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Abstract: 14 

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused worldwide pandemic 15 

and is responsible for millions of worldwide deaths due to -a respiratory disease known as COVID-16 

19. In the search for a cure of COVID-19, drug repurposing is a fast and cost-effective approach 17 

to identify anti-COVID-19 drugs from existing drugs. The receptor binding domain (RBD) of the 18 

SARS-CoV-2 spike protein has been a main target for drug designs to block spike protein binding 19 

to ACE2 proteins. In this study, we probed the conformational plasticity of the RBD using long 20 

molecular dynamics (MD) simulations, from which, representative conformations were identified 21 

using clustering analysis. Three simulated conformations and the original crystal structure were 22 

used to screen FDA approved drugs (2466 drugs) against the predicted binding site at the ACE2-23 

RBD interface, leading to 18 drugs with top docking scores.  Notably, 16 out of the 18 drugs were 24 

obtained from the simulated conformations, while the crystal structure suggests poor binding. The 25 

binding stability of the 18 drugs were further investigated using MD simulations. Encouragingly, 26 

6 drugs exhibited stable binding with RBD at the ACE2-RBD interface and 3 of them (gonadorelin, 27 

fondaparinux and atorvastatin) showed significantly enhanced binding after the MD simulations. 28 

Our study shows that flexibility modeling of SARS-CoV-2 RBD using MD simulation is of great 29 

help in identifying novel agents which might block the interaction between human ACE2 and the 30 

SARS-CoV-2 RBD for inhibiting the virus infection. 31 

  32 



1. Introduction 33 

 An outbreak known as COVID-19 started at the end of year 2019 has evolved into a pandemic 34 

and is still spreading globally [1]. Till June 3, 2021, more than 171 million confirmed cases and 35 

over 3.6 million worldwide deaths have been reported (covid19.who.int). The causative agent of 36 

COVID-19 is a beta coronavirus known as Severe Acute Respiratory Syndrome Coronavirus-2 37 

(SARS-CoV-2), a member of a single-stranded RNA virus family with spike-like proteins on viral 38 

surface [2]. SARS-CoV-2 genome is divided into 14 open reading frames (ORFs), which encodes 39 

27 proteins[1]. The Spike gene of the SARS-CoV-2 encodes for a transmembrane Spike protein 40 

which exists as a homotrimer. Spike protein can be divided into two subunits, S1 and S2. The S1 41 

subunit harbors a receptor-binding domain (RBD) which interacts directly with the human 42 

angiotensin-converting enzyme-2 (ACE2)[2, 3]. RBD (333-527) contains five anti-parallel β 43 

strands (β1, β2, β3, β4, and β7)[2]. The ACE2 mainly interacts with the receptor-binding motif 44 

(RBM), an extended insertion between β4 and β7[2]. The extended RBM binds to the claw-like 45 

structure of the ACE2. Experimentally determined crystal structures of ACE2-RBD complex show 46 

a network of hydrophilic interactions at the interface[2]. The hydrogen bonds and salt bridges 47 

between SARS-CoV-2 RBD and ACE2 lead to a very stable binding, corresponding to a 48 

dissociation constant (Kd) in the nanomolar range [4].  49 

As the only drug in specifically treating COVID-19, remdesivir has been approved by the US food 50 

and drug administration (FDA)[5]. There is a pressing demand for the anti-COVID-19 drugs. 51 

Researchers across the globe are looking for strategies to block the interaction of RBD with 52 

ACE2[6-10]. Pharmaceutical companies such as Moderna and AstraZeneca have invented 53 

vaccines that are based on the genetic sequence of spike protein[11, 12].  There are reports of small 54 

molecule inhibitors, monoclonal antibodies, and peptides that block the interaction of RBD with 55 



ACE2[10, 13-15]. Above mentioned therapeutic strategies might have high effectiveness against 56 

SARS-CoV-2 but they are costly and time-consuming. In such a scenario, drug repurposing against 57 

RBD appears as less time consuming and cost-effective strategy to control the COVID-19 [16].  58 

Several studies (see Table 1) report results on drug repurposing against spike RBD, but very few 59 

have taken into account of the conformational flexibility of RBD when screening approved 60 

drug[17-25]. In a recent study by Smith and Smith[26], 6 conformations of S-protein-ACE2 61 

complex were used for the molecular docking of small molecules from the SWEETLEAD library. 62 

They identified 7 ligands, however, stability of binding modes of the identified ligand was not 63 

analyzed in detail. In another two studies, MD simulations of spike protein were carried out but 64 

only one conformation of spike protein was used for the virtual screening[20, 24]. It is known that 65 

ensemble-based virtual screening can address the flexibility of binding site by considering multiple 66 

conformations of the receptor[27, 28].  Previously, ensemble-based virtual screening has been 67 

successfully used to screen inhibitors against various drug targets[29-32].  68 

In the present study, we have utilized long MD simulations to probe the conformational plasticity 69 

of RBD, started from the apo form of the solved crystal ACE2-RBD complex (PDB ID: 6LZG)[3]. 70 

Three representative conformations were identified from clustering and principal component 71 

analyses on the MD simulation trajectory. These 3 three conformations and the conformation 72 

revealed in the crystal structure were used as an ensemble to predict the drug binding site and to 73 

screen 2466 drugs that have been approved by the FDA. As a result, 18 drugs were identified after 74 

sorting based on docking scores, 16 out of which are actually docked to the RBD conformations 75 

revealed from MD simulation. Furthermore, 20 complexes obtained from docking were subjected 76 

to MD simulations to assess the stability of the drug binding. According to simulation results, 6 77 

approved drugs show stable binding with RBD at the ACE2-RBD interface (Fig. 1). In addition, 78 



3 systems have shown that MD simulations significantly improved the binding energies with 79 

reference to the initial docked complexes. The present study adds important knowledge to the 80 

ongoing efforts to discover and develop anti-SARS-CoV-2 agents using MD simulations. 81 

2. Materials and methods: 82 

2.1. Identification of druggable pocket(s)  83 

RBD from the crystal structure of ACE2-RBD complex (PDB ID: 6LZG)[3] was extracted and 84 

subjected to protein preparation wizard[33] for the addition of hydrogens, partial charges, and 85 

removal of bad contacts. After preparation, the whole RBD (residues 333-527) was used for the 86 

identification of binding sites using SiteMap tool [34, 35].  87 

2.2. Molecular dynamics simulation of spike protein RBD  88 

Atomic coordinates of spike RBD were extracted from the crystal structure of the spike RBD-89 

ACE2 complex (PDB ID: 6LZG)[3]. Spike RBD structure was subjected to the protein preparation 90 

wizard for the addition of hydrogens and removal of bad contacts. After preparation, the RBD was 91 

solvated in a rectangular box of TIP3P water molecules[36]. Ions (Na+ and Cl-) were added to 92 

neutralize the system at 0.15M concentration.  93 

Using the Desmond module, the system was first relaxed using the default relaxation protocol 94 

which consists of six stages (For details please read the Desmond manual). After the relaxation, 1 95 

µs trajectory was generated under the NPT ensemble for the system using. Temperature was 96 

controlled by using the Nosé-Hoover chain coupling scheme [37] with a coupling constant of 1.0 97 

ps. Pressure was controlled using the Martyna-Tuckerman-Klein chain coupling scheme [37] with 98 

a coupling constant of 2.0 ps. M-SHAKE [38] was applied to constrain all bonds connecting 99 



hydrogen atoms, enabling a 2.0 fs time step in the simulation. The k-space Gaussian split Ewald 100 

method [39] was used to treat long-range electrostatic interactions under periodic boundary 101 

conditions (charge grid spacing of ~1.0 Å, and direct sum tolerance of 10-9). The cutoff distance 102 

for short-range non-bonded interactions was 9 Å, with the long-range van der Waals interactions 103 

based on a uniform density approximation. To reduce the computation, non-bonded forces were 104 

calculated using an r-RESPA integrator [40] where the short-range forces were updated every step 105 

and the long-range forces updated every three steps. The trajectories were saved at 1 ns interval. 106 

2.3. Principal Component analysis (PCA) 107 

PCA is a method to reduce the dimensionality of the multidimensional data. Essential motions of 108 

the protein can be described by a few principal components that dominate the conformational 109 

dynamics encoded in the covariance matrix. We used Normal Mode Wizard (NMWiz) plugin of 110 

VMD[41] to obtain PCA results [42]. Cα atoms of RBD residues were used for the calculation of 111 

covariance matrix.  3 largest components were considered to describe the major collective motions 112 

of the RBD.  113 

2.4. Conformational clustering of spike RBD 114 

Desmond trajectory clustering tool [43] was used  to group 1001 conformations of RBD. Backbone 115 

RMSD matrix was used as structural similarity metric, the hierarchical clustering with average 116 

linkage [43] was selected as the clustering method. The merging distance cutoff was set to be 2 Å.  117 

The centroid structure (i.e., the structure having the largest number of neighbors in the structural 118 

family) was used to represent the corresponding structural cluster. 119 

2.5. Virtual screening and prioritization of hits 120 



Virtual screening workflow (VSW) of SCHRODINGER-2019 was used for the ensemble-based 121 

virtual screening. A set of approved drugs (2466 entries) was downloaded from the 122 

DRUGBANK[44]. Using the LigPrep module (Schrödinger Release 2020-4: LigPrep, Schrödinger, 123 

LLC, New York, NY, 2020), multiple 3D conformations of approved drugs were generated.  After 124 

ligand preparation, a total of 5820 entries including different protonation states of 2466 drugs were 125 

used for the virtual screening. Four conformations of RBD were subjected to protein preparation 126 

and structural alignment. We used a grid generation tool to create a grid around the predicted 127 

binding site in the crystal structure of RBD. Same grid parameters were used for all conformations 128 

of RBD. Glide module[45, 46] was used to carry out virtual screening of approved drugs against 129 

each of four conformations of RBD.  Glide has an option to incorporate grid files associated with 130 

multiple receptor conformations. Extra precision (XP) protocol[47] was used to dock all 5820 131 

entries in the prepared dataset.  After XP docking, 203 RBD-drug complexes were subjected to 132 

MM-GBSA (the Molecular Mechanics/Generalized Born Surface Area) energy scoring. Fig. 2 133 

summarizes the ensemble-based VS protocol used in present study. 134 

2.6. Investigation of binding pose stability  135 

Each of selected RBD-drug complexes was subjected to 200 ns MD simulations using Desmond. 136 

Protocol for the system preparation, equilibration and production is as described previously. SID 137 

tool was used to analyze the dynamics of RBD and drugs. The data of the last 50 ns trajectories 138 

were used to calculate the conformational changes and fluctuations (i.e., the root-mean-square-139 

deviation and -fluctuation, or the RMSD and RMSF). In addition, the binding strength of 6 140 

predicted drugs to the RBD was quantified using averaged MM-GBSA energies. 141 

3. Results and discussions 142 



3.1. Druggable pocket(s) at the ACE2-RBD interface 143 

RBD-ACE2 interface is an attractive target for the discovery of small molecules.  Recognition of 144 

human ACE2 by SARS-CoV-2 RBD involves several residues from both binding partners (Fig. 145 

3A). The RBD-ACE2 interface reveals several polar and van der Waal interactions. SiteMap tool 146 

revealed several shallow cavities at and near the RBD-ACE2 interface, but we focused on the 147 

druggable pocket that is directly related to the ACE2 binding (Fig. 3B). It is noted that the 148 

predicted pocket accommodates the side chain of K353 of human ACE2, as the K353 is critical in 149 

RBD-ACE2 binding. The predicted druggable pocket has volume of 91.23 Å3 and consists of 16 150 

RBD residues (R403, D405, E406, R408, Q409, G416, K417, I418, Y449, Y453, Q493, S494, 151 

Y495, F497, Q498 and Y505) out of which14 are polar and only 2 residues are non-polar (I418 152 

and F497). As discovered from the crystal structure, K417, Y505 and Q498 in the predicted pocket 153 

of RBD interact with the D30, E37 and Q42 of ACE2 respectively. This predicted pocket overlaps 154 

with the pocket identified in a recent study by Deganutti  et al.[48]. It is plausible that the presence 155 

of small drug molecules at the predicted pocket shall interfere the interactions between RBD and 156 

human ACE2.  157 

3.2 Conformational analysis of SARS-CoV-2 RBD  158 

RBD is stable throughout the 1 µs long MD simulation (Fig. 4A). We observed that C-terminal 159 

region is relatively more flexible than the N-terminal region (Fig. 4B and 4C). As mentioned 160 

previously, RBD is divided into rigid core and flexible receptor-binding motif (RBM). RBM lies 161 

in the C-terminal of the RBD, where majority of ACE2 interacting residues reside. Principal 162 

component analysis of MD generated conformations of RBD revealed that the first three 163 

components can explain more than 50% of the collective motions (Fig. 5). All 3 components 164 



showed that the residues in the RBM are highly dynamic. Compared to the RBD-ACE2 complex, 165 

ACE2 interacting residues of the RBD show a high B-factor in the apo RBD (data not shown). 166 

RMSF plot of RBD also shows that most residues of the predicted pocket have RMSF values 167 

greater than 1Å. The flexibility of the ACE2 interacting residues necessitates the consideration of 168 

multiple conformations of RBD (Fig. 5D) for virtual screening. 169 

3.3. Virtual screening yielded approved drugs with good binding scores with RBD 170 

Ensemble-based virtual screening was adopted to screen drugs which can bind to RBD at the 171 

predicted site (Fig.2). The conformational ensemble of RBD contains 4 structures, representative 172 

conformations from the 3 largest clusters obtained from RBD MD simulations and an X-ray 173 

structure (Fig. 5D). We observed that conformations of RBD in the ensemble exhibits clear 174 

structural diversity (Fig.5D and Fig. 6). Based on structural alignment and visual inspection, we 175 

found that residues in the predicted binding pocket exhibit conformational variability mainly at the 176 

level of side-chains. Even small conformational difference at the level of side-chain of a single 177 

residue in the binding pocket may affect the screening results. Virtual screening of prepared dataset 178 

of approved drugs against the conformational ensemble of RBD revealed 203 potential binders. 179 

The potential binders were then ranked based on the XP score and the MM-GBSA score. Further 180 

analyses were carried out on 18 potential binders (Table S1) that were identified from the list of 181 

50 best hits from the 2 ranking results (XP score-based and MM-GBSA score-based lists). We first 182 

visually inspected the binding poses and interactions of selected hits with the RBD. Interestingly, 183 

drugs showed differential preference on the RBD conformations. For 16 out of 18 hits, the best 184 

binding poses are the same according to the 2 scoring functions. Only 2 drugs (DB00284 and 185 

DB00644) showed different poses in 2 ranking results (Table S1). Therefore, 20 complexes were 186 

obtained for the 18 hits based on the virtual screening. We looked into the receptor conformations 187 



and found that only 2 out of 18 hits were identified using the crystal structure of RBD as the 188 

receptor, while 16 other hits preferentially bind to conformations obtained from simulations (Table 189 

S1). It is evident that ensemble-based virtual screening offers improved results to identify better 190 

binding poses for ligands which is not possible with single receptor conformation. 191 

3.4 MD simulations of RBD-drug complexes identify strong binding candidates 192 

To check the stability of the predicted binding to the RBD, each of 20 RBD-drug complexes was 193 

subjected to 200 ns MD simulations (Fig. S1-S5).  The average RMSD of drugs in the 20 194 

complexes are shown in Fig. S1. The complex structures were aligned to the RBD of the initial 195 

conformation, therefore, the RMSD of drugs mainly reflects the deviation of drug molecules from 196 

the predicted pose. Using 10 Å as a threshold, the drugs were classified into 2 groups. Drugs that 197 

deviate from the initial position and conformation by over 10 Å RMSD were considered as non-198 

binders, since they either dissociate from the RBD or move to binding sites with less 199 

pharmaceutical interest. We observed that 12 drugs move out of original binding pockets and bind 200 

to other sites on RBD (Fig. 7A, Fig. S1 and S6). One drug (DB02772) dissociated from the RBD 201 

and moved in the solvent (Fig. 7A).  Because of the flexible loop in the C-terminal region, RBD 202 

showed intermittent conformational changes in some complexes (Fig. S1).  203 

3.5. FAD, fondaparinux and atorvastatin remain bound to the RBD with small conformational 204 

changes 205 

 Majority of drugs leave the predicted binding pocket during MD simulations (Fig. 7A and Fig. 206 

S1). This observation stresses the essential roles of dynamics simulations after virtual screening in 207 

drug development. There are only 3 drugs, flavin adenine dinucleotide (FAD), fondaparinux and 208 

atorvastatin, exhibiting stable binding to the predicted binding site, showing RMSD ≤ 5 Å (Fig. 209 



7A, Fig. 8B and Fig. S1). FAD, fondaparinux and atorvastatin also exhibit incredibly low 210 

conformational fluctuations (Fig. 7B), indicating that these drugs make stable interactions with the 211 

residues in the predicted binding site (Table 3).  FAD has also been reported as RBD binder in a 212 

recent virtual screening study[17] but the binding stability of FAD was not investigated. FAD is 213 

used as a dietary supplement and there is no side-effect associated with this drug. The discovery 214 

from our MD simulation potentiates the possibility of FAD as RBD binder. Phosphate moieties of 215 

FAD showed ionic interaction with R403, R408 and K417 (Fig. 9).  Adenine ring of FAD exhibited 216 

π-π stacking interaction with the sidechain of Y505. FAD also showed H-bonds with N501 and 217 

Y505.  Flavin and phosphate moieties of FAD also showed water mediated H-bonds with the RBD.  218 

Interestingly, fondaparinux and atorvastatin exhibited very low RMSD (<3Å on average) among 219 

all 20 RBD-drug complexes. Both fondaparinux and atorvastatin have been proposed in the 220 

COVID-19 treatment [49-51] but their binding interactions with RBD has not been reported.  221 

Fondaparinux is a highly polar molecule and contains five monomeric sugar units.  We observed 222 

that sulphate groups of fondaparinux make ionic interactions with R403 and K417 (Fig.9). 223 

Fondaparinux forms several H-bonds with the polar residues of the predicted pocket. Atorvastatin 224 

belongs to statin class of drugs and it is a lipid lowering agent. We observed that after MD 225 

simulation, binding of atorvastatin has enhanced. Atorvastatin makes both polar and non-polar 226 

interactions within the pocket (Fig. 9). The sidechain of F497 provides hydrophobic environment 227 

for the propyl group of the atorvastatin. Polar tail region of atorvastatin makes several H-bonds 228 

with the RBD. Initial and final conformations of FAD, fondaparinux and atorvastatin in the 229 

predicted binding pocket are shown in Fig. 10.  230 

3.6. Gonadorelin, pralatrexate and hyaluronic acid show large conformational changes but 231 

maintain interactions with the residues of predicted pocket 232 



Despite large deviation of drugs from initial binding pose (RMSD greater than 6Å on average, see 233 

Fig. 7A, Fig. 8B, Fig. 10A and 10E-F), we analyzed the trajectories of RBD complexed with 234 

gonadorelin, pralatrexate and hyaluronic acid. Both gonadorelin and hyaluronic acid exhibited 235 

average RMSD between 9 and 10 Å (Fig. 7B).   Gonadorelin is a synthetic peptide hormone while 236 

hyaluronic acid is an anionic, nonsulfated glycosaminoglycan. We observed that both gonadorelin 237 

and hyaluronic acid have more than 20 rotatable bonds. During MD simulation, a ligand may 238 

deviate significantly from the originally bound conformation to optimize the overall interactions 239 

with the receptor. Presence of a large number of rotatable bonds in the ligand may lead to high 240 

RMSD with respect to initial bound conformation. Comparison of MM-GBSA energies revealed 241 

that binding energies of gonadorelin and hyaluronic acid improve slightly after MD simulations 242 

(Table 1).  Gonadorelin and hyaluronic acid showed mainly polar interactions with the RBD (Fig. 243 

9). Average RMSD of pralatrexate was lower than gonadorelin and hyaluronic acid but higher than 244 

FAD, fondaparinux and atorvastatin. We observed that MM-GBSA energy of pralatrexate 245 

decreases after the MD simulation (Table 2). Residues showing interactions with gonadorelin, 246 

pralatrexate and hyaluronic acid are shown in Fig. 9 and Table 3. We have compared the initial 247 

and MD optimized poses of gonadorelin, hyaluronic acid and pralatrexate in Fig. 10.  248 

3.7. Literature review on six repurposed drugs 249 

Literature review was carried out in support of our six repurposed drugs (Table 4). In a 250 

computational study by Maffucci and Contini [22], Gonadorelin was shown to bind at two binding 251 

sites of the RBD and a short MD simulation was used for the evaluation of binding pose stability 252 

and rescoring. However, the detailed binding mode of gonadorelin has not been shown. As to 253 

fondaparinux, in an in vitro study by Hao et al.,[52] Kd value of fondaparinux was determined for 254 

SARS-CoV-2 RBD. Authors have reported that Kd value of fondaparinux for S-RBD falls in 255 



micromolar range. Our study supports the findings of Hao et al.  As to \a

torvastatin, experimentally statins have been reported to be effective in Covid-19 [53], but there is 257 

no information available on binding of atorvastatin to SARS-CoV-2 RBD.  To our knowledge our 258 

study is the first of its kind study in which binding of atorvastatin to RBD has been shown and 259 

validated by MD simulation.  In a recent molecular docking study, FAD was identified as a 260 

potential RBD binder[17]. Our study also suggests that FAD can bind to RBD. As to hyaluronic 261 

acid, Kuwentrai et al., have reported the intradermal delivery of S-RBD using dissolvable 262 

hyaluronic acid microneedles (HA MNs)[54]  but interaction of HA with S-RBD has not been 263 

investigated. In the second article, authors have used circular dichroism to show that hyaluronic 264 

acid induces conformational change in the SARS-CoV-2 S1 RBD. In both articles, structural detail 265 

of interaction between HA and SARS-CoV-2 is missing. Our computational drug repurposing 266 

study also showed that HA can interact with SARS-CoV-2 RBD and provides structural insight 267 

into binding mode of HA. As to pralatrexate, it may also bind to SARS-CoV-2 RBD. In a 268 

computational study by Cavasatto and Filippo [55], pralatrexate has been shown to be a potential 269 

inhibitor of SARS-CoV-2 S-protein. In the above study authors have suggested that MD simulation 270 

is important for the validation of pralatrexate binding to SARS-CoV-2 RBD. Our MD simulation 271 

results show that RBD-pralatrexate complex is stable.  272 

Literature review was also carried out to identify the potential side effects of the six drugs (Table 273 

S2). Every drug comes with either minor or major side effects. If a drug improves the overall 274 

condition of a COVID-19 patient with minimal side effects, then that drug can be used to treat the 275 

patient. Considering the ongoing Covid-19 pandemic, drug repurposing would be a fast and cost-276 

effective approach to find medication against SARS-CoV-2. 277 

 278 



4. Conclusions 279 

The lack of specific treatment options for the COVID-19 has prompted researchers to look for the 280 

approved medicines that can be effective against the SARS-CoV-2. Computational study on drug 281 

repurposing is a very cost-effective method to identify new target of existing drugs. Under the light 282 

of the fact that RBD-ACE2 interface is an attractive drug targeting site for the therapeutic 283 

intervention, we have exploited the conformational flexibility of RBD to search approved drugs 284 

which may block the interaction between RBD of SARS-CoV-2 spike protein and human 285 

angiotensin converting enzyme (ACE2). 1 µs MD simulation of the apo RBD was used to generate 286 

the structure ensemble. Using the clustering method, three major conformers of RBD were 287 

identified. Total four conformers of RBD (One crystal conformation and three MD generated 288 

conformations) were used in our virtual screening workflow of FDA approved drugs (2466), 289 

leading to 18 compounds with top Glide XP docking scores. To further validate these compounds, 290 

200 ns MD was carried out to check the stability of the docked complexes. 6 stable systems were 291 

identified using combination of dynamic properties (RMSD, RMSF) and physics-based 292 

MMGBSA binding energy. Interestingly, in three systems have shown that MD simulation 293 

generated the poses that significantly improved the MM-GBSA binding energy (Gonadorelin from 294 

-53.1 to -68.2±7.8, Fondaparinux from -32.0 kcal/mol to -63.2±11.6 and atorvastatin from -39.1 295 

to -57.4±4.0). Gonadorelin and fondaparinux show promising binding affinities -68.2±7.8kcal/mol 296 

and -63.2±11.6 respectively) in comparison with FAD (-49.7±7.7 kcal/mol) and atorvastatin (-297 

57.4±4.0). Although our study suggests that gonadorelin, fondaparinux, atorvastatin and FAD may 298 

serve as good drug candidates against COVID-19, further experimental studies and risk-benefit 299 

assessment are necessary to evaluate the therapeutic values of the above repurposed drugs.  300 

 301 
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Table 1: Comparison of present study with published studies that report repurposed drugs/compounds against SARS-CoV-2 Spike RBD. 490 

Studies have been grouped into four categories, i.e., category 1 includes simple structure or pharmacophore-based studies, category 2 491 

includes virtual screening against single RBD conformation with MD validation of binding poses of selected hits, category 3 includes 492 

virtual screening against multiple conformations (ensemble) of RBD but no MD validation of binding poses and category 4 includes 493 

ensemble-based virtual screening with MD validation of binding poses of selected hits. 494 

Methods Category Protein 

Structure(s) 

Input Database Output Best 

Drugs/Compounds 

Ref. 

Homology Modeling + Structure-based 

virtual screening 

1 Homology Model FDA approved drugs subset 

in the ZINC database  

Cangrelor, NADH, FAD 

Iomeprol, Coenzyme A and 

Tiludronate 

 Hall et 

al.,[17] 

Pharmacophore-based virtual screening 1 Homology model CSD, ZINC database, 

DrugBank and TIMBAL 

database 

Lead compound 1-8 Shehroz et 

al.,[18] 

Molecular Docking 1 Crystal structure (PDB ID: 
6LZG) 

DrugBank Hydroxychloroquine and Azithromycin McGregor and 
Sandeep[19] 

MD Simulation of RBD (100 ns) + 

Structure-Based Virtual Screening + Steered 
MD Simulations of RBD-Drug Complexes 

(2 x 700 ps = 1400 ps) 

1 Single MD generated 

conformation 

DrugBank Simeprevir and Lumacaftor Trezza et 

al.,[20] 

Homology Modeling + Structure-based 

virtual screening + MD Simulations of 

RBD-Drug Complexes (5 x 50 ns = 250 ns) 

2 Homology Model LOPAC KT203, BMS195614, KT185, 

RS504393, and GSK1838705A 

Choudhary et 

al., [21] 

MD Simulation of hACE2-RBD complex 

(20ns) + Structure-based virtual screening + 
MD Simulations of RBD-Drug Complexes 

(60 x 1 ns = 60 ns) 

2 Crystal Structure (PDB 

ID: 6M0J) 

SelleckChem and Targetmol  Polymixin B, Colistin, Daptomycin, 

Thymopentin and Icatibant 

Maffucci and 

Contini [22] 

Virtual screening and MD Simulation of 

RBD-Drug Complexes (41x 50 ns + 1 x 100 
ns = 2.15 µs) 

2 Crystal structure (PDB ID: 

6M17) 

DrugBank database Fenoterol, Riboflavin, Cangrelor and 

Vidarabine 

Prajapat et al., 

[23] 

MD Simulation of S-protein (18 ns) + 

Virtual screening and MD 
Simulation of RBD-Drug complexes (3 x 18 

ns = 54 ns) 

2 Single MD generated 

conformation   

SWEETLEAD library Theaflavin digallate, suramin sodium 

and 5-hydroxytrytophan 

De Oliveira et 

al., [24] 

Structure-based virtual screening + MD 
Simulations of RBD-Drug Complexes (2 x 

30 ns = 60 ns) 

2 Crystal structure (PDB ID: 
6VSB) 

DrugBank Phthalocyanines, Hypericin, TMC-
647055 and Quarfloxin 

Romeo et al., 
[25] 

Molecular Modeling, MD Simulation of 

spike-hACE2 complex (1.61 µs) and 
Ensemble-based Molecular Docking 

3 6 MD generated 

conformations  

SWEETLEAD library Pemirolast, Isoniazid Pyruvate, 

Nitrofurantoin, Eriodictyol, 

Cepharanthine, Ergoloid and Hypericin 

Smith and 

Smith [26] 

MD Simulation of RBD (1µS) + Ensemble-

based virtual screening + MD Simulations of 
RBD-Drug Complexes (20 x 200ns = 4.2 µs) 

4 Crystal structure (PDB ID: 

6LZG) + 3 MD generated 
conformations 

DrugBank FAD, Gonadorelin, Fondaparinux, 

Atorvastatin, Pralatrexate and 
Hyaluronic acid 

Present study 

 495 



Table 2: Six FDA approved drugs which show stable binding with RBD.  Drugs are listed 496 

according to their average MM-GBSA scores. 10 frames from the last 50ns of trajectories were 497 

considered for the calculation of average MM-GBSA interaction energy. 498 

Drug bank 

ID 

Generic name Best 

Receptor 

ID 

XP 

score 

kcal/mol 

MM-GBSA 

(After Docking) 

kcal/mol 

MM-GBSA 

(Simulation) 

kcal/mol 

DB00644 Gonadorelin 1 -9.4 -53.1 -68.2±7.8 

DB00569 Fondaparinux 3 -8.5 -32.0 -63.2±11.4 

DB01076 Atorvastatin 2 -7.3 -39.1 -56.1±3.1 

DB03147 FAD 1 -10.6 -54.3 -49.7±7.7 

DB08818 Hyaluronic 

acid 

2 -10.5 -40.9 -44.4±4.6 

DB06813 Pralatrexate 1 -8.02 -37.9 -37.6±4.6 

 499 

Table 3: Residues of SARS-CoV-2 spike RBD which directly interact with drugs. 500 

Generic name RBD residues which directly 

interact with drugs  

(Last frame) 

RBD residues which directly interact 

with drugs  

(During last 50ns with ≥70% 

occupancies) 

Fondaparinux R403, D405, E406, R408, 

Q409, K417, V445, G446, 

G447, Q493, S494, Y495, 

G496, N501, Y505 

R403, E406, K417, G446, G447, Y453, 

Q493, S494, G496, Q498 

Gonadorelin R403, D405, E406, R408, 

K417, Y449, Y453, Q493, 

S494, G496, Y505 

R403, D405, R408, N501 

Atorvastatin Y449, Y453, Q493, S494, 

Y495, G496, F497, Q498, 

T500, N501 

Q498, N501 

FAD R403, D405, E406, R408, 

Q409, G416, K417, N501, 

Y505 

R403, K417, N501, Y505 

Hyaluronic acid R403, Y495, G496, F497, 

N501, Y505 

R403, R408, G502, Y505 

Pralatrexate R403, D405, R408, T500, 

N501, G502, Y505 

R403, Y505 

 501 



Table 4: Available literature which support our study.  502 

Drug Name Key Finding Type of data 

Computational/Experimental/Observational 

Reference 

Gonadorelin Binds to SARS-

CoV-2 RBD 

Computational (Docking and MD 

simulation) 

[22] 

Fondaparinux Binds to SARS-

CoV-2 RBD (KD = 

10.3 µmol/L) 

Experimental (Surface Plasmon Resonance) [52] 

Atorvastatin  Linked to a lower 

risk of COVID19 

mortality 

Observational (Retrospective study) [53] 

FAD Binds to SARS-

CoV2 RBD 

Computational (Molecular Docking) [17] 

Hyaluronic 

acid 
Induces 

conformational 

change in RBD 

Experimental (Circular Dichroism) [56] 

Pralatrexate Binds to RBD Computational (Molecular Docking) [55] 

 503 

  504 



 505 

 506 

 507 

Fig. 1. 2D structures of 6 drugs which exhibit stable binding with spike RBD. (DB0064: 508 

Gonadorelin), (DB03147: FAD), (DB00569: Fondaparinux), (DB01076: Atorvastatin), DB06813 509 

(Pralatrexate) and (DB08818: Hyaluronic acid). 510 

 511 



Fig. 2. Workflow for the ensemble-based virtual screening against the spike RBD. 512 

 513 

 514 

Fig. 3. (A) Spike RBD (Surface)-ACE2 (Cartoon) interface and (B) shallow cavity (occupied by 515 

grey surface) identified at the spike RBD-ACE2 interface by the Sitemap tool. Residues of spike 516 

RBD which interact with ACE2 are highlighted in red color. 517 
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 522 

 523 

 524 

 525 



 526 

 527 

 528 

 529 

Fig. 4. (A) RMSD (B) RMSF and (C) conformational ensemble of Spike RBD obtained after 1µs 530 

MD simulation of spike RBD. ACE2 interacting residues of spike RBD have been highlighted in 531 

red dots (Fig. B) and stick representation (Fig. C). Conformational ensemble consists of 100 532 

conformations of spike RBD. 533 
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 536 

 537 



 538 

 539 

 540 

 541 

Fig. 5. (A) PCA mode 1 (B) PCA mode 2 (C) PCA mode 3 and (D) conformational ensemble of 542 

Spike RBD obtained after RMSD-based clustering of 1 µs trajectory. Three representative 543 

conformations from the top three clusters are shown in green color and crystal structure is shown 544 

in orange color. Rectangular box encloses the predicted binding site in spike RBD. 545 
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 554 

 555 

 556 

Fig. 6. Predicted binding pocket differs among RBD conformations (green). Structural alignment 557 

of crystal conformation (orange) with (A) representative conformation 1 (B) representative 558 

conformation 2 (C) representative conformation 3 and (D) all three representative conformations.  559 
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 569 

 570 

Fig. 7. Average RMSD (A) and RMSF (B) of drugs during last 50 ns of the trajectories.  Standard 571 

deviations are shown as error bars. Drugs which show RMSD less than 10Å are highlighted in red 572 

color bars. 573 
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 579 

 580 

Fig. 8. RMSD profiles of RBD (A) and drugs (B) during 200 ns trajectories of six RBD-drug 581 

complexes. 582 

 583 



Fig. 9. Final (Green) binding poses of drugs. (A) DB00644 (B) DB03147 (C) DB00569 (D) 584 

DB01076 (E) DB06813 and (F) DB08818. RBD is shown in surface representation (Orange). H-585 

bonds are shown in dashed black lines. Residues of RBD are shown in stick representation (orange). 586 

 587 

Fig. 10. Initial (Blue) and final (Green) binding poses of drugs. (A) DB00644 (B) DB03147 (C) 588 

DB00569 (D) DB01076 (E) DB06813 and (F) DB08818. RBD is shown in surface representation 589 

(Orange). 590 


