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Abstract
This study aims to understand how self-assessed health status relates to preferences for 
cycling infrastructure. An integrated latent class and latent variable choice model is fitted 
using responses to a stated preference experiment from a panel of New York City resi-
dents (N = 801). Estimates show that people with stated good physical health tend to have 
preference parameters similar to those of experienced cyclists. This result means that the 
provision of cycling infrastructure with the purpose of attracting non-cyclists also has the 
potential of attracting those with worse health outcomes. This result suggests a double ben-
efit coming from car use reduction and lower health spending.

Keywords  Transportation and health · Cycling · Latent variable · Latent class

Introduction

The past two decades have seen increasing research interest in the analysis of cyclists’ pref-
erences for cycling infrastructure (Nello-Deakin 2020; Pucher and Buehler 2008). These 
studies have used different methods to identify the built environment characteristics that 
are preferred by cyclists, and that could therefore be exploited to encourage a broader 
modal shift toward sustainable transportation. The vast consensus is that cyclists prefer 
infrastructure that is separated from traffic, as well as shorter and more direct routes (Bue-
hler and Dill 2016).

Even though this consensus may be true for the population as a whole, there are sig-
nificant differences both within cyclists and non-cyclists that should be considered dur-
ing policy formulation. For example, a review carried out by Aldred et al. (2016) shows 
that women and the elderly tend to have a stronger preference for segregated cycling 
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paths. Another distinction that has been identified in the literature has to do with cycling 
experience. People that have less cycling experience also tend to have a stronger prefer-
ence for segregation from motorized vehicles (Rossetti et  al. 2018; Stinson and Bhat 
2005). This information can be used by city planners to tailor their policies to the needs 
of different segments of the population.

The relationship between health and cycling has also been heavily studied, but unfor-
tunately not from the point of view of infrastructure provision or preferences. The 
research questions relating the two have primarily focused on the effects cycling has on 
people’s health. As expected, previous research has concluded that, on average, cyclists 
have a lower prevalence of diabetes, hypercholesterolemia, and obesity (Riiser et  al. 
2018; Lindström 2008). Understanding the interconnection of cycling preferences and 
health could lead to infrastructure that is better suited to the less healthy segment of the 
population, motivating this group to increase their cycling frequency and improve their 
health outcomes.

In this study, we address the relationship between self-assessed health status and infra-
structure preferences. We do this using data collected from an online survey of New York 
City residents. We then use this data to estimate a latent class and latent variable choice 
model that describe health outcomes and cycling experience. Results show that respond-
ents with higher body mass indices (BMI) and worse self-assessed health status have a 
stronger preference for segregated infrastructure and a lower sensitivity toward travel time.

The rest of the paper is organized as follows: The data collection process is presented 
first, with a description of the sample. Then, the latent class and latent variable method-
ology is described. After this, results are shown and discussed.

Data collection and preliminary analyses

We use microdata from an online survey carried out during December of 2019. This sur-
vey included several types of questions, including sociodemographic information, general 
travel patterns, and physical fitness indicators. Respondents were recruited from a repre-
sentative Qualtrics panel. All respondents were regular New York City commuters (to work 
or school), over 18 years of age. Table 1 summarizes select characteristics of the sample.

The section of the survey that is most relevant to this study is a set of choice experi-
ments regarding route choice using public bicycles. Each respondent faced seven binary 
choice scenarios, where two hypothetical routes were shown. The scenarios were described 
using words and images developed in a virtual city environment similar to a typical Man-
hattan avenue. Examples of the virtual cycling conditions are shown in Fig.  1, and the 
experimental attributes with their levels are shown in Table 2. An example of a choice card 
is shown in Fig. 2. A total of 5560 choices by 801 respondents were recorded.

Several effect indicators were also collected to identify respondents’ health outcomes 
and cycling experience. We fitted a structural equation model to confirm the relationship 
between the effect indicators and the latent variables of interest, as well as to identify 
respondents’ characteristics that correlate with the underlying factors. The significant 
indicators are shown in Table 3.
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Table 1   Sample characteristics

Characteristic Level Value

Gender Male 39.30%
Female 60.70%

Age Mean (std. dev.) 35.6 (13.7)
Household income Less than $10,000 5.90%

$10,000–$15,000 2.60%
$15,000–$25,000 7.70%
$25,000–$35,000 8.90%
$35,000–$50,000 10.90%
$50,000–$75,000 19.70%
$75,000–$100,000 15.60%
$100,000–$150,000 11.20%
$150,000–$200,000 5.10%
$200,000–$500,000 4.70%
More than $500,000 2.00%

Race or ethnicity American Indian or Alaska Native < 0.1%
Asian 12.60%
Black or African American 25.60%
Native Hawaiian or other Pacific Islander < 0.1%
White 46.20%
Other, including multi-racial 0.10%
Hispanic or Latino 28.00%

Cars available None 34.70%
One 47.40%
Two 14.60%
Three or more 3.20%

Home location Bronx 15.20%
Brooklyn 25.00%
Manhattan 35.60%
Queens 22.30%
Staten Island 1.90%

BMI Mean (std. dev.) 25.3 (5.9)
Obese ( BMI > 30) 18.70%
Overweight ( 25 ≤ BMI < 30) 26.80%
Healthy ( 18.5 ≤ BMI < 25) 53.80%
Underweight ( BMI < 18.5) 0.70%

Self-reported health Excellent 25.47%
Good 53.56%
Average 19.73%
Poor 1.25%
Very poor 0.00%

Cycles at least once a week During the fall 35.08%
During the spring 38.58%
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The fitted structural equation model produced two underlying dimensions (latent var-
iables): “experienced cyclist” and “poor health status.” These, in turn, are negatively 
correlated between them (Fig. 3).

Methodology

To identify how preference structures vary across respondents depending on their general 
health outcomes, we use an integrated choice and latent class model. Nevertheless, because 
these health outcomes are not directly measurable using an online survey, we model them 
using latent variables. This produces an integrated choice, latent class and latent variable 
model. Each one of these components, as well as their integration, is described in the fol-
lowing subsections.

Fig. 1   Examples of choice scenarios presented to respondents

Table 2   Attribute levels of choice scenarios

Variable Type Levels

Travel time Continuous Pivoted around respondents’ stated travel time.
Traffic/Speed Categorical Heavy traffic and slow speeds, or normal traf-

fic flow with high speeds. This relationship 
was designed to replicate a slow, congested 
street, or an uncongested street with cars 
driving at the speed limit.

One- or two-way lane Categorical Either one- or two-way cycle lanes.
Parking Categorical Nonexistent, on left or on right.
Lane design Categorical Painted surface and/or with a buffer between 

the lane and cars. All choice scenarios had at 
least one of these possible protections.
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Latent class choice models

One strategy for modeling unobserved heterogeneity in preferences is to assume a dis-
crete distribution of preferences, representing a discrete number of consumer categories 
or classes. Econometrically, the underlying categories may be inferred by estimating 
latent classes, as proposed by Kamakura and Russell (1989). Latent class choice mod-
els include two components: one relates individuals to the latent (unobserved) classes, 
whereas the other relates individuals to choices given their latent class.

Fig. 2   Example of a choice card presented to a respondent

Table 3   Indicators used to fit a latent variable (LV) model using structural equation modeling

LV Indicator Type of response

Health outcomes
Body Mass Index (BMI) Continuous. Constructed using 

stated height and weight.
Self-reported health status 5 point Likert scale, from “Excel-

lent” to “Very poor.”
Cycling experience

Self-description of type of cyclist 4 point ordinal response, from “An 
advanced, confident cyclist who 
is comfortable riding in most 
traffic situations” to “I do not 
know how to bike.”

Uses app to access Citi Bike Binary
Bikes at least once a week during the fall 

or spring (two indicators)
Binary

Typically walks or bikes during a weekday 
or weekend for more than 10 minutes 
(two indicators)

Binary
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The utility derived by individual j when they choose alternative i given that they 
belong to class s can be represented by (1). �ij is a vector of observed alternative attrib-
utes and consumer characteristics, and �s is a vector of class-specific taste parameters. 
Utility Us

ij
 can take different forms across classes, including varying distributional 

assumptions for the class-specific error component, �s
ij
 , and the specification of the indi-

rect utility function, Vs.

If we assume, first, a random utility maximization framework and, second, that �s are 
independent and identically distributed Extreme Value Type I, then the probability that j 
chooses i given that they belong to class s is equal to the conditional logit choice probabil-
ity (2). Cjs is the choice set individual j faces given that they belong to class s in this equa-
tion. If Vs is assumed to have a linear specification, as is usually done in the literature, the 
scale parameter �s has to be normalized to ensure parameter identification.

Since class membership cannot be directly observed, it is useful to construct some prob-
abilistic measure relating individuals to classes. Let’s define a class-membership link 
function Wjs as shown in (3), where �s is a vector of class-specific parameters relating 
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Fig. 3   Relation between the two latent variables produced by the structural equation model, at the respond-
ent level
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observable consumer characteristics, �j , with class s. Note that function Z may be speci-
fied in such a way that it only depends on a constant that must be estimated. Nevertheless, 
this approach is not informative on the relationship between individual characteristics and 
preference patterns.

We will assume the probability that a consumer j belongs to class s is proportional to the 
class-membership function Wjs , and that � are independent and identically distributed 
Extreme Value Type I. With this, the probability that j belongs to s is given by the multi-
nomial logit probability (4). If Z has a linear specification, the scale parameter � has to be 
once again normalized.

To obtain the unconditional probability of j choosing i, we must marginalize Pj(i|s) over 
Pj(s) , as shown in (5).

One advantage this approach has is that it is fairly simple and straightforward. Moreover, 
since classes are discrete categories, this marginalization does not require to simulate an 
integral. This model’s main disadvantage is that it is non-convex, which may make maxi-
mum likelihood estimation difficult.

The latent class logit model has been applied in varied settings. Some examples include 
preference for residential location (Walker and Li 2007), medical procedures (Ho et  al. 
2020; Rozier et al. 2019), transportation modes (El Zarwi et al. 2017; Hurtubia et al. 2014; 
Shen 2009; Bhat 1997), vehicle ownership (Ferguson et al. 2018), and in the field of envi-
ronmental economics (Araghi et al. 2016; Beharry-Borg and Scarpa 2010).

The standard integrated choice and latent variable model (ICLV)

Another way of accounting for unobservable factors in the decision-making process is 
through latent variables. Latent variables are those that affect the decision-making process 
but cannot be directly measured. Previous research has used latent variables to model many 
kinds of qualitative constructs, including environmental concerns (Hess et al. 2013), risk 
aversion (Tsirimpa et al. 2010), or perceived quality (Palma et al. 2016).

A discrete choice model that considers unobservable attributes can be described by 
(6), where �∗

ij
 is a vector of latent variables. Assuming once again that � are independent 

and identically distributed Extreme Value Type I and that V has a linear specification, the 
choice probability can be expressed as the conditional logit probability (7).
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To derive a choice probability that does not depend on unobservables, some distribution 
for the latent variable must be specified. This produces a stochastic relation between latent 
variables and observable variables, as shown in (8). Here, function X∗ describes the struc-
tural relation between observable and unobservable variables through parameters � . The 
error term �ij accounts for variables not included in this model that affect �∗

ij
.

The latent variable model is completed with a measurement relationship that can be 
expressed in general terms by (9), where function I relates the response to some effect 
indicator Iij with the underlying latent construct �∗

ij
 . Common specifications for these meas-

urement relations are linear regressions when Iij is continuous, or ordered logit or probit 
models when Iij is a categorical variable, such as a Likert scale.

From this system of equations, the joint probability of observing j’s choice and indicator Iij 
unconditional on latent variables can be derived using (10), where g and f are density func-
tions of Iij and �∗

ij
 respectively.

This now standard Integrated Choice and Latent Variable model (ICLV) was proposed 
by Walker and Ben-Akiva (2002) and has gained wide popularity in the choice modeling 
community, despite some criticisms (e.g., Chorus and Kroesen 2014; Kroesen and Chorus 
2018). Even though most applications involve attitudinal latent variables (those that are 
related to some unobservable characteristic of consumers), perceptual latent variables can 
also be constructed (Bahamonde-Birke et al. 2015).

A latent class logit model with latent variables

An empirical problem of latent class choice models is that there is no clear interpretation of 
the fitted latent segments. What researchers usually do is to make intuitive sense of the over-
all segment by looking at the observable variables correlated with class membership model. 
These interpretations are hypotheses and not conclusions founded on the econometric model 
itself. If attitudinal latent variables are used to construct the class-membership model, direct 
and empirically well-founded relationships between latent constructs and class-specific taste 
parameters can be derived. This approach also frees the researcher from subjective interpreta-
tions of the parameters.

This method requires the integrated estimation of three components: a latent variable sub-
model, a latent class submodel, and a choice submodel. Assuming linear specifications and 
following the manner described above, each component can be described by the system of Eq. 
(11).
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Each submodel is almost identical to the ones described above. In the case of the latent 
variable model, we now only identify user-specific latent variables since we are only con-
cerned with attitudes. Since we allow more than one latent variable, the structural equation 
now includes matrix � , which contains all � vectors. The latent class submodel is now only 
specified as a function of the attitudinal latent variables �∗

j
 , although observable user char-

acteristics could be included as well. Finally, the choice component does not go through 
significant changes.

The joint probability of observing choice i and indicator Ij for individual j conditional 
on �∗

j
 is described by (12). As before, the unconditional probability (13) can be obtained by 

integrating over the distribution of �∗
j
.

Model parameters can be obtained using maximum likelihood estimation. Assuming that 
there are a total of J respondents and that each respondent j observed Tj choice scenarios, 
the likelihood can be expressed as:

There are a few examples of this model being used in the literature, including Hess et al. 
(2013) and Krueger et al. (2018).
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Results

The following subsections discuss the results of modeling the data presented in a previ-
ous section using the latent class and latent variable method. We will first discuss direct 
estimates, and then analyze marginal rates of substitution of the two models obtained. All 
results shown were obtained using the apollo package in R (Hess and Palma 2019).

Main results

This section presents results for two latent class and latent variable models. The one that 
addresses this study’s research question uses a latent variable that describes how health sta-
tus correlates with infrastructure preferences. The second one relates cycling experience to 
these preferences. The latter model was estimated to compare and validate the results of the 
former one. Note that because these two latent variables are highly correlated (see Fig. 3), 
both could not be integrated into a single model. Finally, a standard conditional logit was 
also estimated to have a baseline comparison for parameter estimates, marginal rates of 
substitution, and goodness-of-fit measures. Table 4 shows the results for all models.

The general structure of both latent class choice models with latent variables is shown 
in Fig. 4. In both cases, sociodemographic variables inform the structural component of the 
latent variable submodel. These latent variables then inform class membership, which in 
turn define the values of the utility functions’ parameters in the choice component.

First, the likelihood values at convergence of the choice components for the latent 
class and latent variable models are higher than the one for the baseline MNL model. 
This result shows that there is significant preference heterogeneity that cannot be cap-
tured by the conditional logit. The likelihoods of the choice components of the two 
latent class and latent variable models are similar, showing that both provide a mean-
ingful way to segment the population. During model development, we also verified that 
standard ICLV models provided worse fit and poorer behavioral information, which is 
why we decided to only report the models in Table 4.

The latent variable model shows that “Poor health status” and “Experienced cyclist” 
tend to have parameters with opposite signs, which is consistent with the negative cor-
relation found using structural equation modeling. Results show that respondents tend to 
have better health status and cycling experience if they are men, younger, own a car, and 
live in Manhattan, as opposed to other New York City boroughs. Some of these results 
are consistent with previous findings. For example, Rossetti et al. (2018) also found that 
younger men tend to be more experienced cyclists.

People that have a better health status and more experience cycling have a higher 
probability of belonging to Class 1 of Model 1 and Class 2 of Model 2. These classes 
show similar preference structures. For example, both have a negative parameter related 
to travel time, as expected. Moreover, these individuals show distaste for parking, and 
preference for painted and buffered cycle lanes. These results are in line with previous 
findings for people that have cycling experience (e.g., Rossetti et al. 2018; Stinson and 
Bhat 2005). Class 1 of Model 1 and Class 2 of Model 2 also have the same signs as the 
parameters in the baseline MNL model.

There are fewer significant taste parameters in Class 2 of Model 1 (“Worse health 
status”) and Class 1 of Model 2 (“Less experience cycling”). In both cases, there is no 
significant effect of traffic volume and speed, parking, and only a slightly significant and 
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Table 4   Integrated choice, latent class and latent variable models, together with a baseline multinomial 
logit model (MNL)

Baseline: MNL Model 1: Poor health 
stat.

Model 2: Exp. cyclist

Choice component
Class 1 Better health Less experienced
Time −0.0389∗∗∗ (−5.41) −0.0636∗∗∗ (−6.80) 1.34∗(2.05)
Traffic Normal 0 (fixed) 0 (fixed) 0 (fixed)

Heavy 0.174∗∗∗ (3.67) 0.116 (1.79) 0.211 (0.76)
One- or two-way One-way 0 (fixed) 0 (fixed) 0 (fixed)

Two-way 0.299∗∗∗ (6.79) 0.163∗∗ (2.86) 5.02∗ (2.08)
Parking Nonexistent 0 (fixed) 0 (fixed) 0 (fixed)

On left −0.770∗∗∗ (−5.42) −0.620∗∗∗ (−3.34) −3.45 (−1.00)
On right −0.261∗∗∗ (−5.04) −0.415∗∗∗ (−6.10) −5.94 (−1.47)

Lane design† Paint 0.294∗ (2.21) 0.582∗∗∗ (3.77) 10.0∗∗∗ (11.24)
Buffer 1.33∗∗∗ (22.45) 0.695∗∗∗ (10.35) 13.5∗ (2.06)

Class 2 Worse health More experienced
Time 1.11∗ (2.18) −0.0635∗∗∗ (−6.94)
Traffic Normal 0 (fixed) 0 (fixed)

Heavy 0.138 (0.54) 0.111 (1.74)
One- or two-way One-way 0 (fixed) 0 (fixed)

Two way 4.19∗ (2.25) 0.164∗∗ (2.91)
Parking Nonexistent 0 (fixed) 0 (fixed)

On left −1.74 (−0.69) −0.622∗∗∗ (−3.37)
On right −4.18 (−1.46) −0.418∗∗∗ (−6.26)

Lane design† Paint 12.1∗∗∗ (17.38) 0.583∗∗∗ (3.82)
Buffer 10.8∗ (2.28) 0.699∗∗∗ (10.41)

Class membership component (Class 2)
Intercept −0.653∗∗∗ (−3.38) 0.546∗∗∗ (4.11)
Poor health status 0.487∗ (2.51)
Exp. cyclist 0.827∗∗∗ (3.33)
Latent variable component
Female 0.625∗∗∗ (4.11) −0.202∗∗∗ (−4.69)
Age 0.0192∗∗∗ (4.00) −0.00345∗ (−2.29)
Driver’s license −0.497∗ (−2.55) 0.110∗ (2.22)
Cars None 0 (fixed) 0 (fixed)

One −0.271 (−1.54) 0.106∗ (2.17)
Two or more −0.696∗∗ (−2.89) 0.142∗ (2.44)

Employed −0.496∗∗ (−2.78) 0.0587 (1.38)
Home location Manhattan 0 (fixed) 0 (fixed)

Bronx 0.509 (1.88) −0.0762 (−1.15)
Brooklyn 0.413∗ (2.21) −0.135∗∗ (−2.68)
Queens 0.530∗∗ (2.63) −0.175∗∗ (−3.22)

Standard deviation 1.11∗∗∗ (3.62) 0.436∗∗∗ (12.15)
# Of individuals 801 801 801
# Of observations 5560 5,60 5560
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Table 4   (continued)

Baseline: MNL Model 1: Poor health 
stat.

Model 2: Exp. cyclist

Log-likelihood −2898.89 −6056.47 −7094.20
Log-likelihood (choice) −2898.89 −2701.53 −2709.00
Draws – 1000 (Halton) 1000 (Halton)
# Of parameters 7 30 30

∗∗∗ p < 0.001 , ∗∗ p < 0.01 , ∗ p < 0.05 . †All choice scenarios had at least one of these levels
Robust std. errors reported. Parameters of measurement eqs. not reported

Fig. 4   Structure of latent class choice models with latent variables. Top: Model that includes “Poor health 
status.” Bottom: Model that includes “Experienced cyclist”



Transportation	

1 3

positive effect of two-way lanes. Painted and buffered lanes have a strong positive effect 
on choice.

Contrary to economic theory, these classes have positive time parameters, which 
means that members of these classes prefer longer routes when all else is equal. This 
result is counterintuitive and may reflect a proxy for noncompensatory valuation of 
travel time. Another source of error could be that individuals from these classes don’t 
experience cycling as often, and therefore may not have adequately assessed the choice 
experiments. Unfortunately, given the adopted design and data, it was not possible to 
disentangle such issue. Finally, nobody in the sample had a class-membership proba-
bility close to one or zero (see Fig. 5), which means that we do not have evidence of 
an individual with a net-positive travel time parameter. Therefore, conclusions derived 
from this result should be analyzed with care.

Marginal rates of substitution

The ideal bicycle lane design has been a matter of debate among urban designers. City 
planners usually have to deal with the trade-off between segregation from cars–something 
the literature has consistently demonstrated is desirable for cyclists–and cost. Whereas 
cheaper bicycle lanes allow to expand the network at a faster pace, this cheaper infrastruc-
ture can fail to attract new riders. Given this dichotomy, the marginal rate of substitution 
(MRS) between different kinds of designs and travel time can help assess the costs and 
social benefits of different approaches to cycling infrastructure provision.

Since the results for the classes with worse health outcomes and less cycling experience 
had counterintuitive results, we will concentrate our analysis on the classes that did follow 
a pattern consistent with the literature and economic theory.

Table 5 shows MRSs of interest. Since the maximum likelihood estimation parameters 
asymptotically distribute Normal, the MRSs were derived using the Delta method (Daly 
et al. 2012).

As expected, the class of experienced cyclists and people with better health outcomes 
are willing to increase their travel time in exchange of a more protected cycle lane. The 
detours these individuals were willing to make also fall within reasonable ranges: on aver-
age, members of these classes are willing to increase their travel time by approximately 
9 and 11 minutes to access a painted and buffered cycle lane, respectively. The MRSs 
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Fig. 5   Empirical distributions of class-membership probabilities
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between the two types of design show that the differences between both are either not sig-
nificant, or that buffered lanes are preferable.

While the MRS between time and “Paint” obtained using the multinomial logit model 
(MNL) was similar to the ones obtained using the latent class models, the other two were 
quite different. For example, while the latent classes we analyzed were willing to increase 
their travel time on average by 11 minutes to access a buffered lane, the conditional logit 
model predicts this number is around 34 minutes. The differences between both models 
could be due to the MNL’s inability to capture underlying heterogeneity.

Conclusions

Previous research dedicated to identifying preferences for cycling infrastructure has failed 
to consider the relationships of those preferences with health status. Understanding this 
association is essential for policymakers to improve health outcomes from the low-impact 
physical exercise that comes from cycling. If the specific needs of those with poorer health 
outcomes are addressed in the infrastructure design process, there is a higher likelihood 
that they will engage in active transportation and improve their health.

We used a stated preference data set from New York City to fit an integrated choice, 
latent class and latent variable model to identify the relations between health and infra-
structure preference. Results show, first, that experienced cyclists have similar taste pat-
terns as people in good health. Second, we found two archetypal taste structures, defined 
by latent classes, between which respondents lie. Third, we found that the unhealthier latent 
class had a positive time parameter, which could indicate non-compensatory behavior or an 
inability to adequately respond to the choice scenarios due to cycling inexperience.

This study provides evidence that supports a double benefit from policies that promote 
cycling among the inexperienced. Since the inexperienced and the less healthy have similar 
taste structures, cycling infrastructure designs that appeal to the former will likely appeal to 
the latter, and vice versa. Whenever this is the case, there is a potential benefit of producing 
a shift towards more sustainable modes of transportation, thus alleviating congestion and 
carbon emissions, and promoting more physical exercise among the population that is less 
physically fit. This double benefit has the potential to reduce public health spending, as 
well as to decrease future spending to counter the effects of climate change.
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