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Direct numerical simulation is used to investigate effects of turbulent flow in the confined
geometry of a face-centred cubic porous unit cell on the transport, clustering and
deposition of fine particles at different Stokes numbers (St = 0.01, 0.1, 0.5, 1, 2) and at
a pore Reynolds number of 500. Particles are advanced using one-way coupling and
the collision of particles with pore walls is modelled as perfectly elastic with specular
reflection. Tools for studying inertial particle dynamics and clustering developed for
homogeneous flows are adapted to take into account the embedded, curved geometry of
the pore walls. The pattern and dynamics of clustering are investigated using the volume
change of Voronoi tesselation in time to analyse the divergence and convergence of the
particles. Similar to the case of homogeneous, isotropic turbulence, the cluster formation is
present at large volumes, while cluster destruction is prominent at small volumes and these
effects are amplified with the Stokes number. However, unlike homogeneous, isotropic
turbulence, the formation of a large number of very small volumes was observed at all
Stokes numbers and attributed to the collision of particles with the pore wall. Multiscale
wavelet analysis of the particle number density indicates that the peak of the energy density
spectrum, representative of enhanced particle clustering, shifts towards larger scales with
an increase in the Stokes number. Scale-dependent skewness and flatness quantify the
intermittent void and cluster distribution, with cluster formation observed at small scales
for all Stokes numbers, and void regions at large scales for large Stokes numbers.
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1. Introduction

Several applications including catalysis in the chemical synthesis and process industries
(Aris 1999; Dixon &Nijemeisland 2001), high temperature nuclear reactor cooling (Shams
et al. 2013), hyporheic exchange of pollutants at the sediment-water interface (Hester et al.
2017), sand-migration in oil/gas wells, involve unsteady transitional and turbulent flows
through confined spaces and porous structures. In these examples, the contribution of the
inertial terms in the fluid flow equations can dramatically change the topology of the flow
field leading to the formation of jets, vortices, dead zones, etc. within the pores. Such flow
features can substantially alter the dispersion characteristics of pollutants and play critical
roles in the transport of reactants and products to and from active reaction sites.
Dynamics of small inertial particles, such as sand particles, through porous media is of

importance in oil and gas production (Carlson et al. 1992). Sand production is considered
one of the most important issues facing hydrocarbon wells as it can erode hardware, plug
tubulars, cease flow, create downhole cavities and needs separation and disposal at the
surface. Variations in the reservoir pressure and completion permeability leads to high
velocity in the perforation tunnels, significant inertial and turbulence effects and kinetic
energy losses in the completion region (Cook et al. 2004), and onset of sanding triggered
by rock failure (Yi, Valkó & Russell 2005). Minimizing pressure drop means that the
gravel bed porosity should be as large as possible. However, to act as an effective filter for
sand grains, the gravel also has to be small enough to restrain formation sand (Saucier
1974; Mahmud, Van Hong & Lestariono 2019). Particle retention, bridge formation,
jamming and deposition has been studied experimentally in simplified configurations such
as microchannels (Valdes & Santamarina 2006; Dai & Grace 2010; Agbangla, Climent &
Bacchin 2012) and packed beds (Pandya, Bhuniya & Khilar 1998; Ramachandran & Fogler
1999) to show that rate of plugging by bridging has a nonlinear dependence on particle
concentration. This bridging effect depends on flow velocity, particle diameter-to-pore
size ratio and flow geometry.
The goal of the present work is to investigate and understand the clustering dynamics

of inertial particles in a turbulent flow through confined geometries representative of a
porous medium. Specifically, how does the interaction of particles with the solid walls
affect the clustering and deposition and how this changes with particle Stokes number is of
critical importance. In addition, with high-Reynolds-number flows through porous media,
the pore-scale flow structure can change significantly owing to the inertial and unsteady
flow features. Previous work (He et al. 2019) explored, using direct numerical simulation
(DNS), how this change of flow structure impacts the turbulence (i.e. the turbulent kinetic
energy (TKE) distribution and transport mechanisms) in a face-centred cubic (FCC)
lattice with very low porosity. The flow geometry gives rise to rapid acceleration and
deceleration of the mean flow in different regions with the presence of three-dimensional
(3-D) helical motions, weak wake-like structures behind the bead spheres, stagnation
and jet-impingement-like flows together with merging and spreading jets in the main
pore space. The jet-impingement and weak wake-like flow structures give rise to regions
with negative production of total TKE, a feature observed in jet-impingement-like
configurations. Unlike flows in complex shaped ducts, the turbulence intensity levels in
the cross-stream directions were found to be larger than those in the streamwise direction.
Furthermore, due to the compact nature and confined geometry of the FCC packing, the
turbulent integral length scales were estimated to be less than 10% of the bead diameter
even for the lowest, transitional Reynolds number, indicating the absence of macroscale
turbulence structures for this configuration. This finding suggests that even for the highly
anisotropic flow within the pore, the upscaled flow statistics are captured well by the
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Inertial particle clustering in a porous cell

representative volumes defined by the unit cell. In the present work the previous analysis
of turbulence in porous geometry is extended to investigate dynamics and transport of
inertial particles and quantify the effect of geometric confinement on particle clustering.
Clustering of inertial particles in turbulent flows has been well studied in homogeneous

isotropic turbulence (HIT) and wall-bounded channel flows (Maxey 1987; Eaton &
Fessler 1994; Toschi & Bodenschatz 2009; Monchaux, Bourgoin & Cartellier 2012).
The divergence of particle velocity, which differs from the divergence-free fluid velocity
in an incompressible flow, plays a crucial role in clustering of inertial particles. The
divergence of particle velocity has been shown to be proportional to the second invariant
of flow velocity gradient tensor for sufficiently small Stokes numbers, which is defined
as the ratio of the particle relaxation time, τp, to the Kolmogorov time, τη. Particles
tend to concentrate in low vorticity and high strain regions in turbulence resulting in
the preferential concentration. Divergence of particle velocity has been used to quantify
clustering mechanisms (Bec et al. 2007; Esmaily-Moghadam & Mani 2016). An inherent
difficulty for determining the divergence of the particle velocity is its discrete nature,
i.e. it is only defined at particle positions. Recently, Oujia, Matsuda & Schneider (2020)
computed the particle velocity divergence from the position and velocity of a large number
of particles, using a Voronoi tessellation technique. They proposed a model for quantifying
the divergence using tessellation of the particle positions. The corresponding time change
of the volume is shown to yield a measure of the particle velocity divergence.
Pair correlation function (PCF) has also been widely used to analyse clustering as it is

directly related to the particle collision rates (Sundaram & Collins 1997; Wang, Wexler &
Zhou 2000). The PCF typically shows a power-law behaviour at sub-Kolmogorov scales
and the slope is dependent on the Stokes number. Scale similarity of particle distribution
has been explained by the sweep-stick mechanism proposed by Goto & Vassilicos (2006)
in which particles are swept by large-scale flow motion while sticking to stagnation
points of Lagrangian fluid acceleration (Coleman & Vassilicos 2009). The probability
distribution function (PDF) of particle mass density and coarse graining techniques has
been used to investigate the scale dependence of particle distribution (Bec et al. 2007).
Bassenne et al. (2017) proposed a wavelet-based method to extract coherent clusters
of inertial particles in fully developed turbulence. Wavelets decompose turbulent flow,
scalar and vector valued fields, in scale, position and possibly direction, complementary
to Fourier techniques which yield insight into wavenumber contributions of turbulent
flow fields. The wavelet representation can be used to analyse spatial intermittency
and quantify spatial fluctuations at different scales. This is not easily possible with
Fourier transform, owing to the global character of the basis functions. For reviews
on wavelets and turbulence, we refer the reader to Farge (1992), Schneider & Vasilyev
(2010) and more particularly on wavelet-based statistics to Farge & Schneider (2015).
Recently, Matsuda, Schneider & Yoshimatsu (2021) obtained scale-dependent statistics
of the particle distribution and insights into the multiscale structure of clusters and
voids in particle-laden, homogeneous isotropic turbulent flow using orthogonal wavelet
decomposition of the Eulerian particle density field at high Reynolds numbers.
Although particle clustering has been observed and studied in several particle-laden

turbulent flows, dynamics and clustering of small, inertial particles in complex and
confined configurations of densely packed porous beads has not been explored. Whether
the commonly observed heavy particle clustering mechanisms at unit particle Stokes
numbers also appear in a confined geometry, and how collisional interactions of these
particles with the bead surfaces affect such clustering has not been studied. To address
these issues, DNS is used to investigate the effect of turbulent flow in the confined
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geometry of a FCC porous unit cell on the transport of fine, inertial particles at
different Stokes numbers (St = 0.01, 0.1, 0.5, 1, 2) and at a pore Reynolds number of 500.
Particles are advanced using one-way coupling and the collision of particles with pore
walls is modelled as perfectly elastic specular reflection. Detailed analysis of clustering
and void formation statistics is then conducted based on (i) Voronoi tessellation, and
(ii) wavelet analysis of the particle number density field in the porous geometry. The
clustering statistics are compared and contrasted against those in a homogeneous, isotropic
turbulence flow (Oujia et al. 2020; Matsuda et al. 2021). Specifically, the impact of
geometric confinement on particle clustering and void formation at different Stokes
numbers is evaluated.
The rest of the paper is arranged in the following way. Section 2 provides the

details of the porous geometry, simulation parameters, the numerical approach, as well
as Lagrangian tracking and motion of inertial particles. Mean velocity field, TKE
distributions, integral scales are described in § 3. Analysis of particle clusters and voids is
then conducted using Voronoi tessellation and wavelet-based multiscale, scale-dependent
statistics of particle number density. Finally, summary and conclusions are given in § 4.

2. Simulation set-up

Several different definitions of Reynolds numbers have been used in porous media
literature (He et al. 2019; Wood, He & Apte 2020) based on different length scales such as
the particle diameter (DB), the hydraulic diameter (DH) or the permeability. In this work
the Reynolds number (ReH) based on DH is used. The hydraulic diameter is related to the
particle diameter as

DH = 2
3

φ

1 − φ
DB. (2.1)

Then, ReH is defined as (dropping the factor 2/3)

ReH = 〈ux〉 f DB

νf
, (2.2)

where νf is the kinematic viscosity of fluid, φ is the porosity of the medium defined as the
ratio of the void volume (which corresponds to the fluid volume) to the total volume, 〈ux〉 f
is the time-averaged interstitial (intrinsic average) velocity of flow in porous media and
ux is the instantaneous velocity component in the x-(streamwise) direction. The spatial
averaging operation is denoted by 〈·〉, the superscript or subscript f indicates the fluid
phase and ·̄ is the time-averaging operator. For clarity, note that the intrinsic average
velocity is defined by

〈ux〉 f
∣∣∣
t
= 1

Vf

∫
x∈Ωf

ux(x, t) dV(x), (2.3)

where Vf is the volume of the fluid phase within the unit cell and Ωf denotes the fluid
domain. The overbar represents traditional time averaging of a quantity q defined as

q̄(t) = 1
T

∫ t∗=t+T/2

t∗=t−T/2
q(t∗) dt∗. (2.4)
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Inertial particle clustering in a porous cell

y x
z

y x

z

Mean flow

(a) (b)

Figure 1. (a) Schematic of a face-centred porous unit cubic cell showing the bead arrangement and surface
geometry, (b) the isosurface of swirling strength at λ = 0.25λmax for ReH = 500.

2.1. Porous geometry
A porous FCC unit cell (figure 1) is used based on our prior work on turbulence in
porous media (He et al. 2018, 2019). It has a half-sphere entering at each face of the
cube, and a half-quarter sphere at each corner. The FCC arrangement creates the lowest
possible porosity (φ) to be 0.26 for the structured packings. The bead surfaces touch each
other forming a point contact, and the exact radii of spheres are used in the fluid flow
simulation. Due to this extreme compactness, the flow through the unit cell experiences
rapid expansion and contraction. A pressure gradient is imposed to drive the flow through
the bed and a triply periodic boundary condition is applied for the unit cell. The majority of
the flow enters the cubic cell through the upstream open corners, converges into the centre
pore resulting in strong accelerations and decelerations, and then leaving the unit cell along
downstream corners. In this work the flow at one pore Reynolds numbers, ReH = 500 is
simulated using DNS, resulting in a turbulent flow within the pore. Emphasis is placed
on dynamics of inertial particles at different Stokes numbers (0.01, 0.1, 0.5, 1, 2), the
definition is given below.

2.2. Numerical approach and grid convergence
The numerical approach is based on a fictitious domain method to handle arbitrarily
shaped immersed objects without requiring the need for body-fitted grids (Apte, Martin
& Patankar 2009). Uniform Cartesian grids are used in the entire simulation domain,
including both fluid and solid phases. An additional body force is imposed on the solid part
to enforce the rigidity constraint and satisfy the no-slip boundary condition. The absence
of highly skewed unstructured mesh at the bead surface has been shown to accelerate
the convergence and lower the uncertainty (Finn & Apte 2013). The following governing
equations are solved over the entire domain, including the region within the solid bed, and
a rigidity constraint force, f , is applied that is non-zero only in the solid region.
The governing equations read as

∇ · u = 0, (2.5)
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ρf

[
∂u
∂t

+ (u · ∇)u
]

= −∇p + μf∇2u + f , (2.6)

where u is the velocity vector (with components given by u = (ux, uy, uz), ρf the fluid
density, μf the fluid dynamic viscosity and p the pressure. A fully parallel, structured,
collocated grid solver has been developed and thoroughly verified and validated for a range
of test cases including flow over a cylinder and sphere for different Reynolds numbers,
flow over touching spheres at different orientations, flow developed by an oscillating
cylinder, among others. The details of the algorithm as well as very detailed verification
and validation studies have been published elsewhere (Apte et al. 2009). In addition, the
solver was also used to perform direct one-to-one comparison with a body-fitted solver
with known second-order accuracy for steady inertial, unsteady inertial and turbulent flow
through porous media (Finn & Apte 2013; He et al. 2018, 2019).
For the present studies, the flow is driven by a pressure drop as a body force in a triply

periodic domain. According to Hill & Koch (2002), a constant pressure gradient ∇P in the
main direction of the flow (x direction), proportional to the body force F, is used to drive
the flow,

∂xP = 18μf c〈ux〉 f
D2
B

F, (2.7)

where μf is the dynamic viscosity of the fluid and c the solid volume fraction, defined
as 2

3π(DB/L)3 (L is the length of the unit cube). The body force F changes with the pore
Reynolds number according to the linear fit obtained by Hill & Koch (2002) and is given
as

F = 462 + 9.85
(
1 − φ

2
ReH

)
(ReH ≥ 216). (2.8)

A posteriori calculation of body force needed to balance the shear stress on the
sphere surfaces for different Reynolds numbers exhibits a good agreement with the above
correlation and has been published elsewhere (He et al. 2019). A uniform, cubic grid
is used with resolution chosen such that the first grid point is at y+ < 1 (i.e. in the
viscous sublayer) to accurately capture the wall layers, where y+ = yuτ /ν indicates the
normalized distance from the sphere surface, uτ = √

τω/ρ ≈ 0.5‖〈ux〉 f ‖ is the friction
velocity and τω is the estimated wall shear stress. To obtain a more direct estimate on grid
resolution requirements in the present DNS simulations, 3-D DNS studies were performed
at ReH = 500 in a unit cell of FCC spheres with a systematic grid refinement study
using 48, 64, 96, 112, 128 and 144 grid points per bead diameter DB. A grid converged
solution was obtained for first-order (mean flow) as well as second-order statistics (TKE)
for ReH = 500 at a resolution of DB/96. For ReH = 500, the mean flow converged at
DB/96, whereas, TKE showed small changes compared with coarser mesh indicating that
a grid converged solution can be expected with a resolution of around DB/100. However,
in order to obtain a high resolution DNS study and provide sufficient resolution in the
bead contact region, a refined grid based on DB/δ = 250 (δ is the grid resolution in one
direction) was used to resolve the pore-scale flow structures (He et al. 2019).

2.3. Particle tracking algorithm
A point-particle approach is used to model the motion of small, heavy inertial particles in
a Lagrangian frame. In this approach the particle size is assumed to be much smaller
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Inertial particle clustering in a porous cell

than the Kolmogorov scale, and the forces acting on them are modelled using simple
closure models (Maxey 1987). The particle motion is assumed to be governed by a simple,
linear drag force. One-way coupling, wherein the inertial particles do not affect the fluid
flow, is used by assuming that the particle size and concentration is small. In addition,
inter-particle interactions are also neglected. It should be noted that for sediment-laden
beds consisting of low particle-to-fluid density ratios, the above assumptions may not hold,
and the particle sizes may become of the order of the Kolmogorov scales with high volume
loadings. Studies accounting for two-way coupling and fluid displacement effects (Apte,
Mahesh & Lundgren 2008; Finn, Li & Apte 2016) can impact the particle dynamics and
clustering and will be considered in future studies.
For different Stokes numbers (St), the particle motion is given by

dxp
dt

= up; dup
dt

= uf ,p − up
St · τη

, (2.9a,b)

where xp and up are particle position and velocity, τη is Kolmogorov time scale,
uf ,p is the instantaneous fluid velocity interpolated to the particle location, i.e. uf ,p =
u(xp), and τp = Stτη is the particle relaxation time. The particles are advanced using
the instantaneous fluid velocity interpolated to the particle location. The effect of
inhomogeneity in the fluid velocity and the confinement of the bead walls on inertial
particle motion can thus be quantified by qualitatively comparing results to inertial
particles in HIT (Oujia et al. 2020; Matsuda et al. 2021).
Particles with five different Stokes numbers, St = 0.01, 0.1, 0.5, 1 and 2 are simulated.

After a stationary turbulent flow is achieved within the porous cell, inertial particles are
injected into the fluid domain. One particle is added at the centre of each control volume
in the fluid region, giving about Np ≈ 10.4 × 106 particles for each Stokes number. The
fluid velocity interpolated to the particle location is obtained from tri-linear interpolation,
and a fourth-order Runge–Kutta (RK4) scheme is implemented to advance the particle
locations in time. Interactions of particles with the bead walls in the unit cell are modelled
using Snell’s law of specular reflection assuming perfectly elastic collisions. The direction
of particle reflection, ŝr, is determined from the incident direction, ŝi, and the inward face
normal at the spherical bead surface, n̂, as

ŝr = ŝi + 2|ŝi · n̂|n̂. (2.10)

The particle velocity after reflection is also modified according to the above equation. The
inward normal to the sphere surface can be easily obtained by knowing the location on
the spherical bead surface that the particle crossed and the centre of the bead. In order to
ensure that the particles do not cross the bead surface boundary and enter the solid region,
a small gap proportional to the grid size near the bead surface is used for implementing
the specular reflection.

3. Results and discussion

In this section the mean and turbulent flow structure is described briefly using the
mean and root mean square (r.m.s.) velocity fields inside the pore, and the integral
length and time scales are estimated based on the Eulerian and Lagrangian two-point
autocorrelations, respectively. Next, the PDFs of Voronoi tesselation volumes and the
divergence of particle velocity field are evaluated and discussed. In addition, the
characteristics of inertial particle clustering in the porous media at various Stokes numbers
are discussed using the multiscale, wavelet analyses of the particle number density, wavelet
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spectra, higher-order statistics of flatness and skewness. The Voronoi tesselation and
wavelet analysis results for inertial particle statistics in the FCC unit cell are contrasted
with those from isotropic turbulence to identify effects of geometric confinement.

3.1. Turbulent flow statistics
As described earlier in the simulation set-up, the flow through the triply periodic domain
is driven by a body force in the flow direction based on the correlations given by (2.8).
After an initial transient, a stationary state is reached and the computation is continued for
several flow through times, Tf = L/〈ux〉 f , where L is the length of the unit cube. For each
case, the flow was first computed for several flow through times to ensure that a stationary
state has been reached. This is confirmed by monitoring the total kinetic energy in the
domain, which starts out to be a large value and then decreases and remains more or less
constant after an initial transient period. This initial transient period was approximately
100Tf for ReH = 500. After a stationary state has been established, the computations were
performed for an additional 80Tf to collect flow statistics which was found to be large
enough to obtain converged statistics.
In order to get a good understanding of the simulated flow topology, distributions of the

mean velocity magnitude Um and the TKE are presented first (see figure 2). The mean

velocity Um is calculated as
√
ux2 + uy2 + uz2 and normalized by the mean interstitial

velocity 〈ux〉 f . Two centre slices are chosen as representative sections for visualizations.
One is the centre xy-plane, where the mean flow is going from left to right; the other the
centre yz-plane, where the mean flow in going into the slice.
The mean flow enters the centre pore from the left-hand side corners (regions labelled by

(i1) and (i2) in figure 2a) and accelerates to region (ii) due to the geometric constrictions;
then the mean flow at the centre starts to decelerate as it encounters the particle at region
(iii), similar to an impinging jet. The flow then accelerates in the spanwise directions
and leaves the pore through the right-hand side corners (regions (iv1) and (iv2)). The
pattern of mean velocity distribution indicates how the mean flow in the pore is affected
by the geometry. High-Reynolds-number flow features such as wake and large-scale vortex
shedding in an external flow behind a spherical particle, are not observed in this low
porosity bed. A weak wake-like structure (small negative mean velocity just behind the
left-hand side sphere near region (ii) in figure 2a) is present, but is confined to a small
region. The closely packed solid beads in the low porosity FCC configuration tend to
break down large-scale flow structures and prevent the generation of a significant wake
region. Figure 2(b) shows the distributions of the mean velocity magnitude on the centre
yz-plane. On this slice, the mean flow is moving perpendicularly into the page and there is
a distinguished region with high velocity magnitude near each corner of the centre pore.

The TKE k, defined as (u′
x
2 + u′

y
2 + u′

z
2)/2, is normalized by the square of the mean

interstitial velocity (〈ux〉 f )2. Here the temporal fluctuation velocity u′
x is defined as

ux − ux. Figures 2(c) and 2(d) illustrate the distribution of normalized TKE on the centre
xy- and yz- planes, respectively. The overall magnitude of the TKE in the centre pore
region remains substantially high. It also suggests that the flow through the pore, although
bounded by curved particle walls, is different from simple channel/duct flows even with
complex boundaries (Orlandi, Davide & Pirozzoli 2018) wherein the TKE reaches a peak
value near the boundaries and then decreases in the centre region. The normalized TKE
distributions on the centre yz-plane presented in figure 2(d) shows some similarities with
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Figure 2. Visualization of the mean velocity magnitude (a,b) and TKE (c,d) at ReH = 500: (a–c) xy-plane,
and (b–d) yz-plane.

flow through a duct. Away from the wall, the TKE increases and reaches a peak value;
and then decreases as the core region of the pore is approached. The homogeneous
particle packing involving four bead particles aligned together seem to form a locally
duct-like flow pattern in this section. However, it disappears in other sections away from
the centre yz-plane, owing to the 3-D nature of the spherical particles. Prior work (He
et al. 2019) focused on exploring the turbulence characteristics within the FCC unit cell
for three different Reynolds numbers (ReH = 300, 500 and 1000). The detailed TKE
budgets, production-dissipation mechanisms within the porous bed, turbulence anisotropy
characteristics and distribution were investigated in detail. Specifically, it was shown
that for these porous geometries, there was an important region near the bead surfaces
with net negative production of the TKE, typically observed in jet-impingement-like
flows. In addition, it was also found that the TKE levels were high within the pore
region. These flow features illustrated the complexity of the turbulent flow within the
porous cell.
The turbulence intensity components in streamwise and spanwise directions are

estimated to illustrate the anisotropy caused by the confined geometry, they are shown
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Figure 3. Contours of turbulence intensity components normalized by the square of interstitial velocity on
the centre xy-plane: (a) x-component, (b) y-component and (c) z-component. Mean flow is from left to right.

in the xy-plane in figure 3. The x-component r.m.s. velocity, u′
x−rms is computed by

u′
x−rms =

√
u2x − ūx2, (3.1)

likewise for u′
y−rms and u′

z−rms. The x-component turbulence intensity is only heavily
pronounced in the region close to the right-hand side particle (region (i) in figure 3a),
which is mostly attributed to the impingement-like flow in this region. In this centre
xy-plane the x-component of turbulence intensity, corresponding to the main flow
direction, is weaker compared with the other two components. The maximum value of
x-component turbulence intensity is approximately 80% and 50% of that for y- and
z-components, respectively, by Patil & Liburdy (2013). On the centre xy-plane, these two
components are distributed in various patterns. The y-component mostly concentrates near
the left-hand side sphere in figure 3(b). However, for the z-component, the distribution is
substantially different. There are two distinct regions with high magnitude of z-component
turbulence intensity in figure 3(c) near the left-hand side of the pore. More importantly, the
shape of such regions is almost identical to the high TKE regions illustrated in figures 2(c),
indicating that the z-component turbulence intensity has the most important contribution
to total TKE at this particular plane. Although not shown here, it is noteworthy that the
distributions of y- and z-components of turbulence intensity on the centre xy-plane are
interchanged on the centre xz-plane, due to the homogeneous and symmetric geometry of
the FCC packing; and the x-component distribution remains the same.
To investigate the overall characteristics of both the streamwise and spanwise

components of turbulence intensity and for purposes of comparison, intrinsic spatial
average of these r.m.s. velocities (normalized by the square of intrinsic averaged velocity)
was computed. Because of the periodicity and symmetry in the computational domain, the
volume-averaged r.m.s. velocity in the z-direction is similar to that in the y-direction and,
hence, not included here. It is observed that the r.m.s. velocity in the spanwise direction
(y- or z-direction) has a larger magnitude (0.288) than that in the x-direction (0.222).
This behaviour is quite different from the well-studied turbulent channel or duct flows
even with complex boundary shapes (Orlandi et al. 2018), wherein the r.m.s. velocities
in the wall-normal directions are much smaller than the streamwise component. This
again is caused by the 3-D effect of the complex configuration of the packed spheres, and
the tortuous mean flow patterns within the pore. Qualitatively, a similar behaviour that
larger values of turbulence intensities in non-streamwise direction has also been observed
experimentally in randomly packed porous media (Patil & Liburdy 2013).
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Inertial particle clustering in a porous cell

Finally, the Eulerian and Lagrangian autocorrelations are used to compute the integral
length and time scales, respectively. To compute the Lagrangian autocorrelations, fluid
tracer particles are tracked to obtain the Lagrangian trajectories. The Lagrangian
autocorrelations are then computed according to (3.2) (Monin & Yaglom 1965)

ρL
ij (τ ) =

〈v′
i(X0, t) v′

j(X0, t + τ)〉[〈vi′2(X0, t)〉 〈vj′2(X0, t + τ)〉]1/2 , (3.2)

where ρL
ij is the Lagrangian autocorrelation, v

′
i the ith component of the particle fluctuation

velocity and 〈·〉 represents ensemble averaging. The Lagrangian integral time scale, TL
11, is

simply given by the integral of the autocorrelation function.
The longitudinal Eulerian integral length scale (LE11) is computed by integrating the

Eulerian autocorrelations over the abscissa. Then it is normalized by the bead diameter
(DB) and found to be 0.0884. The flow time scale, defined as DB/〈ux〉 f , is used to
normalize the Lagrangian integral time scale TL

11, which is found to be approximately
0.356 for the present flow conditions. The integral length scale is only approximately 10%
of the sphere diameter, indicating that the coherent structures are confined within the pore.
Such observation supports the pore-scale prevalence hypothesis and the results reported in
Jin et al. (2015). This implies that, the turbulence in the pore scale is strongly affected by
the porosity, and restrained by the pore size. The integral time scale is also smaller than
the flow time scale, suggesting that the Lagrangian coherent structures are restricted by
the pore size. As a result, the single periodic unit cell considered in the present work is
sufficient. The overall dissipation rate 〈ε〉 was estimated from the TKE budget first. Then
the Kolmogorov time scale is computed as τη = √

ν/〈ε〉.
For the present case of ReH = 500, Reλ can be estimated to be around 32, which is

computed as the drape of the fitted parabola to the Eulerian autocorrelation. Assuming
isotropic turbulence, which is not the case for the flow in porous media, and using the
same definition as in Matsuda et al. (2021), an even smaller value of Reλ ∼ 21 is obtained
for the Taylor microscale Reynolds number. Particle clustering dynamics in HIT for a
wide range of Reλ has been studied by Sumbekova et al. (2017) showing significant impact
on the cluster and void size. The flow through a porous unit cell is highly anisotropic;
however, as is shown later, the qualitative behaviour of clustering characteristics observed
in the present work are similar to HIT, e.g. at higher Stokes numbers, the energy density is
higher and the peak shifts to larger scales. For higher Reλ, qualitatively similar trends are
expected. The main focus of the present work is on investigating the effect of geometric
confinement and interaction of inertial particles with the bead surfaces on the clustering
dynamics. Effect of Reλ, volume loading and porous bead arrangements will be part of
future studies.

3.2. Inertial particle dynamics and clustering
Figure 4 shows the instantaneous distribution of particles for three different Stokes
numbers in the xy-plane after a stationary state is reached. A uniform random distribution
of particles in the porous geometry, representative of fluid particles in the limit of St → 0,
is also shown for comparison. Significant particle clustering is observed for St = 1 as
expected, whereas for St = 0.01, particles are more uniformly distributed with only a
few pockets of voids and clusters near the bead boundaries. The clustering of inertial
particles and effect of the bead walls is evaluated by conducting a multiscale analysis of
the particle number density. Figure 4 shows a small gap around the bead surface where
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Figure 4. Instantaneous distribution of particles in the xy-plane: (a) St = 1, (b) St = 0.1, (c) St = 0.01 and
(d) uniform random distribution.

inertial particles are not observed. Although the fluid flow computations were performed
using exact radii of the bead surfaces and without any gap, to ensure that the inertial
particles are not trapped inside the solid bead region, a small gap corresponding to the
grid resolution is used to enforce particle collisions with the bead surface.

3.2.1. Voronoi tessellation for particle clustering
Voronoi tessellation (see, e.g. (Aurenhammer 1991)) is a technique to construct a
decomposition of the fluid domain, into a finite number of Voronoi cells. If there are a finite
number of points (particles) dispersed in space, a Voronoi cell is defined as a region of all
points that are closer to a particle than any other particles (see figure 5b). The volume of the
Voronoi cell is referred to as the Voronoi volume, Vp. The magnitude of this volume can
be used to quantify particle clustering and void regions in a 3-D space, a smaller volume
indicating pronounced clustering. Voronoi tessellation techniques have been first applied
to inertial particles in turbulence by Monchaux, Bourgoin & Cartellier (2010). Here, 3-D
Voronoi tessellation is applied to the particle data obtained from the present DNS data
using the Quickhull algorithm provided by the Qhull library in python (Barber, Dobkin
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Figure 5. Particle distribution for St = 1 in a slice of thickness 1/100 with spheres and mirror particles (a).
A magnified view with Voronoi tessellation (b).

& Huhdanpaa 1996), which has a computational complexity of O(NplogNp). Results are
compared with those of Oujia et al. (2020) obtained in the case of HIT.
To construct the Voronoi tessellation of particles in the presence of the embedded bead

boundaries, a special treatment is needed for particles near the bead walls. Figure 5 shows
how the geometry of the spherical beads is taken into account. All particles located at a
given small distance from each sphere boundary is assigned a mirror particle. Introducing
these ghost particles then accounts for the bead boundary, and the Voronoi tessellation can
then be constructed making use of the mirror particles. To verify that this approach works,
a random distribution of particles in the fluid domain is first considered. For randomly
distributed particles, the p.d.f. of the normalized Voronoi volume can be approximated
with a gamma distribution (Ferenc & Néda 2007). For the 3-D case, the p.d.f. of the
Voronoi volume is approximated by Γ (5, 1/5), where Γ (k, θ) corresponds to the gamma
distribution,

fVp(x) = Γ (k)−1θ−kxk−1 exp(−x/θ), (3.3)

where k and θ are shape parameters of the p.d.f., respectively and Γ (k) denotes the gamma
function. Figure 6(a) shows the p.d.f. of the Voronoi volume Vp, normalized by the mean
volume Vp, for different Stokes numbers as well as for randomly distributed particles. The
p.d.f. for random distribution follows closely with the gamma distribution, as expected.
It should be noted that in the present fictitious domain method, the bead boundaries
are smeared over a grid control volume owing to the interpolation function between the
bead material points and the computational grid typical of penalization based techniques.
Accordingly, to perfectly match the random particle p.d.f. to the gamma distribution, the
sphere radius had to be increased by approximately 1.1% (0.35749 instead of 0.353553),
only for the Voronoi analysis, which is comparable to the grid resolution used. This small
modification in sphere geometry is applied to all particle distributions obtained from
different Stokes numbers.
Figure 6(a) shows that the p.d.f.s of Voronoi volumes for different Stokes numbers

intersect with the gamma distribution, i.e. the one for the random particles. An equivalent
figure can be found for HIT in Oujia et al. (2020), where it is observed that as the Stokes
number increases, the number of the large Voronoi cells increases and then stabilizes.
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Figure 6. Probability distribution function of volumes of Voronoi cells (a) in log–log representation
normalized by the mean volume for different Stokes numbers as well as for particles distributed randomly
following a Poisson distribution. The dotted vertical line represents η3/Vp. Mean Voronoi volume of particle
clusters as a function of the distance from the bead surface (b) normalized by the bead radius.

The number of small Voronoi cells increases as the Stokes number increases, and then
decreases for St > 1. In the present case of a porous cell, the observed behaviour is similar
to that found for HIT, but with some key differences. The number of large Voronoi cells
increases with increasing Stokes numbers and then stabilizes similar to the HIT case. It
is also seen that as the Stokes number increases and gets closer to 1, the number of small
normalized volumes (10−2–5 × 10−1) also increases similar to the HIT case. However,
a large number of very small volumes (10−4–10−2) are observed for nearly all Stokes
numbers, even for very small Stokes numbers. Such a behaviour was not observed in
HIT, wherein the number of very small Voronoi volumes would decrease monotonically.
This is attributed to the interaction of particles with the bead surfaces in the present
case. Figure 6(b) shows the mean Voronoi volume of particle clusters as a function of
the distance from the bead surfaces normalized by the bead radius. It illustrates that
on average the volumes close to the beads are smaller than the volumes further away.
Particles with finite, non-zero Stokes numbers interact with the bead surface and undergo
specular reflection. In addition, as the particles approach the bead surfaces, their velocities
are slowed down significantly as the fluid velocity itself is smaller owing to the no-slip
condition. Thus, existence of a large number of very small volumes is mainly attributed
to the collision of the particles with the bead surfaces. The small-scale behaviour of the
particles has its limitation implied by the used point particle and the collision model.
Considering solid particles in air with a density ratio of 1000 gives particle size of the
order of 0.04η for a Stokes number of 0.1. In this case, the behaviour of the small volumes
would change depending on the surface condition at the beads. Note that, fluid particles
(or tracers) would not collide with the bead surfaces, except at the stagnation points and
at large times. Thus, the distribution of fluid tracer particles will follow the one of random
particles, i.e. the gamma distribution.

937 A9-14

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 O

re
go

n 
St

at
e 

U
ni

ve
rs

ity
, o

n 
28

 A
pr

 2
02

2 
at

 1
8:

56
:1

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
0

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.100


Inertial particle clustering in a porous cell

3.2.2. Voronoi-based divergence of particle velocity
To understand the clustering dynamics of inertial particles, the particle number density n,
as a continuous function, is commonly used (Oujia et al. 2020). It satisfies the conservation
equation

Dn
Dt

= ∂n
∂t

+ up · ∇n = −n∇ · up. (3.4)

The divergence of the particle velocity up appears as a source term in the number density
equation. However, finding the divergence of the particle velocity is not straightforward
as the discrete particle distribution is not continuous, and the particle velocity is only
known at the discrete particle locations, up,j = u(xp,j), but not everywhere else. Moreover,
it can be multi-valued. Oujia et al. (2020) proposed a method to compute the divergence
of the particle velocity D = ∇ · up in a discrete manner using a Lagrangian approach.
From the conservation equation for the particle number density (3.4), one obtains D =
−(1/n)(Dn/Dt).
To calculate the Lagrangian derivative of n, Oujia et al. (2020) defined the local number

density np as the number density averaged over a Voronoi cell, which is given by the
inverse of the Voronoi volume Vp; i.e. np = 1/Vp. Then it was shown that the divergence
is obtained to the first-order approximation as

Dp = 2
�t

Vk+1
p − Vk

p

Vk+1
p + Vk

p
+ O(�t), (3.5)

where Vk
p denotes the Voronoi volume at time instant tk. This shows that the divergence

of the particle velocity can be estimated from subsequent Voronoi volumes, provided the
time step is sufficiently small and the number of particles is sufficiently large. To obtain
the subsequent Voronoi volumes, the particle positions were linearly advanced by up;
i.e. xk+1

p = xkp + up�t. The time step was set to be the same as the flow solver time step,
which is sufficiently small for the present DNS study. The influence of the step size has
been checked and found to give the same result as in Oujia et al. (2020). For the different
time steps, the same probability distribution of the divergence was obtained, except that
the extreme values of the divergence are changing with �t.
Determining the divergence with the above Lagrangian approach requires two time

instants of the Voronoi volumes. Above it was shown that the bead geometry, i.e. the
presence of curved walls, necessitates some special treatment for computing the Voronoi
tesselation. Mirror particles are introduced to account for the geometry. For computing the
discrete divergence, the particles are then linearly advanced in time to obtain the volume at
a subsequent time instant. This procedure implies that some particles could enter the beads
and the flow geometry is not respected anymore. Consequently, the volume of adjacent
cells are impacted and the computed divergence value is erroneous. To remove this artifact,
particles having a distance less than 0.35782 from each of the bead centres were not taken
into account, for the Voronoi-based divergence analysis. This value has been determined
by considering the statistics of the divergence as a function of the wall distance. While for
the mean value, which is close to zero, no significant influence was found, for the higher
order statistics (variance, skewness and flatness), a significant change with the distance,
even by orders of magnitude, was observed. For wall distances larger than 0.35782, the
values were found to be stable and remained almost constant.
In Oujia et al. (2020) the p.d.f.s of the Voronoi-based divergence are almost symmetric,

centred around zero with stretched exponential tails. The variance of the divergence
increases as the Stokes number increases. For Stokes numbers less than or equal to
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Figure 7. Probability distribution function of divergence of particle velocity for different Stokes numbers.

St 0.01 0.1 0.5 1 2

Variance 0.0083 0.0093 0.0952 0.2796 0.5423
Flatness 5514.9 734.50 832.00 291.92 105.70

Table 1. Variance and flatness of divergence Dp as a function of the Stokes number.

0.2, the divergence values are close to those of the obtained values for fluid particles.
But the divergence of the fluid particles should be equal to zero because the fluid is
incompressible. For this reason, Oujia et al. (2020) considered that for Stokes less than
0.2, the results are dominated by a geometrical error due to the Voronoi tessellation, so
these values were not analysed in the rest of their paper. In the case of a porous cell,
the p.d.f.s of the Voronoi-based divergence for different Stokes numbers are shown in
figure 7. They are centred around 0 and confined between −40 and 40. It can be observed
that extrema correspond to ±2/�t which is an upper/lower bound, even a rigorous bound
when neglecting O(�t) terms, similar to what is found for HIT (Oujia et al. 2020). The
divergence should become closer to zero as the Stokes number decreases to zero because
the fluid particles in an incompressible flow are divergence free. However, in figure 7
the divergence for St = 0.01 is comparable to that of St = 0.1. It can be deduced that
the divergence for these Stokes numbers is mainly caused by a geometrical effect due to
Voronoi tessellation, which is also discussed in Oujia et al. (2020). However, for larger
Stokes numbers, physical effects do predominate. Table 1 assembles the variance and
flatness of the divergence Dp as a function of the Stokes number. The flatness decreases
as the Stokes number increases (with the exception of St = 0.1), this implies that the tails
of the p.d.f.s decay faster as the Stokes number increases. In contrast the variance has
the opposite behaviour and, thus, the p.d.f.s are becoming wider and wider for increasing
Stokes number, confirmed in figure 7. Thereafter the Voronoi analysis will be discussed
only for Stokes numbers larger or equal to 0.5, to avoid the influence of the geometrical
effect.
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Figure 8. Mean divergence 〈Dp〉Vp as a function of the Voronoi volume for different Stokes numbers.

The mean of the divergence as a function of the volume is defined as

〈Dp〉Vp = 1

P(Vp/Vp)

∫ +∞

−∞
Dp P(Dp,Vp/Vp) dDp. (3.6)

The values are shown in figure 8 for three Stokes numbers, St = 0.5, 1 and 2. The insert
is a zoom to focus on the negative values. Recall that negative values correspond to
convergence of the particles and positive values to divergence. It can be seen that the
mean of the divergence is positive for small volumes, negative for large volumes and,
similarly to Oujia et al. (2020), the amplitude increases with the Stokes number. This
implies the presence of cluster formation for large volumes, cluster destruction for small
volumes and that these two behaviours are amplified when the Stokes number increases.
The zero-crossing point is Vp/Vp ≈ 0.06 − 0.2, a value close to what is observed in
Oujia et al. (2020). These observations are consistent with those found in Oujia et al.
(2020) where equilibrium distribution is argued to be the main reason. For the statistically
stationary distribution of particles, the value of the divergence must be positive for clusters
of particles and negative in the case of void regions. Otherwise the set of particles would
converge to a set of discrete points in space in a finite time.
In summary, the above findings for the Voronoi analysis confirm the results found in

Oujia et al. (2020) for HIT, in particular the St dependence of cluster formation and
destruction. Differences are found for small Voronoi volumes below 0.01, they behave
differently due to the influence of the bead geometry. The zero-crossing point of the mean
value of the divergence is likewise shifted towards smaller values.

3.3. Eulerian field: particle number density
The number density of the discrete particle positions is obtained using a histogram method
by binning particles onto an equidistant cubic grid of N3

g grid points (Matsuda et al. 2021).
Irrespective of the grid resolution used in the DNS, Ng = 28 was used to calculate the
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number density as

n(x, t) =
Ng−1∑

i1,i2,i3=0

⎧⎨
⎩

∫
Ω

Kh(xi1,i2,i3 − x′)
1
n0

Np∑
m=1

δ(x′ − xp,m(t)) dx′
⎫⎬
⎭ h3Kh(x − xi1,i2,i3),

(3.7)

where xi1,i2,i3 = h(i1 + 1/2, i2 + 1/2, i3 + 1/2) is the box position, and Kh(x) = 1/h3
for −h/2 ≤ xi ≤ h/2 (i = 1, 2, 3), while Kh(x) = 0 otherwise, is a piecewise constant
function, h = L/Ng, and n0 = Np/L3 is the mean dimensional number density, where
Np is the total number of particles and L is the side length of the cubic domain. With
non-dimensionalization by the mean number density, the above equation satisfies 〈n〉 = 1.
It should be noted that the entire computational domain volume is used to compute the

number density, even though some part of the volume is a solid bead region to simplify
the number density computation. The porosity of the unit cell can be used to relate this
to the number density calculated based on the fluid volume only. The consequence of the
presence of solid beads within the computational domain is that a uniform distribution
of inertial particles in the fluid domain results in non-uniform number density variations
across the bead surface. These gradients in number density, even for a uniform inertial
particle distribution, can result in non-zero wavelet decomposition. To analyse the true
clustering of inertial particles, this effect of pseudo variations in number density due to
the bead geometry needs to be removed before performing the wavelet decomposition.
Therefore, the number density gap from n(x) is subtracted as

n′(x) = n(x) − φ−1〈n〉 (1 − χ(x)) , (3.8)

with χ(x) the mask function,

χ(x) =
{
1 if x ∈ Ωs,

0 if x ∈ Ωf ,
(3.9)

where Ωs is the solid domain, Ωf the fluid domain and Ω = Ωf ∪ Ωs the computational
domain. For the sake of clarity, n′(x) is denoted by n(x).

3.3.1. Scale-dependent wavelet analysis of number density
Inertial particle clustering and related multiscale statistics are quantified using the
orthogonal wavelet decomposition (Daubechies 1993; Mallat 2009) of the particle
number density. Consider the particle number density, n(x, t), at a given instant t,
within the computational domain of a triply periodic L3 cubic box. This scalar field
is decomposed into a 3-D orthogonal wavelet series to unfold into scale, positions and
seven directions (μ = 1, 2, . . . , 7). The 3-D mother wavelet, ψμ(x), is hereby based
on a tensor product construction and a family of wavelets, ψμ,λ(x) can be generated
by dilatation and translation. The multi-index λ = (j, i1, i2, i3) denotes the scale 2−j

and position L × 2−ji = L × 2−j(i1, i2, i3) of the wavelets for each direction, where
i� = 0, . . . , 2j−1 (� = 1, 2, 3). The wavelets are well localized in space around position
L × 2−j(i1, i2, i3), and scale 2−j, oscillating, and smooth. A periodization technique
(Mallat 2009) is applied to the wavelets. The spatial average of ψμ,λ(x), defined by
〈ψμ,λ〉 = L−3 ∫

T3 ψμ,λ(x) dx, vanishes for each index, which is a necessary condition for
being a wavelet.
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Inertial particle clustering in a porous cell

Similar to Matsuda et al. (2021), the number density field n(x, t) sampled on N3
g = 23J

equidistant grid points can be developed into an orthogonal wavelet series,

n(x) = n̄000(x) +
J−1∑
j=0

nj(x), (3.10)

where nj(x) is the contribution of n(x) at scale 2−j defined as

nj(x) =
7∑

μ=1

2j−1∑
i1=0

2 j−1∑
i2=0

2j−1∑
i3=0

ñμ
j,i1,i2,i3ψ

μ
j,i1,i2,i3(x), (3.11)

with

ñμ
ji1i2i3 =

〈
n(x), ψμ

j,i1,i2,i3(x)
〉
, (3.12)

where 〈· , ·〉 denotes an inner product. At scale 2−j, there are 7 × 23j wavelet coefficients
for n(x). Thus, in total there are N3

g coefficients for each component of the vector field
corresponding to the N3

g − 1 wavelet coefficients and the non-vanishing mean value.
These coefficients are efficiently computed for N3

g − 1 grid points for n(x) using fast
wavelet transform, which has linear computational complexity. The scale from the wavelet
transform and wavenumber, kj, from the Fourier transform are related as

kj = 2π
L
kψ2−j, (3.13)

where kψ = 0.77 is the centroid wavenumber of the chosen Coiflet 12 wavelet.
Figure 9(a,b) shows instantaneous, normalized mean number density contours in the

xy-plane for two Stokes numbers, St = 1 and 0.01. A large number density, indicative
of highly clustered regions, is clearly observed for St = 1, but is absent for St = 0.01.
The instantaneous number density field is decomposed using wavelet transform and the
scale-dependent fields (nj) normalized by its variance (σ [nj] = √

M2[nj]) are shown for
different scales in figure 9(c–f ). It can be seen that clusters are prominent as scales become
smaller (larger j), whereas large void regions (negative nj) of size comparable to the pore
size are seen at larger scales (smaller j). Prominent cluster regions are also seen near the
bead surfaces, even for a low Stokes number (St = 0.01). For intermediate scales, both
clusters and voids are distributed more intermittently in space. The multiscale nature of
clusters and voids is qualitatively clear from these figures. Scale-dependent statistics are
computed to quantify these differences at various scales.

3.3.2. Wavelet spectra, scale-dependent skewness and flatness
Wavelet-based statistics of the particle number density can be computed as described
below. The qth moment of nj(x) is defined as

Mq[nj] = 〈
(nj)q

〉
, (3.14)

where the mean values
〈
nj

〉 = 0, by giving a central moment and are related to the qth order
structure functions (Schneider, Farge & Kevlahan 2004).
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Figure 9. For caption see next page.
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Figure 9 (cntd). Instantaneous distribution of normalized particle number density (a,b) and scale contributions
(nj/σ [nj]) at j = 2 (c,d), j = 4 (e, f ) and j = 6 (g,h) in the xy-plane for St = 1 (a,c,e,g) and St = 0.01 (b,d, f,h).
Results are shown for (a) n′, St = 1; (b) n′, St = 0.01; (c) j = 2, St = 1; (d) j = 2, St = 0.01; (e) j = 4, St = 1;
( f ) j = 4, St = 0.01; (g) j = 6, St = 1; (h) j = 6, St = 0.01.

The wavelet energy spectrum of nj(x) can be defined using the second-order moment,
M2[nj], as

E[nj] = 1
�kj

M2[nj], (3.15)

where �kj = (kj+1 − kj)ln2 as given by Meneveau (1991). The energy spectrum obtained
from the above equation has the particle number dependence due to the Poisson noise.
Matsuda et al. (2021) analytically obtained the effect of the Poisson noise on M2[nj]
and succeeded in removing the Poisson noise from the wavelet energy spectrum. The
second-order moment for randomly distributed particles in the cubic domain Ω = Ωf ∪
Ωs is M2,random,Ω [nj] = (7 × 23j/Np,Ω)〈n〉2Ω . For the present case, particles exist only in
the fluid domain Ωf , and Np = φNp,Ω and 〈n〉 = φ〈n〉Ω . The energy of the Poisson noise
is also reduced by a factor of φ, i.e. M2,random[nj] = φM2,random,Ω [nj], yielding

M2,random[nj] = 7 × 23j

Np
. (3.16)

Hence, the following definition for the wavelet energy spectrum is used:

E[nj] = 1
�kj

{
M2[nj] − 7 × 23j

Np

}
. (3.17)

Here the influence of the Poisson noise has been removed. Note that the analytical estimate
of (3.16) does not contain a contribution of the beads geometry. It was found that the energy
due to Poisson noise is orders of magnitude smaller for all scales and does not significantly
affect the energy spectra of inertial particles. If M2[nj] is computed from a realization of
random particle distribution in the fluid domain Ωf , the combined effect of the Poisson
noise and geometrical confinement in Ωf can be observed.
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Figure 10. Wavelet energy spectra of particle number density fluctuation E[nj] for different Stokes numbers.
Also shown are energy spectra for Poisson noise (k2 line) in a cubic box (Random, no beads) and uniform
random data in the porous region of the FCC geometry (Random, FCC). Results are shown for (a) E[nj];
(b) E[nj] − (E[nj])Random,FCC .

The asymmetry of the p.d.f. of nj(x) is quantified by the skewness defined as

S[nj] = M3[nj]
(M2[nj])3/2

. (3.18)

The scale-dependent flatness, which measures the intermittency at scale 2−j, is given as

F[nj] = M4[nj]
(M2[nj])2

, (3.19)

and is equal to three at all scales for a Gaussian distribution. It should be noted that the
influence of the Poisson noise on M3[nj] and M4[nj] cannot be removed by subtracting
the moments for randomly distributed particles. Matsuda et al. (2021) introduced the
signal-to-noise ratio (SNR) defined as the ratio of the energy spectrum for inertial
particles to that for randomly distributed particles, i.e. SNR = E[nj]�kj/M2,random[nj].
They confirmed that the effect of the Poisson noise on the statistics is negligibly small
when the SNR is larger than 10.
Scale-dependent wavelet spectra, flatness and skewness of number density fluctuation

are obtained by collecting data over a time span of 15TL
11 ≈ 30 τη, where TL

11 is the
Lagrangian time scale and τη is the Kolmogorov time scale. The scale-dependent statistics
are averaged using approximately 15 equally spaced snapshots of number density over this
time frame.Figure 10(a) presents the wavelet spectra of the number density fluctuations,
E[nj], for different Stokes numbers as a function of the wavenumber, kj, normalized by
the Kolmogorov scale, η = (ν3/〈ε〉)1/4. Also shown is the spectrum for random particle
positions with uniform probability, where the p.d.f. satisfies the Poisson distribution,
resulting in E[nj] ∝ k2j . Moreover, random particles in the porous region of the FCC
geometry are considered for comparison, and the spectrum shows a behaviour similar
to the St = 0.01 case. This is expected as random particles correspond to the case
St = 0, representative of fluid tracer particles. Comparing this with random particles
in the cubic cell without the beads, i.e. the k2 scaling, quantifies the influence of the
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Inertial particle clustering in a porous cell

St 2 1 0.5 0.1 0.01 Random FCC Random, no beads
Lc/η 2.249 1.99 1.92 1.62 1.49 1.28 0.77

Table 2. Clustering integral length scale (Lc) normalized by the Kolmogorov scale (η) for different Stokes
numbers and randomly distributed particles with and without the FCC bead geometry.

geometrical confinement. At small scales increasing energy is observed and a similar
magnitude as for St ≤ 0.1. For St = 0.5, 1 and 2, it is seen that the spectrum first
increases with a increasing kjη (large scales) and then gradually decreases for large kjη
(small scales). The peak in the spectrum is found to gradually shift towards larger scales
(smaller kjη). This observation is consistent with the clustering of inertial particles in
homogeneous, isotropic turbulence (HIT; Matsuda et al. 2021). In addition, for higher
Stokes numbers, the energy E[nj] is generally higher for all kjη. For St < 0.5, the peak
observed in the spectrum at higher St is not seen and E[nj] increases monotonically with
kjη. Subtracting the noise in the porous region, shown in figure 10(b), allows us to recover
the peaks for small St. The peak values become higher for similar kjη, which indicates that
the void scale is almost constant. This is consistent with results for homogeneous, isotropic
turbulence (Matsuda et al. 2014). For isotropic turbulence, with low Stokes numbers, the
spectra show a steeper slope close to k−1 at small scales (kjη � 0.4). This difference in
slopes at low St in the presence of beads is attributed to the effect of inertial particle
collisions with the bead surfaces as well as the geometric confinement effect of the flow.
The peak of the spectrum of the particle density shown in figure 10(a) yields a

wavenumber which corresponds to a clustering length scale given as

Lc
η

=
∑J−1

j=0 (kjη)−1E[nj]�kj∑J−1
j=0 E[nj]�kj

. (3.20)

Variation of this length scale in comparison to the Kolmogorov scale as a function of the
Stokes number is reported in table 2. It is observed that as the Stokes number increases,
the wavenumber where the peak occurs becomes smaller indicating a larger length scale
of the clustering. This integral length scale approaches the value for random distribution
of the particles in the FCC geometry as the Stokes number decreases. Compared with the
integral length scale of the flow, L11 = 25.58η, the clustering length scale is an order
of magnitude smaller for all Stokes numbers, suggesting that the clustering is mainly
impacted by smaller scales.
Flatness and skewness statistics of number density fluctuations are computed for various

Stokes numbers, as well as randomly distributed particles for the cubic box and the porous
region, and are shown in figure 11(a,b). The statistics of randomly distributed particles
correspond to those of fluid tracer particles (St = 0). The number density of the fluid
particles is uniform due to the volume preserving nature of the incompressible flow and
particle clustering is absent resulting in zero skewness and flatness close to 3 as expected.
For random data in the porous region of the FCC geometry, similar results were obtained
with only minor differences. For all inertial particles with different Stokes numbers, the
flatness values increase with decreasing scales, showing that intermittency of particle
clustering is high at smaller scales. This is also seen qualitatively in the contour plots
(figure 9e–h) of number density fluctuations at smaller scales. For St > 0.5, the flatness
values for each scale (kjη) decreases with decreasing Stokes number. However, for small
Stokes numbers, there is an increase in intermittency at intermediate and smaller scales
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Figure 11. Scale-dependent skewness S[nj] (a) and flatness F[nj] (b) for different Stokes numbers and random
particles in a cubic box (Random, no beads) and uniform random data in the porous region of the FCC geometry
(Random, FCC). Solid lines connect the symbols at scales for which SNR ≥ 10, and dotted lines are used
otherwise. (a) Skewness. (b) Flatness.

(kjη > 0.2) compared with larger Stokes numbers. Note that for lower Stokes numbers,
particle clustering is typically not significant (figure 9b). Thus, this increase in flatness at
smaller scales may be a result of the collision of particles with bead surfaces.
For inertial particles at all Stokes numbers, skewness values also increase with

decreasing scales. As shown byMatsuda et al. (2021), positive skewness of number density
fluctuations indicate a high probability of large positive values of nj(x), that is prominent
clusters, whereas negative skewness corresponds to large excursions of negative values of
nj(x), that is void-pronounced structures. Increase in positive skewness at smaller scales
for all Stokes numbers implies more prominence of clusters. At St = 0.01 and 0.1, the
skewness remains close to zero at intermediate and large scales, similar to the random
particle statistics. However, at smaller scales there is an increase in positive skewness for
these Stokes numbers. This again is conjectured to be clustering of these particles owing to
collisions with the bead surfaces. Finally, small negative values of skewness observed for
St > 0.5 at large scales are indicative of large regions of voids. This is also qualitatively
confirmed in the visualizations shown in figure 9.

4. Summary and conclusion

Fully resolved DNS of a turbulent flow through the confined geometry of a triply periodic,
FCC porous unit cell was performed using a Cartesian grid-based fictitious domain
method. The low porosity of the flow geometry gives rise to rapid acceleration and
deceleration of the mean flow with the presence of 3-D helical motions, weak wake-like
structures behind the bead spheres, stagnation and jet-impingement-like flows together
with merging and spreading jets in the main pore. Details of turbulence characteristics
in this confined geometry of the porous cell for a range of Reynolds numbers spanning
unsteady inertial, transitional and turbulent flow were characterized in detail in prior work
(He et al. 2019). In this work emphasis is placed on clustering dynamics of inertial particles
in a turbulent flow through the porous cell. Specifically, how particle–wall interactions
affect clustering and deposition mechanisms at different particle Stokes number were
studied. To this end, point particles were advanced for five different Stokes numbers St
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using one-way coupling and assuming perfectly elastic wall collisions for a single pore
Reynolds number of ReH = 500, corresponding to inertial, turbulent flow. About ten
million particles for each Stokes number were introduced into the flow and tracked over
several flow through times to provide meaningful statistics on inertial particle dynamics
of clustering, void formation and transport inside the confined geometry of the porous
medium.
Tools for studying inertial particle dynamics and clustering, previously developed for

homogeneous flows, have been adapted by taking into account the curved flow geometry
of the bead walls in the porous cell. Mirror particles were used in the Voronoi analysis
and adjusted for tesselation in the presence of bead walls. The probability distribution
of the Voronoi volumes for the different Stokes numbers quantified the departure from
the gamma distribution and allowed us to assess the influence of both the geometry and
the flow, in comparison to isotropic turbulence. It was found that the geometry only
impacts the small volumes below 10−2 to the mean Voronoi volume. Cluster formation
and destruction was quantified by analysing the time change of the Voronoi volumes for
the different Stokes numbers. This Lagrangian approach yields a time discrete measure of
the spatial divergence of the particle velocity. It was found that the p.d.f.s of the divergence,
which are symmetric, are becoming wider for increasing Stokes number, as the variance
increases. In contrast, the tails of the p.d.f.s are becoming shallower with Stokes number.
The conditional average of the divergence as a function of volume is found to be positive
for small volumes and negative for large volumes. This explains that cluster formation is
present for large volumes, while cluster destruction is more prominent for small volumes.
Moreover, these effects are amplified with the Stokes number. These findings are similar to
what has been found for isotropic turbulence (Oujia et al. 2020). Wavelet-based multiscale
statistical analyses were applied to particle number density fields in the flow through the
porous geometry. By decomposing the number density fields into orthogonal wavelets,
scale-dependent statistics of the number density distribution were computed. The wavelet
energy spectra showed that the peak of clustering gradually shifts towards a larger scale as
the Stokes number increases. To reduce the influence of bead geometry, the difference of
each energy spectrum for inertial particles from that for randomly distributed particles only
in a fluid domain was also computed. This allowed us to identify the peaks in the spectra
for St ≤ 0.1. Scale-dependent skewness and flatness of the particle density quantified
the intermittent void and cluster distribution statistically. The positive skewness values
at smaller scales found for all Stokes numbers confirm the observed small-scale prominent
clusters. Negative skewness values for St > 0.5 quantify the presence of prominent void
regions. The flatness values which are increasing with decreasing scale and that the values
become even larger for larger Stokes numbers confirm the strongly intermittent cluster
distribution.
In conclusion both static and dynamic analyses of particle clustering in a porous cell

have been performed. With scale-dependent analyses of snapshots of particle density
distributions (static analyses), voids and clusters were quantified statistically. Focusing on
intermittency, a signature of void and clusters was observed in higher-order statistics. With
the Lagrangian analysis of Voronoi tesselations (dynamic analysis), the convergence and
divergence of particle velocity were computed thus providing an explanation for cluster
formation and destruction. A comparison with results for HIT, showed many similarities
and also pointed out differences due to the flow geometry, in particular for small volumes.
Voronoi and wavelet analysis of the particle density are somewhat connected. It was

shown that Voronoi tesselation of the particle positions contains length scale information,
reflected by small and large cells. Wavelet analysis of the corresponding particle density
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field, which is obtained by averaging the particle positions (using histograms), can also
detect the presence of small scales and large scales, reflected in strong wavelets coefficients
measuring variation (or gradients) in the particle density. Thus thresholding of the wavelet
coefficients would yield an adaptive grid, as shown in Bassenne et al. (2017). Such
locally refined grids, are expected to be present in regions of small Voronoi cells and
coarse grids are expected in regions of large Voronoi cells. A qualitative agreement
can thus be expected. In contrast to the wavelet representation, in the Voronoi analysis,
the scales are not separated, all scales are simultaneously given by the tesselation.
Combining the multiscale statistical analyses with the Lagrangian formulation of the
Voronoi tesselation constitutes an interesting perspective of this work for quantifying
scale-dependent divergence and convergence of the particle velocity and the related
inter-scale transfer. The approach developed in this work should be directly applicable
to cases involving polydispersed, and randomly packed beads with periodic conditions.
Effect of flow Reynolds number, volume loading, particle-size relative to the Kolmogorov
scale and different types of particle–bead interactions can affect the clustering dynamics in
these confined configurations and will be the focus of future work. The analysis presented
can also be extended in the future to vorticity fields to obtain 3-D directional information
at different scales.
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