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Abstract 

Trace amine-associated receptor 1 (TAAR1) plays a critical role in regulating monoaminergic activity.  

EPPTB is the only known selective potent antagonist of the mouse (m) TAAR1 presently, while it was shown to 

be weak at antagonizing human (h) TAAR1.  The lack of high-resolution structure of TAAR1 hinders the 

understanding of the differences in the interaction modes between EPPTB and m/hTARR1.  The purpose of this 

study is to probe these interaction modes using homology modeling, molecular docking, molecular dynamics 

(MD) simulations, and molecular mechanics-generalized Born surface area (MM-GBSA) binding energy 

calculations. Eight populated conformers of hTAAR1-EPPTB complex were observed during the MD simulations 

and could be used in structure-based virtual screening in future.  The MM-GBSA binding energy of hTAAR1-

EPPTB complex (-96.5 kcal/mol) is larger than that of mTAAR1-EPPTB complex (-106.7 kcal/mol), which is 

consistent with the experimental finding that EPPTB has weaker binding affinity to hTAAR1.  The several 

residues in binding site of hTAAR1 (F1544.56, T1945.42 and I2907.39) are different from these of mTAAR1 

(Y1534.56, A1935.42 and Y2877.39), which might contribute to the binding affinity difference.  Our docking analysis 

on another hTAAR1 antagonist Compound 3 have found that 1). this compound binds in different pockets of our 

mTAAR1 and hTAAR1 homology models with a slightly stronger binding affinity to hTAAR1; 2). both 

antagonists bind to a very similar pocket of hTAAR1. 
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Abbreviations: mTAAR1, mouse trace amine-associated receptor; hTAAR1, human trace amine-associated receptor; EPPTB, N-

(3-ethoxy-phenyl)-4-pyrrolidin-1-yl-3-trifluoromethyl-benzamide; TM, transmembrane; ICL, intracellular loop; ECL, 

extracellular loop; SID, simulation interaction diagram; RMSD, root mean square deviation; PRCG, Polak-Ribier conjugate 

gradient.  
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1. Introduction 

Trace amine-associated receptors (TAARs) belongs to aminergic receptors, a family of class A (rhodopsin-

like) G-protein coupled receptor (GPCR)[1, 2] and consists of six functional human TAARs (hTAARs). TAAR1, 

the best characterized TAAR so far, is one human variant that is non-selectively activated by endogenous trace 

amines (p-tyramine, p-octopamine, tryptamine, β-phenylethylamine) and classical monoamine neurotransmitters 

(dopamine, histamine, norepinephrine, serotonin)[1-3]. TAAR1 is broadly expressed in the brain and peripheral 

nervous system, especially within the monoaminergic systems, such as dopaminergic and serotonergic 

circuitries[4]. TAAR1 activation acts as a rheostat of the dopaminergic, glutamatergic, and serotonergic 

neurotransmission[5] and has been considered as a novel promising therapeutic target for psychiatric and 

neurodegenerative disorders like schizophrenia, depression, and addiction[6, 7]. However, the detailed working 

mechanisms of the TAAR1 still remain elusive.  The activation of TAAR1 not only activates Gs-protein signaling 

pathway to stimulate the secondary messenger cyclic adenosine monophosphate (cAMP) production, but it also 

activates the G protein-gated inwardly rectifying K+ (GIRK) channels and the β-arrestin 2 pathway[8, 9]. The 

availability of a selective TAAR1 agonists and antagonists, which do not interact with other monoamine receptors, 

is critical for the identification of specific TAAR1-mediated signaling mechanisms.   

Recently, a number of highly selective TAAR1 agonists and partial agonists with different chemical 

scaffolds have been developed and synthesized[10-17]. Cichero et al. proposed some activated hTAAR1’s key 

residues responsible for its agonist recognition and identified several agonists and one antagonist for the hTAAR1 

by using homology modelling, docking and virtual screening methods[18, 19]. However, the development of the 

selective TAAR1 antagonists has still been a challenge.  So far, the only highly potent and selective mouse 

TAAR1 (mTAAR1) antagonist (or inverse agonist) EPPTB (N-(3-ethoxy-phenyl)-4-pyrrolidin-1-yl-3-

trifluoromethyl-benzamide, Fig. S1) has been identified[20, 21]. The EPPTB can selectively dampen the 

activation of its target receptor mTAAR1 and at the same time it does not interact with other monoamine receptors 
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during the process.  Furthermore, the EPPTB can increase the firing frequency of the dopamine neurons and the 

affinity of dopamine to the D2 receptor, but it will block the TAAR1-mediated activation of an inwardly rectifying 

K+ current[20].   

Although EPPTB showed strong antagonism activity with a strong binding to mTAAR1 (binding affinity: Ki = 0.0009 

μM), it showed weak antagonism activity with a very weak binding to hTAAR1 (Ki >5 μM)[21]. The cause of this 

occurrence is still poorly understood and thus has hindered the advancement and development of using the 

properties of EPPTB for mental illness treatment.  In addition, EPPTB’s poor pharmacokinetic properties also 

limits its usefulness in vivo[20]. However, we still chose EPPTB for this study because it is the only known 

selective antagonist against the mTAAR1 receptor. 

In fact, the unavailability of a high-resolution crystal structure of the TAAR1 structure and the limitation on 

the use of EPPTB have significantly blocked the progress in studying the basic biological functions of hTAAR1 

and developing better selective antagonists of hTAAR1[6]. Therefore, insights into the interactions between 

EPPTB and hTARR1 needs to be explored with the emphasis of developing better selective hTAAR1 antagonists 

which are urgently needed. 

In-silico techniques are getting more and more popular in deciphering molecular mechanics of biological 

systems [22, 23]and in screening drug candidates [7] due to the improved predication power and low cost[24, 25]. 

Homology modeling is a procedure that builds a previously unknown three-dimensional (3D) protein structure 

according to its known sequence by using one or several known 3D structures of related family members as 

templates.  Molecular docking is an approach to predict the interaction modes between a ligand and its receptor 

at the atomic level.  Molecular dynamics (MD) simulation is a useful tool to investigate the structural dynamics 

of a bimolecular system to reveal its function and mechanism of action.  The MM-GBSA binding energy 

calculation can be used to evaluate the binding affinity to estimate whether a binding mode is stable or not.  

Therefore, various computational methods, which included homology modeling, molecular docking, MD 
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simulation and MM-GBSA binding energy calculation, could acquire potential binding modes between the ligand 

and the receptor to offer useful information for understanding the interaction mechanism and directing the design 

of new compounds.[26-32] 

In this study, homology modeling, molecular docking, and molecular dynamics (MD) simulation with 

molecular mechanics generalized Born surface area (MM-GBSA) binding free energy calculation were carried 

out to investigate the interactions of EPPTB in the binding pockets of the receptors, mTAAR1 and hTAAR1, and 

understand the reasons for their activity differences in helping to design a novel hTAAR1 antagonist. Using all 

atom MD simulations, the differences between hTAAR1 and mTAAR1 complexes were analyzed in binding 

energies, ligand poses, residue interactions, receptor conformational changes and MM-GBSA binding free energy. 

The aim of the study is to reveal the detailed structural and dynamic insights of the interaction mechanisms 

between EPPTB and m/hTARR1, and to generate preferred EPPTB-bound hTARR1 conformations for screening 

its new antagonist compounds with high binding affinity to hTAAR1 in future studies.  

2. Computational materials and methods 

Homology modeling and preparation of protein structures (inactive hTAAR1 and m/hTAAR1)  

So far, the crystal structure of any TAAR1 has not been solved.  The advanced homology modeling tool in 

Maestro 10.3[33, 34] was used to build the inactive TAAR1 homology models. This tool is a comparative 

modeling used to create accurate homologous structure for structure-based research, where the backbone model 

is generated by threading and fold recognition techniques in cases of low or no-sequence identity[29, 31, 35-38]. 

The FASTA sequence of hTAAR1 (Q96RJ0) and mTAAR1 (Q923Y8) shown in Fig. S2 was taken from uniProt 

[35]. First, a blast search was carried out to find a list of homology protein structures of hTAAR1 from the protein 

structure databank.  The blast search results are shown in Table S1 which describes the protein, pdb id, E-value, 

score, ligand name, ligand type, species, etc.  The inactive structure of the D2 Dopamine receptor (pdb id: 6CM4) 

was selected as the structure template to build the inactive hTAAR1 homology model because of the high score 
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of 288 and the presence of an antagonist found within the complex with the receptor.  Using the D2 dopamine 

receptor, the inactive hTAAR1 homology model was built, then the hTAAR1 homology model was prepared, 

optimized and minimized with an optimized potential for liquid simulations 3 (OPLS3) force field[33] using the 

protein preparation wizard[34] implemented in Maestro 10.3. Subsequently, the inactive mTAAR1 homology 

model was built using the same procedure as hTAAR1.  Finally, the inactive mTAAR1 homology model was also 

optimized and minimized in protein preparation wizard[34].  

Validation of the mTAAR1 and hTAAR1 homology models 

The m/hTAAR1 homology models were inspected by a protein check analysis and the Ramachandran plots.  

A protein check analysis was carried out to inspect the quality of the mTAAR1 and hTAAR1 homology models 

before and after energy minimization (Figure S3A), and it showed slight improvement after energy minimization.  

The potential energy of the mTAAR1 before energy minimization, 11861.6 kcal/mol and after energy 

minimization, -10676.6 kcal/mol, which suggests that it has removed the bad contacts that were found within the 

structure.  The potential energy of the hTAAR1 before energy minimization, 1126.13 kcal/mol and after energy 

minimization, -10141.0 kcal/mol which also suggests the removal of bad contacts.  Furthermore, the 

Ramachandran plots of the mTAAR1 and hTAAR1 homology models before and after minimization (Figure 

S3B) show that most of the black dots which represent amino acid residues are located within the red regions 

being sterically favorable regions for alpha-helix and beta-sheet conformations without spatial clashes.  There is 

a smaller group of black dots located within the yellow regions being sterically allowed regions.  Whereas only 

one or two residues are located within white regions being sterically disallowed regions.  Therefore, the inactive 

homology structures of mTAAR1 and hTAAR1 built by us are reasonable. 

The preparation of ligand (EPPTB and Compound 3)  

The canonical SMILE code for EPPTB was acquired from PubChem so that the two-dimensional (2D) 

structure of the ligand could be constructed using the 2D sketcher in Maestro and correct any flaws that were 
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observed in the structure.  Compound 3 was manually drawn using the 2D sketcher. The 2D structure of EPPTB 

and Compound 3 were converted to the 3D structures by saving them through the 2D sketcher to the workspace 

in Maestro.  Then the ionization/tautomeric state of the ligand was generated at a pH=7 using Epik (an empirical 

pKa prediction program) calculation[34]. Finally, the optimization of EPPTB and Compound 3 were done to 

minimize the potential energy to relax any of the bad contacts that would be on the ligand using default parameters 

(Force field: OPLS3; Method: PRCG; Maximum iterations: 2500; Gradient convergence threshold: 0.5).  Because 

EPPTB and Compound 3 is a small molecule, using the default parameters for minimization is entirely enough to 

reach our goal of optimizing them.  As a result, the optimal molecular structure of EPPTB and Compound was 

obtained for the next docking step.  

Glide XP docking of EPPTB and Compound 3 

When the sitemap was created by using the binding site detection of Maestro, the maximum number of reported 

sites was set to be 5; each reported site contained at least 15 site points; the distance between site points was set 

to be 4Å.  The first site was taken as the binding site of each protein, a grid box center was set at the center of the 

first site by picking one site point,  and the Glide extra precision (XP) docking function[36, 37] was selected.  

Then the ligand (EPPTB and Compound3) was respectively docked to the prepared mTAAR1 and hTAAR1 

homology models.  These complexes were used as input structures for following induced fit docking.  

Induced fit dockings of EPPTB and Compound 3 

The induced fit docking is an ideal method to predict a ligand’s binding conformations and associated 

structural changes in the receptor.  Automatic Trim side chains based on B-factor was selected and the Van der 

Waals scaling factors of the receptor and ligand were set to be 0.7 and 0.5, and the maximum number of ligand 

pose was set to be 20. The implicit membrane model was used in refining the complex structure refinement 

including the residues within 4.0 Å of ligand and their sidechains. The Glide redocking was performed by using 

the extra precision (XP) docking scoring function[36, 37]. The ligand (EPPTB and Compound 3) was respectively 
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docked to the prepared mTAAR1 and hTAAR1 homology models. The ligand pose with the lowest XP score in 

the most abundant cluster was selected as the preferred docking conformation. The two induced fit docking 

complexes, mTAAR1-EPPTB and hTAAR1-EPPTB, were obtained as the initial structures for the following MD 

simulations. 

Setup of the two simulation systems  

Molecular dynamics (MD) simulation is a powerful tool to probe the conformational dynamics of a 

bimolecular system to understand its mechanism of action [38, 39]. Three independent MD simulations of 1.0 μs 

were carried out for each of the two preferred docking complexes, mTAAR1-EPPTB and hTAAR1-EPPTB, using 

the molecular dynamics program[40, 41] of Maestro 10.3. Each complex was placed in a biologically relevant 

membrane of phosphatidylcholine (POPC) lipids[42] and then dissolved in an orthorhombic water box which 

contained 10359 molecules of water for the hTAAR1 system and 10776 molecules of water for the mTAAR1 

system with a buffer distance of 10Å using a simple point-charge (SPC) water model[43]. POPC is the most common 

lipid in animal cells [44], and POPC lipid bilayer is prototypical membrane model that has been widely benchmarked [45] 

and used in MD simulations of membrane proteins [46, 47], some of which were along with OPLS-AA (optimized potential 

for liquid simulations-all atom) force field [48, 49]. Then, the system was neutralized and salt was added at a 

concentration of 0.15 M NaCl, leading to30 sodium plus 39 chloride ions for the mouse TAAR1 system, and 29 

sodium plus 39 chloride ions for the human TAAR1 system. The total number of atoms for the mTAAR1 and 

hTAAR1 system were 51357 atoms and 48883 atoms, and the system size with membrane in x, y, z directions 

for the mTAAR1 was ~93.18 Å, ~70.48 Å and ~106.15 Å and for the hTAAr1 system was ~92.67 Å, ~60.59 Å 

and ~107.65 Å, respectively.  The whole mTAAR1 and hTAAR1 systems with membrane were shown in Fig 

S17.  Lastly, OPLS3 force field[33] was used to simulate the receptor-ligand-lipid system.  

MD simulations of the two systems                           

Using the Desmond module[50], for each modeled system they were relaxed to avoid any possible bad 

contacts and included the following stages: (1) each system was minimized with restraints on heavy atoms and 

https://www.sciencedirect.com/topics/medicine-and-dentistry/lipid-bilayer
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then without any restraints; (2) each system was gradually heated from 0 K to 300 K with H2O barrier and gradual 

restraining; (3) each system was simulated under the NPT ensemble (constant number of particles, P=1 bar and 

T=300 K) with H2O barrier and with heavy atoms restrained; (4) each system was simulated under the NPT 

ensemble with equilibration of solvent and lipids, then with protein heavy atoms annealing from 10.0 kcal/mol to 

2.0 kcal/mol, then with Cα atoms restrained at 2 kcal/mol, and lastly for 1.5 ns with no restraints. After these 

relaxation steps, three independents ~1.0 μs production runs were conducted under the NPT ensemble (P=1 bar 

and T=310 K) for each system using default protocol.  It is noted that the temperature was set to be 300 K (room 

temperature, or in vitro temperature) in the relaxation steps to simulate the environment outside the body, while 

the temperature was set to be 310 K (human body temperature, or in vivo temperature) in the production step to 

simulate the environment inside the body.  During the MD simulations, the M-SHAKE algorithm[51] was used 

to constrain all covalent bonds including hydrogen atoms with a 2.0 fs time step; the k-space Gaussian split Ewald 

method[52] was used to handle long-range electrostatic interactions under a periodic boundary condition with a 

charge grid spacing of ~1 Å and the direct sum tolerance of 10-9; and the Van der Waals interactions were obeyed 

a uniform density approximation with a non-bonded cutoff of 9 Å. In addition, to reduce the overload of the 

calculation, non-bonded forces were calculated by using an r-RESPA[53] integrator in which the short range 

forces were updated every step and the long range forces were updated every three steps. For each system, the 

trajectories were saved at 50.0 ps intervals. 

Simulation interaction diagram (SID) analysis for the MD simulations 

Desmond SID tool, an automated post-MD-simulation analysis tool implemented in Maestro 10.3, is used to 

analyze protein-ligand interactions during the entire course of a MD simulation.  The SID tool combines 

molecular analysis utilities with new plotting and visualization tools, obtaining unmatched insights into the 

atomic-level interactions between ligands and proteins.  Simply, the automation of the SID analysis for the MD 

simulation gives the results, which are then organized in the SID panel with plots and diagrams for easy 

visualization of the information.  Therefore, we choose the SID tool to simulate ligand-protein interactions in the 
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mTAAR1 and hTAAR1 systems.  The data that were obtained from the simulations included: root mean square 

deviation (RMSD), ligand-protein contacts (hydrogen bond, hydrophobic, ionic, and water-bridge contacts), 

protein secondary structure element (SSE), root mean square fluctuation (RMSF), and Ligand Torsional Profiles.   

 

Trajectory clustering analysis for the MD simulations 

Desmond trajectory clustering tool[54] was used to group complex structures from the whole 3.0 μs MD 

trajectories of each system. A backbone RMSD matrix was used as a structural dissimilarity metric, and the 

average-linkage hierarchical clustering was selected as the clustering method with 2.5 Å merging distance cutoff.  

The centroid structure in the most abundant clusters was used to represent the structural family.  

MM-GBSA binding energy calculations for the last 100 ns MD simulations 

The binding energy calculations for snapshots from the last 100 ns simulation were calculated using the 

molecular mechanics generalized Born surface area (MM-GBSA) method with an implicit membrane which is a 

slab-shaped region with a low dielectric constant (~2).  The MM-GBSA calculations adopted an OPLS3 force 

field [33], a VSGB 2.0 solvation model [25] and the default Prime protocol, where it first minimized the receptor 

alone, then the ligand alone, and finally the receptor-ligand complex. The total binding energy equation is: ΔGbind 

= Gcomplex – (Gligand + Greceptor).  To obtain a more detailed interaction information to understand the binding nature, 

the original interaction terms (coulombic, hydrogen bond, GB solvation, van der Waals, π-π stacking, self-contact, 

and lipophilic) were grouped into three major components: ΔEelectrostatic, ΔEvdw and ΔElipophilic, and ΔGbind = 

ΔEelectrostatic+ ΔEvdw+ ΔElipophilic, where ΔEelectrostatic = Ecoulombic + EH-bond + EGB-solvation and ΔEvdw = Evdw + Eπ-π stacking 

+ Eself-contact. Since the same ligand binds to similar proteins, it will produce nearly the same entropy.  Also, the 

entropy computation for the system with membrane of POPC lipids is very complex, so the entropy contribution 

was ignored in the study.  It is noted that the entropy contribution is ignored in the MM-GBSA calculation.  Thus, 

the MMGBSA binding free energy may overestimate the true binding affinity.  However, if the entropic terms of 
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the same ligand to similar receptors are comparable, the entropic part of the binding free energy can be cancelled 

out and thus the MM-GBSA binding free energy difference can be used to estimate the relative binding affinity.  

It is noted that, there is another popular binding energy calculation method called molecular mechanics-

Poisson Boltzmann surface area (MM-PBSA)[55]. However, A previous study[23] showed that MM-GBSA 

performs better than MM-PBSA in predicting both correct binding poses and binding free energies for the 

examined protein-ligand systems. This study involved the comparison of two binding energies between 

mTARR1-EPPTB and hTARR1-EPPTB, and then screening new compounds will be performed by estimating 

binding energies in future.  Therefore, we used the MM-GBSA method here. 

 

Results 

The Docking showed slightly distinct EPPTB binding poses in mTAAR1 and hTAAR1, and the XP docking 

score have a higher negative value in mTAAR1-EPPTB complex.   

Since the high-resolution structure of the TAAR1 is unavailable, we built the inactive mTAAR1 and 

hTAAR1 structures by the homology modeling (Fig. S4).  Then EPPTB was docked to the first site of mTAAR1 

and hTAAR1 (Fig. S5), producing 13 and 12 ligand binding poses (Fig. S6), respectively.  The binding pose with 

the lowest XP score in the most abundant cluster was selected as the preferred binding pose of EPPTB.  The 

overlap of the two preferred binding poses is slightly different, with EPPTB moving up slightly in the mTAAR1 

complex (Fig. S7).  The EPPTB was suitably bond at the orthosteric binding site and had similar hydrophobic 

interactions with the surrounding residues (Fig. S8).  In mTAAR1, the EPPTB formed hydrogen bonds with 

W88ECL1, H983.28 and D1023.32, and π-π interaction with Y2877.39; but in hTAAR1, the EPPTB only formed a 

hydrogen bond with D1033.32, and π-π interaction with W2646.48 (Superscript numbers refer to Ballesteros-

Weinstein residue numbering method for GPCRs[56]. As a result, the XP docking score of mTAAR1-EPPTB 

complex (-10.21 kcal/mol) is more negative than that of the hTAAR1-EPPTB complex (-8.16 kcal/mol), 

suggesting that the EPPTB binding affinity to mTAAR1 is stronger than to hTAAR1.  It is well known that the 
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docking calculation could be rough, thus three independent ~1.0 μs MD simulations for each docking complex 

were further carried out to provide more accurate binding conformation.  

The RMSD values show that EPPTB in mTAAR1 was easier to reach stable state than it did in hTAAR1, 

indicating EPPTB in hTAAR1 fluctuated more strongly during the MD simulations. 

To check convergence of the MD simulations, the RMSD values of protein carbons (Cα) and ligand in the 

two systems averaged over three independent MD simulations of 1.0 μs were calculated (Fig. 1).  Relatively flat 

RMSD values were observed after 850 ns, indicating the two systems have reached steady states.  In the two 

systems, protein RMSD values quickly reach ~5.0 Å during the first 150 ns, and then keep stable during the 

remaining 850 ns simulation.  The ligand RMSD values of mTAAR1-EPPTB system gradually increase during 

the first 600 ns, and then reach a stable state at ~6.0 Å throughout the remaining 400 ns simulation.  The ligand 

RMSD values of hTAAR1-EPPTB system are fluctuant during the first 850 ns, but finally reached a stable values 

at ~4.5 Å during the last 150 ns. Obviously, it took shorter relaxation time (~150 ns) for the receptors of 

m/hTARR1 to reach steady state than their ligand EPPTB, and it took shorter relaxation time (~150ns) for EPPTB 

in hTAAR1 to reach steady state than it did in mTAAR1 (~600 ns).  On the other hand, the RMSD fluctuation of 

EPPTB in hTAAR1 is larger than that in mTAAR1during the MD simulations.  The detailed protein and ligand 

RMSD plots of the m/hTAAR1 systems in each of the three independent trajectories of ~1.0 μs MD simulations 

are included in the supporting document (Fig. S9).    
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Fig. 1.  RMSD values of receptor Cα (blue) and ligand EPPTB (orange) in the mTAAR1-EPPTB (A) and 

hTAAR1-EPPTB (B) systems averaged over three independent ~1.0 μs MD simulations.  

 

MM-GBSA binding energy data showed that the EPPTB binding affinity to mTAAR1 was stronger than 

to hTAAR1. 

To assess the binding affinity of EPPTB to mTAAR1 and hTAAR1, MM-GBSA binding energy calculations 

for the snapshots of the last 100 ns MD simulations were conducted and the results are listed in Table 1.  The 

averaged van der Waals energy (ΔEvdw), electrostatic energy (ΔEele), and hydrophobic energy (ΔElipo) of 

mTAAR1-EPPTB system (-50.7, -11.1, and -44.9 kcal/mol) are respectively more negative than that of the 

hTAAR1-EPPTB system (-45.8, -8.1 and -42.6 kcal/mol), so that the averaged MM-GBSA binding energy 

(ΔGbind) value of mTAAR1-EPPTB (-106.7 kcal/mol) is more negative than that of hTAAR1-EPPTB (-96.5 

kcal/mol), indicating that the EPPTB binding affinity to mTAAR1 is stronger than to hTAAR1. Moreover, in all 

MD trajectories, ΔEvdw and ΔElipo make dominant contributions to the ΔGbind, while the ΔEele has a subtle 

contribution to the ΔGbind.  It suggests that the packing interactions, contributed by van der Waals energy and 

hydrophobic energy, play an essential role for EPPTB binding to both mTAAR1 and hTAAR1.  

 

Table 1: MM-GBSA binding energies (ΔG, kcal/mol) of EPPTB bound to mTAAR1 and hTAAR1 during the 

last 100 ns MD simulations of three independent simulation trajectories.  

MM-

GBSA 

mTAAR1-EPPTB hTAAR1-EPPTB 

Traj 1 Traj 2 Traj 3 Average Traj 1 Traj 2 Traj 3 Average 
1ΔGbind -103.5±6.0 -113.9 ± 6.6 -102.6±9.5 -106.7±7.4 -83.6 ±7 .7 -104.4 ± 5.2 -101.4±5.3 -96.5±6.1 
2ΔEvdw

 -47.7 ± 3.0 -53.9 ± 3.3 -50.4±4.2 -50.7±3.5 -40.8 ± 2.9 -48.1± 2.1 -48.6±2.4 -45.8±2.5 
3ΔEele

 -13.1± 2.4 -10.0 ± 4.3 -10.3±4.2 -11.1±3.6 -5.0± 2.9 -9.7 ± 2.7 -9.6±2.7 -8.1±2.8 

A B 
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4ΔElipo
 -42.7 ± 3.6 -50.1 ± 2.2 -41.8±3.8 -44.9±3.2 -37.8 ± 3.0 -46.7 ± 2.5 -43.2±2.8 -42.6±2.8 

5Ki (μM) 0.0009 > 5 
6Ki (nM) 0.9 ± 0.1 nd 

 

1ΔGbind: MM-GBSA binding energy (ΔGbind = ΔGComplex − ΔGReceptor − ΔGLigand). 

2ΔEvdw: Change of van der Waals energy (Van der Waals + π-π stacking + Self-contact) in gas phase upon complex formation. 

3ΔEele: Change of electrostatic interactions (GB electrostatic solvation energy + Coulomb energy + Hydrogen-bond) upon complex 

formation.                                                                                                                                                        

4ΔElipo: Change of lipophilic term (hydrophobic energy) upon complex formation. 

5Experimental Ki binding affinity (inhibitory constant) values obtained from [20, 21]. 

6Ki binding affinity to HEK293 using the Radioligand [3H]-rac-2-(1,2,3,4-tetrahydro-1-naphthyl)-2-imidazoline Ref. [20].  

 

Ligand-receptor interaction data showed that hydrophobic interaction was the predominant interaction, 

but some key residues of m/hTAAR1 are different, which may be the original reason for weak binding 

affinity of hTAAR1 to EPPTB. 

The ligand-protein interactions for the mTAAR1 and hTAAR1 systems during total ~3.00 μs MD 

simulations were calculated using the SID tool.  Specifically, the interaction diagrams lasting more than 10% MD 

simulation time and the interaction histograms along with interaction fraction for each type of interaction are 

shown in Fig. 2.  The 2D-interaction diagrams show that the EPPTB was bond at the orthosteric binding sites of 

m/hTARR1.  For mTAAR1 system, the ethoxyphenyl group of EPPTB is exposed to the solvent and the rest part 

(pyrrolidinyl-phenyl group) forms hydrophobic interactions with nearby residues, especially with I1033.33, 

I1103.40, W2616.48, F2646.51 and A1935.42. EPPTB also forms water-mediated hydrogen bond with D1023.32, 

hydrogen bonds with Y1534.56 and S1895.38, and π-π interaction with F2646.51. As for hTAAR1 system, the whole 

EPPTB is exposed in the solvent and the pyrrolidinyl-phenyl group forms hydrophobic interactions with I1043.33, 

F1955.43, F1995.47, W2646.48 and F2676.51. EPPTB also forms water-mediated hydrogen bonds with D1033.32and 

S1073.36, hydrogen bond with V184ECL2, π-cation interaction with R832.64, π-π interactions with F1955.43 and 

W2646.48. Therefore, the hydrophobic interactions (including π-π interactions) are the predominant interactions 

between EPPTB and m/hTAAR1, which is accordance with the result of MM-GBSA calculations showing that 

packing interactions, contributed by van der Waals energy and hydrophobic energy, play an essential role for 
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EPPTB binding.  

For both mTAAR1 system and hTAAR1 system, four common interaction residues of mTAAR1 and 

hTAAR1 were observed: D1023.32 (of mTAAR1) / D1033.32 (of hTAAR1), I1033.33 / I1043.33, W2616.48 / W2646.48, 

and F2646.51 / F2676.51. EPPTB not only could form water-mediated hydrogen bond with D1023.32 for mTAAR1 

and D1033.32 for hTAAR1, but also could form hydrophobic interactions with I1033.33, W2616.48 and F2646.51 for 

mTAAR1, and I1043.33, W2646.48 and F2676.51 for hTAAR1.    

However, some interaction residues of mTAAR1 and hTAAR1 are different.  The interaction histograms of 

Fig. 2 show that EPPTB readily interacts with 7 residues (I1103.40, Y1534.56, F184ECL2, S1895.38, A1935.42, T2686.55 

and Y2877.39) of mTAAR1, but rarely interacts with the corresponding residues (I1113.40, F1544.56, F185ECL2, 

S1905.38, T1945.42, T2716.55 and I2907.39) of hTAAR1. This could cause the binding affinity of EPPTB to hTAAR1 

to be weaker than EPPTB to mTAAR1.  When compared with the corresponding residues of hTAAR1, EPPTB 

has much stronger hydrophobic interactions with 4 out of the 7 residues of mTAAR1 (I1103.40, F184ECL2, A1935.42, 

and Y2877.39), and has much stronger hydrogen bond interactions with the rest of them (Y1534.56, S1895.38, and 

T2686.55).  

Especially, it is interesting to find that the three residues Y1534.56, A1935.42 and Y2877.39 of mTAAR1 could 

interact with EPPTB with interactions fraction more than ~0.1, while the corresponding residues F1544.56, T1945.42 

and I2907.39 of hTAAR1 at the same position almost lost the interaction with EPPTB (Fig. 2 and Fig. S10). It 

indicates that the three amino acids at those positions could directly affect the binding affinity to EPPTB, and the 

three residues (Y1534.56, A1935.42 and Y2877.39) may be the key residues of mTAAR1.  The three residues 

(F1544.56, T1945.42 and I2907.39) of hTAAR1 are different from the three corresponding residues (Y1534.56, 

A1935.42 and Y2877.39) of mTAAR1, which would ultimately affect the binding between hTAAR1 and EPPTB.   

On the contrary, EPPTB readily interacts with 6 residues (R832.64, S1073.36, V184ECL2, F186ECL2, F1955.43 

and F1995.47) of hTAAR1, but rarely interacts with the corresponding residues (R822.46, S1063.36, P183ECL2, 
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F185ECL2, F1945.43 and F1985.47) of mTAAR1.  This could cause the binding affinity of EPPTB to hTAAR1 to be 

stronger than EPPTB to mTAAR1.  When compared with the corresponding residues of mTAAR1, EPPTB has 

much stronger hydrophobic interactions with 4 out of the 6 residues of mTAAR1 (R832.64, F186ECL2, F1955.43 and 

F1995.47), and has much stronger hydrogen bond interactions with the rest residue of them (S1073.36 and 

V184ECL2). 

Overall, the binding affinity contributed from the favorable residues of hTARR1 (R832.64, S1073.36, 

V184ECL2, F186ECL2, F1955.43 and F1995.47) may be smaller than that of mTARR1 (I1103.40, Y1534.56, F184ECL2, 

S1895.38, A1935.42, T2686.55 and Y2877.39), as a result, the total binding affinity of EPPTB to hTAAR1 would be 

weaker than that of EPPTB to mTAAR1. Especially, the several residues in binding site of hTAAR1 (F1544.56, 

T1945.42 and I2907.39) are different from these of mTAAR1 (Y1534.56, A1935.42 and Y2877.39), which may be the 

original and essential factor that cause hTAAR1 to have lower binding affinity to EPPTB.  This speculation is 

reasonable and agreement with the result of MM-GBSA calculation. 

In addition, the protein-ligand interactions of the two systems during the three independent ~1.0 μs MD 

simulations (Trajectory 1, Trajectory 2, and Trajectory 3) are also shown in Figs. S11-S12, which also showed 

that the hydrophobic interactions play an essential role for EPPTB binding to m/hTARR1. 

 The hTAAR1’s thirteen residues proposed by Cichero et al. were seemed to interact with EPPTB during 

their simulation.  Out of the thirteen residues, eleven residues appeared in our simulations of hTAAR1-EPPTB 

system; night residues appeared in our simulations of mTAAR1-EPPTB system (Table S2)[18].  It means that our 

binding site of m/hTAAR1 is the same as that of the earlier study, which further confirms the credibility of our 

calculation results. 
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mTAAR1-EPPTB System 

 

50i0

 

hTAAR1-EPPTB System 

 

 

 

 

Fig. 2.  The 2D-interaction diagrams (left) and interaction histograms (right) of the mTAAR1-EPPTB and 

hTAAR1-EPPTB systems during ~3.0 μs MD simulations.  The Protein-Ligand interactions lasting more than 

10% MD simulation time are shown.  All residues that interact with the ligand EPPTB are shown in the 

histogram along with the interactions fraction for each type of interaction.  

 

Clustering analysis showed the EPPTB exhibited diversified conformations, which could be used to screen 

novel compounds with higher binding affinity to mTAAR1 or hTAAR1 in the future. 

To identify the major binding poses for each system, we clustered the eight complex structures from the ~3.0 

µs MD simulations and aligned them.  The representative structures are in the top abundant clusters (>4.5%) are 

shown in Fig. S13.  The two simulation systems both showed to have numerous clusters.  Within the mTAAR1-

EPPTB system, the top eight clusters have the percentages of 12.0%, 9.4%, 9.1%, 9.1%, 8.5%, 8.1%, 7.0%, and 

6.5% respectively, while within the hTAAR1-EPPTB system, the clusters have the percentages of 20.3%, 16.6%, 

9.5%, 8.8%, 8.5%, 5.5%, 5.0%, and 4.7% respectively.  The clustering of the EPPTB showed that all 
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conformations of EPPTB were located within the orthosteric binding site of m/hTARR1 (Fig. S16A).  Most of 

the binding poses of EPPTB were vertically located into the binding site, with ethoxyphenyl group facing up to 

extracellular section and the pyrrolidinyl group facing down to the central position within the 7TMs bundle.  

Moreover, the 2D-interaction diagrams for the representative structures (without water molecules) of the top 8 

structural clusters are also shown in Fig S16B.  It also showed that the hydrophobic interactions play a 

predominant role for EPPTB binding to m/hTARR1.  Although the 8 binding poses of EPPTB in each system 

showed differences in orientation, but EPPTB still located in the orthosteric binding site of m/hTARR1.  

Unfortunately, since there have been no experimental reports on the conformation of TAAR1 so far, we are 

not able to compare our results with the related experimental data.  Overall, the clustering results showed that the 

two systems exhibited multiple conformations during the MD simulations.  There are 8 different confirmations 

for m/h TAAR1 when interacting with EPPTB.  All possible receptor conformations that interact with ligands 

should be considered, in order to obtain more potential novel compounds.  Therefore, these 8 representative 

conformations could be used to screen new compounds with higher binding affinity to mTAAR1 or hTAAR1 in 

the future. 

In addition, the superimposition of each representative structure in the most abundant cluster for mTAAR1-

EPPTB complex (12.0%) and hTAAR1-EPPTB complex (20.3%) is shown in Fig. 3, which clearly illustrates the 

differences in ligand-protein contacts.  The two binding poses of EPPTB showed differences in orientation, and 

EPPTB in mTAAR1 was shown to be closer to TM3-5 than it in hTAAR1.  Meanwhile, as for the conformations 

of mTAAR1 and hTAAR1, except for the conformational differences in the extracellular end of the TM1 possibly 

due to the terminal effect of the N-terminal, the two ends of TM5, intracellular end of TM6, extracellular loop 

(ECL) 2 and intracellular loop (ICL) 3 were also shown to be greatly different.  These differences in protein 

conformation will inevitably lead to the difference in the binding affinity of m/hTAAR1 to EPPTB. 
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Top View Bottom View 

 

 

 
 

 

Side View  Side View (TM1-7) 

 

   

 

 

  

 

 

Fig. 3.  The representative structures of the most abundant clusters for the mTAAR1-EPPTB complex (gray) and 

hTAAR1-EPPTB complex (cyan) are superimposed for comparison from different views.  The receptors are 

represented by ribbon and the ligands are represented by sticks with the same color as its corresponding receptor.  

For clarity, some intracellular and extracellular loops were omitted and the differences in TMs are marked by 

arrows. 
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The protein Secondary Structure Element (SSE) analyses also identified that the differences in TM5-6 

helices of the two receptors. 

In order to investigate the differences on the secondary structure of the receptor, the protein SSE analysis in 

Fig. 5 for the two systems throughout the simulations were also performed using the SID tool.  Noticeable changes 

in helical structures of hTAAR1 are observed primarily at the left end of TM1, two ends of TM5 and ICL3, 

showing smaller SSE values indicating a loss of helical structures with the increase of coil structures.  It is 

consistent with the above clustering result that the two ends of TM5 of hTAAR1 displayed coil structures (Fig. 

4).  Moreover, these SSE percentage changes of secondary structure must cause relevant changes in the 

corresponding TMs in the 3D structure, which could explain why the conformation differences were shown at the 

TM1, TM5-6, and ICL3 (Fig. 4).  Additionally, the beta sheets in ECL2 of the mTAAR1 and hTAAR1 are 

extremely negligible, indicating that these beta sheets are extremely unstable and are prone to transform into coil 

structures, so that the ECL2 sections of the two proteins will fluctuate violently during the MD simulations.  

m
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Helix: 65.98%, Strand: 0.11%, Total SSE: 66.09% 
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Fig. 4.  Protein Secondary Structure Element (SSE) distributions by residues for mTAAR1 and hTAAR1 during 

~3.0 μs MD simulations are shown, where the α-helices are represented in red, and the β-strands are represented 
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in blue.  In addition, the above TAAR1 architecture is for reference, and the arrows show the structural difference 

between the mTAAR1 and hTAAR1. 

 

Ligand Torsional Profiles of EPPTB 
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Fig. 5.  The ligand torsional profiles being the conformational progression of the seven rotatable bonds of EPPTB 

during ~3.0 μs MD simulations (0 through 1,000 ns) are shown.  The dial plots describe the conformation of the 

torsion throughout the course of the simulation.  The beginning of the simulation is in the center of the radial plot 

and the time evolution is plotted radially outwards.  The bar plots summarize the data on the dial plots, by showing 

the probability density of the torsion.  In addition, the 2D structure of EPPTB in top panel is for reference. 

 

Ligand Torsional Profiles indicates that improving the stability of the pyrrolidinyl group of EPPTB might 

enhance the binding affinity to hTAAR1. 

The ligand torsional profiles (Fig. 5) summarized the conformational evolution of every rotatable bond in 

the EPPTB throughout the simulation trajectories (0.00 through 1,000 ns).  For both systems, three rotatable bonds 

of the EPPTB in light blue, light green and yellow respectively have similar distributions, meaning that these 

bonds have similar rotational confirmations during the MD simulations.  However, compared with the mTAAR1-

EPPTB system, the pink- and purple-colored rotational bonds of EPPTB show a narrower distribution in the bar 

plots of the hTAAR1-EPPTB system.  While the dial plots of the hTAAR1-EPPTB system, the green and red 

colored rotational bonds of EPPTB shows a wider distribution.  This indicates that the pyrrolidinyl and 
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trifluoromethyl groups of EPPTB are more fluctuant in the hTAAR1-EPPTB system.  Therefore, modifying the 

pyrrolidinyl group of EPPTB to improve its stability may be an ideal way to enhance the binding affinity of 

EPPTB to hTAAR1. 

Discussion  

The compound EPPTB is a highly selective antagonist of mTAAR1 but not for hTAAR120, which 

considerably impedes the progresses in exploiting the properties of EPPTB for mental illness treatment and 

studying the basic biological functions of hTAAR1. Discovering new lead compounds with high binding affinity 

to hTAAR1 are in critical need.  Since there are not any available high-resolution crystal structures of TAAR1, 

we use these calculation methods of the homology modeling, molecular docking, and MD simulations to probe 

detailed structural and dynamic insights of interactions between EPPTB and m/hTARR1, and to present potential 

EPPTB-bound hTARR1 conformations for screening its new compounds with high binding affinity to hTAAR1.  

The RMSD values show that it took longer time for EPPTB in mTAAR1 to reach stead state than than it did in 

hTAAR1, but EPPTB in hTAAR1 appears to be fluctuated more than mTAAR1 during the MD simulations (Fig. 

1).  The noticeable decrease of SSE values for hTAAR1 is observed primarily at the left end of TM1, the ends of 

TM5-6 and ICL3; the beta sheets in ECL2 are extremely negligible (Fig. 4).  These suggest that these positions 

may have larger conformational changes, which is consistent with the differences in the top representative 

structures of the m/h TAAR1 are at the TM1, TM5-6, ECL2 and ICL3 (Fig. 3).  These differences in ligand 

fluctuation and receptor conformations during the MD simulation will inevitably contribute to the difference in 

the binding affinity of m/hTAAR1 to EPPTB. 

Both the XP docking score and averaged MM-GBSA binding energy (ΔGbind) of mTAAR1-EPPTB complex 

(-10.21 and -106.7 kcal/mol, respectively) are more negative than that of hTAAR1-EPPTB complex (-8.16 and -

96.5 kcal/mol respectively).  These calculated results consistently support the experimental result that the EPPTB 

binding affinity of mTAAR1 (Ki =0.0009 μM) is stronger than that of hTAAR1 (Ki > 5 μM)[21].  Additional 
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binding affinity for the interaction of EPPTB and the TAAR1 was verified experimentally using a radioligand 

with HEK293, which found that the Ki value for the mTAAR1 was 0.9 ± 0.1 nM, while for the hTAAR1 was 

undetectable[20]. 

The sequence identity of the mTAAR1 and hTAAR1 is ~74.0% similarity to one another, and some key 

residues in the orthosteric binding sites of the two proteins are different.  In the protein-ligand interactions, EPPTB 

is prone to only interact with the 7 residues (I1103.40, Y1534.56, F184ECL2, S1895.38, A1935.42, T2686.55 and Y2877.39) 

of mTAAR1, but EPPTB is prone to only interact with the 6 residues (R832.64, S1073.36, V184ECL2, F186ECL2, 

F1955.43 and F1995.47) of hTAAR1 (Fig. 2). Overall, the binding affinity contributed from the 6 favorable residues 

of hTARR1 may be smaller than the binding affinity contributed from the 7 favorable residues of mTARR1, as a 

result, the total binding affinity of EPPTB to hTAAR1 would be weaker than that of EPPTB to mTAAR1.  

Especially, among these 13 residues of m/h TAAR1, the three residues Y1534.56, A1935.42 and Y2877.39 of 

mTAAR1 can interact with EPPTB well, while the corresponding residues F1544.56, T1945.42 and I2907.39 of 

hTAAR1 at the same position are different amino acids and they almost lost the interaction with EPPTB.  

Therefore, the three residues (Y1534.56, A1935.42 and Y2877.39) may be the key residues of mTAAR1; the several 

residues in binding site of hTAAR1 (F1544.56, T1945.42 and I2907.39) are different from these of mTAAR1 

(Y1534.56, A1935.42 and Y2877.39), which may be the original reason that cause hTAAR1 to have lower binding 

affinity to EPPTB. This speculation is reasonable and agreement with the results of a previous study investigated 

by Tan et.  al[57].  They found that each site-directed mutation of Y1534.56F, T2686.55M, and Y2877.39N of mouse 

TAAR1, and A1935.42T of rat TAAR1, could affect the agonist selectivity of rat (r) and mouse TAAR1.  The 

experimental result also verified that these residues Y1534.56, A1935.42, T2686.55, and Y2877.39 of mTAAR1 were 

the key residues of mTAAR1.  The good agreement between our result and the previous one further confirms the 

credibility of our calculation results. 
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The Van der Waals energy (ΔEvdw) and hydrophobic energy (ΔElipo) make dominant contributions to the 

binding energy (ΔGbind), indicating that the packing interactions, contributed by van der Waals energy and 

hydrophobic energy, play an essential role for EPPTB binding to both m/hTAAR1 (Table 1).  On the other hand, 

the binding modes of the two complexes show that the pyrrolidinyl phenyl group of EPPTB primarily forms the 

hydrophobic interactions with residues nearby, especially with especially I1033.33, W2616.48 and F2646.51 for the 

mTAAR1, and I1043.33, W2646.48 and F2676.51 for the hTAAR1.  The importance of the aromatic residues 

(W2616.48, F2646.51 for mTAAR1, and W2646.48, F2676.51 for hTAAR1) of aminergic receptors has been 

identified by site-directed mutagenesis, and they interact with aromatic moiety of ligand through hydrophobic 

interactions[58-60]. Therefore, it is credible that the hydrophobic interactions (including π-π interactions) are the 

essential interactions for EPPTB binding to m/hTARR1. 

Moreover, most residues in the putative binding site of our EPPTB-hTAAR1 simulation system are 

consistent with the residues proposed by Cichero et al[18] in modeling EPPTB-hTAAR1( Table S2) .  In the 

putative binding site, four common interaction residues of mTAAR1 and hTAAR1 were observed: D1023.32 (of 

mTAAR1) / D1033.32 (of hTAAR1), I1033.33 / I1043.33, W2616.48 / W2646.48, and F2646.51 / F2676.51. EPPTB not 

only could form the hydrophobic interactions, but also could form water-mediated hydrogen bond with D1023.32 

for mTAAR1 and D1033.32 for hTAAR1.  The importance of the conserved residue (D1023.32 / D1033.32) of 

aminergic receptors has been identified by site-directed mutagenesis, and it forms a hydrogen bond with the 

cationic amine of the ligand[59, 60].  

Using a homology model of hTAAR1, It is inspiring that Cichero et al. [18] have identified an novel hTAAR1 

antagonist Compound 3 with IC50=9.0 µM. To see if this compound binds differently to our homology models 

of mTAAR1 and hTAAR1, induced fit dockings to these two homology models were carried out and the binding 

poses are shown in Figure S18. Indeed, its binding poses to mTAAR1 is different from its binding poses to 

hTAAR1.  While the binding poses to hTAAR1 are clustered tightly in one cluster, the poses to mTAAR1 are 

distributed widely in several clusters. The best binding pose for mTAAR1 and hTAAR1 was picked for further 
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comparison (Figure S19):  1). Compound 3 binds to different pockets of the two receptors. 2). Its XP docking 

score to hTAAR1 (-9.91 kcal/mol) is slightly better that to mTAAR1 (-9.23 kcal/mol), suggesting a binding 

preference to hTAAR1. When comparing the binding of compound 3 to hTAAR1 with the binding of EPPTB to 

hTAAR1, 1). Interestingly, both antagonists bind to a very similar pocket (Figure S18 VS Figure S6). 2). The XP 

docking score of compound 3 (-9.91 kcal/mol) is slightly worse than EPPTB (-10.21 kcal/mol), this order is 

consistent with the experimental order (IC50=9.0 µM of Compound 3 vs Ki=0.9 nM of EPPTB) despite the 

magnitude of the difference is much smaller than the experimental difference. 

The ligand torsional profiles show that the pyrrolidinyl group of EPPTB are more fluctuant in hTAAR1-

EPPTB system, indicating that modifying the group to improve its stability might be able to enhance the binding 

affinity of EPPTB to hTAAR1.  Moreover, there are 8 different confirmations for m/h TAAR1 that can be 

expressed when interacting with EPPTB.  All possible receptor conformations that interact with ligands should 

be taken into account, in order to obtain more potential compounds.  Therefore, the 8 representative conformations 

could be used to screen novel antagonists with higher binding affinity to mTAAR1 or hTAAR1 in near future.  

 

Conclusion 

This study uses the homology modeling, molecular docking, and MD simulations to investigate binding 

poses of EPPTB in both mTAAR1 and hTAAR1 and identify key binding interactions in the binding site.  The 

MM-GBSA binding energies and XP docking scores showed that the EPPTB exhibited stronger binding affinity 

to mTAAR1 than it did to hTAAR1, which was consistent with the previous experimental result.  The 

hydrophobic interactions played an essential role in the binding of EPPTB to m/hTAAR1.  EPPTB not only could 

form water-mediated hydrogen bond with D1023.32 for mTAAR1 and D1033.32 for hTAAR1, but also could form 

hydrophobic interactions with I1033.33, W2616.48 and F2646.51 for mTAAR1, and I1043.33, W2646.48 and F2676.51 

for hTAAR1.  Additionally, EPPTB is prone to only interact with the 7 residues (I1103.40, Y1534.56, F184ECL2, 
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S1895.38, A1935.42, T2686.55 and Y2877.39) of mTAAR1, but EPPTB is prone to only interact with the 6 residues 

(R832.64, S1073.36, V184ECL2, F186ECL2, F1955.43 and F1995.47) of hTAAR1. Overall, the several residues in binding 

site of hTAAR1 (F1544.56, T1945.42 and I2907.39) are different from these of mTAAR1 (Y1534.56, A1935.42 and 

Y2877.39), which may be a critical factor that could cause hTAAR1 to have lower binding affinity to EPPTB.  

Furthermore, eight potential EPPTB-bound hTARR1 conformations were obtained from the clustering analysis 

on the MD trajectories and could be used to screen new antagonists with higher binding affinity to hTAAR1 in 

future.  Our docking analysis on another hTAAR1 antagonist Compound 3 have found that 1). this compound 

binds in different pockets of our mTAAR1 and hTAAR1 homology models with a slightly stronger binding 

affinity to hTAAR1; 2). both antagonists bind to a very similar pocket of hTAAR1. 
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