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cept of audiovisual fusion, correlating acoustic scene analysis with

spatially accurate visual scene analysis, often through the use of

techniques related to machine learning [7, 8, 9]. While these works

still rely on in-situ audio and visual data, they address and encode

the spatial correspondence in their rendering that simple capturing

cannot directly represent. This reveals the technical possibility that

audio information, if not present, can be reconstructed through a

detailed spatial analysis of visual environments with a collection

of generic audio resources, especially when visual environments

can be presented coherently.

The artificial reconstruction of visually derived soundscape is,

in essence, also a form of product-sound design. In the context of

product sounds, layers of soundscapes facilitate the formation of

listening structures, conveying information that serves contextual,

symbolic, and syntactic meanings [10]. To this end, it is highly rel-

evant to the perceptual organization of auditory information, a sub-

ject of interest in auditory scene analysis [11] and auditory object

formation [12]. Moreover, it also receives interest in the realm of

contemporary music theory, where the cognition of sound objects

has extensively concerned itself with the morphology and typology

of the listening environment [13]. The development of approaches

that allows for more comprehensive quantitative assessments of

these concepts could be significantly benefited from the extensive

availability of visual resources.

The project described in this paper is significant in that it in-

troduces coherent audiovisual rendering schema into the context

of room-centered immersive virtual reality systems, especially in

situations when the only information presented are virtual repre-

sentations of visual environments (landscape) and corresponding

acoustic information is completely absent. With the work involved

in this project, we intend to arrive at equally plausible virtual rep-

resentations of soundscapes that could be experienced in conjunc-

tion with a visual ground truth at the CRAIVE-Lab, enabled by

its spatial audio reproduction capability. Beyond the novelty of

its context, another goal is to further enhance CRAIVE-Lab’s ca-

pacity for collective experiences of virtual spaces, with minimal

intervention to the bodies of immersed individuals, thereby laying

the groundwork for further studies of collaborative behaviors in

room-centered immersive systems.

2. RESEARCH METHODS

2.1. Overall Framework

Influenced by Schafer’s definition of keynotes, signals, and sound-

marks [15] in his taxonomy of soundscape elements, existing cate-

gorization method for soundscape has been standardized into three

components: foreground sounds, background sounds, and contexts

[14]. This facilitates a framework of audiovisual correspondence

in this research (see Figure 2). Two visual recognition techniques

are used: 1) semantic segmentation, which classifies visual im-

agery into physically meaningful elements on a pixel-by-pixel ba-

sis; and 2) object detection, which, with a similar image process-

ing method as semantic segmentation, extracts visual objects with

locally precise spatial information. In this research, semantic seg-

mentation is used to configure background sounds, for which the

spatial information is encoded as audio display regions regions;

while object detection is used to translate quantifiable visual en-

tities into meaningful information for foreground sound objects,

which are encoded with locally precise spatial positions in vir-

tual space. When executed sequentially (see Figure 3), the spatial

Figure 2: A taxonomic schema of audiovisual correspondence

based upon existing visual recognition techniques and the layered

soundscape elements as informed in [14] and [15]. In short, if

soundscape could be decomposed into foreground and background

sound elements, and visual environments should be decomposed

under the same framework, then semantic segmentation could ad-

dress background elements, while object detection serves fore-

ground use.

metadata retrieved through visual processing are then restructured

and projected as virtual sound sources.

2.2. Visual Recognition

With the taxonomic schema described in Figure 2, the project

aims at retrieving both semantic and spatial information of vir-

tual sound objects for a hand-crafted dataset of 160 high-dynamic-

range (HDR) panoramic images. These panoramic images are pro-

cessed so that it covers the entirety of the visible field of view, a

dimensional constraint imposed by the physical structure and dis-

play resolution (15360× 1200) of the CRAIVE-Lab’s panoramic

projection system. The visual recognition procedure starts by sub-

dividing the panoramic image horizontally into multiple segments,

so that it approximates the aspect ratio of image training datasets

prepared for the visual recognition algorithms. To ensure the con-

tinuity of analytical performance at boundaries, these panoramic

image segments were also given a data augmentation technique

that involves a combination of mirror-padding [18] and periphery

boundary extension.

The augmented image segments are then processed through

the visual recognition system consisting of two pre-trained neu-

ral network algorithms: for semantic segmentation, Enet [16] is

used with a 20-class subset of the Cityscape dataset [19], which

contains urban visual scene objects such as buildings, vegetations,

roads, and traffic lights; for object detection, the infamous You

Only Look Once (YOLOv3) [17] model is used with the 80-class

Microsoft Common Object in Context (COCO) dataset [20] that

contains everyday objects such as bicycles, dogs, and clocks. Both

neural network algorithms are known for their processing speed

and high accuracy, which is beneficial when the visual input vol-

ume is significantly larger than non-panoptic visual scene data.

2.3. Audio Object Generation

The output of visual recognition algorithms for this project con-

sists of spatial and symbolic meta-data used for the formation of
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a broadband calibration gain with respect to their functional com-

ponents, which predetermines their absolute loudness when being

displayed.

Upon receiving audio object meta-data, corresponding au-

dio dataset elements are activated through virtual sound source

generation, leading to a spatially-oriented playback within the

CRAIVE-Lab. The timing of onsets for soundscape elements dif-

fers based upon corresponding functional soundscape components.

Specifically, background elements are considered to be consis-

tently present within the same visual context, in which case an

amplitude-modulated ambient sound is displayed across all chan-

nels of loudspeakers, with respect to the their regions as informed

by semantic segmentation. For foreground elements, all classes of

sounds are displayed simutaneously, but with stochastic onsets for

individual sounds of the same class.

3. IMPLEMENTATION

Figure 5: A visual representation of the calibration procedure for

images in the panoramic dataset. Top: original panoramic image as

output from the Image Composite Editor [23]; Middle: re-oriented

image for the CRAIVE-Lab’s display system, with correction for

perspective distortion; Bottom: validation of appropriate position-

ing of horizontal perspective and distortion correction.

In practice, the soundscape reconstruction system is developed

using a network of multiple platforms. A hand-crafted dataset of

160 panoramic images is constructed from HDR photography us-

ing the Image Composite Editor [23], which stitches image snip-

pets based upon cylindrical projection. Due to the screen’s nonuni-

form geometry (rectangular with rounded corners) a perspective

transform must be applied to the images to counter introduced dis-

tortion. An important consequence of removing this distortion is

ensuring the congruence of onscreen visuals and spatialized audio

objects. Without the removal of the distortion, deviations between

an original and transformed projection reach beyond 200 pixels

[24] at certain points. This translates to over 0.5m of visual devi-

ation on the screen, more than enough to disrupt the congruence

of audio-visual presentation. Figure 5 shows an original input im-

age and its corresponding transformed projection. The developed

transformation utilizes matrices which define pixel coordinates of

a spherical projection and the CRAIVE-Lab projection to interpo-

late the output from the input image [25]. This process can be ap-

plied to other screens of irregular geometry by adjusting the output

matrix.

These corrected images are then used as input to a Python

script encompassing all visual processing procedures, including

the visual recognition algorithms. Once processing of an image is

complete, the script outputs the classification and spatial position

information for detected objects and scene segmentation analysis.

The audio coding environment Max/MSP is used in conjunction

with the IRCAM Spat 5 plugin to spatialize audio objects across

the loudspeaker array [26]. This is achieved by first defining the

relative positions of the loudspeaker array in virtual space. Audio

sources are then generated according to the corresponding clas-

sifications, and their placement within the virtual space is deter-

mined using the position data. The contribution required of each

virtual loudspeaker to create the soundfield is determined by the

spatialization object. This is subsequently output to each virtual

loudspeaker’s analog in real space.

Due to the uniformity of audio objects presented in Spat 5, it

becomes difficult to distinguish between each audio object classes,

as well as their corresponding foreground/background classifica-

tion. For this reason, a new visualization apparatus is needed for

the system, which is proposed in Figure 6. In addition to virtual

sound source positioning, this visualization apparatus situates all

audio objects into foreground/background categories, and repre-

sent them using a variety of color codes to create distinction be-

tween audio object classes. In addition, sound intensity regions

are also represented accordingly, with the ring radii of foreground

audio objects representing relative sound intensity and decay char-

acteristics, and the arcs’ distances to room center representing the

level of prevalence for ambient audio objects.

This workflow is implemented into a web-based application

which provides a simple user interface for uploading content for

analysis and display on the screen. Users experience no learning

curve and require no training to display their imagery with system-

generated soundscapes. Upon uploading, imagery is transformed

and formatted for display, run through the visual recognition al-

gorithms, and presented on the screen. The classification and po-

sition information is forwarded to the Max spatializer, which au-

tomatically generates and places the audio sources. This rapid-

prototyping approach renders the CRAIVE-Lab a functional im-

mersive virtual reality system usable by experts and non-experts

alike.

4. SYSTEM PERFORMANCE RESULTS

The performance of the implemented system is evaluated with two

interests. First, the efficacy of sound object retrieval under the

constraints of training datasets used by the visual recognition al-

gorithm is examined statistically. Second, an evaluation of compu-

tational performance is also conducted to determine whether there

are potentials for real-time application using this approach.

4.1. Efficacy of Sound Object Retrieval

As discussed in Section 2, only 32% of the visual object classes

are identified as audio objects classes. While a sizable propor-

tion, the substantial presence of unused visual makes it crucial to

analyze how effective the system’s method is at generating suf-

ficient amount of audio objects for a plausible rendering of the

corresponding soundscape.

The first statistic to observe is the proportion of classified

sound objects that are present among all objects in visual recog-

nition. The result could be shown in Figure 7. Two observa-

tions could be made from this result. First, despite the fact that
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Figure 6: A typical example of the spatial audio mapping outcome for this system. Left: current configuration in IRCAM Spat [26]

signifying source positions but without apparent visualization of foreground-background classification; right: visual interface design for

the system that designates source positions, with color-coded foreground (dots) and background (arcs) sound object classes, corresponding

to the activation range of the loudspeaker array at the CRAIVE-Lab (with the light purple ring representing the speaker array, while dark

purple line representing the panoramic display). Interactive application for this interface is currently under development.

Figure 7: Performance of sound object retrieval dependent on the

number of subdivided segments across the assembled panoramic

image dataset. The blue dashed line and dots signifies the average

amount of detected visual objects per panoramic image, while the

red solid line and dots represents the number of sound-generating

objects among them.

audio object classes are not the majority of all visual classes, it

accounts for a substantial majority (above 80% across all subdivi-

sion schemes) of all recognized objects when analyzing instances

of the panoramic image dataset. The consistency means that the

efficacy of audio object retrieval is independent from the subdivi-

sion scheme imposed on the images. Second, the efficacy of visual

recognition in general is dependent upon image subdivision. With

the pixel resolution of 15360×1200 across all panoramic images,

we have found that a subdivision scheme of 12 segments performs

the best in both foreground audio object classification and object

detection in general, with an aspect ratio of 16:15 (close to the 1:1

aspect ratio need to be enforced for the visual recognition models).

This indicates that there is a point of optimization that allows for

the most effective generation of virtual sound objects.

Due to the comprehensive nature of semantic segmentation,

the resulting background sound object classification involves ev-

ery class within the training dataset. This is not true for fore-

ground sound object retrieval, in which not all classes are present

in every object detection task. Therefore, the frequency of fore-

ground sound object occurrence must be examined. Details could

be seen in Figure 8. In general, person appears the most frequently

as sound objects across the visual scenes depicted in the image

dataset, affirming that human presence is largely independent from

environmental contexts. This is followed by vehicles and small an-

imals, which to an extent suggests that urban density contributes to

the formation of foreground sound objects to a greater extent than
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their associated datasets, which indicates that performance could

be further improved with some computational optimization.

The most relevant advantage of this system is that it is de-

signed with consideration of modularity. Specifically, although

exchange of metadata occurs across platforms, the formation of

sound objects in this system is independent from, and adaptive to,

the continuing improvement of visual recognition apparatus. This

makes it easy to enhance the system as an optimization process

with faster rendering speed and increased robustness of audiovi-

sual datasets.

While the system is designed to render soundscape without

intentional environmental bias, it has become apparent that there

are a number of limitations associated with the system. First, even

though the plausibility of soundscape rendering could be achieved

purely from the semiotic presence of each sound object [10], the

aggregated sound object presented in this system does not meet

with an ability to contextually filter out incoherent sound sources.

This may contribute to an incongruent attention to the rendered

sound field, especially with movement [27]. Second, while the

method serves particularly well in the context of outdoor environ-

ments, where the peripheral acoustic conditions are largely uncon-

trolled, it does not take into account any room acoustics param-

eters, which results in inaccurate auditory experiences of indoor

environments. While this system could serve as a good founda-

tion for acoustic content generation for indoor spaces, any real-

istic spatial impression, such as reverberance, must be coupled

with real-time auralization techniques [28] to be attained. This

would most likely require accurate 3D reconstruction of virtual

spaces and their respective acoustic simulation in the context of

room-centered immersive systems, which must remain a separate

research topic.

6. CONCLUSIONS AND FUTURE RESEARCH

In this project, a virtual soundscape reconstruction system is de-

veloped for room-centered immersive virtual reality systems such

as the CRAIVE-Lab, in which virtual sound sources are pro-

jected and populated based upon spatial information retrieved with

machine-learning-based visual recognition models. With opti-

mization, this approach could facilitate realistic audiovisual ren-

dering of visually-captured physical spaces, with potentials for

sonically augmenting navigation of dynamic environments (e.g.,

360
� videos).

There are a number of future research directions that could

be pursued. Among them, the perceptual accuracy of the gener-

ated soundscapes needs to be investigated. This is of particular

interest because of its implications in achieving adequate place il-

lusion and plausibility that could be experienced collectively [29],

for which a system of quantitative evaluation has not been devel-

oped. One possible approach to such assessment include user stud-

ies through blind testing, in which only auditory cues (the recon-

structed soundscapes) are presented without visual information, so

that test subjects could determine the environmental context based

solely upon listening. Such investigation can further incorporate

human movement control within the CRAIVE-Lab by examining

the soundscape across various local listening positions. System

design for this research could also be further optimized in three as-

pects. Among them, parallelism could be employed to drastically

reduce computational effort, leading to faster rendering and poten-

tial extension of soundscape reconstruction using panoramic video

analysis. This could further incorporate sufficient consideration of

reverberant conditions, so that it could also be effectively deployed

for dynamic rendering of indoor environments. The audio dataset

could be labelled contextually with geo-tagging, so that GPS meta-

data from images (such as EXIF) could be used to recognize and

inherit more socio-culturally-oriented site-specific knowledge.
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