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Coordinated electric-vehicle charging can produce optimal, flattened loads that would improve reliability of the
power system as well as reduce system costs and emissions. Optimal deadline scheduling of residential charging
would require customers to defer charging their vehicles and to accept less than a 100% target for battery
charge. To analyze the necessary incentives for customers to accept giving up control of when charging of their
vehicles takes place, we use data from a choice experiment implemented in an online survey of electric-vehicle
owners and lessees in upstate New York (N=462). The choice microdata allowed us to make inference on
the willingness to pay for features of hypothetical coordinated electric-vehicle charging programs, exploiting
Variational Bayes (VB) inference. Our results show that individuals negatively perceive the duration of the
timeframe in which the energy provider would be allowed to defer charging. A negative monetary valuation
is evidenced by an expected average reduction in the annual fee of joining the coordinated charging program
of $2.66 per hour of control yielded to the energy provider. Our results also provide evidence of substantial
heterogeneity in preferences, probably due to early-stage attitudes toward coordinated charging. For example,
the 25% quantile of the posterior distribution of the mean of the willingness to accept an additional hour of
control yielded to the utility is $4.72. However, the negative valuation of the timeframe for deferring charging
is compensated by positive valuation of emission savings coming from switching charging to periods of the day
with a higher proportion of generation from renewable sources. Customers also positively valued discounts in
the price of energy delivery.

1. Introduction: coordinated charging and the OptimizEV pilot Tompkins County), the OptimizEV program is designed to: (1) deter-

mine exactly when to charge an EV within both a timeframe and target

Electrification of vehicles is becoming one of the main avenues for
decarbonization of the transportation market. Even though there are
clear environmental benefits of renewable-based electromobility, large-
scale charging from high penetration of electric vehicles (EVs) will

charge specified by the customer, (2) offer a discount based on how
long an EV is left plugged in while letting the utility to decide when
to actually charge the battery (according to the algorithmic optimal

eventually require optimal scheduling of when electricity is delivered
to vehicles (Andersen et al., 2018; Arif et al., 2016; Bitar & Xu, 2017;
Calearo et al., 2019; Gonzélez-Garrido et al., 2019). Optimal scheduling
of electric vehicle charging has the potential to reduce load variance.
In fact, coordinating EVs to charge at times when fewer people require
electricity can effectively prevent stress on the power grid by reducing
peak loads. Smart EV charging and the resulting flattened loads can
improve reliability of the power system as well as reduce system costs
and emissions. On the demand dimension of coordinated EV charging,
residential customers would need to be willing both to delay charging
their vehicles and to accept less than a 100% target for battery charge.

OptimizEV is a pilot program that NYSEG - the local electricity and
gas provider in upstate New York - is running within the Energy Smart
Community of Tompkins County, NY to precisely analyze residential
optimal scheduling of the charging of electric vehicles. Following an
algorithm developed by researchers of Cornell University (located in
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solution), and (3) ensure the EV is ready to go when needed. To inform
the design of both the features of the OptimzEV pilot and the interface
of the required smart EV charger, analysis of customer response to the
idea of giving up control of charging of their EVs is essential.

From a perspective of demand-side dynamics (Chakraborty et al.,
2019; Daina, 2018), there has been increasing interest in the literature
regarding modeling EV charging behavior (for reviews, see Daina et al.,
2017b; Hardman et al., 2018). Within this avenue of research, random
utility maximization models have been used to explore response to
smart EV charging services. For example, Daina et al. (2017a) built a
model for joint decisions of EV charging and use (activity-travel) within
the context of simplified (two-period) time-of-use pricing of electricity.
Via a choice experiment in which respondents chose their target battery
level and deadline to achieve the desired target given specific travel
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Fig. 1. Location of respondents to the OptimizEV survey in upstate New York.
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Fig. 2. Stated usual EV charging times.

needs for the day, the study provided evidence of large heterogeneity
in charging preferences. This observation about large variability in
behavior is also reported in previous work (Franke & Krems, 2013;
Yang et al., 2016; Zoepf et al., 2013). Applied microeconometrics offers
differing solutions to uncover and model variability in preferences
and behavior; for instance, mixed logit choice models (McFadden &
Train, 2000) address unobserved heterogeneity in preferences through
a parametric approach. Mixed logit models are common in modeling
EV purchases as well as response to EV charging contracts (e.g., Parsons
et al., 2014).

In this paper, our focus in on modeling choice of smart EV charging
programs that implement optimal scheduling of electricity delivery to
the battery of the vehicle (cf. Richter & Pollitt, 2018). In particular,
we are interested in determining behavioral response to the idea of
residential customers giving up control of charging by letting the
electric utility to decide when to deliver electricity to the EVs within a
given time window and a pre-specified state of charge and deadline. In
this regard, this work is related to how customers respond to terms of
energy contracts including pricing, which in the literature there is also
evidence of heterogeneous behavior (Richter & Pollitt, 2018).

To address and measure preference heterogeneity in the willingness
to delay charging of electric vehicles, we propose a mixed logit model,
which is fitted by Variational Bayesian (VB) methods using data from

Suppose that your electricity provider introduces a new PEV charging program

As part of the hypothetical PEV charging program:

@ You will receive a Level 2 electric vehicle charger, which includes free installation
and access to a charging management platform (mobile website) to manage the
charging of your EV.

@ In exchange for the installed charging unit, you will allow your electric utility to
charge your vehicle at times of the day/night that will minimize stress on the
electric grid while ensuring that your PEV is charged by the time you specify.

® If you allow the utility to delay when your vehicle gets charged, you will receive a
discount off of your electric delivery rate. Your supply rate will remain the same.

@ You can choose to not delay charging at anytime.

® Please note that you will be ensured of having a minimum charge in case of
emergencies.

Fig. 3. Descriptive text about a charging program introducing the option to delay as
shown in the survey.

a choice experiment specifically designed for this study. Although the
size of the microdata used in this study is standard, in anticipation of
the massive revealed-preference data from the daily charging decisions
of the actual pilot in this article we test the use of a scalable Bayes
estimator. Bayes estimation is an alternative approach to the more
traditional maximum likelihood estimator, with general associated ben-
efits (Bansal et al., 2020) including direct inference on the full posterior
distribution of individual-specific preference parameters that represent
how tastes vary. Whereas Bayes estimators are typically simulated
using Markov chain Monte Carlo (MCMC; Rossi, 2015; Rossi et al.,
2012) posterior sampling, Variational Bayes methods have emerged as
a scalable alternative to MCMC in the domains of probabilistic machine
learning and computational statistics (Blei et al., 2017; Jordan et al.,
1999; Ormerod & Wand, 2010). Variational Bayes is implemented as an
optimization problem rather than a sampling problem (cf. MCMC). The
objective of stochastic variational inference is to find an approximate
parametric distribution of the model parameters such that the prob-
ability distance (typically measured in terms of the Kullback-Leibler
divergence) between the exact posterior distribution and the variational
distribution is minimal. A key challenge in the application of VB to
posterior inference in discrete choice models is that the expectation
of the logarithm of the choice probabilities — i.e., the expectation of
the log-sum of exponentials — lacks a closed form, due to the lack of a
general conjugate prior. Whereas VB posterior inference for mixed logit
models has been analyzed in the literature (Braun & McAuliffe, 2010;
Depraetere & Vandebroek, 2017; Tan, 2017), recently in Bansal et al.
(2020) we resolved major research gaps in terms of parameter recovery,
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Fig. 4. Choice card sample.
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Fig. 5. Conditional distribution of the willingness to pay [in US $] to reduce in one
hour the duration of period in which the utility controls EV charging.
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Fig. 6. Conditional distribution of the willingness to pay [in US $] for a one percent
increase in the discount from participating in coordinated EV charging.

finite-sample properties, and extensions to more general utility speci-
fications and representations of unobserved preference heterogeneity.
Across the VB implementations in Bansal et al. (2020), stochastic VB
inference implemented with nonconjugate variational message passing
and the Delta-method (VB-NCVMP-4) (Depraetere & Vandebroek, 2017;
Tan, 2017) is on average between 1.7 to 16.2 times faster than MCMC
and MSLE, while performing nearly as well at prediction and parameter
recovery. Thus, in this paper we explore preference heterogeneity in the
responses to coordinated EV charging using VB-NCVMP-4 inference.
The rest of the paper is organized as follows. Section 2 reviews
the microdata, including details of the choice experiment that was
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Fig. 7. Conditional distribution of the willingness to pay [in US $] by residents of
Tompkins County for saving an additional pound of GHG emissions from participating
in coordinated EV charging.

implemented in the online OptimizEV survey. Section 3 provides a
short description of the VB-NCVMP-4 Bayes estimator that use to make
inference on the degree of preference heterogeneity in preferences. Full
details on the derivation of the estimator are provided in Bansal et al.
(2020). Section 4 discusses point and interval estimates of marginal
utilities and willingness to pay measures, with an emphasis of the extent
of preference heterogeneity that is evidenced from the data. Finally,
Section 5 concludes.

2. Data
2.1. Designing the OptimizEV pilot

As stated in the introduction, OptimizEV is a project by the local
electricity company of Tompkins County in upstate New York. With a
population of 101,564 (2010 US Census), Tompkins County comprises
the college town of Ithaca, is home to Cornell University, and is now
the first Energy Smart Community (ESC) in New York. The ESC project
is a response to, first, the comprehensive energy strategy for New York
Reforming the Energy Vision (REV), which mandates that 50% of New
York’s energy be generated by renewable sources by 2030, and second
to the Energy Roadmap for Tompkins County, which aims at an 80%
greenhouse gas reduction from 2008 levels by 2050. OptimizEV is a
specific ESC initiative to test implementation of optimal scheduling of
EV charging with the participation of 35 households that hold electric
vehicles. The OptimizEV pilot is taking place over 2020-2021.

OptimizEV was conceived as follows. A participating customer
would have the option to either keep full control of charging or let
the electric utility control when charging of their electric vehicle takes
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place, every time that the EV is connected to their Electric Vehicle Sup-
ply Equipment (EVSE). If at a given EVSE session the customer agrees
to give up control of charging, then loading profiles are determined by
a coordinated EV charging algorithm based on the notion of deadline
scheduling: right before beginning the charging sessions the customer
inputs both their desired total charge and charging deadline (i.e., the
time by which the requested energy must be delivered). As discussed
in the subsection below, most current EV owners start their charging
session immediately after connecting to their EVSE in the evening at
home aiming for a full charge. The charging session usually is ready
well ahead of when the load is really needed in the next morning.
What OptimizEV allows customers to do is to let the electric company
to optimize — from a whole grid perspective — when the electricity
is delivered, while respecting the stipulated deadline. The longer the
customer leaves their EV connected to the EVSE, the larger the potential
flexibility offered back to the utility. There is no penalty or fee if
the costumer decides to keep full control at a given charging session.
The idea behind coordinated EV charging is that customers: (1) are
flexible in terms of when their EV is charged, and (2) are willing to
delay actual charging while their deadline is respected. In exchange
for their flexibility, customers are offered a monetary incentive that
is determined by the grid optimization algorithm. Additional benefits
of coordinated charging, for which a customer could be willing to
transfer control of their EVSE session to the electric utility, are emission
reductions from flattening electricity generation.

2.2. The OptimizEV survey

To inform design and implementation of the OptimizEV pilot, an
online survey was launched in September 2019 to study charging
preferences by residential customers across upstate New York, both
within and outside the Tompkins County ESC area.

The target population for the survey was EV owners and lessees
within the footprint of the local utility that is running the OptimizEV
pilot. The New York State Energy Research and Development Authority
(NYSERDA) compiles data of EV registrations from the New York State
Department of Motor Vehicles. 44% of the registration records had
associated email addresses (1925 entries) that NYSERDA agreed to
share with the local utility. 197 invitation emails bounced after the
first contact. After a series of four reminders (scheduled biweekly for
incomplete links) to complete the survey, a total of 462 individuals
(Fig. 1) successfully completed the survey with responses that were
assessed as valid for analysis.

Table 4 summarizes sociodemographic characteristics of the sample
(N=462). Other characteristics include: 55% have a graduate or pro-
fessional degree; 90% live in a detached, single family home (making
charging at home a feasible option); 66% are employed full time, and
24% are retired.

The survey gathered categorical, attitudinal, and lifestyle informa-
tion around current EV charging patterns and preferences. Respondents
to the survey either own (69%) or lease (27%) mostly plug-in hybrids
(PHEVs), with pure battery electric vehicles (BEVs) representing around
one third of the sample. Of the 78% of respondents who typically leave
their EVs plugged in until it is fully charged, 60% use a Level 1 charger
at home. Most respondents stated to usually leave their vehicle charging
over night, even those who own or lease a PHEV (Fig. 2).

In terms of ownership, the most popular make and model is the
Toyota Prius Prime (37% among owners), followed by the Chevrolet
Volt (14%), which are both PHEVs (which represent 67.6% of the total
among owned electric cars). The most popular BEV is the Chevrolet
Bolt (12%), followed by the Tesla Model 3 Long Range (11%). Among
leased electric vehicles, the PHEV Chevrolet Volt (27%) is followed by
the BEV Chevrolet Bolt (25%). Another goal of the survey was to inform
design of the user interface of the mobile app to communicate with
the OptimizEV smart chargers. In fact, the next subsection describes
a choice experiment that was included in the survey to determine
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the perceived trade-offs that EV owners are willing to make for smart
coordinated EV charging.

Before the choice experiment, the survey introduced the concept of
optimal scheduling of EV charging as a hypothetical program offered
by the electric utility. The actual text that was used to introduce
the notion of delaying charging is shown in 3. The local electricity
provider proposed this generic text to provide enough information
about OptimizEV, while avoiding potential bias in the rollout of the
actual pilot.

2.3. Choice experiment

To elicit customer preferences around smart residential EV charging
and deadline scheduling, a discrete choice experiment was designed
aiming at replication of some of the decisions expected from individuals
joining the OptimizEV program. In fact, the choice experiment was
presented to respondents as their electricity provider offering a smart
EV charging program reproducing the expected characteristics of the
OptimizEV pilot in terms of GHG emission reductions per coordi-
nated charging session,’ hours of control yielded to utility (to
decide when to charge), and discount per charging session at home
(when willing to delay EV charging). Even though participation
in the actual OptimizEV pilot is free, the experiment introduced a
hypothetical payment for the coordinated EV charging service (as an
annual fee) with included installation of a free Level 2 charger with
technical capability to coordinate charging. The provision of the free,
smart Level 2 charger is essential to understand the consideration of
a payment for the service.? Table 5 summarizes the attribute levels
that were considered for a Bayesian efficient design of the experi-
ment (Bliemer & Rose, 2010). Whereas priors were obtained from a
pretest of the experiment, credible levels of the features were provided
by the local electric utility from simulations of the program. Note that
the discount per charging session is calculated with respect to delivery
costs only, i.e. the cost for the utility to transport the electricity. Levels
for the discount were presented as both a percent discount and savings
per month in dollars that were customized based on current charging
patterns of the respondent. Brand of the charging system was included
at request of the electric utility for brand equity assessment.?

Fig. 4 shows a choice card sample. In addition to making a choice
among the three hypothetical bundles (A-C), respondents could opt out
(i.e., keeping full control of charging) at any of the 6 choice situations
that were randomly assigned.

Choosing a particular bundle of smart charging means that cus-
tomers are willing to accept to give up control of charging their EV
(hours of control yielded) in exchange for a monetary incentive, which
appears in the form of a discount per charging session (presented
as both a percentage reduction in the electricity delivery cost and
a customized expected dollar savings per month). Expected emission
reductions were presented as pounds saved by charging session.

1 The utility estimates an upper bound of 73 pounds of CO,e savings per
session.

2 Furthermore, the actual pilot with free participation for granting load
control to the utility ended up implementing an app that displays the discount
per charging session as a function of the elicited deadline by which a desired
amount of energy must be delivered. The flexibility implied by the customer’s
inputs in terms of energy desired and deadline translates into the experimental
attribute of ‘hours of control yielded’.

3 By request of the company, estimates of brand equity — which also act as
a proxy for trust (c.f. Slade et al., 2015) — are kept private.
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3. Methodology: variational Bayes inference for mixed logit

Because we expected substantial differences in how EV drivers
would react to a hypothetical coordinated charging program, we de-
cided to make inference at the individual level with a choice model
that would allow us to make inference on unobserved preference
heterogeneity. There are general benefits of using Bayesian inference
for a mixed logit model, including direct sampling of conditional esti-
mates at the individual level and derivation of posterior estimates of
willingness-to-pay measures from marginal utilities. Variational Bayes
(VB) methods have emerged as a computationally-efficient alternative
to Markov chain Monte Carlo (MCMC) methods for scalable Bayesian
simulation-aided inference. Our recent analysis in Bansal et al. (2020)
shows that existing VB inference methods extended to the case of choice
models with both invariant and individual-specific parameters perform
as well as MCMC and MSLE at prediction and parameter recovery,
but with important savings in estimation cost.* Stochastic VB inference
with nonconjugate variational message passing and the Delta-method
(VB-NCVMP-4) in particular is shown in our previous work to be up to
16 times faster than MCMC and MSLE. Due to the computing benefits
of this later VB method in this paper we adopt VB-NCVMP-4 for the
estimation of a Bayesian mixed logit model, as specified below. Even
though standard estimation would be appropriate in this study due to
the scale of the stated preference data, we wanted to implement and
test the VB estimator in anticipation of the large scale of the revealed-
preference data coming from the actual OptimizEV pilot (with daily
records of choices over multiple months).

Consider a standard discrete choice setup, where customer i faces a
single choice among J alternatives, in each of T’ time periods. Adopting
a general logit-type specification, the random truncated indirect utility®
the customer extracts from alternative j in period (choice situation) ¢
is:

o o ’ §
Wije = X5 ¥i + €ije = Xy p @+ X g Byt €jrs &)

where x;;, is vector of choice-specific features (attributes), y; is a vector
of marginal utilities, and ¢;;, is an iid type-I extreme value preference
shock. Under the econometric assumption that ¢, 6 EV1(0, 1), the
choice model is characterized by a conditional logit kernel. Follow-
ing Bansal et al. (2020), the preference vector y; is partitioned into
invariant (across decision-makers) parameters « and customer-specific
parameters §;, where a and p; are vectors of lengths L and K, respec-
tively. To ensure conformability, the features vector x;;, is partitioned
into a component x;;, r associated with the invariant preferences «, and
a component x;;, r associated with the customer-specific preferences §;,
ie x;; = [x,-j,_F xij,’R]. As in Bansal et al. (2020), the heterogeneity
distribution of ., is assumed multivariate normal, i.e. B; ~ N (¢, Q)
for i = 1,..., N, where ¢ is a vector of population means of marginal
utilities, and Q is a covariance matrix.

For Bayes estimation, normal priors are adopted for both the invari-
ant parameters « and the vector ¢ of means of the customer-specific
parameters. Due to superior noninformativity properties (Akinc & Van-
debroek, 2018; Huang & Wand, 2013; Tan, 2017), a Huang’s half-t
prior (Huang & Wand, 2013) for the covariance matrix @ is adopted.
Full details of the Bayes estimator exploited in this paper are found
in our related paper Bansal et al. (2020), but the generative process
of the Bayesian mixed logit specified above can be summarized in the
following drawing process:

a|dg, Eg ~ N (A9, Ep) 2

4 The sole exception is for those variants relying on an alternative vari-
ational lower bound constructed with the help of the modified Jensen’s
inequality.

5 Truncation of the utility function in the context of a discrete choice
models refers to the consideration of the discrete choice alone without explicit
reference to demand for continuous goods.
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BilL. @~ N, ), i=1,..,N, 6)

Vula, B, X, ~ logit(a, B;, X)), i=1,...,N, t=1,...,T,

@)

where Egs. (4) and (5) induce Huang’s half-t prior, {1, Z, gy, Zg, v,
A|.g) are hyper-parameters, and 6 = {«,{,2.a,p,.5} is a collection
of model parameters that need posterior distribution inference. Because
of substantial gains in estimation costs, it is for 0 that stochastic VB
inference is implemented. VB aims at finding a variational distribution
q(0) over the unknown parameters that is close — in the sense of the
Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951) — to the
true posterior distribution of interest P(6|y). In fact, VB either mini-
mizes the KL divergence ¢*(0) = arg min, {KL (¢(8)|| P(6]y))}, or — equiv-
alently — maximizes the evidence lower bound (ELBO) E, {In P(y,6)} —
E, {Inq(0)}. Exploiting the mean-field family of distributions (e.g. Jor-
dan et al., 1999) to find a partition of variational factors in the proposed
q(0), the ELBO can be maximized via a simple iterative coordinate
ascent algorithm (Bishop, 2006). Because the ELBO is convex with
respect to the variational factors, the ELBO is guaranteed to converge
to a local optimum (Boyd & Vandenberghe, 2004) and is expected to
produce consistent estimates (Wang & Blei, 2018).

For the parameters of a mixed logit model {a,¢, Q,a,.,p,. 5} the
variational distribution can be factorized as (see Bansal et al., 2020):

K N
9(0) = 4(@, &, 2,015, B1:n) = a@a©)a(@) [ [ ata0) [ ] a8 ®
k=1 i=1
The optimal densities of the variational factors are given by ¢*(6;) «
expE_é,f {In P(y,0)}. However, we found that whereas T Clug, Zp),
q*(2|w, ©), and ¢*(a,|c, d,) are common probability distributions, both
q*(@) and ¢*(B;) are not members of recognizable families of distri-
butions because the conditional logit kernel lacks a general conjugate
prior. The Delta (4) method (e.g. Bickel & Doksum, 2015) provides a
simulation-based approximation based on a second-order Taylor series
expansion that we have shown works well in practice (Bansal et al.,
2020).

4. Results
4.1. Preferences over coordinated EV charging features

Logit-type choice models were used to derive estimates of cus-
tomers’ willingness to pay (WTP) for the features of experimental smart
EV charging bundles. These WTP metrics reflect monetary valuation
coming from the stated choices and the revealed preference mapping.
The first step was to produce Bayes estimates of marginal utilities,
which are presented in Table 6 for the selected Bayesian mixed logit
specification after running a procedure that implemented a step-wise
search based on minimizing the Bayesian Information Criterion BIC.®
Appendix A presents estimates of baseline specifications, including
a Bayesian conditional logit model without preference heterogeneity
(Table 1), a conditional logit model with observed preference hetero-
geneity (Table 2), and a mixed logit model without observed preference

© The empirical strategy to find the best model was to start just with the
experimental attributes — i.e. models without observed heterogeneity —, then
introduce interactions of the attributes with sociodemographics and charac-
teristics of the household (observed heterogeneity) and keep those that were
interpretable and had credible intervals that did not include changes in sign.
Finally, to address unobserved preference heterogeneity random parameters
were considered, resulting in a mixed logit specification.



Table 1
Baseline conditional logit, no heterogeneity.
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Smart EV charging bundle feature

Posterior estimates

95% credible interval

Post. mean Post. stdev Lower bound Upper bound
Payment for service (annual fee in US$) —-0.0158 0.0011 -0.0179 -0.0136
Hours of control yielded to utility for EV charging —0.0378 0.0072 —-0.0519 —-0.0237
Emission reductions per session [pounds] 0.0203 0.0010 0.0184 0.0222
Discount per charging session at home [percentage] 0.0510 0.0032 0.0447 0.0573
Opt-out constant —0.0096 0.1132 —-0.2314 0.2123
Loglikelihood at posterior means -3270.1
BIC 6595.7
Table 2
Baseline conditional logit, observed heterogeneity.
Smart EV charging bundle feature Posterior estimates 95% credible interval
Post. mean Post. stdev Lower bound Upper bound
Payment for service (annual fee in US$) -0.0160 0.0011 —0.0182 -0.0138
Hours of control yielded to utility for EV charging —0.0444 0.0077 —0.0595 —0.0292
Hours of control yielded to utility | Smartmeter 0.0268 0.0122 0.0030 0.0507
Emission reductions per session [pounds] 0.0186 0.0011 0.0165 0.0207
Emission reductions per session | Tompkins County 0.0078 0.0018 0.0043 0.0113
Discount per charging session at home [percentage] 0.0510 0.0032 0.0447 0.0574
Opt-out constant 1.1578 0.2173 0.7320 1.5837
Opt-out heterogeneity
Millennial —-1.4248 0.2231 -1.8620 —-0.9876
Generation X —-0.8764 0.2022 -1.2728 —0.4800
Baby boomer —0.5236 0.1774 -0.8712 -0.1759
Household income 0.0010 0.0004 0.0002 0.0017
Did not provide income information 0.5082 0.1561 0.2022 0.8143
Graduate or professional degree —0.5099 0.1109 -0.7273 —-0.2925
Time of use rate —0.9005 0.4879 —1.8569 0.0558
Loglikelihood at posterior means -3204.4
BIC 6551.6
Table 3
Baseline mixed logit, no observed heterogeneity.
Smart EV charging bundle feature Posterior estimates 95% credible interval
Post. mean Post. stdev Lower bound Upper bound
Payment for service (annual fee in US$) —-0.0320 0.0030 —-0.0379 —0.0262
Hours of control yielded to utility for EV charging —0.0834 0.0165 -0.1159 —-0.0510
Emission reductions per session [pounds] 0.0315 0.0034 0.0248 0.0382
Discount per charging session at home [percentage] 0.0937 0.0085 0.0770 0.1103
Opt-out constant -1.2208 0.1821 -1.5778 —-0.8639
Standard deviations
Payment for service (annual fee in US$) 0.2018 0.0175 0.1676 0.2361
Hours of control yielded to utility for EV charging 0.0510 0.0037 0.0438 0.0582
Emission reductions per session [pounds] 0.1127 0.0101 0.0928 0.1326
Discount per charging session at home [percentage] 0.0421 0.0033 0.0357 0.0485
Covariance
Discount : GHG —-0.0226 0.0111 —-0.0444 —-0.0009
Discount : Control 0.0055 0.0044 —0.0032 0.0142
Discount : Payment 0.0503 0.0219 0.0075 0.0931
GHG : Control 0.0170 0.0043 0.0085 0.0254
GHG : Payment 0.0276 0.0198 -0.0112 0.0664
Control : Payment —0.0393 0.0225 —-0.0833 0.0048
Loglikelihood at posterior means -2572.7
BIC 5280.2

heterogeneity (Table 3). Whereas the standard MCMC sampler was
used for the conditional logit estimates, for the mixed logit model with
individual-specific and invariant parameters the VB-NVMP-4 estimator
introduced in Section 3 was used. Despite having detailed information
about the respondents, their electric vehicles, and their EV charging
patterns very few interactions representing observed preference hetero-
geneity were kept in minimizing BIC. In fact, applying a frequentist
approach to parameter significance most of the interactions result in
observed preference heterogeneity that is not statistically significant.
For example, interactions that were excluded when minimizing BIC and

that were not significant in the frequentist sense included whether the
car was PHEV or BEV, battery capacity in kWh, vehicle miles traveled
(on a representative weekday and monthly total), and hours the vehicle
is usually left plugged in. As discussed in the conclusions, one expla-
nation of this lack of interaction effects may be due to respondents
being exposed for the first time to the notion of potentially delaying
their charging as part of a coordinated EV charging program. Another
explanation is the use of a single experiment that was not customized,
besides savings in dollars, to the customers’ vehicle characteristics and
behavior. Under a frequentist view, the interactions in the selected
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Table 4
Sample demographic statistics.
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Respondent characteristics

Tompkins County (N = 104)

Outside Tompkins (N = 358)

Male 58%
Millennial 19%
Generation X 30%
Baby Boomer 44%
Older Generations 7%

Household income < $25,000 8%

Household income > $25,000 and < $35,000 11%
Household income > $35,000 and < $50,000 14%
Household income > $50,000 and < $75,000 24%
Household income > $75,000 and < $100, 000 18%
Household income > $100, 000 26%
Homeowner 69%

73%
22%
22%
47%
8%

16%
8%

14%
19%
14%
29%
75%

Table 5
Experimental bundle features and levels.
Bundle features Levels
Brand of charging system NYSEG
Amazon
Google

Emission reductions per session 10 pounds of CO,
35 pounds of CO,
50 pounds of CO,

70 pounds of CO,

Hours of control yielded to utility 4h
8h
12 h
Payment for service [annual fee in US$] $5
$10
$50
$90
$300
Discount per charging session at home* 1%
*Savings in dollars were also presented, 2%
pivoted around current charging patterns 5%

10%
20%

specification would be statistically significant at the 95% level of confi-
dence. Matching the Bayesian approach, Table 6 presents the lower and
upper bounds of the 95% credible intervals of each model parameter.

The adopted specification of the indirect utility function considers
observed preference heterogeneity for the valuation of emission reduc-
tions per session. The environmental benefit of delaying EV charging
was effectively interacted with an indicator for those respondents re-
siding in Tompkins County. There is empirical evidence supporting the
fact people in Tompkins County are more environmentally aware than
residents of other areas of upstate New York. The higher valuation
of emission reductions per session when willing to delay EV charging
among Tompkins County residents is compatible with these individu-
als being more environmentally conscious. Furthermore, the revealed
preference data will serve as means for external validity of the analysis
presented in this paper.

The posterior means across both specifications are as expected:
on average customers prefer a lower annual fee, fewer hours of con-
trol yielded to the electric utility for it to decide when to charge
the electric vehicle, larger emission savings, and a higher discount.
In terms of observed preference heterogeneity, people in Tompkins
County exhibit a higher valuation of emission savings, a result that
is consistent with Tompkins County having residents that are more
environmentally aware. For those features that exhibited evidence of
unobserved preference heterogeneity, the mixed logit results include
estimates of standard deviations and covariance of the individual-
specific parameters. In addition to posterior means for Bayesian point
estimation, posterior standard deviations and 95% credible interval
estimates are also included as a measure of uncertainty. To give an idea
of model fit, the loglikelihood function evaluated at the posterior means

is also displayed. Both the loglikelihood at the posterior means and BIC
can be contrasted with those of the baseline models in Appendix A.

4.2. Inference on willingness to pay for program features

From the marginal utility estimates in Table 6, it is possible to derive
a negative willingness to pay of $2.65 (in the annual fee of the program)
for each hour increase in the timeframe for which the customer is giving
up control of charging of their EV (cf. Richter and Pollitt, 2018).” This
negative estimate can be seen as an expected rebate in the annual fee
that the customer accepts in exchange for their willingness to delay
charging. As supported from current charging patterns, most EV owners
leave their cars plugged in at home overnight. For optimal flexibility
of smart charging, electric utilities would like to control when charging
takes place over that whole period (while respecting the stated charging
target). However, the negative estimate of the valuation of hours of
control yielded to the electric utility means that customers are less
likely to enroll in a smart EV charging program with an extensive
period of time where customers are expected to give up control.

Although willingness to pay estimates can be derived from postpro-
cessing the chains of the marginal utilities, Table 7 summarizes the
posterior of the population willingness to pay metrics for the selected
mixed logit model, recast in willingness to pay space. The mixed
logit estimates provide evidence that customers exhibit substantial
heterogeneity in their response to delay charging.

A known benefit of implementing a Bayes estimator of a mixed
logit model is direct inference on the individual-specific parameters,
considering the sequence of choices elicited by the same individual.
Table 8 summarizes quantiles of the posterior distributions of the means
of the conditional individual-specific willingness to pay for features of
the smart EV charging bundles.

Whereas on average accepting a delay in when EV charging takes
place (as measured by an additional hour in the time window where
the electric utility controls charging) is associated with an expected
rebate in the annual fee of $2.65, other features exhibit a positive
valuation. For example, each percent increase in the discount offered as
incentive to join the smart EV charging program is valued on average
by an incremental $2.39 in associated annual fee. Each marginal pound
in emission savings is also positively valued, on average. As previous
studies in the area have indicated, inhabitants of Tompkins County
seem to be more environmentally conscious. In this study, this fact
is represented by a higher valuation of emission savings: a marginal
improvement in emission savings from the use of cleaner electricity
production is reflected by a willingness to pay additional $1.40 in the
annual fee by customers in Tompkins County (cf.the average $0.44 for
customers outside Tompkins County). To give an idea of the magnitude

7 The Bayes population WTP estimates can be derived from either postpro-
cessing the draws from the posterior distributions of the respective marginal
utilities or from recasting the parameters to willingness-to-pay space, which is
the approach adopted in this work.
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Table 6
Bayes estimates (posterior means) of marginal utilities and nuisance parameters for the selected mixed logit model.
Smart EV charging bundle feature Posterior estimates 95% credible interval
Post. mean Post. stdev Lower bound Upper bound
Means
Payment for service [annual fee in US$] —-0.0327 0.0030 —0.0385 —0.0268
Hours of control yielded to utility for EV charging —-0.0945 0.0185 -0.1307 —0.0583
Emission reductions per session [1b] 0.0269 0.0037 0.0196 0.0341
Emission reductions per session [lb] | Tompkins County 0.0196 0.0070 0.0059 0.0334
Discount per charging session at home [percentage] 0.0937 0.0084 0.0772 0.1102
Opt-out constant 0.5779 0.5333 —-0.4674 1.6232
Standard deviations
Payment for service [annual fee in US$] 0.2005 0.0181 0.1650 0.2359
Hours of control yielded to utility for EV charging 0.0499 0.0037 0.0426 0.0572
Emission reductions per session [lb] 0.1117 0.0102 0.0917 0.1316
Discount per charging session at home [percentage] 0.0424 0.0033 0.0359 0.0488
Covariance
Discount : GHG —-0.0201 0.0111 —-0.0418 0.0017
Discount : Control 0.0061 0.0044 —-0.0024 0.0147
Discount : Payment 0.0500 0.0249 0.0011 0.0989
GHG : Control 0.0128 0.0047 0.0035 0.0220
GHG : Payment 0.0180 0.0208 —-0.0228 0.0587
Control : Payment —-0.0446 0.0254 —0.0944 0.0051
Loglikelihood at posterior means —2547.6
BIC 5317.1
Table 7
Bayes population estimates of willingness to pay for the selected mixed logit.
Smart EV charging bundle feature Posterior WTP estimates 95% credible interval
Post. mean Post. stdev Lower bound Upper bound
Means
Hours of control yielded to utility for EV charging [$/h] —2.6531 0.4772 —3.5884 -1.7179
Hours of control yielded to utility | Smartmeter [$/h] 1.0246 0.7021 -0.1504 2.1995
Emission reductions per session [$/1b] 0.4663 0.1462 0.1798 0.7528
Emission reductions per session [$/lb] | Tompkins County 0.6590 0.1792 0.3077 1.0104
Discount per charging session at home [$/%-point] 2.3598 0.2273 1.9144 2.8053
Standard deviations
Hours of control yielded to utility for EV charging [$/h] 4.9182 0.5066 3.9252 5.9111
Emission reductions per session [$/1b] 1.4051 0.0939 1.2210 1.5892
Discount per charging session at home [$/%-point] 2.6644 0.2466 2.1812 3.1477
Loglikelihood at posterior means —2547.6
BIC 5317.1
Table 8
Mean and selected quantiles of mean conditional willingness to pay estimates at the individual level [US $ per year].
Smart EV charging bundle feature Quantiles
mean 5% 25% 50% 75% 95%
Hours of control yielded (as rebate) 2.6582 —-3.2821 0.8545 2.4908 4.7243 7.4774
Pounds of GHG saved 0.4380 -1.2599 —0.4294 0.2792 1.2218 2.6006
Pounds of GHG saved | TC 1.4032 —0.2948 0.5357 1.2443 2.1869 3.5657
Percent discount 2.3870 —0.6052 1.3442 2.3710 3.3827 5.2867
Table 9
Posterior means of the incremental willingness to pay estimates [US $] for hypothetical smart EV charging programs.
Program features per charging session Max WTP [$]
Discount Control yielded Emission savings Outside Tompkins Tompkins County
Program 1 5% 8 h 10 Ib —4.9506 4.7014
Program 2 5% 8 h 351b 5.9994 39.7814
Program 3 10% 8 h 10 1b 6.9844 16.6364
Program 4 10% 8 h 351b 17.9344 51.7164
Program 5 5% 12 h 10 Ib —-15.5834 -5.9314
Program 6 5% 12 h 35 1b —4.6334 29.1486
Program 7 10% 12 h 10 Ib —3.6484 6.0036
Program 8 10% 12 h 351b 7.3016 41.0836
of the environmental benefits, an upper bound for emission savings from the mean estimates is that whereas allowing the utility to delay
comes from shifting 100 kWh for fully charging the largest EV battery charging is negatively perceived, the negative effect can actually be
from on-peak to off-peak times. For upstate NY, this switching results offset by the incentive (discount) and environmental benefits. However,

in roughly 73 pounds of avoided CO,e per session. Thus, a key outcome
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Table 10
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Selected quantiles of the posterior distribution of the relative risk of opting out, mixed logit.

Mixed logit Quantiles

Relative risk of opting out Mean 5% 25% 50% 75% 95%
Millennial 0.1658 0.0569 0.1011 0.1432 0.2029 0.3643
Generation X 0.1832 0.0669 0.1101 0.1597 0.2315 0.3736
Baby boomer 0.4223 0.1749 0.2775 0.3805 0.5162 0.8141
Household income 1.0023 1.0008 1.0017 1.00235 1.0030 1.0039
Did not provide household income 2.9456 1.3703 2.0514 2.7542 3.5331 5.3456
Monthly electricity bill 0.9949 0.9913 0.9936 0.9950 0.9964 0.9983
Graduate or professional degree 0.5250 0.3155 0.4185 0.5014 0.6127 0.8021
Time-of-Use rate 0.3397 0.0336 0.0100 0.1979 0.3819 1.1185

it should be mentioned, that valuation of environmental benefits may
be affected by both hypothetical and desirability bias.

Although, most of the posterior distributions of the individual-
specific willingness to pay measures are consistent with the signs of
the mean estimates, the quantiles reported in Table 8 show that there
is substantial heterogeneity. Fig. 5 shows, for instance, the conditional
posterior distribution of the mean willingness to pay to regain one hour
of controlling EV charging. Whereas the most of the individuals in the
sample exhibit a negative willingness to pay (expecting a compensation
or rebate in the annual fee, as discussed above), some individuals have
a positive valuation that is independent of the benefits (discount and
emission savings) that are associated with delaying charging.

Fig. 6 displays the conditional posterior of the mean willingness to
pay for an increase in the offered discount. Fig. 7 shows the conditional
posterior of the mean willingness to pay for one pound of GHG emission
savings from coordinated EV charging for an individual in Tompkins
County.

4.3. Simulated scenarios of total willingness to pay

Taking the posterior means of the WTP estimates at the individual
level discussed in the previous subsection, Table 9 shows the posterior
means of the total willingness to pay, as a monthly fee, for hypo-
thetical coordinated EV charging programs. Each program is defined
by considering likely features per charging session in terms of the
experimental attributes of percent discount in the delivery cost, hours
of control yielded to the utility to decide when to charge the car,
and GHG emission savings. Because we were able to identify observed
heterogeneity in responses to the programs based on whether customers
lived in Tompkins County or not, we derived posterior distributions for
the incremental monthly fee customers would be paying as maximum
premium for participation in the program.

A positive incremental willingness to pay indicates that on average
customers perceive benefits from the program and are likely to join
and pay a positive premium, whereas a negative valuation is associated
with average customers not being likely to participate unless they
receive further compensations beyond the included percent discount in
the electricity delivery cost. For example, a representative Tompkins
County EV user would be likely to join Program 1 and would accept
an increase in their bill of up to almost $5. However, for the same
program, a customer outside of Tompkins County would likely opt out
unless they receive a monthly reduction in their bills. When emission
savings go from 10 (Program 1) to 35 pounds (Program 2), represen-
tative customers in both areas not only are likely to join but also the
environmental gains are such that the premium that could be charged
increases substantially. Program 5 is similar to Program 1, with the only
difference being an increase in the hours where the utility would be
able to control charging (Program 5 adds 4 additional hours of control).
Even in Tompkins County, a representative customer would be unlikely
to join Program 5.

4.4. Opting out of smart EV charging programs: observed heterogeneity

We explored observed heterogeneity in the decision of opting out of
the offered coordinated EV charging programs by interacting the opt-
out constant with sociodemographics. Table 10 summarizes posterior
quantiles of the relative risk of opting out from the selected mixed logit
model

We were able to identify an effect among those customers who
currently have a Time-of-Use rate, those that completed a graduate or
professional degree, an income effect, as well as a nonlinear effect of
age — grouped in generations. As working definition of age generations
we adopted cutoffs that are standard in marketing in the US, namely:
millennials (born between 1981 and 1996), Generation X (1965-1980),
and baby boomers (1946-1964). Those born before 1946 were grouped
together and left as reference. As it can be seen from the relative risk
estimates, ceteris paribus younger individuals are much more likely to
join a program of optimal scheduling of EV charging. In fact, most of
the variables make customers less likely to opt out, with the exception
of income.® The increase in the odds of joining a coordinated EV
charging program is substantially higher for millennials (7.03 times
higher than for those older than baby boomers), followed by those
in Generation X (6.46 times higher), and baby boomers (3.37 times
higher). The odds of joining the coordinated EV program are increased
by 3 times, on average, for customers that completed graduate or
professional studies, and are 4 times higher for customers with a
Time-of-Use rate.

Each $10,000 increase in household income increases the odds of
opting out by 0.23%, but a substantial increase in the odds of 195% is
found for those individuals who did not provide income information.

5. Conclusions

A new energy landscape is emerging with the development of tech-
nology that both optimizes power systems in real time and addresses
climate change, and customer engagement is essential to fully take
advantage of technological change. Furthermore, successful design and
deployment of energy-saving programs and services crucially depends
on an accurate characterization of customer preferences.

Within this new energy landscape, and given the expected impacts
on energy load profiles of large-scale charging of electric vehicles, coor-
dinated EV charging programs — where electricity delivery is optimized
to reduce grid stress — are being designed by researchers and energy
providers. Coordinated EV charging requires incentives to persuade res-
idential customers to delay charging to avoid peak charging times and
to potentially accept a lower charge target for their electric vehicles.

This current study has analyzed response to the prototype of an
actual pilot program of coordinated EV charging — OptimizEV - in
upstate New York. Results from survey data and a choice experiment

8 Odds ratios of opting out that are less than 1 can be recast as odds
ratios of joining by using the multiplicative inverse plus 1, or by recoding
the specification such that covariates that reduce the odds of opting out are
introduced in the bundles to represent joining in.
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before the roll-out of the OptimizEV pilot have provided evidence that
on average customers would expect a monetary compensation (per hour
of control yielded) for their willingness to defer charging and let the
electricity provider to decide when to deliver energy to the battery.
However, both monetary discounts in delivery charges and emission
savings from delaying charging to off-peak hours can offset disutility of
giving up control of when charging takes place. A net positive valuation
of the program is supported by simulated scenarios that consider likely
characteristics per EV charging session in terms of percent discount,
hours of control yielded to the electric utility, and emission savings.

From a technical perspective and using Variational Bayes infer-
ence on conditional willingness-to-pay metrics at the individual level,
this study also has provided strong evidence of substantial preference
heterogeneity, both in terms of expected monetary valuation of fea-
tures of coordinated EV charging programs and uncertainty in the
determination of those estimates.

Limitations. The substantial unobserved heterogeneity in prefer-
ences captured by the selected mixed logit model reflects in part
uncertainty regarding a charging program that not only did not exist
at the time of the survey but also first introduced the concept of
coordinated EV charging among current EV drivers in the region. In
fact, even though coordinated EV charging was defined in the survey
before the choice experiments, the local electric utility decided to
present the notion of delaying charging of electric vehicles in a succinct
way to avoid behavioral bias in eventual participants of the actual pilot.
Furthermore, even though the pilot is being offered without an annual
fee, for the derivation of welfare measures the experiment included an
annual fee for participation in the smart EV charging program with
the incentive of receiving a level-2 charger. Because of unfamiliarity
with delaying charging of their electric vehicles, stated responses need
to be treated with caution and only analyzed as early response by a
sample of relative early adopters to a newly developed program. That
posterior means have expected signs is reassuring in the sense that
the concept of coordinated charging was understood by participants.
However, difficulty of capturing observed preference heterogeneity in
expected controls (such as battery size) is an indication of EV drivers
not being familiar with the hypothetical program. Besides, unobserved
heterogeneity may be masking attitudes to the OptimizEV program.
Finally, the use of a multivariate normal distribution to represent
preference heterogeneity may introduce unexpected signs in the tails
of the posterior distributions of willingness to pay.

Future work will include the consideration of more flexible rep-
resentations of unobserved preference heterogeneity that depart from
mutivariate normal assumptions for modeling the survey data, as well
as modeling revealed preferences coming from those 35 households
involved in the actual load-shifting pilot. We expect that observed
preference heterogeneity that was difficult to capture in the models
with the early-response data used in this article will be elicited in the
revealed preferences that are being currently collected, allowing us to
control for variables such as battery capacity in kWh and vehicle miles
traveled and to disentangle preference heterogeneity from attitudes and
other unobserved factors. The revealed preference data that eventually
we will have for analysis will require a scalable estimator such as
the variational Bayes estimator tested in this paper due to: (1) the
large number of transactions being recorded, and (2) the possibility
of integrating updates of the choice model to produce personalized
recommendations to the EV customers.
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