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ABSTRACT 

The outbreak of a new coronavirus (SARS-CoV-2) was first identified in Wuhan, 

People’s Republic of China, in 2019, which leads to a severe, life-threatening form of pneumonia 

(COVID-19). Research scientists all around the world have been trying to find small molecule 

drugs to treat COVID-19. In the present study, a conserved macrodomain, ADP Ribose 

phosphatase (ADRP), of a critical non-structural protein (Nsp3) in all coronaviruses was probed 

using large-scale Molecular Dynamics (MD) simulations to identify novel inhibitors. In our 

virtual screening workflow, the recently-solved X-ray complex structure, 6W6Y, in addition to a 

substrate-mimics was used to screen 17 million ZINC15 compounds using drug property filters 

and Glide docking scores. The top twenty output compounds each underwent 200 ns MD 

simulations (i.e. 20x200 ns) to validate their individual stability as potential inhibitors. Eight out 

of the twenty compounds showed stable binding modes in the MD simulations, as well as 

favorable drug properties from our predications. Therefore, our computational data suggest that 

the resulting top eight out of twenty compounds could potentially be novel inhibitors of ADRP 

for ADRP of SARS-CoV-2. 
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1. Introduction 

        Since the first cases in Wuhan, People’s Republic of China, at the end of year 2019, the 

spread of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), which causes the 

disease COVID-19, has escalated worldwide. It has infected approximately 212M people and 

killed approximately 4.43M, leading the World Health Organization (WHO) to classify it as a 

pandemic. SARS-CoV-2, belonging to a group of beta-coronavirus, resembles the other two 

members: SARS-CoV and Middle East Respiratory Syndrome (MERS-CoV). SARS-CoV and 

MERS-CoV were also responsible for earlier outbreaks of deadly respiratory diseases, but there 

is no single drug to treat them. Currently, only one drug, Remdesivir, has been approved by the 

US food and drug administration (FDA) to treat SARS-CoV2, but its efficacy is not very high. 

The demand for therapeutics keeps increasing as the delta variant leads to an increase in 

breakthrough infections among vaccinated people.  

         The genome of SARS-CoV-2 encodes an approximately 7,096-residue-long polyprotein, 

which consists of many structural and non-structural proteins (NSPs).[1] Like other 

coronaviruses, SARS-CoV-2 uses positive-sense RNA genome to code NSPs and structural 

proteins, such as the spike glycol-protein, envelope, and membrane.[2] The 16 NSPS found in 

SARS-CoV-2 form a large, membrane-bound replicase complex, in which Nsp3 is the largest 

component, with a residue range between 1-1,922.[2] Nsp3, which exists in all CoVs, is a 

multidomain (macrodomain) protein, ADP ribose phosphatase domain (ADRP, also known as 

macrodomain), which contains the N-terminal ubiquitin-like domain (Ubl), SARS-unique 

domain, Papain-like proteinase (PLpro), nucleic acid binding (NAB) domain, also containing 

transmembrane domain and Y-domain (Fig. 1A). Macrodomain (Mac1) prevents host immune 

response to viral infection by removing ADP-Ribosylation from modified host protein.[3] Host 



poly-ADP ribose polymerase (PARP) enzymes catalyze the transfer of the ADP-ribose 

phosphate group to their target proteins, primarily attached to the Mac1 to perform its function 

(assisting in DNA damage repair, cellular stress, and proper immune response) which allows the 

host to recognize and attack viruses like SAS-COV2.[2, 4] The binding of SARS-CoV-2 to Mac1 

is crucial, as it initiates virulence and RNA replication.[5] Type I interferons (IFN-I) impel the 

intrinsic induction by blocking the phosphorylation dimerization and resulting in nuclear 

translocation of the host IFN regulatory factor 3 (IRF3), which is a transcription regulator 

important for innate immunity.[2, 6] The role of Mac1 is crucial, as their inhibition helps to 

reduce the viral load, facilitate recovery and interferes with the host’s immune response to 

SARS-CoV-2 (which makes it an attractive protein target).[2, 6] Although SARS-CoV-2 has 

higher transmission efficiency from human to human than previous viruses (for instance, SARs 

and MERs), the Mac1 protein exists in both SARs and MERs, which makes it a common drug 

target for both viruses.[7, 8] 

Although there have been studies (Table 1) which focused on identifying novel drugs 

targeting viral macrodomains using the virtual screening and pharmacophore approach, there 

have been no such studies conducted which utilized elaborate virtual screening methods. In a 

2020 study conducted by Babar et al., a total of 64,043 drugs were screened, in which potential 

inhibitors were chosen based on their docking score and high binding affinity for key active site 

residues.[9] In a 2020 study conducted by Debnath, virtual screening was performed on the 113K 

MolPort database, from which six candidates were selected based on their XP glide score range, 

whose binding affinities were validated using free energy calculations and MD simulations.[10] 

However, Debnath did not analyze the stability of the top potential inhibitors using the MD 



simulation.[9, 10] Using a similar approach, the present study uses a much larger database and 

longer MD simulations for more compounds.  

In the details, the structure of ADP-ribose phosphatase in the complex of AMP (PDB ID: 

6W6Y, Fig. 1B-1C) was used in the structure-based high throughput screening of zinc15 library 

with 17 million compounds. AMP as a substrate, which is used as a monomer in RNA, also plays 

an important role in intracellular signaling and cellular metabolic processes.[9] Next, we have 

utilized a long MD simulation (200 ns) to examine the top 20 hits from the virtual screening. 

Followed by advanced MD simulation and MM-GBSA binding energy calculation methods was 

used to obtain better estimate of the binding affinity. Eight compounds out of the 20 hits showed 

significantly improved binding free energy score and good drug properties. The present study 

adds important knowledge to the ongoing efforts of finding the potential drug target compounds 

and novel inhibitors to ADP-Ribose phosphatase of SARS-CoV-2. 

2. Methods 

A virtual screening workflow (VSW) in Fig. 2 was developed to identify lead inhibitors 

to the ADP-Ribose phosphatase of SARS-CoV-2 from ZINC 15 drug-like library with 17 million 

entries. This VSW consists of ten essential steps including drug property prediction, molecular 

docking, and molecular dynamics simulation. The first step of the VSW was the input of the 

prepared protein structure and ligand library. Then, the compounds were filtered by drug 

property in setup 2 and docking with multiple Glide docking score functions with increasing 

accuracy (Glide HTVS, SP and XP) in step 2-5. Ligand similarity analysis was performed to 

identify different molecular scaffolds in step 6.  In step 7, the ligands that have either a worse 

Glide XP score than the reference compound (the crystal ligand AMP) or more than one red flag 

in drug property (# of star, from QikProp) were removed, the top 20 compounds were manually 



selected from the remaining compounds by maximizing the number of molecular scaffolds (i.e., 

different ligand cluster IDs). In steps 8 and 9, the 200ns MD simulation was carried out, 

followed by post simulation analyses including MMGBSA binding free energy calculation, 

simulation interaction diagram analysis, and protein conformation clustering analysis. In step 9, 

the prediction of ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) was 

used to check the human oral bioavailability of potential drug candidates. Finally, the 

compounds that had better MMGBSA binding free energy than the reference compounds were 

selected and presented in the main text. The details of these ten steps are presented in the 

following six modules.  

2.1. Preparation of protein and ligand library  

The crystal structure (6W6Y) of ADP ribose phosphatase of Nsp3 from SARS-CoV-2 

was prepared using Maestro’s Protein Preparation Wizard.[11] The protein was preprocessed to 

assign correct bond orders, add hydrogen atoms, create disulfide bonds, and to delete water 

beyond 5 angstrom (Å) from hetero groups. The charge state of the titratable residues was 

optimized using PROPKA at a pH of 7. A restrained minimization was done to relax the protein 

using an OPLS3 force field.[12] Epik, a tool based on accurate methodologies from Hammer and 

Taft, was used to generate the proper ionization state of each ligand.[11] The lowest tautomeric 

state for each ligand structure was selected and minimized to relax the ligands to a best fit 

structure. Lastly, a geometry optimization was performed using quantum mechanics methods in 

Jaguar.  

2.2. Filtering and Docking 

The prepared merged protein-ligand complex was put through Schrodinger’s Virtual 

Screening Interface, where it was prefiltered through Lipinski’s Rule and filtered with ADMET 



risk parameter assessments through QikProp. The parameters and cut-off values employed when 

screening using QikProp were described in Table S1.[13] The active binding site of ADP ribose 

phosphatase was defined using the center of the ligand, from which the grid file was generated 

using a van der Waals scaling factor of 1 and a partial charge cutoff of 0.25. The prepared 

compounds were docked into the generated grid of the protein receptor using an OPLS3 force 

field and their docking scores were calculated using both SP and XP scoring functions.[12] The 

default settings were used as the parameters for the scoring function: Active Epik state penalties 

to the docking score, dock sampling was flexible with sample nitrogen-inversions, same ring 

conformations, and bias sampling of torsions for amides, which only penalized non-planar 

conformations.[14, 15] The results of docking concluded with 20 top compounds with high 

docking scores, indicating that they all had high affinity for the receptor.  

2.3. Ligand similarity clustering 

The ligand similarity clustering was done on the Canvas program. First, digital fingerprints 

of 3D ligand structures were generated using 3-point pharmacophore.[16] Next, hierarchical 

clustering with default parameters was performed to group similar compounds into different 

clusters using their fingerprints and a cluster ID was assigned to each compound.[17, 18]  

2.4. MD simulation  

The twenty prepared receptor-ligand complexes were used to construct MD simulation 

systems. The complexes were solvated in an orthorhombic water box with a buffer distance of 

10Å using a predefined SPC water model.[19] A 0.15 M NaCl salt concentration was added to 

neutralize the system. The systems were built with an OPLS3 force field using Desmond System 

Builder in Maestro on a Linux operating system.[12] The relaxation/minimization and 

production runs were set up using the Desmond module following our previous procedure.[20]  



2.5. Post simulation analysis 

2.5.1. Simulation interaction diagram (SID) analysis 

The Desmond SID tool in Maestro was used to calculate the Root-Mean-Square 

Deviation (RMSD), the Root-Mean-Square Fluctuation (RMSF), the Secondary Structural 

Elements (SSE), and the residue-ligand interactions and contacts throughout the course of the 

simulation. The protein Cα and ligand RMSD plots obtained from the SID analysis were 

analyzed to ensure the convergence of each of the MD simulations. A relatively flat plot would 

imply that a steady state was reached.  

2.5.2. Trajectory clustering analysis  

The Desmond clustering tool was utilized to organize the complex structures from the 

trajectories.[21] The parameters included using the backbone RMSD matrix as the structural 

similarity metric and using a 2.5 Å merging distance cutoff and average linkage for the 

hierarchical clustering. The centroid structure, the structure with the most neighbors in the 

structural family, was chosen to represent each structural family. Of the centroids, the most 

abundant structures of the populated structural families were extracted and analyzed further. 

Clustering is used to identify the most abundant conformations and reduces complexity. 

 

2.5.3 Binding energy calculations and decompositions 

The ligand-binding affinities on the frames obtained in the last 50ns of each MD 

simulation were calculated using the surface-area-based Generalized Born model [22, 23] with 

an implicit membrane solvation model (VSGB 2.0).[24] as explained in our previous works [20]. 

  



2.6. ADMET Prediction 

 Prediction of ADMET properties for the eight best ZINC compounds were performed on 

the SwissADME web server (http://www.swissadme.ch/). This server is developed by the Swiss 

Institute of Bioinformatics, used to provide physiochemical descriptors, ADMET parameters, 

pharmacokinetic properties, and drug-like small molecule inhibitors to support drug 

discovery.[25] The SMILE codes for each compound were inserted into the webserver to receive 

their ADMET properties.  

3. Results 

 MM-GBSA results reveal the top eight compounds according to their ligand binding 

energy. A total of 17M zinc compounds were screened from which compounds with docking 

scores higher than -9.7 kcal/mol were considered, discarding the others. The top twenty 

compounds were picked based on their SMILE code, numbers of STARs, cluster IDs, and 

centroid (Fig. S3). The various properties including the glide XP docking, MM-GBSA, and MD 

simulation helped in picking the top eight compounds out of twenty total compounds. The MM-

GBSA method was used to estimate the binding free energy of the twenty compounds. The 

binding interaction between ligand-protein receptors is specified by the free energy binding. 

Using the crystal ligand as the control, the top picked compounds possess significantly higher 

binding energy against the Mac1. The results of other energy terms such as Van Der Waals 

energy (VDW), electrostatic energy (ELE), hydrophobic, and ligand-receptor RMSD strongly 

indicate that these top-picked compounds could be targeted against SARS-CoV-2. The 

hydrophobic value (-46.7±3.6 kcal/mol) was favorable for the binding of ZINC000096223736, 

followed by other compounds. ZINC000096223736 had superior binding energy than the other 

compounds which is visible in (TABLE 2). The protein-ligand contact pattern shows the protein 

http://www.swissadme.ch/


binding pocket, and the main residues responsible for the interaction. Protein-ligand contacts of 

the top eight compounds during MD simulation are shown in (TABLE 3), the most abundant 

residues display the highest number of interactions throughout the results section.  

ADMET properties show good human oral bioavailability 

The predicted ADMET properties for the eight compounds show that there is high 

intestinal absorption with only one of them showing chances to distribute into the brain. 

However, some of the compounds do inhibit the cytochrome P450 enzymes (CYPs) including 

CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 inhibitors, which indicated that these 

compounds could be metabolized. CYP3A4 possesses the highest activity in the small intestine 

and liver and metabolizes 50% of the medicines.[26] The CYP inhibitors also indicate an 

increase in the plasma concentration of the drug. BBB permeability protects the exposure of 

molecules that are toxic to the neurons in the brain. All eight compounds fulfill the conditions of 

drug-likeness properties without violation of Lipinski rule of five including MW < 500, 

calculated octanol-water partition coefficient (LogP) ≤ 5, some hydrogen bonding acceptors ≤ 

10, as well as several hydrogen bonding donors ≤ 5. The PAINS (pan-assay interference 

compounds) alert system also gave off zero alerts to all eight compounds, which indicates a low 

chance of false positives from occurring (TABLE 4). The docked complex of the top eight 

ligands compared with the crystal complex structure is performed to view the closest interaction-

based measures and pose predictions. (Fig. 3) The top eight ligands show a good binding pose 

with the crystal structure, further validating the top eight hits.  

Crystal complex structure was stable in the MD simulation. The simulation 

interaction diagram of the crystal structure shows the RMSD plot obtained from the MD 

simulation. Monitoring the RMSD of the protein gives insight into the structural conformation 



obtained throughout the simulation. The RMSD plot has equilibrated and fluctuated towards the 

end of the simulation, it is acceptable for the crystal structure is a globular protein. (Fig. 4A) A 

ligand atom interaction with protein residues from the MD trajectory provides insight on four 

different hydrophobic interactions such as ASP32, PHE156, ALA154, and ILE23, which are the 

four residues interacting with the ligand atom. (Fig. 4B) The protein SSE plot shows the 

recurring arrangements of close amino acids through distribution by residue position throughout 

the protein structure. The residue indicated 32.40% of the helix and 19.68% of the strand, which 

made the total percentages of SSE of the residue position to be 52.08%, with the rest of the area 

being random coil. (Fig. 4C) The peaks in the RMSF plot analyses the portion of the protein that 

fluctuates the most during the simulation. The tails (N- and C-terminal) fluctuates more than any 

other parts of the protein. (Fig. 4D) The interaction fraction plot indicates the ligand-protein 

interaction throughout the simulation. The four residues with the 2D ligand-protein interaction in 

Fig. 4B, show a greater amount of hydrogen bonds in the plot (Fig. 4E) during the simulation.  

RMSD analysis of protein and ligand is stabilized. After the screening of all drugs, the 

best hits were subjected to MD simulation to better understand their behavior. RMSD is used to 

measure the crystallographic binding pose. Structural fluctuation patterns during 200ns MD 

simulation are described in terms of C RMSD of the top eight compounds. The structures are 

compared by the binding interaction and the energy between protein and ligand. (Fig. 5) In this 

case, a low RMSD score is acceptable. Protein RMSD gives insight into its structural 

conformation throughout the simulation, whereas ligand RMSD indicates how stable the ligand 

is concerning the protein and its binding pocket. Most changes are shown in between 1-3 Å 

which is perfectly acceptable for a small protein like these. The ligand RMSD values stayed 

within the RMSD of the protein range, which indicates that the ligand has not diffused away 



from its initial binding site. The average RMSD value of the compound (ZINC014116837) was 

found to be relatively high. The protein-ligand convergence of the compound (ZINC096223736) 

was observed between 50 and 150ns. It was observed to be at 1Å. The convergence was 

observed between 0 and 50ns in the compound (ZINC082673). All eight compounds showed 

minor fluctuations throughout the graphs. These results show that the lower the RMSD 

fluctuates, the better the model is in comparison to the target structure. 

MD simulation shows improvement in the binding pose of the top eight ligands. The 

trajectories of the receptor-binding domain (RBD) of the top eight ligands were analyzed by 

comparing the ligand XP docking binding pose before and after MD simulation. (Fig. 6) MD 

simulation is utilized to find the most dissimilar conformational changes. During the simulation, 

a ligand may significantly change from the originally bound conformation to optimize the overall 

interactions with the receptor. Rotatable bonds in the ligand may lead to high RMSD concerning 

initial bound conformation. The compound ZINC096223736 shows a stronger binding pose 

before and after the simulation followed by ZINC426746041 and ZINC079784201 also 

according to its MM-GBSA score shown in (Table 2). The 2D interaction of the ligand atom 

with protein residues from the MD trajectory of the top eight ligands with different active site 

amino acids is shown. (Fig. 7) The results show that the selected hits give a good binding affinity 

towards the active site of the protein.  

 Protein-ligand interaction analysis reveals novel residue interactions in all eight 

compounds. Protein interactions with the ligand were monitored throughout the MD simulation. 

Protein-ligand interactions can be categorized into four different types as shown. (Fig. 8) The 

highest amount of hydrogen bonding was observed on ZINC082673, ZINC014116837, and 

ZINC217844024. Leu126, ALA154, and ILE23 are the main residues containing the hydrogen 



bonds in all eight compounds. It can lead to a strong influence on drug specificity, 

metabolization, and absorption. Hydrophobic interaction generally involves a hydrophobic 

amino acid and an aromatic or aliphatic group on the ligand. ZINC082673, ZINC121003678, and 

ZINC014116837 are observed to have the highest number of hydrophobic contacts. No ionic or 

polar interactions were observed in the eight compound graphs. Water bridges were observed in 

every plot where there was a hydrogen-bonded protein-ligand interaction mediated by a water 

molecule. The last 50ns of each 200ns simulation show little deviation, indicating 

convergence (Fig. S5). All compounds showed higher hydrogen-bonding and hydrophobic 

interactions compared to the crystal structure, which leads to higher GI absorption of the 

compounds shown. (Table 4) 

The secondary structure examination portrays minor differences. Protein SSE was 

monitored throughout the MD simulation. The plots summarize the SSE distribution by residue 

position throughout the protein structure. It is categorized into Alpha-helices, Beta-strands, and 

random coils (Fig. 9). Alpha-helices mainly have hydrophobic residues which are found in the 

core of the protein or are transmembrane proteins. On the other hand, beta-strands contain 

patterns of hydrophobic and polar amino acids. The random coil is a polymer conformation, 

where it is not one specific shape but instead a statistical distribution of all chains indicated by 

the white spaces in the plots. SSE is more rigid than the unstructured part of the protein, 

therefore they fluctuate less than the loop regions.  

The RMSF shows fluctuation in localized regions of the protein and ligand. The 

flexibility of each compound was acquired by using RMSF. Protein C RMSF characterizes the 

local changes along the protein backbone during simulation. (Fig. 10) It measures the deviation 

between the particle position and the reference position. The peaks indicate areas of protein that 



fluctuate the most during the simulation. The N- and C- terminal tails show more fluctuation than 

the other parts of the protein, due to the higher amount of proteins binding with the residues. 

ZINC014116837 showed the greatest fluctuation nearly at 5Å around residue 100 positions. All 

the other compounds fluctuated around the same residue position nearly from 1-3 Å, which is 

also reflected in trajectory clustering analysis. Another small fluctuation of ZINC014116837 and 

ZINC096232566 was observed at residue position 130. Lastly, a fluctuation of ZINC217844024 

and ZINC079784201 took place towards the end at the residue position 155. Using the crystal 

structure as a positive control, the complexes showed much higher residual fluctuation at 

different positions throughout the graph.  

 4. Discussion  

The cluster of pneumonia caused by SARS-CoV-2 created great challenges in public 

health all around the world. This pandemic has not only challenged people in terms of their 

health, but also in terms of the economy. To subsist with the virus, researchers and scientists are 

focusing on different aspects of the infections caused by it. The SARS-CoV-2 genome consists 

of 16 Nsps and 4 structural proteins. There are many studies that targeted domains like PLpro, 

MTase, NendoU, RdRp protein, and 3CLpro while others focused more on the host proteins of 

the SARS-CoV-2 genome. Out of the 16 Nsps, Nsp3 plays a major role in transcription and 

translation by seizing the host immune system. Nsp3 is the largest protein encoded by SARS-

CoV-2, it binds to viral RNA as well as other viral proteins.  

The Nsp3 is reported to interact with Nsp2 which leads to intervention at an earlier or 

later stage of viral replication. It has been stated that the macrodomain of Nsp3 enzyme activity 

plays an essential role in pathogenesis.[27] The 16 domains (~Res: 1922) and regions of Nsp3 

play an important role in transcription and translation, which interacts with the protein host by 



taking over the host immune system. There is an essential process required to bind ADRP to this 

domain. Targeting this domain with high receptor binding inhibitors could help to reduce the 

viral implications caused by the pandemic. Therefore, using different drug targeting approaches 

like computer-aided drug design or rational drug design could help find a drug to target this 

domain and redeem the host immune system.  

The emergency use of the FDA-approved drug Remdesivir is not as effective due to its 

associated problems, therefore its use is very limited. Therefore, there is still a need to either 

refine older drugs or search for new ones to treat SARS-CoV-2. In this regard, the use of 

structure-based high throughput virtual screening methods is the most useful way to find new 

drugs for COVID-19 based on their properties. In the present study, we used the virtual 

screening approach to discover the potential inhibitors to target ADP ribose phosphatase. Based 

on our findings using the bioinformatics tools, along with a drug similarity search, we analyzed 

compounds from Zinc15 and targeted novel inhibitors of ADP-Ribose phosphatase of SARS-

CoV-2 using the virtual screening workflow which gave us a promising top twenty hits. The top 

twenty compounds were then further validated and shortlisted to eight of the inhibitors, which 

were further validated by the MM-GBSA score of binding free energy and MD simulation. The 

MM-GBSA score helped to specify the binding interaction between ligand-protein receptors.  

The protein-ligand interaction further confirmed the top potential inhibitors. The large 

dataset and extended high throughput virtual screening method portray the best interactions 

between ligands of a molecular target to form a complex. The adverse effects and related articles 

of the selected compounds were checked through CAS Scifinder and PubChem, where the 

compounds showed no adverse effect. Moreover, the ZINC082673 compound is found to be 

useful in treatments of bacterial infection and the NadD inhibition leads to suppression of 



bacterial growth. NadD synthetase uses energy from ATP and is widely used as a drug target in 

various microorganisms. These results further validate the top hits to be the potential inhibitors.  

Based on the results, the potential binding and inhibiting effects of the top eight 

compounds are indicated. The use of the structure-based high throughput virtual screening 

method is the most useful approach to find the potential molecules that could target the 

macrodomain. After examining 17 million Zinc15 compounds using structure-based high 

throughput virtual screening methods, the most potential hits were validated by MD simulation. 

This study has the potential to assist and repurpose the drug design. In vitro experiments can be 

carried out as this study can facilitate the global efforts in the speedy development of potential 

drug candidates against SARS-CoV-2. 

 5. Conclusion 

This study may assist in further investigating and testing the novel inhibitors of SARS-

CoV-2. We performed a thorough investigation of a total of 17 million Zinc15 compounds to 

examine using a structure-based high throughput virtual screening method which provides the 

most potential hits. The molecular dynamic simulation further validated the top hits. In this 

study, twenty potential compounds were selected from which eight potential inhibitors of SARS-

CoV-2 showed commendable docking scores ranging from -9.9 to -11.7 kcal/mol. The 

computational pipeline gives us the best top eight hits, which exhibit good binding affinity 

towards the active site. Based on the XP glide docking, the binding affinity, and ADMET 

properties, the top eight Zinc compounds are the potential inhibitors of ADP-ribose phosphatase 

of Nsp3 of SARS-CoV-2. This paper could provide great knowledge about the potential 

inhibitors to target SARS-CoV-2.  
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