% and 47.6% occupancies in R2T (Table S4), and 78.6% and 

45% occurrences in R3T (Table S5). It was clear that the RTP analogues maintain hbond base 

pairing better compared to RTP. In all ligand poses, D760 (D391) and Mg2+ ions were observed 

in close proximity to phosphate groups, indicating their important roles in ligand stabilization.[59] 

Clearly, the R1T, R2T, and R3T were able to reproduce the RTP interactions, while establishing 

more interactions with residues in the RdRp active site. Being that they have the ability to 

reproduce the RTP interactions, R2T and R3T are very likely to work in the same fashion as RTP 

in terms of inhibiting RNA polymerase specifically through chain delayed termination, while R1T 

would work through classic chain termination mechanism.[60] 

Next, using 1 µs MDS trajectory, each ligand was investigated for their thermodynamic 

properties which is useful to obtain a deeper insight into the ligand and RdRp interactions. Here 

we used the MM-PBSA method to determine free energy of binding. Table 1 shows the free energy 

of binding predicted by MM-PBSA protocol using 1 µs trajectory. As shown in Table 1, the 

electrostatic energies (ΔEELE) were favorable for binding in each ligand, and although the polar 

contribution for solvation (ΔEPB) is unfavorable, the total electrostatic energy terms were still 

favorable. This is different from our previous work, which used a semi-empirical method to derive 

force field parameters, in which the total electrostatic contribution was unfavorable for RTP.[18] 

The present result is more reasonable in terms of the persistence of electrostatic interactions of 

nucleotides in the RdRp active site originating from interactions between the negatively charged 

ligand and positively charged residues, which was also previously reported.[61] This finding 

highlights the benefits of the quantum mechanics method over the semiempirical method in 
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describing protein-ligand interaction.[62] Furthermore, other favorable contributions originated 

from van der Waals (ΔEVDW) and non-polar contribution for solvation (ΔEPBSUR).  

 

Table 1. The binding energies and their standard deviations predicted by MM-PBSA protocol 

calculated at 1 µs trajectory* 

Ligand ΔEELE  ΔEVDW ΔEPB  ΔEPBSUR  ΔEPBTOT  ΔΔEPBTOT 

RTP −121.87±26.07 −29.31±7.46 87.19±21.17 −4.30±0.12 −68.24±6.40 0.00 

R1T −163.37±19.68 −31.40±6.38 114.08±14.16 −4.35±0.10 −85.04±6.21 16.80±6.21 

R2T −162.95±12.50 −29.49±6.85 111.73±8.14 −4.33±0.12 −85.04±7.14 16.80±7.14 

R3T  −164.86±14.51 −36.69±6.30 115.36±10.52 −4.65±0.08 −90.85±6.98 22.61±6.98 

*All values are in kcal/mol. ΔΔEPBTOT is the relative binding energy with reference to the RTP.  

 

It is worth noting that the R1T, R2T, and R3T showed higher affinities (−85.04 kcal/mol, −85.04 

kcal/mol, −90.85 kcal/mol, respectively) toward RdRp as compared to RTP (−68.24 kcal/mol). 

The R1T, R2T, and R3T each enhanced the binding energy by 16.80 kcal/mol, 16.80 kcal/mol, 

and 22.61 kcal/mol, respectively. The more negative electrostatic contribution (ΔEELE) of R1T, the 

clearer it becomes that R2T and R3T contributed to their higher affinities. Additionally, the van 

der Waals energy (ΔEVDW) of R3T is slightly more negative than that of R1T, R2T, and RTP, 

which explains its superior binding among other nucleotides. The data indicated that the 

replacement of the 3’ hydroxyl group of the ribose ring with the alkyl amino group would enhance 

the nucleotide binding toward RdRp. As explained in the previous section, the alkyl amino which 

replaces the ribose 3’ hydroxyl group could function as a nucleophile to attack the α-phosphate of 

the incoming nucleotide and release a pyrophosphate molecule with the help of magnesium ion 

and aspartate residues around the triphosphate group.[63, 64] In the present study, the entropy term 
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was not calculated due to complexity and that the entropy term can be neglected since all entropic 

contributions will be similar for very similar molecules [65, 66]. In brief, the present study 

proposes new molecules as potential candidates of RdRp inhibitors, which need in-vitro and in-

vivo verification before their clinical use. 

 

Prediction of ADME properties 

Table S7 shows the predicted ADME properties for RTP, R1T, R2T, and R3T, while the 

complete list of ADME properties is shown in Figure S37A-D. All compounds show low intestinal 

absorption properties with no chance for distribution into the brain. They could not be inhibitors 

for the subtypes of cytochrome P450 enzymes (CYPs) including CYP1A2, CYP2C19, CYP2C9, 

CYP2D6, and CYP3A4, which indicated that they most likely could not be metabolized. They also 

share the same violation of Lipinski’s rule of five, including molecular weight ((MW) > 500) and 

the number of H-bond acceptors ((NorO) > 10). Hence, all of the three designed analogues share 

the same ADME properties as RTP, which indicates their favorable use in prodrug form. 

 

CONCLUSIONS 

We developed the AMBER compatible ligand force fields of RTP, R1T, R2T, R3T, and three 

covalent forms (R5, R, and R3) of RTP by generating the partial charges for the corresponding 

nucleosides following the standard AMBER protocol, and merging them with the existing tri-

phosphate force field and the remaining parameters from the AMBER force fields.  Validation of 

our R3 force field was carried out by using the crystal structure R3-RdRP (PDB ID 7VB2).  The 

experimental structure was well maintained so that our force fields are well enough to be used with 

AMBER protein and nucleic acid force field. With these ligand force fields, we studied the active 
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form of Remdesivir binding to SARS-CoV-2 RdRp using molecular dynamics simulations. We 

determined that RTP reproduced experimental structure interactions when binding to RdRp. We 

identified key residues for RTP binding, i.e. S759 and R555 through the triphosphate group, while 

maintaining close distance with D618, D760, and D761. Using the RTP binding mode, we 

designed new RTP analogues, R1T, R2T, and R3T, to enhance the binding affinity. Based on MM-

PBSA binding energy calculations, it was shown that all of the RTP analogues R1T, R2T, and R3T 

bind more strongly to the RdRp active site as compared to RTP. The detailed interaction of all 

analogues showed that they were able to maintain base pairing through the adenosine part as well 

as maintain ionic interactions through the triphosphate group. Moreover, the designed analogues 

exhibited additional interactions through the amino and methyl amino groups of ribose ring in R2T 

and R3T, respectively. The MM-PBSA analysis showed that electrostatic contribution is the 

dominant factor in enhancing binding affinity. These findings allude to our hypothesis that the 

analogues would potentially be better RdRp inhibitors than RTP, however further study on the 

inhibition mechanism of those RTP analogues are necessary.   
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