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CRISPR

The widespread 1S200/1S605 transposon
family encodes diverse programmable

RNA-guided endonucleases
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IscB proteins are putative nucleases encoded in a distinct family of 1IS200/1S605 transposons and

are likely ancestors of the RNA-guided endonuclease Cas9, but the functions of IscB and its interactions
with any RNA remain uncharacterized. Using evolutionary analysis, RNA sequencing, and biochemical
experiments, we reconstructed the evolution of CRISPR-Cas9 systems from 1S200/1S605 transposons.
We found that IscB uses a single noncoding RNA for RNA-guided cleavage of double-stranded DNA
and can be harnessed for genome editing in human cells. We also demonstrate the RNA-guided nuclease
activity of TnpB, another 1S200/1S605 transposon-encoded protein and the likely ancestor of Cas12
endonucleases. This work reveals a widespread class of transposon-encoded RNA-guided nucleases,
which we name OMEGA (obligate mobile element-guided activity), with strong potential for

developing as biotechnologies.

he prokaryotic RNA-guided defense sys-

tem CRISPR-Cas9 (type II CRISPR-Cas),

which has been adopted for genome

editing in eukaryotic cells (7, 2), is thought

to have evolved from IscB proteins (3).
Despite its wide distribution across prokary-
otes and its shared domain composition and
architecture with Cas9, the function of IscB
remains unknown (fig. S1). Moreover, given
that IscB has not been reported to be as-
sociated with noncoding RNA (ncRNA) or
CRISPR arrays, the evolutionary origins of
the RNA-guided activity in Cas9 systems are
unclear. IscB is encoded by a distinct subset
of IS200/IS605 superfamily transposons that
also include transposons encoding tnpB, a
putative endonuclease distantly related to iscB
and thought to be the ancestor of Casl2, the
type V CRISPR effector (3-5). Using phyloge-
netic analysis, RNA sequencing (RNA-seq),
and biochemical experiments, we sought to
elucidate the functions of these proteins and
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the origin of RNA-guided activity in class 2
CRISPR systems.

IscB is associated with an evolutionarily
conserved noncoding RNA

IscB is ~400 amino acids long and contains a
RuvC endonuclease domain split by the inser-
tion of a bridge helix (BH) and an HNH endo-
nuclease domain, an architecture that is shared
with Cas9 (Fig. 1A) (3). We performed a com-
prehensive search for proteins containing an
HNH or a split RuvC endonuclease domain
and found that Cas9 and IscB were the only
proteins that contained both domains (data
S1). This search also showed that IscB con-
tains a previously unidentified N terminus
that lacks clear homology to known do-
mains and is absent in Cas9, which we de-
noted PLMP after its conserved sequence
motifs (Fig. 1A and fig. S2). Clustering and
phylogenetic analysis of the combined RuvC,
BH, and HNH domains strongly suggests
that all extant Cas9s descended from a single
ancestral IscB (Fig. 1B and data S2 and S3).
We searched for CRISPR arrays adjacent to
iscB genes from each cluster and found six
distinct groups of IscB, containing 16 clusters
(of 603 total), that were CRISPR-associated,
contrary to previous observations (3). CRISPR-
associated IscBs were scattered around the
IscB phylogenetic tree, which suggests that
they evolved independently, with one asso-
ciation event leading to the Cas9 lineage (Fig.
1B). In total we identified 31 unique CRISPR-
associated #scB loci (of 2811 total).

Given their association with CRISPR arrays,
we suspected that the rarely occurring CRISPR-
associated IscBs may be RNA-guided nucleases.
We first examined a cluster of CRISPR-
associated IscBs similar to non-CRISPR-
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associated IscBs (at ~50% amino acid identity).
We heterologously expressed a representative
locus from this clade in Escherichia coli and
performed small RNA-seq, which showed
expression of not only the CRISPR array, but
also a 329-base pair (bp) intergenic region
between the CRISPR array and the IscB open
reading frame (ORF) (Fig. 1C). We purified the
IscB protein and sequenced the copurified
RNA, demonstrating that this protein inter-
acts with a single ncRNA component that
encompasses both the CRISPR array and this
intergenic region (Fig. 1C).

Given its interaction with a ncRNA that
includes the CRISPR direct repeat (DR) and
spacer, as well as its similar domain architecture
to Cas9, we tested this IscB for RNA-guided
endonuclease activity. Using a previously estab-
lished protospacer adjacent motif (PAM)-
discovery assay (table S1) (6), we observed
depletion of specific PAM sequences (Fig. 1D
and fig. S3), indicating that CRISPR-associated
IscBs are reprogrammable RNA-guided nu-
cleases. We confirmed this enzymatic activity
with an in vitro cleavage assay using recom-
binant ribonucleoprotein (RNP) complexes
(Fig. 1E).

Our finding that IscB functionally associ-
ated with CRISPR at least once, and likely on
additional occasions, suggested that IscB systems
more generally share a core ancestral ncRNA
gene that is prone to evolving into a CRISPR
array and in some cases a separate trans-
activating CRISPR RNA (tracrRNA) (7). To
test this hypothesis, we aligned 563 non-
redundant #scB loci and searched for conserved
nucleotide (nt) sequences either upstream or
downstream of the iscB ORF. This analysis
revealed a highly conserved intergenic region
~300 bp in length upstream of the ORF with
a drop in conservation at the 5’ end, which
corresponds to an IS200/IS605 transposon
end. Secondary structure predictions for indi-
vidual sequences revealed the presence of
multiple G:U pairs (fig. S4), suggesting that
the conserved region encodes an ncRNA con-
taining functionally important hairpins, which
we named ®RNA. Small RNA-seq on a sample
of Ktedonobacter racemifer strain SOSP1-21, a
soil bacterium that harbors 46 IscB loci in its
genome (3), demonstrated expression of the
predicted ®RNA in many of these loci (Fig. 1F
and figs. S5 and S6A). Moreover, we observed
that the transcripts consistently extended beyond
the conservation boundary at the 5’ end.

An Rfam search for potential homologs of
the ®RNA showed that the conserved region
of the ®RNA partially matched the previously
reported HEARO RNA, a ncRNA that was
found upstream of HNH domain-containing
proteins, which at the time were thought to be
homing endonucleases (8, 9). However, the
Rfam search did not provide any clues about
the nature of the 5'-terminal nonconserved
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Fig. 1. IscBs are associated with ncRNAs of unknown function.

(A) Comparison of IscB and Cas9 domains and previously described ncRNAs.
(B) Phylogenetic analysis of the RuvC, BH, and HNH domains of Cas9 and
IscB clusters using 1Q-Tree 2. Genomic association shows that 16 of 603
IscB clusters have strong association to CRISPR, occurring independently

in multiple clades. (C) Small RNA-seq of a heterologously expressed
CRISPR-associated IscB locus (top) and RNP pulldown (bottom).
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(D) Sequence logo for the PAM as determined by a plasmid depletion assay.
(E) In vitro cleavage by IscB single guide RNA-RNP complex. (F) Top:
Conservation analysis of regions upstream of N = 563 nonredundant IscB
loci. Bottom: Small RNA-seq of an IscB locus in K. racemifer strain SOSP1-21.
TE, transposon end. (G) Secondary structure predictions of CRISPR-associated
IscB ncRNA and IscB ®wRNA. Guiding function of ®RNAs was inferred by
comparison of the two structures.
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Fig. 2. IscB is an RNA-guided DNA endonuclease. (A) Design of an IVTT-
based TAM screen. (B) KralscB-1 endogenous target and reprogrammed target
sequences used in IVTT TAM screens. (C) dsDNA cleavage by KralscB-1
and wRNA targeting sequence flanked by ATAAA 3' TAM. (D) dsDNA cleavage
by AwalscB and ®wRNA targeting sequence flanked by ATGA 3' TAM. (E) In

portion of these transcripts. Comparison of the
consensus CRISPR-associated IscB ncRNA and
the covariance folded ®RINA secondary structures
revealed high degrees of structural and sequence
similarity, particularly in shared multistem
regions and pseudoknots (Fig. 1G, fig. S7,
and supplementary text). We inferred that
the 5-most nonconserved sequence in the
®RNA might function as a guide sequence,
because the sequence immediately downstream
was predicted to form hairpins that structur-
ally resembled the hairpins formed by the DR/
anti-repeat duplex in the CRISPR-associated
IscB ncRNA (Fig. 1G).

IscB is a reprogrammable RNA-guided
DNA endonuclease

To test whether IscB was capable of cleaving
DNA complementary to the putative ©RNA
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by AwalscB.

guide, we performed an in vitro plasmid cleav-
age assay with KralscB-1 using an in vitro
transcription/translation (IVTT) expression sys-
tem (Fig. 2, A and B). We found that KralscB-1
cleaved the target in an ®RNA-dependent man-
ner, with an ATAAA 3’ target-adjacent motif
(TAM) (Fig. 2C). Retargeting of KralscB-1 using
a different guide (Fn guide) (6) also mediated
cleavage of the cognate target (Fig. 2C and fig.
S6B), implying that IscB is a reprogrammable
RNA-guided nuclease.

Next, we biochemically characterized IscB in
vitro. We identified activity in 57 of 86 (66%)
selected phylogenetically diverse systems (table
S2) as determined by the identification of a
TAM (fig. S8). Of these 57 functional IscBs,
five could be reconstituted with the respec-
tive ®RNA in vitro to achieve efficient target
cleavage, and from those, we selected AwalscB
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vitro reconstituted AwalscB-oRNA RNP cleavage of dsDNA substrates in the
presence or absence of a target and/or TAM. (F) In vitro dsDNA cleavage
of AwalscB with selectively inactivated nuclease domains. TS, target strand;
NTS, nontarget strand. (G) Sequencing of cleavage products generated

(from Allochromatium warmingiz) for detailed
biochemical characterization (Fig. 2, D to G).
We confirmed the ability of recombinant
AwalscB to cleave multiple double-stranded
DNA (dsDNA) targets in a programmable
manner (Fig. 2E) and showed that the activity
of AwalscB is magnesium-dependent with a
temperature optimum from 35° to 40°C (fig.
S9, A and B). Appreciable activity was observed
in vitro with guide lengths between 15 and
45 nt (fig. SOD). Mutation of the catalytic RuvC-IT
residue (E157A) abolished the nucleolytic activ-
ity on the nontarget DNA strand, whereas the
HNH domain catalytic mutant H212A abol-
ished the nucleolytic activity on the target
strand (Fig. 2F). Combination of the E157A
and H212A mutations (dAwalscB) abolished
all dsDNA nucleolytic activity (Fig. 2F) (10, 11).

Sequencing of the cleavage products showed
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Fig. 3. Guide-encoding mechanisms of IscB. (A) Example loci for each major

mechanism of encoding multiple guides: Entire ®RNA arrays associate with IscB;

®RNAs duplicate or insert into CRISPRs; transposition expansion results in
multiple nearly identical loci that each express different guides; and standalone
trans-acting ®RNAs form independently of adjacent IscBs. (B) K. racemifer
encodes 48 IscB loci with cis ®RNAs and 10 standalone trans-acting oRNAs.

(C) Small RNA-seq of a standalone @RNA locus in K. racemifer.

(D) KralscB-1, in complex with cis or trans ®RNAs with the same guide
sequence, mediates cleavage of dsDNA in a TAM- and target-dependent
manner. Reactions were performed in IVTT using 5" strand-specific
labeled linear targets. Contig accession and position information for all
displayed loci are listed in table S6.

that AwalscB cleaves the target strand 3 nt
upstream of the TAM, similar to Cas9s (12).
Cleavage of the nontarget strand occurred 8
or 12 nt upstream of the TAM, generating 5’
overhangs 5 or 9 nt in length (Fig. 2G and fig.
S10). Exonuclease III mapping of a target
substrate engaged by the dAwalscB-oRNA
RNP showed that the RNP hindered exo-
nuclease III treatment 19 nt upstream of the
TAM on the target strand and 6 nt downstream
of the targeted sequence on the nontarget
strand (fig. S11) (13). We also found that
truncation of more than four amino acids
of the PLMP domain of AwalscB abolished
cleavage activity (fig. S12).

IscB uses multiple guide-encoding
mechanisms

A distinct advantage of RNA-guided systems
is that they allow an effector to target many
substrates by simply reprogramming the RNA
guide. One way IscB evolved to use multiple
guides is association with CRISPR arrays (Fig.
3A). However, given that #scB loci typically
encode a single ®RNA, it is unclear how or even
whether these systems achieve such modularity
in general. By searching for ®RNAs not directly
adjacent to iscB ORFs, we uncovered three ad-
ditional potential mechanisms for guide encod-
ing and switching: ®RNA arrays, transposon

Altae-Tran et al., Science 374, 57-65 (2021)

expansion, and standalone, trans-acting ®RINAs
(Fig. 3A). ®RNA arrays consist of multiple
®RNAs, each encompassing a distinct guide,
separated by up to 200 bp, and are found in
15 of 3356 unique IscB/IsrB loci (0.4%). Trans-
poson expansion involves the insertion of nearly
identical IS200/IS605 superfamily transposons
in multiple locations, resulting in multiple loci
per genome, each capable of expressing a nearly
identical ®RNA scaffold with a unique guide
(fig. S13). By contrast, standalone ®RNAs, which
show no detectable genomic associations with
iscB, were more common and were found in
multiple copies in some genomes (table S3).
Cis ®RNAs from 95 of 3356 unique IscB/
IsrB loci (2.8%) were nearly identical (=95%
sequence identity) to distally encoded stand-
alone ®RNAs (fig. S14), implying that these
standalone ®RNAs could encode guides used
by trans-encoded IscBs.

We tested this possibility by examining 10
standalone ®RNAs in the K. racemifer genome
(Fig. 3B), nine of which were found to be ex-
pressed (Fig. 3 and fig. S15). Of the six standalone
®RNAs tested, we found that five could mediate
RNA-guided DNA cleavage with a distally
encoded IscB from the same genome (Fig.
3D), demonstrating that a single IscB can
use multiple trans-encoded ®RNAs. Guides
from many ®oRNAs, both IscB-adjacent and
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trans-encoded, mostly target prokaryotic
genomic sequences (61.5% genomic, 0.7%
plasmid, 2.0% phage, 35.8% unmatched; N =
36,323), suggesting a nondefense function for
IscB systems (fig. S14 and table S3). In parti-
cular, we found that more than one-third of
the ®RNAs (34.1%) targeted the same locus
without the IS200/IS605 transposon insertion
(table S3 and fig. S16).

Evolution and diversity of IscB systems

We next investigated the evolutionary rela-
tionships among IscB, Cas9, and other homol-
ogous proteins to gain a broader insight into
the evolution of RNA-guided mechanisms. In
our search for proteins containing split RuvC
domains, we detected another group of shorter,
~350-amino acid IscB homologs that are also
encoded in IS200/IS605 superfamily transpo-
sons. These proteins contain a PLMP domain
and split RuvC but lack the HNH domain.
We renamed these proteins IsrB (insertion
sequence RuvC-like OrfB) to emphasize their
distinct domain architecture, replacing the
previous designation, IscB1 (3). In addition
to IscB and IsrB, we identified a family of even
smaller proteins (~180 amino acids) that only
contained the PLMP domain and HNH do-
main but no RuvC domain, which we named
IshB (insertion sequence HNH-like OrfB).
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Fig. 4. Diversity and evolution of IscB. (A) Phylogenetic tree of IsrB, IscB, and
Cas9. Associations with 1IS200/1S605 TnpA, ®RNA, CRISPR arrays, anti-repeats
(where applicable), and Cas acquisition genes are shown. ORF size of cluster
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events in each clade are marked by colored circles and squares, as described in
(B). CR, CRISPR array. (B) Parsimonious evolutionary timeline linking IsrB to
Cas9 with exemplifying loci. Colors of protein of interest indicate distinct stages
in the evolution of IsrB to Cas9. (C) Structural diversity of ®RNAs in IsrB and
IscB systems.

To investigate the relationships among these
proteins, we built a maximum likelihood (ML)
tree from a multiple alignment of the split
RuvC nuclease and BH domains using 1Q-
TREE 2 (Fig. 4A, figs. S17 and S18, data S2 and
S3, and table S4) (14). The topology of the re-

Altae-Tran et al., Science 374, 57-65 (2021)

sulting tree was supported by several addi-
tional ML and Bayesian phylogenetic and
robustness analyses (figs. S17 to S25 and data
S2 and S3; see supplementary text for details).
In the resulting tree, IsrB, IscB, and Cas9
formed distinct, strongly supported clades,
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which suggests that each of these nucleases
originated from a unique evolutionary event
(Fig. 4A, figs. S20, C and D, S21, S22, A and C,
and S23, and supplementary text). We then
analyzed the associations between each pro-
tein cluster and IS200/IS605 tnpA genes (3),
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®oRNAs, CRISPR-Cas adaptation genes (casl,
cas2, cas4, and csn2), CRISPR arrays upstream
and downstream of the respective ORF, and
CRISPR anti-repeats (Fig. 4A). As discussed
above, iscB and 7srB were rarely associated
with CRISPR arrays and were not found to
be associated with CRISPR-Cas adaptation
genes. The isrBs were associated with struc-
turally distinct ®RNAs. The iscBs were flanked
by transposon ends similar to those mobilized
by TnpA (3) but were found near tnpA in only
56 of 2811 (2.0%) unique IscB loci (Fig. 4A and
fig. S26D).

Additionally, we identified two distinct groups
of Cas9s. The first is a new subtype, II-D, a group
of relatively small cas9s (~700 amino acids)
that are not associated with any other known
cas genes (15). The second is a distinct clade
branching from within the I1-C subtype, which
includes exceptionally large cas9s (>1700 amino
acids) that are associated with tnpA (Fig. 4A
and fig. S26). The tnpA-associated II-C loci
often encompass unusually long DRs (imore
than 42 bp in length) and in some cases encode
HIRAN domain proteins between the cas9 and
other cas genes (Fig. 4A and fig. S27). Predicted
transposon ends surround various combina-
tions of the tnpA, cas acquisition genes, and
CRISPR arrays in these loci.

These phylogenetic and association analyses
confirm that IS200/IS605 transposon-encoded
IscBs and IsrBs share a common evolutionary
history with Cas9 (supplementary text). Given
the deep position of the IsrB clade in the tree
(Fig. 4A) and the lack of the HNH domain,
IsrBs likely represent the ancestral state, prob-
ably having evolved from the compact RuvC
endonuclease (I6). Almost all isrBs are asso-
ciated with an ®RNA; this suggests that these
systems became RNA-guided at an early stage
of evolution. IsrB subsequently gained the
HNH domain, possibly through insertion of
another mobile element or recombination
with a gene encoding an IshB-like protein,
founding the IscB family (Fig. 4, A and B,
turquoise squares, and supplementary text).

CRISPR arrays emerged within IscB systems
on multiple, independent occasions (Fig. 4, A
and B, black circles). These short arrays consist
of repeats that could have evolved by dupli-
cation of segments of the ancestral ®RNA. The
resulting systems encompass a hybrid CRISPR-
®oRNA that consists of a CRISPR array preced-
ing a partial ®RNA. These CRISPR-associated
IscB proteins likely also gained REC-like inser-
tions between the RuvC-I and RuvC-II sub-
domains on a number of occasions, often
contemporaneously with or shortly after the
CRISPR association (Fig. 4, A and B, white
squares, and fig. S28). In particular, one CRISPR-
associated IscB cluster (cluster 2089) likely
founded the Cas9 family (fig. S23) upon the
loss of the hallmark PLMP domain (Fig. 4, A
and B, gray square, and fig. S28). Moreover,
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the tracrRNAs of subtype II-D, a deep branch
in the Cas9 subtree (ML branch support, =97/
100; Bayesian posterior probability, 100%; figs.
S20, B to D, and S23), shows significant
similarity to IscB wRNAs (E-value 4.1 x 10°),
which suggests that the Cas9 tracrRNA origi-
nally evolved from wRNA (fig. S29). The con-
tinued evolution of Cas9 likely involved the
gain of additional REC-like insertions be-
tween the bridge helix and the RuvC-II domains,
resulting in increased protein size (fig. S28).
Finally, upon the association with the CRISPR
adaptation machinery (casi, cas2, and possibly
cas4) (Fig. 4, A and B, light blue circles), a
burst of Cas9 diversification and widespread
dispersion among bacteria via horizontal gene
transfer followed, resulting in the evolution of
multiple type IT CRISPR subtypes.

We also explored the evolutionary history of
®RNAs. By iteratively building a set of ®RNA
profiles that spanned all major groups of ® RNAs
associated with #scBs and isrBs, we found that
diverse ®RNAs are associated with almost all
iscBs and isrBs. Moreover, different IsrB and
IscB clades are associated with distinct ©RNA
structures (Fig. 4, A and C, and figs. SI8A,
S24A, and S30). The transition from isrB to
iscB was likely accompanied by loss of a second
pseudoknot, the adaptor pseudoknot, between
the transposon end region and the multi-stem
loop in #srB-associated mRNAs (Fig. 4, A to C,
yellow square). The inverse relationship be-
tween the complexity of the ®RNA structure
and the associated protein size is also reflected
by the simplified ®RNA structures associated
with clades of large IscBs and the even smaller
tracrRNAs associated with large Cas9s (Fig. 4C
and fig. S30).

1S200/1S605 elements encode diverse
RNA-guided nucleases

In addition to the distinct succession of evolu-
tionary events that yielded the abundant and
diverse type II CRISPR systems, our phyloge-
netic analysis revealed several other events in
the evolution of IscB and related proteins that
led to the extant diversity, which we sought to
experimentally explore.

First, we searched for IscB homologs in
eukaryotic genomes and identified multiple
iscB loci in the chloroplast genome of Ignatius
tetrasporus UTEX B 2012, a terrestrial green
alga (Fig. 5, A and B, and fig. S31). Although
the ORF is disrupted by multiple stop codons
in most of these loci, one locus encodes an in-
tact IscB (~50% amino acid identity to related
prokaryotic IscBs) and a transcriptionally active
oRNA (Fig. 5C). This eukaryotic IscB cleaves
DNA with a minimal NNG TAM (Fig. 5D),
which differs from other characterized IscB
TAMs (fig. S8).

Second, we investigated the clade of large
IscBs, which contain a BH domain that is split
in two by REC domain-like insertions (Figs.
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4A and 5A, white squares). We hypothesized
that these insertions might enhance DNA un-
winding, similarly to the REC lobe of Cas9 (17),
and would therefore facilitate genome editing
in the complex landscape of eukaryotic chro-
matin structure. We screened six large IscB
proteins, using a pool of 12 guides each, for
their ability to generate insertions/deletions
(indels) in HEK293FT cells (table S5 and
supplementary materials); one (OgeulscB)
produced appreciable indels (Fig. 5, E and F,
and fig. S32A). To further examine OgeulscB
activity, we tested a range of guide lengths
targeting three loci in the human genome
and found that OgeulscB achieved the maxi-
mum indel rate with a 16-nt guide (fig. S32B).
On a panel of 46 sites in the human genome,
we found that OgeulscB induced indels at 28
of these sites with varying efficiency up to
4.4% (Fig. 5G, fig. S32C, and table S5). Thus,
OgeulscB seems a promising candidate for
further development of IscB-based genome
editing tools.

Third, we experimentally characterized the
putative nuclease activity of IsrB, the apparent
ancestor of IscB (Fig. 5A). K. racemifer con-
tains five ¢srBs associated with ®RNAs that
are natively expressed (Fig. 5H and fig. S33).
We found that the IsrB-oRNA RNP nicks the
nontarget strand of a dsDNA substrate in a
guide- and TAM-specific manner (Fig. 5, I
and J, and fig. S34), which is analogous to
the activity of IscB upon inactivation of the
HNH domain (Fig. 2F).

Finally, we sought to determine whether
1S200/1S605 transposons in general harbor
RNA-guided nucleases. In addition to the dis-
tinct IscB and IsrB families, most IS200/1S605
transposons encode RuvC-like endonucleases
of another family, TnpB, which is thought to
be the ancestor of Casl12s, the type V CRISPR
effectors (Fig. 5A) (5). Additionally, TnpB is the
likely ancestor of larger proteins, Fanzors, en-
coded in diverse eukaryotic transposons (Fig.
5A) (18). The TnpB family, including Fanzor,
is an order of magnitude more diverse than
the IscB family; an HMMER search identified
more than 1 million ¢npB loci in publicly avail-
able prokaryotic genomes.

We identified conserved noncoding re-
gions immediately downstream of the coding
sequence (CDS) of many tnpBs, suggesting the
presence of associated ncRNAs that could
function as RNA guides (fig. S35). Previous
work has identified ncRNAs overlapping the
3'-end of tnpB genes in archaea and bacteria
(19, 20), but the function of these ncRNAs
has not been characterized. Small RNA-seq
of K. racemifer revealed native expression of a
ncRNA overlapping the 3’ end of the associated
tnpB ORF (Fig. 5K), which we classified as a
distinct group of ®RNAs. The reverse com-
plement of the KraTnpB wRNA 3’ end is nearly
identical to the 5’ of the ®RNA associated with
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Fig. 6. Naturally occurring RNA-guided DNA-targeting systems. Comparison of OMEGA systems with
other known RNA-guided systems. In contrast to CRISPR systems, which capture spacer sequences and
store them in the locus within the CRISPR array, OMEGA systems may transpose their loci (or trans-acting
loci) into target sequences, converting targets into ®RNA guides.

some KralscBs, a region that corresponds to
the predicted transposon end in each locus
(Fig. 5L).

Analysis of nonredundant loci containing
tnpB genes that clustered with KraTnpB
showed a drop of sequence conservation at the
3' end of the loci (fig. S35), corresponding to
the IS200/IS605 transposon end. Comparison
to the small RNA-seq trace revealed expression
beyond the conservation drop, indicating pos-
sible presence of a guide sequence in the tran-
script (Fig. 5M). In vitro plasmid cleavage assays
for multiple TnpB proteins from this cluster
using a reprogrammed guide demonstrated
RNA-guided cleavage with a 5' TAM (Fig. 5N
and fig. S36). We recombinantly purified a
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TnpB from Alicyclobacillus macrosporangiidus
(AmaTnpB) and confirmed its reprogramma-
ble RNA-guided dsDNA endonuclease activity
(Fig. 50 and fig. S36). We also observed that
AmaTnpB robustly cleaved target-containing
single-stranded DNA (ssDNA) substrates (Fig.
5P) and nonspecifically cleaved a collateral sub-
strate upon recognition of dSDNA or ssDNA
substrates (Fig. 5Q).

Discussion

Naturally programmable biological systems
offer an efficient solution for diverse or-
ganisms to achieve scalable complexity via
modularity of their components. RNA-guided
defense and regulatory systems, which are
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widespread in prokaryotes and eukaryotes,
are a prominent case in point, and have served
as the basis of numerous biotechnology ap-
plications thanks to the ease with which they
can be engineered and reprogrammed (27-23).

Here, through the exploration of Cas9 evolu-
tion, we discovered the programmable RNA-
guided mechanism of three highly abundant
but previously uncharacterized transposon-
encoded nucleases: IscB, IsrB, and TnpB, which
we collectively refer to as OMEGA (obligate
mobile element-guided activity) (Fig. 6) be-
cause the mobile element localization and
movement likely determines the identity of
their guides. Although the biological functions
of OMEGA systems remain unknown, several
hypotheses are compatible with the available
evidence, including roles in facilitating TnpA-
catalyzed, RNA-guided transposition, or acting
as a toxin, with the transposon acting as the
antitoxin, securing maintenance of 1S200/
1S605 insertions (supplementary text).

The broad distribution of the OMEGA sys-
tems characterized here indicates that RNA-
guided mechanisms are more widespread in
prokaryotes than previously suspected and
suggests that RNA-guided activities are likely
ancient and evolved on multiple, independent
occasions, of which only the most common
ones have likely been identified so far. The
TnpB family is far more abundant and diverse
than the IscB family; indeed, we identified
more than 1 million putative ¢npB loci in
bacterial and archaeal genomes, making it one
of the most common prokaryotic genes. These
TnpBs might represent an untapped wealth of
diverse RNA-guided mechanisms present not
only in prokaryotes but also in eukaryotes. Com-
bined with our identification of a chloroplast-
encoded IscB, these findings suggest that
the expansion of RNA-guided systems into
eukaryotic genomes could be a general phe-
nomenon, and more broadly, that RNA-guided
systems are functionally diverse and permeate
all domains of life.
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Tracing the origin of CRISPR-Cas

CRISPR-Cas systems have transformed genome editing and other biotechnologies; however, the broader origins

and diversity of RNA-guided nucleases have largely remained unexplored. Altae-Tran et al. show that three distinct
transposon-encoded proteins, IscB, IsrB, and TnpB, are naturally occurring, reprogrammable RNA-guided DNA
nucleases (see the Perspective by Rousset and Sorek). In addition to identifying diverse guide-encoding mechanisms,
the authors elucidate the evolutionary relationship between IsrB, IscB, and CRISPR-Cas9. Overall, these newly
characterized systems, called OMEGA (for obligate mobile element—guided activity) systems, are found in all domains
of life and may be harnessed for biotechnology development. —DJ
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