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Abstract:

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused worldwide pandemic
and is responsible for millions of worldwide deaths due to -a respiratory disease known as COVID-
19. In the search for a cure of COVID-19, drug repurposing is a fast and cost-effective approach
to identify anti-COVID-19 drugs from existing drugs. The receptor binding domain (RBD) of the
SARS-CoV-2 spike protein has been a main target for drug designs to block spike protein binding
to ACE2 proteins. In this study, we probed the conformational plasticity of the RBD using long
molecular dynamics (MD) simulations, from which, representative conformations were identified
using clustering analysis. Three simulated conformations and the original crystal structure were
used to screen FDA approved drugs (2466 drugs) against the predicted binding site at the ACE2-
RBD interface, leading to 18 drugs with top docking scores. Notably, 16 out of the 18 drugs were
obtained from the simulated conformations, while the crystal structure suggests poor binding. The
binding stability of the 18 drugs were further investigated using MD simulations. Encouragingly,
6 drugs exhibited stable binding with RBD at the ACE2-RBD interface and 3 of them (gonadorelin,
fondaparinux and atorvastatin) showed significantly enhanced binding after the MD simulations.
Our study shows that flexibility modeling of SARS-CoV-2 RBD using MD simulation is of great
help in identifying novel agents which might block the interaction between human ACE2 and the

SARS-CoV-2 RBD for inhibiting the virus infection.
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1. Introduction

An outbreak known as COVID-19 started at the end of year 2019 has evolved into a pandemic
and is still spreading globally [1]. Till June 3, 2021, more than 171 million confirmed cases and
over 3.6 million worldwide deaths have been reported (covid19.who.int). The causative agent of
COVID-19 is a beta coronavirus known as Severe Acute Respiratory Syndrome Coronavirus-2
(SARS-CoV-2), a member of a single-stranded RNA virus family with spike-like proteins on viral
surface [2]. SARS-CoV-2 genome is divided into 14 open reading frames (ORFs), which encodes
27 proteins[1]. The Spike gene of the SARS-CoV-2 encodes for a transmembrane Spike protein
which exists as a homotrimer. Spike protein can be divided into two subunits, S1 and S2. The S1
subunit harbors a receptor-binding domain (RBD) which interacts directly with the human
angiotensin-converting enzyme-2 (ACE2)[2, 3]. RBD (333-527) contains five anti-parallel 3
strands (B1, B2, B3, P4, and B7)[2]. The ACE2 mainly interacts with the receptor-binding motif
(RBM), an extended insertion between 4 and f7[2]. The extended RBM binds to the claw-like
structure of the ACE2. Experimentally determined crystal structures of ACE2-RBD complex show
a network of hydrophilic interactions at the interface[2]. The hydrogen bonds and salt bridges
between SARS-CoV-2 RBD and ACE2 lead to a very stable binding, corresponding to a

dissociation constant (Kg4) in the nanomolar range [4].

As the only drug in specifically treating COVID-19, remdesivir has been approved by the US food
and drug administration (FDA)[5]. There is a pressing demand for the anti-COVID-19 drugs.
Researchers across the globe are looking for strategies to block the interaction of RBD with
ACE2[6-10]. Pharmaceutical companies such as Moderna and AstraZeneca have invented
vaccines that are based on the genetic sequence of spike protein[11, 12]. There are reports of small

molecule inhibitors, monoclonal antibodies, and peptides that block the interaction of RBD with
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ACE2[10, 13-15]. Above mentioned therapeutic strategies might have high effectiveness against
SARS-CoV-2 but they are costly and time-consuming. In such a scenario, drug repurposing against

RBD appears as less time consuming and cost-effective strategy to control the COVID-19 [16].

Several studies (see Table 1) report results on drug repurposing against spike RBD, but very few
have taken into account of the conformational flexibility of RBD when screening approved
drug[17-25]. In a recent study by Smith and Smith[26], 6 conformations of S-protein-ACE2
complex were used for the molecular docking of small molecules from the SWEETLEAD library.
They identified 7 ligands, however, stability of binding modes of the identified ligand was not
analyzed in detail. In another two studies, MD simulations of spike protein were carried out but
only one conformation of spike protein was used for the virtual screening[20, 24]. It is known that
ensemble-based virtual screening can address the flexibility of binding site by considering multiple
conformations of the receptor[27, 28]. Previously, ensemble-based virtual screening has been

successfully used to screen inhibitors against various drug targets[29-32].

In the present study, we have utilized long MD simulations to probe the conformational plasticity
of RBD, started from the apo form of the solved crystal ACE2-RBD complex (PDB ID: 6LZG)[3].
Three representative conformations were identified from clustering and principal component
analyses on the MD simulation trajectory. These 3 three conformations and the conformation
revealed in the crystal structure were used as an ensemble to predict the drug binding site and to
screen 2466 drugs that have been approved by the FDA. As a result, 18 drugs were identified after
sorting based on docking scores, 16 out of which are actually docked to the RBD conformations
revealed from MD simulation. Furthermore, 20 complexes obtained from docking were subjected
to MD simulations to assess the stability of the drug binding. According to simulation results, 6

approved drugs show stable binding with RBD at the ACE2-RBD interface (Fig. 1). In addition,
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3 systems have shown that MD simulations significantly improved the binding energies with
reference to the initial docked complexes. The present study adds important knowledge to the

ongoing efforts to discover and develop anti-SARS-CoV-2 agents using MD simulations.

2. Materials and methods:

2.1. Identification of druggable pocket(s)

RBD from the crystal structure of ACE2-RBD complex (PDB ID: 6LZG)[3] was extracted and
subjected to protein preparation wizard[33] for the addition of hydrogens, partial charges, and
removal of bad contacts. After preparation, the whole RBD (residues 333-527) was used for the

identification of binding sites using SiteMap tool [34, 35].

2.2. Molecular dynamics simulation of spike protein RBD

Atomic coordinates of spike RBD were extracted from the crystal structure of the spike RBD-
ACE2 complex (PDB ID: 6LZG)[3]. Spike RBD structure was subjected to the protein preparation
wizard for the addition of hydrogens and removal of bad contacts. After preparation, the RBD was
solvated in a rectangular box of TIP3P water molecules[36]. Ions (Na" and CI") were added to

neutralize the system at 0.15M concentration.

Using the Desmond module, the system was first relaxed using the default relaxation protocol
which consists of six stages (For details please read the Desmond manual). After the relaxation, 1
us trajectory was generated under the NPT ensemble for the system using. Temperature was
controlled by using the Nosé-Hoover chain coupling scheme [37] with a coupling constant of 1.0
ps. Pressure was controlled using the Martyna-Tuckerman-Klein chain coupling scheme [37] with

a coupling constant of 2.0 ps. M-SHAKE [38] was applied to constrain all bonds connecting
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hydrogen atoms, enabling a 2.0 fs time step in the simulation. The k-space Gaussian split Ewald
method [39] was used to treat long-range electrostatic interactions under periodic boundary
conditions (charge grid spacing of ~1.0 A, and direct sum tolerance of 10). The cutoff distance
for short-range non-bonded interactions was 9 A, with the long-range van der Waals interactions
based on a uniform density approximation. To reduce the computation, non-bonded forces were
calculated using an r-RESPA integrator [40] where the short-range forces were updated every step

and the long-range forces updated every three steps. The trajectories were saved at 1 ns interval.

2.3. Principal Component analysis (PCA)

PCA is a method to reduce the dimensionality of the multidimensional data. Essential motions of
the protein can be described by a few principal components that dominate the conformational
dynamics encoded in the covariance matrix. We used Normal Mode Wizard (NMWiz) plugin of
VMDJ41] to obtain PCA results [42]. Ca atoms of RBD residues were used for the calculation of
covariance matrix. 3 largest components were considered to describe the major collective motions

of the RBD.

2.4. Conformational clustering of spike RBD

Desmond trajectory clustering tool [43] was used to group 1001 conformations of RBD. Backbone
RMSD matrix was used as structural similarity metric, the hierarchical clustering with average
linkage [43] was selected as the clustering method. The merging distance cutoff was set to be 2 A.
The centroid structure (i.e., the structure having the largest number of neighbors in the structural

family) was used to represent the corresponding structural cluster.

2.5. Virtual screening and prioritization of hits
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Virtual screening workflow (VSW) of SCHRODINGER-2019 was used for the ensemble-based
virtual screening. A set of approved drugs (2466 entries) was downloaded from the
DRUGBANK]44]. Using the LigPrep module (Schrodinger Release 2020-4: LigPrep, Schrodinger,
LLC, New York, NY, 2020), multiple 3D conformations of approved drugs were generated. After
ligand preparation, a total of 5820 entries including different protonation states of 2466 drugs were
used for the virtual screening. Four conformations of RBD were subjected to protein preparation
and structural alignment. We used a grid generation tool to create a grid around the predicted
binding site in the crystal structure of RBD. Same grid parameters were used for all conformations
of RBD. Glide module[45, 46] was used to carry out virtual screening of approved drugs against
each of four conformations of RBD. Glide has an option to incorporate grid files associated with
multiple receptor conformations. Extra precision (XP) protocol[47] was used to dock all 5820
entries in the prepared dataset. After XP docking, 203 RBD-drug complexes were subjected to
MM-GBSA (the Molecular Mechanics/Generalized Born Surface Area) energy scoring. Fig. 2

summarizes the ensemble-based VS protocol used in present study.

2.6. Investigation of binding pose stability

Each of selected RBD-drug complexes was subjected to 200 ns MD simulations using Desmond.
Protocol for the system preparation, equilibration and production is as described previously. SID
tool was used to analyze the dynamics of RBD and drugs. The data of the last 50 ns trajectories
were used to calculate the conformational changes and fluctuations (i.e., the root-mean-square-
deviation and -fluctuation, or the RMSD and RMSF). In addition, the binding strength of 6

predicted drugs to the RBD was quantified using averaged MM-GBSA energies.

3. Results and discussions
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3.1. Druggable pocket(s) at the ACE2-RBD interface

RBD-ACE?2 interface is an attractive target for the discovery of small molecules. Recognition of
human ACE2 by SARS-CoV-2 RBD involves several residues from both binding partners (Fig.
3A). The RBD-ACE?2 interface reveals several polar and van der Waal interactions. SiteMap tool
revealed several shallow cavities at and near the RBD-ACE?2 interface, but we focused on the
druggable pocket that is directly related to the ACE2 binding (Fig. 3B). It is noted that the
predicted pocket accommodates the side chain of K353 of human ACE2, as the K353 is critical in
RBD-ACE2 binding. The predicted druggable pocket has volume of 91.23 A® and consists of 16
RBD residues (R403, D405, E406, R408, Q409, G416, K417, 1418, Y449, Y453, Q493, S494,
Y495, F497, Q498 and Y505) out of which14 are polar and only 2 residues are non-polar (1418
and F497). As discovered from the crystal structure, K417, Y505 and Q498 in the predicted pocket
of RBD interact with the D30, E37 and Q42 of ACE2 respectively. This predicted pocket overlaps
with the pocket identified in a recent study by Deganutti et al.[48]. It is plausible that the presence
of small drug molecules at the predicted pocket shall interfere the interactions between RBD and

human ACE2.

3.2 Conformational analysis of SARS-CoV-2 RBD

RBD is stable throughout the 1 us long MD simulation (Fig. 4A). We observed that C-terminal
region is relatively more flexible than the N-terminal region (Fig. 4B and 4C). As mentioned
previously, RBD is divided into rigid core and flexible receptor-binding motif (RBM). RBM lies
in the C-terminal of the RBD, where majority of ACE2 interacting residues reside. Principal
component analysis of MD generated conformations of RBD revealed that the first three

components can explain more than 50% of the collective motions (Fig. 5). All 3 components
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showed that the residues in the RBM are highly dynamic. Compared to the RBD-ACE2 complex,
ACE?2 interacting residues of the RBD show a high B-factor in the apo RBD (data not shown).
RMSF plot of RBD also shows that most residues of the predicted pocket have RMSF values
greater than 1A. The flexibility of the ACE2 interacting residues necessitates the consideration of

multiple conformations of RBD (Fig. 5D) for virtual screening.

3.3. Virtual screening yielded approved drugs with good binding scores with RBD

Ensemble-based virtual screening was adopted to screen drugs which can bind to RBD at the
predicted site (Fig.2). The conformational ensemble of RBD contains 4 structures, representative
conformations from the 3 largest clusters obtained from RBD MD simulations and an X-ray
structure (Fig. 5D). We observed that conformations of RBD in the ensemble exhibits clear
structural diversity (Fig.SD and Fig. 6). Based on structural alignment and visual inspection, we
found that residues in the predicted binding pocket exhibit conformational variability mainly at the
level of side-chains. Even small conformational difference at the level of side-chain of a single
residue in the binding pocket may affect the screening results. Virtual screening of prepared dataset
of approved drugs against the conformational ensemble of RBD revealed 203 potential binders.
The potential binders were then ranked based on the XP score and the MM-GBSA score. Further
analyses were carried out on 18 potential binders (Table S1) that were identified from the list of
50 best hits from the 2 ranking results (XP score-based and MM-GBSA score-based lists). We first
visually inspected the binding poses and interactions of selected hits with the RBD. Interestingly,
drugs showed differential preference on the RBD conformations. For 16 out of 18 hits, the best
binding poses are the same according to the 2 scoring functions. Only 2 drugs (DB00284 and
DB00644) showed different poses in 2 ranking results (Table S1). Therefore, 20 complexes were

obtained for the 18 hits based on the virtual screening. We looked into the receptor conformations
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and found that only 2 out of 18 hits were identified using the crystal structure of RBD as the
receptor, while 16 other hits preferentially bind to conformations obtained from simulations (Table
S1). It is evident that ensemble-based virtual screening offers improved results to identify better

binding poses for ligands which is not possible with single receptor conformation.
3.4 MDD simulations of RBD-drug complexes identify strong binding candidates

To check the stability of the predicted binding to the RBD, each of 20 RBD-drug complexes was
subjected to 200 ns MD simulations (Fig. S1-S5). The average RMSD of drugs in the 20
complexes are shown in Fig. S1. The complex structures were aligned to the RBD of the initial
conformation, therefore, the RMSD of drugs mainly reflects the deviation of drug molecules from
the predicted pose. Using 10 A as a threshold, the drugs were classified into 2 groups. Drugs that
deviate from the initial position and conformation by over 10 A RMSD were considered as non-
binders, since they either dissociate from the RBD or move to binding sites with less
pharmaceutical interest. We observed that 12 drugs move out of original binding pockets and bind
to other sites on RBD (Fig. 7A, Fig. S1 and S6). One drug (DB02772) dissociated from the RBD
and moved in the solvent (Fig. 7A). Because of the flexible loop in the C-terminal region, RBD

showed intermittent conformational changes in some complexes (Fig. S1).

3.5. FAD, fondaparinux and atorvastatin remain bound to the RBD with small conformational

changes

Majority of drugs leave the predicted binding pocket during MD simulations (Fig. 7A and Fig.
S1). This observation stresses the essential roles of dynamics simulations after virtual screening in
drug development. There are only 3 drugs, flavin adenine dinucleotide (FAD), fondaparinux and

atorvastatin, exhibiting stable binding to the predicted binding site, showing RMSD < 5 A (Fig.
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7A, Fig. 8B and Fig. S1). FAD, fondaparinux and atorvastatin also exhibit incredibly low
conformational fluctuations (Fig. 7B), indicating that these drugs make stable interactions with the
residues in the predicted binding site (Table 3). FAD has also been reported as RBD binder in a
recent virtual screening study[17] but the binding stability of FAD was not investigated. FAD is
used as a dietary supplement and there is no side-effect associated with this drug. The discovery
from our MD simulation potentiates the possibility of FAD as RBD binder. Phosphate moieties of
FAD showed ionic interaction with R403, R408 and K417 (Fig. 9). Adenine ring of FAD exhibited
n-n stacking interaction with the sidechain of Y505. FAD also showed H-bonds with N501 and
Y505. Flavin and phosphate moieties of FAD also showed water mediated H-bonds with the RBD.
Interestingly, fondaparinux and atorvastatin exhibited very low RMSD (<3A on average) among
all 20 RBD-drug complexes. Both fondaparinux and atorvastatin have been proposed in the
COVID-19 treatment [49-51] but their binding interactions with RBD has not been reported.
Fondaparinux is a highly polar molecule and contains five monomeric sugar units. We observed
that sulphate groups of fondaparinux make ionic interactions with R403 and K417 (Fig.9).
Fondaparinux forms several H-bonds with the polar residues of the predicted pocket. Atorvastatin
belongs to statin class of drugs and it is a lipid lowering agent. We observed that after MD
simulation, binding of atorvastatin has enhanced. Atorvastatin makes both polar and non-polar
interactions within the pocket (Fig. 9). The sidechain of F497 provides hydrophobic environment
for the propyl group of the atorvastatin. Polar tail region of atorvastatin makes several H-bonds
with the RBD. Initial and final conformations of FAD, fondaparinux and atorvastatin in the

predicted binding pocket are shown in Fig. 10.

3.6. Gonadorelin, pralatrexate and hyaluronic acid show large conformational changes but

maintain interactions with the residues of predicted pocket
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Despite large deviation of drugs from initial binding pose (RMSD greater than 6A on average, see
Fig. 7A, Fig. 8B, Fig. 10A and 10E-F), we analyzed the trajectories of RBD complexed with
gonadorelin, pralatrexate and hyaluronic acid. Both gonadorelin and hyaluronic acid exhibited
average RMSD between 9 and 10 A (Fig. 7B). Gonadorelin is a synthetic peptide hormone while
hyaluronic acid is an anionic, nonsulfated glycosaminoglycan. We observed that both gonadorelin
and hyaluronic acid have more than 20 rotatable bonds. During MD simulation, a ligand may
deviate significantly from the originally bound conformation to optimize the overall interactions
with the receptor. Presence of a large number of rotatable bonds in the ligand may lead to high
RMSD with respect to initial bound conformation. Comparison of MM-GBSA energies revealed
that binding energies of gonadorelin and hyaluronic acid improve slightly after MD simulations
(Table 1). Gonadorelin and hyaluronic acid showed mainly polar interactions with the RBD (Fig.
9). Average RMSD of pralatrexate was lower than gonadorelin and hyaluronic acid but higher than
FAD, fondaparinux and atorvastatin. We observed that MM-GBSA energy of pralatrexate
decreases after the MD simulation (Table 2). Residues showing interactions with gonadorelin,
pralatrexate and hyaluronic acid are shown in Fig. 9 and Table 3. We have compared the initial

and MD optimized poses of gonadorelin, hyaluronic acid and pralatrexate in Fig. 10.
3.7. Literature review on six repurposed drugs

Literature review was carried out in support of our six repurposed drugs (Table 4). In a
computational study by Maffucci and Contini [22], Gonadorelin was shown to bind at two binding
sites of the RBD and a short MD simulation was used for the evaluation of binding pose stability
and rescoring. However, the detailed binding mode of gonadorelin has not been shown. As to
fondaparinux, in an in vitro study by Hao et al.,[52] K4 value of fondaparinux was determined for

SARS-CoV-2 RBD. Authors have reported that K4 value of fondaparinux for S-RBD falls in
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micromolar range. Our study supports the findings of Hao et al. As to \a
torvastatin, experimentally statins have been reported to be effective in Covid-19 [53], but there is
no information available on binding of atorvastatin to SARS-CoV-2 RBD. To our knowledge our
study is the first of its kind study in which binding of atorvastatin to RBD has been shown and
validated by MD simulation. In a recent molecular docking study, FAD was identified as a
potential RBD binder[17]. Our study also suggests that FAD can bind to RBD. As to hyaluronic
acid, Kuwentrai et al., have reported the intradermal delivery of S-RBD using dissolvable
hyaluronic acid microneedles (HA MNs)[54] but interaction of HA with S-RBD has not been
investigated. In the second article, authors have used circular dichroism to show that hyaluronic
acid induces conformational change in the SARS-CoV-2 S1 RBD. In both articles, structural detail
of interaction between HA and SARS-CoV-2 is missing. Our computational drug repurposing
study also showed that HA can interact with SARS-CoV-2 RBD and provides structural insight
into binding mode of HA. As to pralatrexate, it may also bind to SARS-CoV-2 RBD. In a
computational study by Cavasatto and Filippo [55], pralatrexate has been shown to be a potential
inhibitor of SARS-CoV-2 S-protein. In the above study authors have suggested that MD simulation
is important for the validation of pralatrexate binding to SARS-CoV-2 RBD. Our MD simulation

results show that RBD-pralatrexate complex is stable.

Literature review was also carried out to identify the potential side effects of the six drugs (Table
S2). Every drug comes with either minor or major side effects. If a drug improves the overall
condition of a COVID-19 patient with minimal side effects, then that drug can be used to treat the
patient. Considering the ongoing Covid-19 pandemic, drug repurposing would be a fast and cost-

effective approach to find medication against SARS-CoV-2.
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4. Conclusions

The lack of specific treatment options for the COVID-19 has prompted researchers to look for the
approved medicines that can be effective against the SARS-CoV-2. Computational study on drug
repurposing is a very cost-effective method to identify new target of existing drugs. Under the light
of the fact that RBD-ACE2 interface is an attractive drug targeting site for the therapeutic
intervention, we have exploited the conformational flexibility of RBD to search approved drugs
which may block the interaction between RBD of SARS-CoV-2 spike protein and human
angiotensin converting enzyme (ACE2). 1 us MD simulation of the apo RBD was used to generate
the structure ensemble. Using the clustering method, three major conformers of RBD were
identified. Total four conformers of RBD (One crystal conformation and three MD generated
conformations) were used in our virtual screening workflow of FDA approved drugs (2466),
leading to 18 compounds with top Glide XP docking scores. To further validate these compounds,
200 ns MD was carried out to check the stability of the docked complexes. 6 stable systems were
identified using combination of dynamic properties (RMSD, RMSF) and physics-based
MMGBSA binding energy. Interestingly, in three systems have shown that MD simulation
generated the poses that significantly improved the MM-GBSA binding energy (Gonadorelin from
-53.1 to -68.2+7.8, Fondaparinux from -32.0 kcal/mol to -63.2+11.6 and atorvastatin from -39.1
to -57.4+4.0). Gonadorelin and fondaparinux show promising binding affinities -68.2+7.8kcal/mol
and -63.2£11.6 respectively) in comparison with FAD (-49.7+£7.7 kcal/mol) and atorvastatin (-
57.4+4.0). Although our study suggests that gonadorelin, fondaparinux, atorvastatin and FAD may
serve as good drug candidates against COVID-19, further experimental studies and risk-benefit

assessment are necessary to evaluate the therapeutic values of the above repurposed drugs.
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490  Table 1: Comparison of present study with published studies that report repurposed drugs/compounds against SARS-CoV-2 Spike RBD.
491  Studies have been grouped into four categories, i.e., category 1 includes simple structure or pharmacophore-based studies, category 2
492  includes virtual screening against single RBD conformation with MD validation of binding poses of selected hits, category 3 includes
493  virtual screening against multiple conformations (ensemble) of RBD but no MD validation of binding poses and category 4 includes
494  ensemble-based virtual screening with MD validation of binding poses of selected hits.

495

Methods Category | Protein Input Database Output Best Ref.
Structure(s) Drugs/Compounds
Homology Modeling + Structure-based 1 Homology Model FDA approved drugs subset | Cangrelor, NADH, FAD Hall et
virtual screening in the ZINC database Iomeprol, Coenzyme A and al.,[17]
Tiludronate
Pharmacophore-based virtual screening 1 Homology model CSD, ZINC database, Lead compound 1-8 Shehroz et
DrugBank and TIMBAL al.,[18]
database
Molecular Docking 1 Crystal structure (PDB ID: | DrugBank Hydroxychloroquine and Azithromycin McGregor and
6LZG) Sandeep[19]
MD Simulation of RBD (100 ns) + 1 Single MD generated DrugBank Simeprevir and Lumacaftor Trezza et
Structure-Based Virtual Screening + Steered conformation al.,[20]
MD Simulations of RBD-Drug Complexes
(2 x 700 ps = 1400 ps)
Homology Modeling + Structure-based 2 Homology Model LOPAC KT203, BMS195614, KT185, Choudhary et
virtual screening + MD Simulations of RS504393, and GSK1838705A al., [21]
RBD-Drug Complexes (5 x 50 ns = 250 ns)
MD Simulation of hACE2-RBD complex 2 Crystal Structure (PDB SelleckChem and Targetmol Polymixin B, Colistin, Daptomycin, | Maffucci and
(20ns) + Structure-based virtual screening + ID: 6MO0J) Thymopentin and Icatibant Contini [22]
MD Simulations of RBD-Drug Complexes
(60 x 1 ns =60 ns)
Virtual screening and MD Simulation of 2 Crystal structure (PDB ID: | DrugBank database Fenoterol, Riboflavin, Cangrelor and Prajapat et al.,
RBD-Drug Complexes (41x 50 ns + 1 x 100 6M17) Vidarabine [23]
ns =2.15 ps)
MD Simulation of S-protein (18 ns) + 2 Single MD generated SWEETLEAD library Theaflavin digallate, suramin sodium De Oliveira et
Virtual screening and MD conformation and 5-hydroxytrytophan al., [24]
Simulation of RBD-Drug complexes (3 x 18
ns = 54 ns)
Structure-based virtual screening + MD 2 Crystal structure (PDB ID: | DrugBank Phthalocyanines, Hypericin, TMC- Romeo et al.,
Simulations of RBD-Drug Complexes (2 x 6VSB) 647055 and Quarfloxin [25]
30 ns = 60 ns)

Molecular Modeling, MD Simulation of 3 6 MD generated SWEETLEAD library Pemirolast, Isoniazid Pyruvate, Smith and
spike-hACE2 complex (1.61 ps) and conformations Nitrofurantoin, Eriodictyol, Smith [26]
Ensemble-based Molecular Docking Cepharanthine, Ergoloid and Hypericin

MD Simulation of RBD (1uS) + Ensemble- | 4 Crystal structure (PDB ID: | DrugBank FAD, Gonadorelin, Fondaparinux, Present study
based virtual screening + MD Simulations of 6LZG) + 3 MD generated Atorvastatin, Pralatrexate and
RBD-Drug Complexes (20 x 200ns = 4.2 ps) conformations Hyaluronic acid
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Table 2: Six FDA approved drugs which show stable binding with RBD. Drugs are listed
according to their average MM-GBSA scores. 10 frames from the last 50ns of trajectories were

considered for the calculation of average MM-GBSA interaction energy.

Drug bank Generic name  Best XP MM-GBSA MM-GBSA
ID Receptor score (After Docking) (Simulation)
ID kcal/mol kcal/mol kcal/mol
DB00644 Gonadorelin 1 94 -53.1 -68.2+7.8
DB00569  Fondaparinux 3 -8.5 -32.0 -63.2+11.4
DB01076 Atorvastatin 2 -7.3 -39.1 -56.1+£3.1
DB03147 FAD 1 -10.6 -54.3 -49.7+£7.7
DBO08818 Hyaluronic 2 -10.5 -40.9 -44 .4+4.6
acid
DB06813 Pralatrexate 1 -8.02 -37.9 -37.6x4.6

Table 3: Residues of SARS-CoV-2 spike RBD which directly interact with drugs.

Generic name RBD residues which directly RBD residues which directly interact
interact with drugs with drugs
(Last frame) (During last SOns with >70%
occupancies)
Fondaparinux R403, D405, E406, R408, R403, E406, K417, G446, G447, Y453,
Q409, K417, V445, G446, Q493, S494, G496, Q498
G447, Q493, S494, Y495,
G496, N501, Y505
Gonadorelin R403, D405, E406, R408, R403, D405, R408, N501
K417,Y449,Y453, Q493,
S494, G496, Y505
Atorvastatin Y449, Y453, Q493, S494, Q498, N501
Y495, G496, F497, Q498,
T500, N501
FAD R403, D405, E406, R408, R403, K417, N501, Y505
Q409, G416, K417, N501,
Y505
Hyaluronic acid =~ R403, Y495, G496, F497, R403, R408, G502, Y505
N501, Y505
Pralatrexate R403, D405, R408, T500, R403, Y505
N501, G502, Y505
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Table 4: Available literature which support our study.

Drug Name Key Finding Type of data Reference
Computational/Experimental/Observational

Gonadorelin Binds to SARS- | Computational (Docking and MD | [22]
CoV-2 RBD simulation)

Fondaparinux | Binds to SARS- | Experimental (Surface Plasmon Resonance) | [52]
CoV-2 RBD (Kp =
10.3 umol/L)

Atorvastatin Linked to a lower | Observational (Retrospective study) [53]
risk of COVIDI9
mortality

FAD Binds to SARS- | Computational (Molecular Docking) [17]
CoV2 RBD

Hyaluronic Induces Experimental (Circular Dichroism) [56]

acid conformational
change in RBD

Pralatrexate Binds to RBD Computational (Molecular Docking) [55]
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512  Fig. 2. Workflow for the ensemble-based virtual screening against the spike RBD.

513

514

515  Fig. 3. (A) Spike RBD (Surface)-ACE2 (Cartoon) interface and (B) shallow cavity (occupied by
516  grey surface) identified at the spike RBD-ACE?2 interface by the Sitemap tool. Residues of spike

517  RBD which interact with ACE2 are highlighted in red color.
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530 Fig. 4. (A) RMSD (B) RMSF and (C) conformational ensemble of Spike RBD obtained after 1pus
531  MD simulation of spike RBD. ACE2 interacting residues of spike RBD have been highlighted in
532  red dots (Fig. B) and stick representation (Fig. C). Conformational ensemble consists of 100

533  conformations of spike RBD.
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Fig. 5. (A) PCA mode 1 (B) PCA mode 2 (C) PCA mode 3 and (D) conformational ensemble of
Spike RBD obtained after RMSD-based clustering of 1 ps trajectory. Three representative
conformations from the top three clusters are shown in green color and crystal structure is shown

in orange color. Rectangular box encloses the predicted binding site in spike RBD.
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Fig. 6. Predicted binding pocket differs among RBD conformations (green). Structural alignment
of crystal conformation (orange) with (A) representative conformation 1 (B) representative

conformation 2 (C) representative conformation 3 and (D) all three representative conformations.
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570

Fig. 7. Average RMSD (A) and RMSF (B) of drugs during last 50 ns of the trajectories. Standard

571

deviations are shown as error bars. Drugs which show RMSD less than 10A are highlighted in red

572

color bars.
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581  Fig. 8. RMSD profiles of RBD (A) and drugs (B) during 200 ns trajectories of six RBD-drug

582  complexes.

583



584  Fig. 9. Final (Green) binding poses of drugs. (A) DB00644 (B) DB03147 (C) DB00569 (D)
585 DBO01076 (E) DB06813 and (F) DB08818. RBD is shown in surface representation (Orange). H-

586  bonds are shown in dashed black lines. Residues of RBD are shown in stick representation (orange).

587

588  Fig. 10. Initial (Blue) and final (Green) binding poses of drugs. (A) DB00644 (B) DB03147 (C)
589 DBO00569 (D) DB01076 (E) DB06813 and (F) DB08818. RBD is shown in surface representation

590 (Orange).



