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The global impacts of climate change are evident in every marine ecosystem. On coral
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1 | INTRODUCTION

VAN WOESIK ET AL.

ocean warming, yet one of the greatest challenges of this epiphenomenon is linking
information across scientific disciplines and spatial and temporal scales. Here we re-
view some of the seminal and recent coral-bleaching discoveries from an ecological,
physiological, and molecular perspective. We also evaluate which data and processes
can improve predictive models and provide a conceptual framework that integrates
measurements across biological scales. Taking an integrative approach across biologi-
cal and spatial scales, using for example hierarchical models to estimate major coral-
reef processes, will not only rapidly advance coral-reef science but will also provide
necessary information to guide decision-making and conservation efforts. To con-
serve reefs, we encourage implementing mesoscale sanctuaries (thousands of km?)
that transcend national boundaries. Such networks of protected reefs will provide
reef connectivity, through larval dispersal that transverse thermal environments,
and genotypic repositories that may become essential units of selection for environ-
mentally diverse locations. Together, multinational networks may be the best chance
corals have to persist through climate change, while humanity struggles to reduce

emissions of greenhouse gases to net zero.
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large regions (Hughes et al., 2018; McClanahan et al., 2020; Stuart-
Smith et al., 2018). Such changes reduce the goods and services that

The relationship between scleractinian corals and their photosyn-
thetic microalgal symbionts has allowed corals to build coral reefs
for millions of years. In recent decades however thermal-stress
events have increased in frequency and intensity resulting in wide-
spread coral bleaching (Glynn, 1996; Heron et al., 2016; Figure 1).
Coral bleaching represents the breakdown of a long co-evolutionary
relationship between the coral host and its photosynthetic symbi-
onts (Coles & Jokiel, 1977; Gates et al., 1992; Goreau, 1964; Hoegh-
Guldberg, 1999; LaJeunesse et al., 2018; Radecker et al., 2021;
Weis, 2008). This breakdown leads to the visual whitening of corals
through the loss of intracellular microalgal symbionts (Box 1), which

can result in coral mortality and changes in reef communities over

reefs provide, including their capacity to keep up with sea-level rise
(Perry et al., 2013; van Woesik & Cacciapaglia, 2021), and thereby
protect coastal communities from storm waves (Ferrario et al., 2014).
Yet, our understanding of coral bleaching resulting from thermal
stress and its cascading consequences on coral reefs is incomplete.
We are just beginning to understand the role of molecular, genetic,
and phenotypic traits in determining which individuals, species, and
populations of corals are likely to survive.

Although numerous studies collect coral-bleaching data
(Box 2), these studies are rarely integrated across biological lev-
els of organization. Still, understanding variation in thermal toler-

ance among individuals at the molecular and physiological levels
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FIGURE 1 Global coral bleaching from 1980 to 2020. Coral bleaching was calculated as a percentage of the coral colonies that were
bleached at the time of survey, from 11,068 sites in 89 countries (n = 23,298; data from van Woesik & Kratochwill, 2022)
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BOX 1 The coral bleaching phenomenon

The term ‘bleaching’ was coined to describe the visible paling of the coral surface, as the white skeleton becomes visible through the
animal's translucent tissue that has lost pigmentation and symbionts (Glynn, 1983; Goreau, 1964). Coral bleaching is synonymous
with the breakdown of the symbiotic relationship between the coral host and its microalgal symbionts (family Symbiodiniaceae). Yet,
bleaching does not imply a physiological pathology per se because bleaching can result from multiple biotic and abiotic stressors,
including freshwater, disease, pollutants, UV radiation, and suboptimal seawater temperatures (Glynn, 1996; Goreau, 1964). Most
recent coral-bleaching events are caused by anomalously high seawater temperatures (Glynn, 1996; Hoegh-Guldberg, 1999; Hughes
et al., 2018; Sully et al., 2019) resulting from climate change. Under extreme temperature stress, coral tissue deterioration or de-
tachment from the skeleton can occur, often leading to mortality (Gates et al., 1992; Leggat et al., 2019). In many cases, however,
the coral tissue remains intact during bleaching, albeit severely compromised and deprived of a nutrition source due to the loss of
symbiotic microalgae that provide energy from photosynthesis to the coral host. Without sufficient heterotrophic compensation
(Grottoli et al., 2006; Levas et al., 2016) or high enough energy reserves (Anthony et al., 2009), the bleached coral may eventually
die from starvation.

Processes involved in the establishment and maintenance of the coral-microalgal symbiosis provide insights into bleaching mech-
anisms. On establishment of symbiosis, the microalgal cells are taken into the coral gastrodermis, coral immune responses are re-
pressed (Voolstra et al., 2009), and the cells are incorporated into the symbiosome (Davy et al., 2012). There the microalgal symbionts
are maintained in a vegetative, immobile, nutrient-limited state that stimulates the release of excess photosynthetic carbon for the
coral host to harvest (Barott et al., 2015; Jokiel et al., 1994). Recognition and signaling between both partners are crucial for maintain-
ing nutritional demands (Radecker et al., 2021). Under environmental stress, translocation of microalgal photosynthates to the coral
host slows (Hughes et al., 2010), reducing the coral's primary source of organic carbon, signaling starvation and amino acid digestion
(Radecker et al., 2021).

The onset of physiological stress and bleaching is strongly dependent on the rate of heating, the accumulated thermal stress,
and the maximum temperature (Middlebrook et al., 2010; Savary et al., 2021; Voolstra et al., 2020). Thermal stress affects multiple
processes in both partners, resulting in direct impairment of key cellular functions, homeostasis, and nutrition (Radecker et al., 2021;
Roach et al., 2021a). In the microalgal symbiont, several factors have been implicated as pressure points during thermal stress, es-
pecially when combined with high irradiance. These factors include photosystem Il repair, thylakoid membrane stability, and both
photosynthetic and heterotrophic carbon assimilation pathways (Hughes et al., 2010; Iglesias-Prieto et al., 1992; Tchernov et al.,
2004; Warner et al., 1999).

Disrupted photosynthetic and mitochondrial electron flow leads to elevated reactive-oxygen and nitrogen species. These
disruptions alter redox homeostasis, create oxidative stress (Brown et al., 2002; Krueger et al., 2014; Lesser, 1997), and trigger
a coral-innate-immune response. Transcriptomic analyses show that oxidative stress disrupts calcium (Ca®*) homeostasis, which
leads to altered cytoskeletal and cell-adhesion, reduced calcification, and expression of stress-response genes (DeSalvo et al., 2008;
Rodriguez-Lanetty et al., 2009)—however, gene-network analyses indicate that additional, but less understood, mechanisms are also
involved in coral bleaching (Dixon et al., 2020; Rose et al., 2016). Persistent disruption to cellular homeostasis under thermal stress
can cause both the coral and the microalgal symbiont to undergo necrotic and apoptotic cell death (Dunn et al., 2012; Lesser & Farrell,
2004) and can lead to fatal coral bleaching.

is essential for elucidating a population's vulnerability at the eco-
logical level. Similarly, variable responses to thermal stress may
provide insight into physiological and molecular mechanisms
and highlight adaptive potential at different geographic scales.
Therefore, there is a need for a conceptual framework that con-
nects environmental conditions to coral-bleaching responses
across biological, spatial, and temporal scales. Such a framework
should integrate individual-based molecular and physiological
responses with coral populations and communities. Here, we ex-
plore potential links across biological disciplines that may increase
our understanding of coral-bleaching responses and their impact
on coral-reef ecosystems.

Elucidating coral-bleaching responses is critical in determining
which habitats and oceanic regions might serve as climate-change
refugia and how we could manage them. Building on past reviews
on coral bleaching (Glynn, 1996; Brown, 1997; Baker et al., 2008;
Suggett & Smith, 2020), we update the relevant information and
synthesize recent coral-bleaching discoveries from an ecologi-
cal, physiological, and molecular perspective. This synthesis aims
towards providing a conceptual framework that integrates coral-
bleaching responses across biological scales in a way that sheds
light on how best to identify climate-change refugia and possible
management strategies. We also recommend which data, metadata,
and processes are critical for: (i) improving predictive models of
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BOX 2 Coral-bleaching data and metadata needs

Field studies and monitoring on coral reefs usually focus on capturing the intensity and extent of coral bleaching under varying envi-
ronmental conditions and determine where corals are most likely to bleach and recover given different local and regional conditions.
In the field, bleaching is commonly recorded as the proportion of bleached coral colonies, or as a percentage of coral cover. Some
field estimates use either the presence or absence of bleaching or qualitative categories, which are convenient but restrict analytical
approaches harnessing the strength of continuous variables. As bleaching is a dynamic process that varies spatially and temporally
(Brown et al., 2002; Castillo et al., 2012; Wall et al., 2021), the timing of field surveys is often dictated by logistical constraints and
may not coincide with peak bleaching. This presents challenges to accurately observing the full extent of bleaching because recently
dead corals may not necessarily be attributed to bleaching, potentially leading surveys to underestimate bleaching if the survey is
conducted after some mortality has occurred.

In situ ecological bleaching data are collected using a variety of methods (Figure 2), including rapid surveys, quantitative transects,
and photographic censuses. These data are sometimes supplemented by in situ measurements of the photosynthetic responses of
microalgal symbionts and by sampling of corals for further laboratory diagnoses to determine the densities and types of symbionts,
and various molecular, cellular, and physiological responses. Yet, species-level identification is still problematic for many corals (e.g.,
Pocillopora, massive Porites species, and the highly speciose genus Acropora) and for their symbionts belonging to Symbiodiniaceae.
These unknown species boundaries can jeopardize geographic comparisons of coral bleaching. We, therefore, encourage in situ sur-
veys at high taxonomic resolution and the implementation of a collection of specimen vouchers as routine procedures, which would
allow taxonomic comparisons.

Bleaching data can also be obtained by autonomous underwater vehicles and aerial imagery from drones, low altitude flights (i.e.,
helicopters and airplanes), and satellites (Dornelas et al., 2019; Drury et al., 2022; Hedley et al., 2016). These methods vary in their
spatial extent and accuracy of bleaching detection. Although satellite imagery may revolutionize broad-scale monitoring, especially
for remote reefs (Xu et al., 2020), such data have several limitations, including being informative only for the shallowest parts of the
reef and providing little, if any, taxonomic resolution (Hedley et al., 2012). Therefore, there is a need to integrate coral-bleaching data-
sets at multiple biological, spatial, and temporal scales (Figure 2) and match those data with appropriate environmental predictors to
make survey results scalable across large geographic regions.

Data integration and geographic comparisons also require detailed metadata, which are frequently missing from datasets
(McLachlan et al., 2020), making spatial and temporal comparisons and meta-analyses difficult. At a minimum, metadata should
include the date of sampling, the coordinates of the study site, the depth of survey, and the sampling method (Grottoli et al.,
2021). Additionally, when coral samples are collected, information about habitat characteristics, such as contact with turf or
macroalgae, as well as variables such as water temperature, photosynthetically active radiation, salinity, and dissolved oxygen
is helpful to provide context for the interpretation of physiological and molecular responses (Grottoli et al., 2021). To facili-
tate metadata collection, coral-bleaching studies could adopt the Darwin Core standard, which describes biodiversity data and
outlines the ‘Minimal Information about any(x) Sequence’ (MIxS) standard (Yilmaz et al., 2011), used widely in genomics and
microbial ecology. An example of a tool that meets both standards is the Genomic Observatories Metadatabase (Deck et al.,,
2017) (GEOME, https://geome-db.org/), which stores metadata archives that are permanently linked to -omics resources, stored
at the National Center of Biotechnology Information's (NCBI) Sequence Read Archive. In addition, gene expression data can be
deposited and maintained in NCBI's Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/), and physiological and
ecological data can be deposited in archives such as BCO-DMO (https://www.bco-dmo.org). Open, transparent, and linked ac-
cess to all raw data, sequence data, metadata, and analytical code are needed to integrate data across disciplines and accelerate
coral-bleaching discoveries.

coral resilience (Box 2) and (ii) refining the capacity to detect inter-
connected networks of reefs for the establishment of mesoscale
sanctuaries (thousands of km?) in which high levels of coral genetic
diversity, phenotypic adaptation, thermal tolerance, and resilience
are most likely. Incorporating models of coral resilience and refugia
into sanctuary planning will help to improve the ecosystem-level re-

silience of local marine reserves and expand multinational mesoscale

sanctuaries. Multinational mesoscale sanctuaries have the potential
to simultaneously protect coral reefs from local and regional scale
stressors, bridge territorial boundaries, and give corals and coral
reefs a fighting chance of coping with climate change because they
can preserve standing genetic diversity while maintaining connec-
tivity between reefs through larval dispersal across contrasting en-

vironmental and thermal gradients.
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FIGURE 2 The diversity of approaches
used to investigate coral bleaching across Ecosystem Remote sensing
spatial and biological scales °
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2 | ENVIRONMENTAL DRIVERS OF CORAL
BLEACHING

Coral bleaching is a general response to stress (Box 1). The most
widespread cause of recent broad-scale coral bleaching is anoma-
lously warm seawater resulting from climate change (Glynn, 1996;
Hoegh-Guldberg, 1999; Hughes et al., 2018). Coral bleaching is most
common in localities with a high intensity and high frequency of
thermal-stress anomalies (McClanahan et al., 2020), and is less com-
mon in localities with highly variable seawater temperatures (Safaie
et al., 2018; Sully et al., 2019; but see Klepac & Barshis, 2020). In the
past 20 years, the most extensive coral bleaching has been recorded
between latitudes 15° and 20°, north and south (Sully et al., 2019).
Reefs in the equatorial western Pacific Ocean have experienced
relatively less coral bleaching than elsewhere, despite prevalent high
seawater temperatures (McClanahan et al., 2020; Sully et al., 2019).
However, in recent decades this region has warmed less rapidly than
other ocean regions (Kleypas et al., 2008), most likely because nega-
tive feedback loops limit maximum temperatures (Clement et al.,
1996).

Although anomalously high seawater temperatures are the main
driver of coral bleaching (Brown et al., 2000; Glynn, 1983), there are
other environmental factors that can exacerbate or mitigate coral
bleaching during thermal stress. Most notably, light intensity, nutri-
ent concentrations, zooplankton availability, and water-flow rates
are key factors mediating bleaching responses. Experimental studies
under elevated temperatures indicate that coral bleaching is reduced
when light levels are low (Lesser & Farrell, 2004; Takahashi et al.,
2004). Field studies corroborate these findings, showing that under
similarly elevated seawater temperatures, coral bleaching is more
likely on clear-water reefs than on turbid reefs (Morgan et al., 2017,
Teixeira et al., 2019; van Woesik et al., 2012). Light is also reduced
by clouds, which may provide corals some relief when experiencing
thermal stress (Gonzalez-Espinosa & Donner, 2021; Mumby et al.,
2001). Additionally, light intensity also declines with depth (Table 1),
and although corals have been observed bleaching at depths >40 m

Spatial scale

(Frade et al., 2018; Williams & Bunkley-Williams, 1990), depth may
attenuate the severity of coral bleaching (Hoeksema, 1991; Smith
et al., 2014; Muir et al., 2017; but see Smith et al., 2016; Venegas
et al., 2019).

Thermal-stress relief also may be provided by hydrology, for
example, strong currents, upwelling, internal waves, and tempera-
ture stratification (Glynn, 1996; Riegl & Piller, 2003; Wyatt et al.,
2020). While coral bleaching is reduced by moderate to high water-
flow rates (Fifer et al., 2021; Nakamura et al., 2003), a recent study
suggests that those effects may be temporary (Page et al., 2021).
By contrast, unbalanced forms and ratios of nutrient concentra-
tions can increase coral bleaching susceptibility (Morris et al., 2019;
Wiedenmann et al., 2013). There is some evidence that elevated nu-
trient levels may indeed play arole in coral bleaching (Donovan et al.,
2020), with short-term anomalously high-nutrient concentrations
exacerbating bleaching during thermal stress (DeCarlo et al., 2020).
Yet, the effects of nutrients on coral bleaching are complex (Lesser,
2021) and may vary with nutrient type, concentration, stoichiome-
try, and the duration of exposure (Dobson et al., 2021; Kitchen et al.,
2020). For example, persistently high nutrient concentrations may
lead to corals increasing their tissue thickness (Barkley et al., 2018);
a characteristic that often leads to higher resilience to thermal stress
(Loya et al., 2001). Nonetheless, disentangling the compounding in-
fluences of nutrients, turbidity, light, and flow from thermal stress
is especially challenging for bleaching research, and therefore addi-
tional studies are needed to decipher their individual and synergistic
effects (Lesser, 2021).

3 | DIFFERENTIAL THERMAL-STRESS
SUSCEPTIBILITY OF CORALS

For this review, we regard thermal stress as the increase in water
temperature that can, or eventually will, trigger coral bleaching. Coral
species naturally differ in their susceptibility to thermal stress and
subsequent bleaching (Berkelmans et al., 2004; Hoeksema, 1991;
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TABLE 1 Conceptual summaries of general responses of coral holobionts to thermal stress and relevant environmental factors. Processes
are described and several references are listed, where Temperature = °C, Irradiance = photosynthetically available radiation, Depth = m,
Thermal stress = degree heating weeks (DHW; https://coralreefwatch.noaa.gov/product/5km/index_5km_dhw.php), and Exposure

time = days. DHW is a measure of the accumulated bleaching heat stress during the most recent 12-week period. Coral bleaching tends to
occur when DHW values reach 4°C-weeks, and at 8°C-weeks bleaching is generally widespread and followed by substantial mortality

Process description Response References
Hypothetical thermal metabolic performance curve of 8 Portner (2012), Sinclair et al. (2016)
corals, with the optimum close to the upper thermal &
limit. When corals are exposed to temperature g
above their optimum, it causes a decline in E,_
metabolic function o
©°
e}
I}
§ Temperature

Photosynthetic rate increases with irradiance (light) Iglesias-Prieto et al. (1992), Warner et al.

L \
availability up to a threshold, beyond which g R (1999), Takahashi and Murata (2008)
o
. eLras . it N
photoinhibition (a process whereby photosynthesis E Ny
is impeded) occurs. Thermal stress can accelerate € e
AR >
photoinhibition 2
°
=
o
Irradiance
Light attenuates exponentially with depth. In turbid, - van Woesik et al. (2012), Morgan et al.
=
nearshore reefs light attenuates more rapidly =y (2017), Kahng et al. (2019)
than in clear, offshore reefs. Since high light can 3
exacerbate thermal stress, corals in low light ‘1(:: o"(eo?f;,aére;,
conditions may suffer less bleaching ..g
2 \Coastal water
S (nearshore)
Depth
Eigengene expression of the generalized stress Rose et al. (2016), Wright et al. (2019),
response gene-network module. This generalized § HinbleacHsd Dixon et al. (2020)
gene-expression response was similar under ’g',
. . . =
different stressors (in Acropora spp.) and illustrates e Bleached
the underlying response to thermal stress %
O

Thermal stress

Corals bleach as the intensity of thermal stress o - Glynn (1996), Hoegh-Guldberg (1999),
increases. Some genotypes, species, and localities E Thermally Loya et al. (2001)
are more sensitive than others to thermal stress. % REnSIve
How corals respond depends on the innate and s T‘hoelgr';f:]'{y
adapted thermal tolerance of individuals and 2
populations %
S
a Thermal stress
Coral bleaching is a function of cumulative exposure \ Berkelmans (2002), Berkelmans et al.
to thermal stress, which depends on duration, rate, 3 \\\ (2004), Middlebrook et al. (2010)
and intensity of exposure. Coral mortality tends to g % Bleached
increase as exposure increases 5 \\\
F|unbleached | TTT===—--
Exposure
Some coral genotypes and species adjust to thermal N Portner (2012), Matz et al. (2018), Jury

stress through acclimatization, adaptation, and Thermal and Toonen (2019), Liew et al. (2020)

epigenetics F i ===
s Acclimation

Fitness

Temperature


https://coralreefwatch.noaa.gov/product/5km/index_5km_dhw.php

VAN WOESIK ET AL.

Loya et al., 2001; Marshall & Baird, 2000). Molecular markers are
increasingly used to resolve differences among similar coral species
and their associated microalgal symbionts to clarify why they differ
in susceptibility to thermal stress (Burgess et al., 2021; Hume et al.,
2019; LaJeunesse et al., 2018; Rowan & Powers, 1991; Sampayo
et al., 2008). Although most corals associate with specific microal-
gal symbionts (Hume et al., 2020; LaJeunesse et al., 2009), thermal
stress can increase the proportion of thermally tolerant symbionts
(Baker et al., 2004; Berkelmans & van Oppen, 2006). For example,
Durusdinium symbionts often have the highest thermal tolerance
(LaJeunesse et al., 2018), with some local exceptions such as in the
Persian-Arabian Gulf (Hume et al., 2016). Yet over the long term,
shuffling to more thermally tolerant symbiont species is typically
unsustainable (Hume et al., 2020; LaJeunesse et al., 2009) as host-
ing thermally tolerant symbionts may come at a physiological cost—
reducing both calcification (Grottoli et al., 2014; Little et al., 2004)
and reproductive output (Jones & Berkelmans, 2011)—most likely
because of suboptimal transfer of nutrients and photosynthates
(Radecker et al., 2018). However, during annually recurring coral-
bleaching episodes, shuffling to thermally tolerant symbionts may
become essential (Lewis et al., 2019).

The coral's microbial community (e.g., bacteria, archaea, fungi,
and viruses, etc.) also plays a role in thermal susceptibility (Peixoto
et al., 2021; Reshef et al., 2006; Ziegler et al., 2017). For example,
microalgae harbored by thermally-sensitive corals were more prone
to viral infections under warmer temperatures (Levin et al., 2017).
Furthermore, bleached corals showed evidence of increased viral
loads compared with non-bleached conspecific corals (Messyasz
et al., 2020). Thus, the lytic cycle of some viruses that infect
Symbiodiniaceae may be triggered by increased temperatures, which
then compromises the fidelity of the symbiosis, initiating, accelerat-
ing, or worsening bleaching. By contrast, endolithic microbes may
provide corals with an additional source of energy during bleaching
(Fine & Loya, 2002; Pernice et al., 2020). Understanding the role of
the symbiotic community in shaping the thermal susceptibility of the
coral holobiont offers researchers the prospect of microbiome ma-
nipulation to boost the thermal tolerance of corals (Doering et al.,
2021; Santoro et al., 2021; Voolstra et al., 2021a).

Hallmarks of bleaching tolerance can also entail heterotrophic
plasticity (Grottoli et al., 2006; Levas et al., 2016) and high-energy
reserves (Anthony et al., 2009). Corals that have high feeding rates,
or those that are heterotrophically plastic, tend to have higher sur-
vivorship and recovery rates from bleaching than those that have
low feeding rates and limited heterotrophic plasticity (Grottoli et al.,
2006; Levas et al., 2013). Additionally, some corals resist thermal
stress by inherently frontloading the expression of genes involved
in heat shock proteins, antioxidant enzymes, and innate immunity
(Barshis etal., 2013; Voolstra et al., 2021b), or by dynamically regulat-
ing response genes through transcriptome plasticity (Kenkel & Matz,
2017). Other thermally tolerant corals rapidly adjust their transcrip-
tional response to thermal stress, followed by a rapid return to base-
line gene expression (Savary et al., 2021; Seneca & Palumbi, 2015).
For microalgal symbionts, thermal stress elicits down-regulation

oo, MO

of genes involved in photosynthesis and up-regulation of genes
involved in photoinhibition (Bellantuono et al., 2019; Savary et al.,
2021). The response of gene expression in hospite symbionts to
thermal stress is often surprisingly subtle compared with the host
(Barshis et al., 2014; Leggat et al., 2011)—a phenomenon that still re-
quires further explanation considering that many postulated bleach-
ing mechanisms start with stress to the microalgal symbiont (but see
Bellantuono et al., 2019; Voolstra et al., 2021b).

Seascape genomics approaches have begun to identify genes
and gene variants of both corals and their microalgal symbionts
putatively associated with thermal tolerance (Selkoe et al., 2016;
Selmoni et al., 2020). Such approaches typically use genome-wide
marker sequencing (e.g., RAD-Seq or whole genome sequencing)
to evaluate allele frequency differences at thousands of loci among
corals based on comparison of sites with differing thermal environ-
ments. Although such studies are still restricted to only a few coral
species, these data are collected at localities with differing thermal
environments to pinpoint genetic variants and localities that poten-
tially contribute to increased thermal tolerance. While these studies
can potentially provide geospatial context to the adaptive potential
of corals to thermal stress (Liggins et al., 2019; Selmoni et al., 2020),
care must be taken to avoid circular reasoning by projecting adaptive
probabilities onto the same environmental layers that were used to
create the probabilities. Recent investigations of genome-wide as-
sociations suggest that the microalgal symbionts and environmental
differences among reef localities play a prominent role in the varia-
tion of coral bleaching (Fuller et al., 2020).

For some corals that survive bleaching, repeated exposure to
thermal stress can increase thermal tolerance (Brown et al., 2000,
2002; Grottoli et al., 2014; Maynard et al., 2008), but for others, it
may reduce thermal tolerance (Grottoli et al., 2014; Wall et al., 2021).
Although the mechanism for such “memory,” or legacy effects, is still
unknown, recent studies have demonstrated that epigenetic mecha-
nisms (i.e., notably DNA methylation as well as histone variants and
their post-translational modifications) regulate gene expression and
stress-repair mechanisms in response to thermal stress (Eirin-Lopez
& Putnam, 2019). Whether these modifications play a role in multi-
generational adaptation is still debated (Dixon et al., 2018; Torda
et al., 2017). Nevertheless, epigenetic modifications occur during
endosymbiosis (Li et al., 2018) and are associated with seasonal
thermal changes (Rodriguez-Casariego et al., 2020), suggesting that
epigenetic mechanisms may influence the responses and acclimati-

zation of corals to thermal stress (Liew et al., 2020).

4 | LINKING CORAL-BLEACHING
RESPONSES ACROSS SCALES

Linking the probabilistic responses of corals across biological scales
to environmental stress can be formulated using hierarchical ap-
proaches (Clark & Gelfand, 2006) that can capture responses and in-
tegrate data from different disciplines while accounting for multiple
sources of uncertainty (Cressie et al., 2009). Effectively examining
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patterns and processes while preserving information and uncer-
tainty across scales can be achieved by introducing latent variables
to hierarchical Bayesian models (Clark & Gelfand, 2006). Latent vari-
ables represent unobserved quantities that are estimated using data
observed at different scales. Such approaches can be used to either
scale up or scale down measurements across ecosystems. For exam-
ple, Wilson et al. (2011) integrated field data of vegetation biomass
collected at cm to m scales with satellite imagery at the km scale.
Using a similar framework, Keil et al. (2013) downscaled bird spe-
cies occurrence data from 30 to 5 km. A similar approach can take
advantage of spatially nested data on coral bleaching that are being
collected at a variety of scales (Table 2).

Experimental work also requires transdisciplinary approaches.
While studies typically measure nutritional status, gene activity, or
population trajectories in isolation, the nutritional status of corals
influences cellular function (Radecker et al., 2021) and their sur-
vival through coral-bleaching events (Levas et al., 2016). These in-
teractions, and both their environmental and genetic basis, can be
explored through reciprocal transplant experiments of coral frag-
ments, common garden experiments, or through “identical twin”
study designs (e.g., Dubé et al., 2021; Voolstra et al., 2020; Ziegler
et al., 2017). Such experiments, using physiological measurements
alongside transcriptomic and epigenetic markers across sites, can be
highly informative in an ecological context by ascribing the relative
role of genetics, acclimatization, and measures of fitness to tem-
perature regimes, geography, and bleaching histories (Berkelmans &
van Oppen, 2006; Dixon et al., 2015; Kenkel & Matz, 2017; Palumbi
et al.,, 2014). These interdisciplinary studies can also estimate the
heritability of physiological, microbial, and molecular characteristics
of corals (Bairos-Novak et al., 2021; Dubé et al., 2021; Jury et al.,
2019; Kenkel et al., 2015), expediting discovery since heritability is
the foundation of adaptive potential and is also an essential piece
of information for predictive models (Logan et al., 2021; McManus
et al., 2021) (Table 2). Such experimental work, however, should be
expanded to include environmental variability, on multiple temporal
scales, to better encompass natural conditions (Ziegler et al., 2021).

Since physiology and ecology interact at the individual coral-
colony level, the physiological responses of individual colonies to
environmental conditions determine their relative fitness and re-
productive success. Together, the vitality of individuals (i.e., growth,
maintenance, and reproduction rates) determines the population
growth rate after a coral-bleaching event. Therefore, life history and
demographic models may best connect coral physiology with ecol-
ogy (Cant et al., 2020; Edmunds et al., 2014). There is also consider-
able value in collaborative efforts across regions and ocean basins.
Data from experiments using a common framework can provide the
material for meaningful meta-studies (Grottoli et al., 2021), help to
establish phenotypic reaction norms, and standardized effect sizes
for comparative responses (Voolstra et al., 2021b; Ziegler et al.,
2021). For example, using a standardized assessment of thermal lim-
its of phenotypes (Voolstra et al., 2020) will provide reliable infor-
mation and geographical context on the adaptive potential of coral
populations. Repeatedly running the same experimental designs will

establish a workable link between genotype, phenotype, and the
environment. Such studies could investigate multifactorial effects,
foster scientific exchange, and facilitate data integration to provide
a holistic view of coral responses to the increasing risks of thermal
stress from global climate change. Together, such research will ac-
celerate discoveries and lead to improved models and predictions
of coral bleaching and its impact on coral-reef ecosystems (Table 2).

Another viable step towards successful interdisciplinary inte-
gration is to focus on a few key processes, such as calcification and
carbon assimilation, and to track those processes from molecules to
reef structures (Table 2). Using calcification as a universal currency
is timely, particularly as thermal stress reduces both calcification
and growth rates (Cantin et al., 2010; Cornwell et al., 2021; Davis
etal., 2021), and carbonate production is an emergent property of all
reef processes (Perry et al., 2013). At the cellular level, calcium-ion
transporters, carbonic anhydrases, and skeletal organic-matrix pro-
teins are all involved in coral calcification processes (Allemand et al.,
2011). At the organismal level, calcification can be measured using
the buoyant weight technique (Jokiel et al., 1978). At the reef scale,
net ecosystem calcification can be measured using the total alkalin-
ity anomaly method or estimated in the field using carbonate bud-
gets (Perry et al., 2013; van Woesik & Cacciapaglia, 2021) (Table 2).
Similarly, carbon assimilation can be studied across scales because
carbon budgets link photosynthesis, respiration, heterotrophy, cal-
cification, energy reserves, and fecundity to population responses
and net primary production. Identifying the geographical extent of
carbonate-production rates, in the form of reef accretion rates and
carbon assimilation is of utmost societal importance in the context
of ocean warming and rising sea levels, especially for low-lying island
nations that are immediately affected by sea-level rise.

At geographical scales, rapid advances in seascape genomics
are predicting the adaptive potential of coral populations to ther-
mal stress in a spatially explicit manner (Liggins et al., 2019; Selkoe
et al., 2016; Selmoni et al., 2020). These methods associate genetic
variance along environmental gradients in the context of gene flow
(Selmoni et al., 2020) and require strong integration across disci-
plines using accurately defined environmental characteristics, bio-
physical modeling of larval dispersal, and genomics. Additionally,
downscaled, high-resolution temperature outputs from global
climate models that predict future climate scenarios (Dixon et al.,
2022; van Hooidonk et al., 2015) can improve the accuracy of pre-
dictions of latitudinal range shifts and highlight possible locations of

climate-change refugia.

5 | LOOKING FORWARD

There is growing evidence that some reefs have predictably higher
or lower risks of coral bleaching over successive events (Cheung
et al., 2021; Thompson & van Woesik, 2009). This suggests that
some of the heterogeneity seen within bleaching events is spatially
conserved and, therefore, may be amenable to management. There
is, however, a need to determine the inherent spatial and temporal
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variability of thermal tolerance of corals to provide insights into why
and where certain genotypes, phenotypes, species, or localities ex-
hibit differential responses to thermal stress. In the short term, we
need time-series studies across coral genotypes to examine changes
in regulatory capacity, gene expression, and physiology before, dur-
ing, and after coral bleaching. In the long term, we need to assess
the likelihood of acclimatization and adaptation to increasing ther-
mal stress for different species across habitats and oceanic regions
(Coles et al., 2018; Logan et al., 2021; Matz et al., 2020; Walsworth
et al., 2019). We also need more information on microbial commu-
nities and nutritional pathways involving coral symbionts, and how
those communities and pathways influence symbiosis and physi-
ological changes of the coral host that result in different bleaching
responses (Claar et al., 2020; Santoro et al., 2021).

There is also a need for a better understanding of factors con-
tributing to post-bleaching responses and coral recovery (Claar et al.,
2020; Donovan et al., 2021; Leinbach et al., 2021). The after-effects

of thermal stress on coral homeostasis are pervasive and corals can
continue to lose energy reserves for weeks to months after tempera-
tures have returned to “normal” (Leinbach et al., 2021; Rodrigues &
Grottoli, 2007; Figure 3). Consequently, calcification rates do not
return to “normal” for months after bleaching (Rodrigues & Grottoli,
2006). Other post-bleaching ramifications may include the follow-
ing: (i) increased disease susceptibility (Muller et al., 2008), (ii) de-
stabilization of the coral's bacterial and viral communities (Messyasz
et al., 2020; Ziegler et al., 2017), (iii) reductions in antibiotic prop-
erties of coral mucus (Ritchie, 2006), (iv) prolonged dependence on
heterotrophically derived carbon (Hughes & Grottoli, 2013), (v) sup-
pression of the coral immune system (Pinzon et al., 2015), and (vi)
reductions in reproductive output (Fisch et al., 2019; Leinbach et al.,
2021; Ward et al., 2000) that can be suppressed years after bleach-
ing (Johnston et al., 2020; Levitan et al., 2014; Figure 3).

The ramifications of coral bleaching also influence community
structure, architectural complexity, and ecosystem functioning of
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FIGURE 3 Coral responses to thermal stress at different temporal and biological scales. (a) Coral community response, reflected as
overall living-coral coverage, to thermal stress and its hypothetical potential to adapt to future thermal stress; (b) Individual responses to
thermal stress, showing characteristic responses of photosynthesis, calcification, reproduction, and lipid reserves; (c) Cellular responses

of corals to thermal stress, where gene expression is typically considered to translate the encoded genomic potential into the resultant
phenotype through proteins being expressed that in turn underlie the measured physiological change. In (a) the terms “with adaptation” and
“no adaptation” refer to the potential of corals to adapt, considering both potential societal (i.e., reductions in emissions of greenhouse gases)

and evolutionary (i.e., increases in thermal tolerance) adjustments
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coral reefs, as bleaching may alter species composition (Loya et al.,
2001; van Woesik et al., 2011), recruitment (Hughes et al., 2019), and
structural complexity (Alvarez-Filip et al., 2009). Some coral species
that bleach have a high capacity for individual-colony and popula-
tion recovery, suggesting that resilience, and not only resistance, is
a viable pathway to survival and persistence (Voolstra et al., 2021b).
However, we are only beginning to understand the dependencies
among coral physiology and genetics, nutritional pathways, and
symbiont communities in the months and years following bleaching
events, and the implications that post-thermal stress responses have
on the long-term persistence of coral-reef ecosystems.

There is an emergence of new tools to facilitate the assessment of
reef communities during and following coral-bleaching events. Such
tools include surveys using drones and autonomous underwater ve-
hicles, and recent advances in photogrammetry (e.g., structure-from-
motion) to generate orthomosaics, which will be especially powerful
when combined with developments in robotics, artificial intelligence,
and machine learning (Dornelas et al., 2019; Roach et al., 2021b; Yuval
et al., 2021). If collected repeatedly, these high-resolution three-
dimensional reef-scale archives can provide population-level vital
rates used in demographic models to make predictions of population
trajectories under different environmental conditions (Cant et al.,
2020; Edmunds et al., 2014). These population trajectories will provide
further insight when placed into context with bio-geophysical ocean-
ographic models, some of which are readily accessible (Thompson
et al., 2018). Advances in physical oceanographic modeling and re-
mote sensing of air-sea heat fluxes have provided information on reef-
heat budgets, which aim to predict temperature variability at spatial
scales relevant to corals (Reid et al., 2020; Wyatt et al., 2020). Reef-
heat budgets were previously limited by a need for high-quality ba-
thymetry data, which are now resolved by pulsed laser Light Detection
and Ranging (LiDAR), down to the scale of coral colonies. These broad-
scale applications of technologies will enhance the predictability of
coral bleaching caused by anomalously high seawater temperatures.

Although the loss of corals through recent bleaching events
should not be understated, there is a growing realization that some
coral populations may evolve and adapt to increasing seawater
temperatures (Bay et al., 2017; Coles et al., 2018; Matz et al., 2018;
Wright et al., 2019). From an evolutionary perspective, thermal tol-
erance has genetic underpinnings (Barshish et al., 2013; Bellantuono
et al., 2012; Dixon et al., 2015) and coral populations can evolve el-
evated stress tolerance, for example in the form of phenotypic plas-
ticity in gene expression (Kenkel & Matz, 2017). In addition, based
on the standing genetic diversity the extent of pre-existing adaptive
variants in the coral host, or the microalgal symbionts (Logan et al.,
2021), may be large enough in some coral species and in some lo-
calities (Bay et al., 2017) to provide the prerequisite for positive se-
lection (Hume et al., 2016). Indeed, recent models have shown that
adaptive evolution to thermal stress can be rapid in corals (Bay et al.,
2017; Matz et al., 2018). However, we currently have a limited un-
derstanding of the standing genetic diversity of different coral spe-
cies and populations, and of a selection coefficient associated with
thermal resilience.

S ey L

Innovative solutions have also been proposed to actively facil-
itate coral adaptations to ocean warming, including assisted evo-
lution or direct manipulations of the coral holobiont's adaptive
response (National Academies of Sciences, Engineering, & Medicine,
2019; van Oppen et al., 2015; Voolstra et al., 2021a). Novel molec-
ular methods will help resolve cellular responses to thermal stress,
provide the ability to manipulate genomes (e.g., CRISPR, cas9), and
test hypotheses and putative mechanisms involved in thermal stress
(Cleves et al., 2020). These practices and their capacity to scale up
both spatially and across functional groups will be dependent on our
understanding of the relationships among the holobiont genome,
the phenotypic responses to thermal stress, and the rapidly chang-
ing environment. The development of biomarkers for thermal toler-
ance will allow the identification of coral genotypes that are most
likely to survive elevated temperatures, and, therefore, determine
which genotypes are best suited for restoration efforts (Roach et al.,
2021a). The spatially explicit consideration of genomic data, com-
bined with detailed and standardized phenotypic responses and
environmental characterizations, helps identify which heat-tolerant
individuals, species, and reefs will best tolerate and adapt to cli-
mate change (Drury et al., 2022; Voolstra et al., 2021a). Such efforts
will provide the scientific foundation to help direct conservation
priorities.

6 | FROM SCIENCE TO MANAGEMENT
ACTION

Traditional forms of marine reserves designed to protect local diver-
sity may have limited ability to enhance thermal tolerance or protect
corals from global stressors (Bruno et al., 2019). These earlier ap-
proaches are being replaced by calls for networks of sites protect-
ing metacommunities, connected through larval dispersal (Gaines
et al., 2010; Gajdzik et al., 2021; Krueck et al., 2017; Mumby et al.,
2011; Walsworth et al., 2019), although most of that literature stems
from fishes and non-coral invertebrates. As thermal-stress events
continue to reduce population sizes and fragment metacommuni-
ties, it is becoming imperative to identify both barriers to dispersal,
due to immigrant inviability or phenotype-environment mismatches
(Marshall et al., 2010; Nosil et al., 2005; Shlesinger & Loya, 2021),
and dispersal corridors and stepping-stone sites that connect reef
systems (Crandall et al., 2012; Hock et al., 2017). Such networks may
facilitate coral recovery and enhance resilience and connectivity
(Cheung et al., 2021). Strategically investing conservation efforts in
networks of highly connected sites (Beyer et al., 2018; Krueck et al.,
2017), while also prioritizing sites with high genetic diversity and re-
productive potential (Beger et al., 2014; Hock et al., 2017), may be
instrumental in sustaining coral populations through climate change
(Morelli et al., 2020).

Reef connectivity is increasingly being considered in the design
and establishment of marine protected areas (Beger et al., 2015;
Magris et al., 2016; Crandall et al., 2019; but see Balbar & Metaxas,
2019). For example, when Singapore enacted its first coral-reef
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marine park, authorities explicitly chose areas with both high repro-
ductive potential and high genetic diversity (Afig-Rosli et al., 2021).
Moreover, studies along the Australian Great Barrier Reef showed
that a small fraction of reefs can serve both as potential thermal re-
fugia and as ‘robust source reefs’ for a substantial portion of the reef
network (Cheung et al., 2021; Hock et al., 2017). Similarly, in The
Bahamas, estimates showed that larval supply could traverse some
(but not all) scales of thermal environments (Mumby et al., 2011).
Recent advances, however, go beyond the inclusion of possible ther-
mal refugia and connectivity and incorporate potential evolutionary
adaptations to climate change (Logan et al., 2021; Matz et al., 2020;
McManus et al., 2021). For example, Beger et al. (2014) showed
that incorporating genetic information related to diversity and con-
nectivity may significantly change spatial conservation priorities.
Likewise, Walsworth et al. (2019) provided theoretical evidence that
simply protecting possible thermal refugia without accounting for
the preservation of diversity can lead to the collapse of coral popu-
lations under future climatic conditions. By contrast, networks that
protected habitat and genetic heterogeneity, the fuel for adapta-
tion, were more likely to persist through climate change (Walsworth
et al., 2019). For example, Hume et al. (2016) showed that the prev-
alent microalgal symbiont of corals in the Persian-Arabian Gulf was
selected from the pool of available genotypes present around the
Arabian Sea, which is evolutionary much older (in the order of mil-
lions of years) than the Persian-Arabian Gulf (thousands of years).
Therefore, connectivity through larval dispersal, which may traverse
distinct thermal environments and diverse genetic repositories, can
lead to genotypes present at one location becoming essential units
of selection at other locations under changing environments.

There is still, however, some disconnect between spatially-
explicit models and coral responses in the field. For example, Matz
et al. (2020) showed coral persistence in relatively high-latitude sites
in the western Pacific Ocean under climate change, and McManus
et al. (2021) showed unlikely persistence at low-latitude sites in the
Coral Triangle. Yet, in situ data are showing that some sites in the
Coral Triangle are faring better than elsewhere (McClanahan et al.,
2020; Sully et al., 2019). The discrepancy between some of the pre-
dictive models and field data might arise from the models not cap-
turing the full extent of habitat heterogeneity or not reflecting the
diversity in coral community response. There is, therefore, a need
for concerted effort to refine spatially-explicit predictive models to
include more habitat heterogeneity and more species to accurately
capture field responses. Better-informed models, more comprehen-
sive real-world data, and a framework for incorporating genetic in-
formation are needed to optimize efforts for marine conservation
and reserve design (Beger et al., 2014; Gajdzik et al., 2021; Mumby
et al, 2011; Walsworth et al., 2019). Our cross-scale assessment
here suggests that multiple features may improve coral persistence
by protecting reef locations from local pollutants and regional land-
use changes that: (i) include multiple species of coral populations
that are resistant to climate change; (ii) will become suitable for cor-
als in the near future (i.e., range extensions); (iii) support high intra-
and inter-species diversity (i.e., evolutionary hotspots); (iv) support

steep and diverse environmental gradients (i.e., temperature, depth,
currents, turbidity, etc.), and thereby presumably harbor high levels
of genetic diversity through the process of local adaptation; (v) host
viable adult breeding stocks; and (vi) preserve highly connected sites
to maintain meta-population corridors. Yet, capturing these features
in combination will require protection at scales larger than typically
considered by management, leading us to recommend multinational
mesoscale sanctuaries as networks of protected areas promoting

coral-reef resilience and survival in the face of climate change.

7 | MESOSCALE SANCTUARIES

Some studies suggest that mitigating climate change at the global
scale is the only path to conserve coral reefs (Bruno et al., 2019;
Eakin et al., 2019), whereas other studies suggest that effective local
management can also help sustain coral reefs (Claar et al., 2020;
Donovan et al., 2021; Ortiz et al., 2018). Here we suggest “mes-
oscale sanctuaries” as a third option to conserve coral reefs. Some
mesoscale sanctuaries (at a scale of thousands of km?) already exist,
for example, the Micronesia Challenge, but they are rare across na-
tional boundaries. Multinational networks of protected areas would
be designed and enforced to protect corals from local and regional
disturbances through climate change. Such mesoscale sanctuar-
ies should incorporate localities in which reef corals can persist in
and potentially expand from in the future (Beyer et al., 2018). To
“climate-proof” reefs requires conserving both coral-reef habitats
and genetic diversity that can serve as the raw material for posi-
tive selection. Although traditional marine reserves are designed to
protect local biodiversity and prevent over-harvesting, additional
mesoscale sanctuaries may be essential to preserve both the genetic
diversity necessary to fuel evolutionary adaptation of coral holobi-
onts, and large enough populations that can function as a source of
migrants across climatic gradients (Hoffman et al., 2017). Therefore,
mesoscale networks that span across national boundaries (i.e.,
multinational mesoscale sanctuaries) are recommended to protect
diverse habitats and genetic heterogeneity that will provide coral
populations with the best chance to persist through climate change.

Although there are currently several large marine protected
areas in the oceans (Toonen et al., 2013; Wilhelm et al., 2014),
and a multi-national approach has been suggested for the Red
Sea to boost conservation in the face of climate change (Gajdzik
etal., 2021; Kleinhaus et al., 2020), there is only one transboundary
agreement between the Republic of Kiribati and the United States
in the central Pacific Ocean to facilitate collaboration across ma-
rine park boundaries (Friedlander et al., 2016). By contrast, multina-
tional mesoscale sanctuaries have been successfully implemented
on land. For example, in 2011 in Africa, at the convergence of the
borders of Angola, Botswana, Namibia, Zambia, and Zimbabwe, the
Kavango-Zambezi Transfrontier Conservation Area (>500,000 kmz)
was created to protect and conserve Africa's endangered wildlife.
A similar conservation area (200,000 km?) is being planned for
parts of Mozambique, South Africa, and Zimbabwe. Comparable
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multinational mesoscale sanctuaries for coral reefs would provide
the impetus to expand, interconnect, and network local marine pro-
tected areas over broader spatial scales. We are therefore suggest-
ing not only to increase in-country conservation efforts but also
to link those efforts across national boundaries. Since mesoscale
sanctuaries would span across international waters, they would re-
quire multinational coordination (Beger et al., 2015; Gajdzik et al.,
2021; Kleinhaus et al., 2020) and considerable investment into
strengthening the scientific and management capacity of all parties
involved in hosting the sanctuaries (Barber et al., 2014; Stefanoudis
et al.,, 2021; Trisos et al., 2021).

Identifying where to implement mesoscale sanctuaries needs
concerted scientific effort across all biological and social disciplines,
although the groundwork towards this goal is already in place. Recent
studies have identified several areas as potential climate-change re-
fugia in northwestern Indonesia, the central Philippines, Malaysia,
FrenchPolynesia(Beyeretal.,2018; Cacciapaglia&van Woesik,2015;
Hoegh-Guldbergetal.,2018), the northern Red Sea (Fine et al., 2013;
Osman et al., 2018), Hawaii (Jury & Toonen, 2019), Cuba and The
Bahamas (Beyer et al., 2018). Similarly, Beger et al. (2015) identi-
fied many reefs in the Coral Triangle as essential for coral-reef con-
servation through climate change. Mesoscale sanctuaries may also
benefit from the inclusion of deep-water, mesophotic reefs (Bridge
et al,, 2013; Soares et al., 2020), which could potentially help main-
tain coral populations and genetic diversity, although demographic
connectivity (Bongaerts et al., 2017; Serrano et al., 2014; Shlesinger
& Loya, 2021) and species overlap (Montgomery et al., 2021; Morais
& Santos, 2018) across large depth gradients might be rather lim-
ited. The geographical patterns of possible climate-change refugia
align with geological studies, showing that past extinction events
were less extensive for equatorial-dwelling marine species than
they were for marine species at higher latitudes (Penn et al., 2018).
Yet, other paleo studies suggest that corals retracted their equato-
rial ranges during the last interglacial when the oceans were warmer
than today (Kiessling et al., 2012), suggesting that contemporary
mesoscale sanctuaries might be best located at mid-latitudes. In
combination, these studies indicate the need for equatorial and
mid-latitude mesoscale sanctuaries and an urgent need for coordi-
nated scientific efforts and synthesis to identify the optimal loca-
tion of mesoscale sanctuaries to maximize conservation resources
and reduce the risk of widespread coral-reef collapse through cli-
mate change.

There is still, however, a considerable societal barrier to man-
agement action. While most coral-reef science is published by
scientists from high-income countries, most coral reefs are under
the jurisdiction of low-income countries (Stefanoudis et al., 2021).
The persistence of “parachute science,” whereby scientists from
high-income countries collect data in coral-rich low-income nations
without engaging local communities, tends to reduce the likelihood
that the science will lead to an effective policy (Trisos et al., 2021).
Without genuine collaboration and engagement, researchers are
missing opportunities to build capacity and connections in the man-
agement agencies that are tasked with protecting coral reefs (Barber

S ey L

et al., 2014). The research associated with thermal stress on coral
reefs and the optimal ways to design marine reserves needs to be
an inclusive global effort to ensure that the science is rapidly trans-
lated into effective management at all geographic scales. Taking an
integrative approach across biological scales, using for example hier-
archical models, to estimate major coral-reef processes will not only
rapidly advance coral-reef science but will also provide the neces-
sary scientific information to optimize decision-making and conser-

vation efforts.

8 | CONCLUDING REMARKS

Climate change is increasing the frequency and intensity of coral-
bleaching events and is changing the composition, architectural com-
plexity, and functioning of coral reefs. Under this reality, the future of
coral reefs may appear grim. Nonetheless, and despite global declines,
it seems that many coral reefs still host enough genetic diversity for
adaptation and for perhaps recovery in some form. The best way to
support the resilience, adaptation, and recovery of coral reefs is to
urgently reduce global emissions of greenhouse gases while working
cooperatively to create both local and mesoscale coral-reef sanctuar-
ies. It is imperative to know which coral species and which reefs to
prioritize for protection, based on their adaptive potential and innate
resilience. Taking a broad transdisciplinary approach to investigate
coral bleaching will improve predictive models, help mitigate the
risks, and bolster management and conservation efforts to preserve
coral reefs through climate change. Alongside the urgent global need
to reduce emissions of greenhouse gases, all possible local and multi-
national actions should be made to conserve coral reefs—one of the

most wondrous ecosystems on the planet—into the future.
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