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Abstract

This paper considers a system of partial differential equations that govern the spatio-
temporal dynamics of urban crime with law enforcement. The deployment of law enforcement
is called on-hotspot policing if the dispatched police approach the crime hotspot gradient with
the same intensity as the criminal agents, and it is called off-hotspot policing otherwise. We
reveal several parameter regimes governed by the policing intensity that promote the emergence
of crime hotspots. The existence and stability of these regular patterns, which can either be
time-stationary or time-periodic, are proved using bifurcation theories. The results give a wave
mode selection mechanism for these spatially heterogeneous solutions and suggest that hotspot
policing can stabilize crime aggregates or drive them from one location to another. We also
prove that this PDE system admits a unique and global-in-time solution, and the solution is
uniformly bounded. However, this system can be ill-posed for both on- and off-hotspot policing
as the solution dynamics do not always change continuously with respect to the initial data.
Moreover, phase transitions between closed loops of solution trajectories occur for a wide range
of system parameters and this reveals another dimension of complexity of the system. Con-
cerning the anti-hotspot policing strategy (i.e., law enforcement actively deployed away from
hotspots in space), we show that this likely counter-intuitive strategy tends to stabilize static
hotspots and annihilate time-periodic aggregates. These results point to a difficulty of using this
system for something like predicting crime and determining the effectiveness of hotspot policing,
due to the parameter sensitivity, and they call for further advancement in the mathematical
modeling and analysis of urban criminal activities with hotspot policing.
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1 Introduction

This paper considers the following system for (A, ρ, u) of space x and time t
At = DAAxx −A+Aρ+ α, x ∈ (0, L), t > 0,
ρt = (Dρρx − 2ρAx/A)x −Aρ+ β − uρ, x ∈ (0, L), t > 0,
ut = (Duux − χuAx/A)x, x ∈ (0, L), t > 0,
(A, ρ, u)(x, 0) = (A0, ρ0, u0)(x) ≥ 0, 6≡ 0, x ∈ (0, L),
Ax(x, t) = ρx(x, t) = ux(x, t) = 0, x = 0, L, t > 0,

(1.1)

where parameters DA, Dρ, Du α, β and χ are assumed positive constants that will be interpreted
later. System (1.1) is a one-dimensional version of a model introduced independently by [41]
and [56] to study the spatio-temporal dynamics of urban crime with police influence. Here, the
functions A, ρ and u are scalar fields representing the attractiveness value, population density of
criminal agents, and population density of the dispatched police, respectively. The main focus
of this work is on the emergence and properties of regular (stationary and time-periodic) and
irregular (chaotic) spatially heterogeneous solutions of (1.1). In particular, we examine the
effects of hotspot policing intensity, measured by the parameter χ, on the pattern formation.

1.1 Model motivation and background

It is widely believed that human behavior is influenced by intrinsically diverse factors and hence
does not follow laws similar to those comprising physics and other natural sciences. Moreover,
an individual’s behavior is too complex to be adequately described by mechanistic models
or predicted through quantitative methods. However, at a group level, human behavior can
exhibit spatio-temporal regularities which mathematics can help understand. One of the most
noticeable examples is the clustering of criminal activity, or the so-called “crime-hotspot”, where
geographically there are neighborhoods with higher crime rates surrounded by neighborhoods
with lower crime rates. Over the past few decades, many works in the social sciences [12, 8, 9,
10, 11] have been devoted to understanding hotspots in criminal activity due to social forces
such as social-economic status, security feature, social disorganization, subculture and group
conflict, among others. For instance, empirical studies [55, 64, 84] suggest that crime is not
spread evenly across city landscapes, but significantly clustered at a much smaller geographic
level-the “hot spots”, which can generate more than half of all criminal events; moreover, even
within the most crime-ridden neighborhoods, crime clusters at a few discrete locations and other
areas are relatively crime free [64]. While, in practice, it is unlikely to predict when, where and
how crime will take place, historic data of urban burglary demonstrate a persistent and valid
pattern illustrating that certain neighborhoods have a higher propensity to crimes than others,
even if a crime may occur anywhere in the community.

1.1.1 The model without law enforcement

To shed light on the spatio-temporal dynamics of these crime hotspots, in 2008 a group at UCLA
proposed a mathematical model for urban crime in [69]. Grounded on the assumptions of routine
activity theory, broken-window effect, and the so-called repeat and near-by repeat victimization
effect [2, 28, 14, 40, 70], they build an agent-based lattice model in 2D that incorporates the
movement of criminals and the dynamics of the attractiveness value, and the continuum limit
of the lattice system is as follows:{

At = DA∆A−A+Aρ+A0,
ρt = ∇ · (Dρ∇ρ− 2ρ∇ lnA)−Aρ+ B̄.

(1.2)
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Routine activity theory asserts that crime revolves around three factors: a potential offender,
a suitable target, and the absence of guardianship [28]. This is related to the so-called broken-
window effect, which suggests that signs of neglect, anti-social behavior, and civil disorder can
encourage further neglect, destruction, and eventually serious crimes [13, 62, 85]. The repeat
and near-repeat victimization effect states that criminal activity in a certain location increases
the probability of another crime occurring at the same, or nearby, locations within a short
period. This effect has been measured in real-life data for crimes like residential burglaries
[40, 70]. The linear diffusion rate, DA, measures the intensity of the near-repeat victimization
effect. Since the expected number of crimes is given by Aρ, the self-exciting nature of crime is
included in the dynamics by the term “+Aρ” in the first equation. When a crime occurs, it is
assumed that the agent who committed the crime will return home and be removed from the
system, leading to “−Aρ” in the second equation. External growth, which can be spatially and
temporally heterogeneous, for both unknowns is also assumed, and are represented by A0 and
B̄, respectively. Finally, let us mention that the criminal agents move with a combination of
linear diffusion (random motion) and a bias towards high attractiveness value (giving rise to the
chemotactic-like movement). We refer the interested reader to [32, 69] for the derivation and
further justification of (1.2), and to [24, 31] for a review of agent-based urban crime modeling.

Concerning the mathematical analysis, system (1.2) has attracted a substantial amount of
academic attention from [4, 5, 6, 7, 15, 16, 30, 50, 44, 49, 48, 67, 69, 73]. These works demonstrate
that this system admits rich and complex spatio-temporal dynamics, and the nontrivial patterns
studied therein successfully captures the featured crime hotspots of urban residential burglary,
presented by dynamical or static concentrating profiles throughout these models. For the time-
dependent system (1.2), Rodŕıguez and Bertozzi [59] established its local well-posedness theory,
and Wang et al. [78] extended it to the global well-posedness and proved the solution’s uniform
boundedness in 1D. This model in high-dimensions is studied by [29, 33, 51, 58, 60, 86] with
either weak policing intensity or for its modified version with technical conditions assumed.

It is worth noting that (1.2) has been extended in several directions. For instance, in
[6, 17, 54] the authors model the criminal dispersal through the Lévy process over Brown-
ian motion. Saldaña et al. [61] proposed and studied an age-structured population approach
for the mathematical modeling of urban burglaries, while Mohler and Short [52] developed a
new framework for geographic profiling based upon Bayes’ theorem and kinetic descriptions
of criminal behavior. Gu et al. [32] considered the spatial heterogeneity of both the near-
repeat victimization effect and the dispersal strategy of criminal agents, and harvested a class
of reaction-advection-diffusion systems with nonlinear diffusion. Non-trivial patterns in these
works also represent the aggregation phenomenon in urban criminal activity.

The introduction of a combination of both random and directed dispersal into populations
dynamics has been quite popular in ecology (e.g., species competition, prey-taxis) and biology
(e.g., chemotaxis, tumor). We can recognize that (1.2) admits the structure of the Keller–
Segel chemotaxis model with logarithmic sensitivity [43], and how criminal agents migrate to
favorable targets is very similar to that of chemotaxis cellular organisms direct their movements
in response to the gradient of a chemical stimulus. See papers [35, 36] for the surveys on the
Keller–Segel chemotaxis models.

1.1.2 The model with law enforcement

Now that crime and disorder are not evenly spread across areas, some crime scholars and
practitioners [25, 65, 71, 72, 81, 82] have argued that policing should concentrate in the areas
of greatest demand rather than spreading thinly across the urban landscape. This strategy,
known as “hot-spot policing” or “hotspotting,” is geographically focused, and the location of
the crime, rather than the features of criminals, is central to the strategy.
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To study the effects of the engagement of law enforcement on the dynamics of criminal activ-
ity, [41, 56] independently augmented (1.2) with the following PDE to describe the deployment
and focused patrol of the police:

ut = ∇ · (Du∇u− χu∇ lnA), (1.3)

where u denotes the distribution of law enforcement in field. The positive parameters Du and
χ measure the intensity of police’s random walk and response to criminal activity, respectively.
The additional equation reveals several characteristic features of policing patrolling. First of
all, the police neither enter nor leave the PDE system and their total number is conserved.
Moreover, in addition to a random patrolling, the policing is informed in part by environmental
criminology, and the characteristics of an area or place are viewed as key in explaining clusters
of criminal events, however, it is unfair to give the police credit of direct knowledge of the
criminal density when deciding where to move, hence move preferably to locations with high
attractiveness.

Setting A0 ≡ α and B̄ ≡ β, we combine (1.2) and (1.3) to collect (1.1). This new class of
three-component reaction-advection-diffusion systems has been analyzed by few authors [15, 74].
These works apply a singular perturbation analysis by first constructing stationary hotspot in
the limit of large criminal diffusivity and small attractiveness diffusivity and then analyze their
linear stability through nonlocal eigenvalue theory, which is conducted for certain χ including the
cops-on-the-dot strategy. Additional studies incorporating law enforcement have also provided
insights into understanding the effects of police deployment on the formation and annihilation of
hotspots. Ricketson [57] extended [41] by considering a variety of policing strategies through the
variation in their biased movements. Among other things, it is demonstrated in [57] that among
the policing strategies investigated, the one that minimizes the number of crimes committed is
not the same as the one the yields the most uniform distribution of crime. This tends to suggests
an optimal strategy, which is problematic from the point of view of equity, of tolerating crime
over some concentrated regions in order to minimize the total aggregate criminal activity. We
would like to mention that rather than incorporating (1.3), [67, 68, 87] model the cops-on-the-
dots deployment by introducing a static deterrence profile d(x) to “−Aρ” in (1.2).

1.2 Main results

In this work, we explore the complex spatio-temporal dynamics of system (1.1) through rig-
orous bifurcation analysis complemented with numerical experiments. We find three distinct
parameter regimes where the system exhibits dramatically different spatio-temporal dynamics.
This high sensitivity to the system parameters points to the difficulty of trying to predict future
crime patterns based on fitting the model to previous data. First, we show that the system
supports bifurcation in a certain parameter regime. Our analysis applies the steady state bi-
furcation theory that verifies a branch of spatially heterogenous solutions bifurcating from the
constant equilibrium solution. The existence and stability of such said branch of solutions are
discussed in Section 3. We find a different parameter regime leading to a branch of time-periodic
solutions in Section 4. To our knowledge the only work that had addressed oscillating solutions
in such systems was due to [15, 74] where they considered the formation of oscillating patterns
out of spatial spikes. To be specific, the spikes therein bifurcate from hotspot constructed in the
singular limit of system parameters, therefore their analysis is restricted to χ = 2 or 3 due to
technical considerations. This is not the case in this work as we can relax these considerations
by studying the bifurcation from the homogeneous state. The analysis of the Hopf bifurcation
and the stability of the time-periodic solutions are discussed in Section 4. The stability or
instability of these branches can help determine whether perturbations to the system will push
the dynamic solution to system (1.1) toward the constant equilibrium or to a displaced hotspot
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solution, at least around the bifurcation points. The results in Sections 3 and 4 are weakly
nonlinear in the sense that the non-constant solutions discussed there occur for parameters that
are close to those leading to the bifurcation from the constant equilibrium solution. To explore
what happens away from these bifurcation points, we perform some numerical experiments in
Section 5. In fact, away from the bifurcation points, we find a parameter regime that leads to
solutions which are unstable with respect to initial data. In this regime, very small variations of
the initial data can lead to extremely different behaviors of the corresponding solutions. This is
verified numerically through various experiments that illustrate the ill-posed nature of system
(1.1) due to the lack of stability with respect to initial data in some parameter regimes. Pro-
totypical solutions to (1.1) in each of the regimes analyzed here, obtained through numerical
experiments, are illustrated in Section 5.

Before proceeding further, it seems necessary to mention that one can follow [78] to prove
the global existence, uniqueness and boundedness of solution to (1.1). We state them as follows:

Theorem 1.1. For initial data (A0, ρ0, u0) ∈ H1(0, L)×H1(0, L)×H1(0, L) with A0(x) > 0 and
ρ0, u0 ≥, 6≡ 0 in (0, L), (1.1) admits a unique classical solution (A(x, t), ρ(x, t), u(x, t)) defined
on [0, L]×[0,∞); Moreover, there exist positive constants C0 and C1 such that C0 ≤ A(x, t) < C1

and 0 < ρ(x, t), u(x, t) ≤ C1 for all t ∈ (0,∞).

Proof. First of all, the local existence and uniqueness of (1.1) with Tmax ≤ ∞ are standard.
Then, one has from the strong maximum principle that A, ρ and u are strictly positive in [0, L]
for all time t ∈ (0, Tmax). Then applying the parabolic comparison to (1.1) and system (1.1) in
[78] readily gives the uniform (in time) boundedness of A,Ax and ρ. Finally, one can apply the
well-known Moser-iteration to obtain the uniform boundedness of u. Therefore, Tmax =∞, and
the solution is global and unique. �

Despite the nice properties in Theorem 1.1, in Section 5 we shall demonstrate that system
(1.1) is not well-posed because its dynamics are not continuous to the variation of initial data.

2 Linearized stability of the constant solution

To find nontrivial spatial patterns of system (1.1), we first observe that system (1.1) always
admits the following constant solution (Ā, ρ̄, ū):

Ā :=
(α+ β − ū) +

√
(α+ β − ū)2 + 4αū

2
, ρ̄ := 1− α

Ā
, and ū :=

1

L

∫ L

0
u0(x)dx. (2.1)

Note that both Ā and ρ̄ are positive constants that depend on α, β, and ρ̄ = β
Ā+ū

. The purpose of

this section is to determine when (Ā, ρ̄, ū) becomes unstable, leading to the formation of stable
non-constant solutions and we focus on investigating the effects of policing on the criminal
activity.

We linearize (1.1) about equilibrium (2.1) through the following perturbations:

A = Ā+ εÂ, ρ = ρ̄+ ερ̂, and u = ū+ εû, 0 < ε� 1,

and collect 
Ât ≈ DAÂxx − α

Ā
Â+ Āρ̂, x ∈ (0, L), t > 0,

ρ̂t ≈ (Dρρ̂x − 2 ρ̄
Ā
Âx)x − ρ̄Â− (Ā+ ū)ρ̂− ρ̄û, x ∈ (0, L), t > 0,

ût ≈ (Duûx − χ ū
Ā
Âx)x, x ∈ (0, L), t > 0,

Âx(x, t) = ρ̂x(x, t) = ûx(x, t) = 0, x = 0, L, t > 0.

(2.2)
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Setting the solution of (2.2) in the form (Â, ρ̂, û) = (C1, C2, C3)eσt+ikx, where k is the wavemode
vector with |k|2 = (kπL )2, σ is the growth rate of perturbations, and Ci are constants to be
determined, we collect the following eigenvalue problem

(
σI +D|k|2 +A0

) C1

C2

C3

 =

 0
0
0

 ,

where I is the unit matrix and matrices D and A0 are given by:

A0 =

 − α
Ā

Ā 0

−ρ̄ −(Ā+ ū) −ρ̄
0 0 0

 and D =

 DA 0 0
−2Dρ

ρ̄
Ā

Dρ 0

−χDu
ρ̄
Ā

0 Du

 .

Alternatively, σ is eigenvalue of the following stability matrix associated with (1.1)

Ak =

 −DA(kπL )2 − α
Ā

Ā 0

2 ρ̄
Ā

(kπL )2 − ρ̄ −Dρ(
kπ
L )2 − (Ā+ ū) −ρ̄

χ ū
Ā

(kπL )2 0 −Du(kπL )2

 , k ∈ N+, (2.3)

and the stability of (Ā, ρ̄, ū) is determined by the eigenvalues of matrix (2.3).
To this end, we find the characteristic polynomial of (2.3) to be

σ3 + α2(k)σ2 + α1(k)σ + α0(χ, k) = 0, (2.4)

with

α2(k) := (DA +Dρ +Du)
(kπ
L

)2
+ (α/Ā+ Ā+ ū) > 0,

α1(k) := (DADρ +DADu +DρDu)
(kπ
L

)4
+
[
(Du +DA)(Ā+ ū) +

α(Du +Dρ)

Ā
− 2ρ̄

](kπ
L

)2

+α
(

1 +
ū

Ā

)
+ Āρ̄,

and

α0(χ, k) := ρ̄ū
(kπ
L

)2
(χ− χSk ),

where

χSk := −Du

ρ̄ū

{
DADρ

(kπ
L

)4
+
[
DA(Ā+ ū)+

αDρ

Ā
−2ρ̄

](kπ
L

)2
+α
(

1+
ū

Ā

)
+Āρ̄

}
, k ∈ N+. (2.5)

By the principle of the linearized stability, (Ā, ρ̄, ū) is asymptotically stable with respect to
(1.1) if and only if all eigenvalues of the matrix (2.3) have negative real part, then according
to the Routh–Hurwitz conditions, or Corollary 2.2 in [47], all roots of (2.4) are in the open left
half plane of C if and only if α2, α0 > 0 and α2α1 > α0. Note that α2(k) > 0, therefore the
constant equilibrium (Ā, ρ̄, ū) is locally asymptotically sable with respect to (1.1) if and only if
the following conditions hold for each k ∈ N:

α0(χ, k) > 0 and α1(k)α2(k)− α0(χ, k) > 0,

while (Ā, ρ̄, ū) is unstable if one of the conditions above fails for some k ∈ N. The above
conditions hold for k = 0, and we only need to examine the cases for k ∈ N+. For each k ≥ 1,
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since α2(k) > 0, α1(k) > 0 if α0(χ, k) > 0 and α1(k)α2(k)−α0(χ, k) > 0, we have that (Ā, ρ̄, ū)
is unstable if there exists any k ∈ N+ such that either α0(χ, k) < 0 or α1(k)α2(k)−α0(χ, k) < 0.

On the other hand, from straightforward calculations one has that

α0(χ, k) < 0 if and only if χ < χSk for some k ∈ N+

with χSk given by (2.5) and

α1(k)α2(k)− α0(χ, k) < 0 if and only if χ > χHk for some k ∈ N+

with
χHk := χSk +

α1α2

ρ̄ū(kπL )2
, (2.6)

therefore the constant solution (Ā, ρ̄, ū) is unstable if either

χ < max
k∈N+

χSk or χ > min
k∈N+

χHk ,

otherwise, it is locally stable. The linearized stability of (Ā, ρ̄, ū) can be summarized into the
following result.

Proposition 2.1. Assume that all the parameters in (1.1) are positive, and denote

χ− := max
k∈N+

χSk and χ+ := min
k∈N+

χHk . (2.7)

Then the following dichotomy holds:

(i) if χ− < χ+, then the equilibrium (Ā, ρ̄, ū) is unstable for χ ∈ (−∞, χ−) ∪ (χ+,∞) and it
is locally asymptotically stable for χ ∈ (χ−, χ+);

(ii) if χ− ≥ χ+, then (Ā, ρ̄, ū) is always unstable for any χ ∈ R.

It is easy to see that both χ− and χ+ are well-defined. For each k ∈ N+, matrix (2.3) has
three (complex) eigenvalues σi(k), for i = 1, 2, 3, each depending on χ smoothly. When χ = χSk ,
all eigenvalues are real with σ1(k), σ2(k) < 0 and σ3(k) = 0. On the other hand, when χ = χHk ,
σ1,2 = ±i

√
α1(k) are coupled and purely imaginary if α1 > 0 and σ3 < 0. Before concluding

this section, we present the following observations that are important for our coming analysis.

Remark 2.1. (i) if α1(k) > 0 for each k ∈ N+, we have from (2.6) that χSk < χHk . However,
this does not imply χ− < χ+ in general, especially when diffusion rates are small. For instance,
if DA = Dρ = Du = ε� 1, for simplicity we choose L = π and have that

α1(k) = 3ε2k4 +
(

2(Ā+ ū+
α

Ā
)ε− 2ρ̄

)
k2 + α

(
1 +

ū

Ā

)
+ Āρ̄ ≤ 3ε2k4 − ρ̄k2 +O(1).

It is easy to see that α1(k) ≈ − ρ̄
12ε2

+ O(1) < 0 when k ≈
√

ρ̄
6ε . Then one can easily find that

χHk < χSk for each k ∈ N+ hence χ+ > χ−. This implies that the constant solution is always
unstable for any χ ∈ R. In the coming sections, we will show that its stability is lost to either a
stable stationary or time-periodic solution of (1.1), depending on the system parameters;

(ii) if α1(k0) ≤ 0 for some k0 ∈ N+, matrix (2.3) has at least one positive root for χ = χHk0,

which implies the instability of (Ā, ρ̄, ū) with χ being at and around χkH . Indeed, in this case, we
have that χHk0 ≤ χ

S
k0

, therefore by definition we find that χ− = maxχSk ≥ χSk0 ≥ χ
H
k0
≥ minχHk =

χ+, thanks to which, Proposition 2.1 implies that (Ā, ρ̄, ū) is always unstable. However, matrix
(2.3) has no purely imaginary eigenvalues at χ = χHk0 in this case.

From the discussions above, we find that α1(k) > 0 is equivalent to matrix (2.3) having
purely imaginary eigenvalues. Now that we are motivated to study the formation of spatially
nontrivial solutions of (1.1) as the constant solution turns unstable through bifurcation theories,
we will find that that time-periodic solutions bifurcate from (Ā, ρ̄, ū) at χ = χHk0 .
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3 Analysis of nonconstant positive steady states

This section is devoted to studying nonconstant positive solutions of the stationary system:
DAAxx −A+Aρ+ α = 0, x ∈ (0, L),
(Dρρx − 2ρAx/A)x −Aρ+ β − uρ = 0, x ∈ (0, L),
(Duux − χuAx/A)x = 0, x ∈ (0, L),
Ax(x) = ρx(x) = ux(x) = 0, x = 0, L,
A, ρ, u ∈ C2([0, L]), A(x), ρ(x), u(x) > 0, x ∈ (0, L),

(3.1)

This stationary problem is important to the spatio-temporal dynamics of (1.1) since it naturally
serves as one of the candidates that describe the long-time profiles of (A, ρ, u).

To find nonconstant solutions of the stationary system (3.1), we perform steady state bi-
furcation analysis of (3.1) at (Ā, ρ̄, ū). Now that this trivial solution becomes unstable when
χ escapes the interval (χ−, χ+) according to Proposition 2.1, we are concerned with the condi-
tions when spatially inhomogeneous solutions can emerge. Before presenting further analysis,
we point out that the maximum principle implies that A has a uniform positive lower bound.
Though our analysis carries over to the case when α = 0, we record this fact here for future
reference.

3.1 Existence of nonconstant positive steady states

To investigate the effects of policing strength on the formation and qualitative dynamics of
nontrivial patterns throughout (3.1), we treat χ as the bifurcation parameter, introduce the
following function spaces

X = {w ∈ H2((0, L))|wx(0) = wx(L) = 0} and Y = L2((0, L))

and then convert (3.1) into the following abstract form

F(A, ρ, u, χ) = 0 for (A, ρ, u, χ) ∈ X 3 × R,

where X 3 = X × X × X and

F(A, ρ, u, χ) =

 DAAxx −A+Aρ+ α
(Dρρx − 2ρAx/A)x −Aρ+ β − uρ

(Duux − χuAx/A)x

 . (3.2)

The problem of finding solutions of (3.1) turns into finding nontrivial positive roots of F in
X 3 × R. One can then apply the standard elliptic regularity theory to find that these roots are
classical solutions.

To this end, we first observe that F(Ā, ρ̄, ū, χ) = 0 for any χ ∈ R and F : X 3 × R → Y3 is
analytic. Moreover, for any fixed (A∗, ρ∗, u∗) ∈ X 3, the Fréchet derivative of F is given by

DF(A,ρ,u)(A
∗, ρ∗, u∗, χ) =

 DAAxx + (ρ∗ − 1)A+A∗ρ

Dρρxx − 2
[( ρ
A∗ − ρ∗A

(A∗)2

)
A∗x + ρ∗

A∗Ax
]
x
− ρ∗(A+ u)− (A∗ + u∗)ρ

Duuxx − χ
[(

u
A∗ − u∗A

(A∗)2

)
A∗x + u∗

A∗Ax
]
x

 .

(3.3)
Below, we collect another important fact about F .

Lemma 3.1. DF(A,ρ,u)(A
∗, ρ∗, u∗, χ) : X 3 × R→ Y3 is a Fredholm operator with zero index.
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Proof. We denote u = (A, ρ, u)T and rewrite (3.3) as

DF(A,ρ,u)(A
∗, ρ∗, u∗, χ) = A0(u)uxx + F0(x,u,ux),

where

A0 =

 DA 0 0

−2 ρ
∗

A∗ Dρ 0

−χ u∗

A∗ 0 Du

 ,F0(x,u,ux) =

 (ρ∗ − 1)A+A∗ρ

−2
[( ρ
A∗ − ρ∗A

(A∗)2

)
A∗x

]
x
− ρ∗(A+ u)− (A∗ + u∗)ρ

−χ
[(

u
A∗ − u∗A

(A∗)2

)
A∗x

]
x

 .

Here operator (3.3) is elliptic since all eigenvalues of A0 are positive. According to Remark
2.5 (case 2) in [66] with N = 1, A0 satisfies the Agmon’s condition (see Definition 2.4 in [66]).
Therefore, DF(A,ρ,u)(A

∗, ρ∗, u∗, χ) is Fredholm with zero index due to Theorem 3.3 and Remark
3.4 of [66]. Λ

To seek spatially non-trivial solutions of (3.1) that bifurcate from the equilibrium (Ā, ρ̄, ū),
we first check the following necessary condition

N (DF(Ā, ρ̄, ū, χ)) 6= {0}, (3.4)

where operator DF is given by (3.3) and N denotes its null space in X 3. For this purpose, we
choose (A∗, ρ∗, u∗) = (Ā, ρ̄, ū) in (3.2) and find that the null space in (3.4) consists of solution
(A, ρ, u) of the following problem

DAAxx + (ρ̄− 1)A+ Āρ = 0, x ∈ (0, L),

Dρρxx − 2ρ̄
Ā
Axx − ρ̄(A+ u)− (Ā+ ū)u = 0, x ∈ (0, L),

Duuxx − χ ū
Ā
Axx = 0, x ∈ (0, L),

Ax(x) = ρx(x) = ux(x) = 0, x = 0, L.

(3.5)

In light of the following eigen-expansions

A(x) =
∞∑
k=0

tk cos

(
kπx

L

)
, ρ(x) =

∞∑
k=0

sk cos

(
kπx

L

)
, u(x) =

∞∑
k=0

rk cos

(
kπx

L

)
with tk, sk and rk being constants, we have that−DA(kπL )2 − α/Ā Ā 0

2 ρ̄
Ā

(kπL )2 −Dρ(
kπ
L )2 − (Ā+ ū) −ρ̄

χ ū
Ā

(kπL )2 0 −Du(kπL )2

tksk
rk

 =

0
0
0

 for k ∈ N+. (3.6)

Note that k = 0 is ruled out as it gives rise to the constant solution (Ā, ρ̄, ū), whereas we look
for spatially nonconstant solutions. For each k ∈ N+, (3.5) has nonzero solutions if and only if
the coefficient matrix of (3.6) is singular or equivalently χ = χSk given by (2.4) for some k.

Once condition (3.4) is satisfied at χ = χSk , we easily find that N (DF(Ā, ρ̄, ū, χ)) =
span{(Āk, ρ̄k, ūk)}, and it is one-dimensional

Āk = Pk cos

(
kπx

L

)
, ρ̄k = Qk cos

(
kπx

L

)
, ūk = cos

(
kπx

L

)
, (3.7)

where

Pk :=
DuĀ

χkū
, Qk :=

Du(DA(kπL )2 + α/Ā)

χkū
, k ∈ N+. (3.8)

Having the potential bifurcation values χSk in (2.5), we now prove in the following theorem
that the steady state bifurcation occurs at (Ā, ρ̄, ū, χk) for each k ∈ N+, which establishes the
existence of nonconstant positive solutions of (3.1).
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Theorem 3.2. Suppose that χSk 6= χSj , ∀k 6= j, χSk given by (2.5) and (2.6) respectively.
Then for each k ∈ N+, there exist a positive constant δ and a unique one-parameter curve
Γk(s) = {(Ak(s, x), ρk(s, x), uk(s, x), χk(s)) : s ∈ (−δ, δ)} of spatially inhomogeneous solutions
(A, ρ, u, χ) ∈ X 3 × R to (3.1) that bifurcate from (Ā, ρ̄, ū) at χ = χSk . Moreover, each function
is smooth in s and

(Ak(s, x), ρk(s, x), uk(s, x)) = (Ā, ρ̄, ū) + s(Āk, ρ̄k, ūk) + O(s2), s ∈ (−δ, δ), (3.9)

and
χk(s) = χSk +O(s), s ∈ (−δ, δ), (3.10)

where (Āk, ρ̄k, ūk) is given by (3.7)-(3.8), and O(s2) ∈ Z is in the closed complement of
N (DF(Ā, ρ̄, ū, χ)) defined by

Z =
{

(A, ρ, u) ∈ X 3
∣∣∣ ∫ L

0
AĀk + ρρ̄k + uūkdx = 0

}
. (3.11)

Proof. We have verified all the necessary conditions except the following to apply the Crandall–
Rabinowitz local theory in [20]

d

dχ
(DF(Ā, ρ̄, ū, χ))(Āk, ρ̄k, ūk)|χ=χSk

6∈ R(DF(Ā, ρ̄, ū, χ)), (3.12)

where R is the range of the operator. We argue by contradiction and suppose that condition
(3.12) fails. Then, there exists a nontrivial solution (A, ρ, u) that satisfies

DAAxx + (ρ̄− 1)A+ Āρ = 0, x ∈ (0, L),

Dρρxx − 2ρ̄
Ā
Axx − ρ̄(A+ u)− (Ā+ ū)u = 0, x ∈ (0, L),

Duuxx − χ ū
Ā
Axx = − ū

Ā
(Ak)xx = ū

Ā

(
kπ
L

)2
Pk, x ∈ (0, L),

Ax(x) = ρx(x) = ux(x) = 0, x = 0, L.

(3.13)

Multiplying equations in (3.13) by cos
(
kπx
L

)
and integrating them over (0, L) by parts, we obtain

that−DA(kπL )2 − α/Ā Ā 0

2 ρ̄
Ā

(kπL )2 −Dρ(
kπ
L )2 − (Ā+ ū) −ρ̄

χ ū
Ā

(kπL )2 0 −Du(kπL )2



∫ L

0 A cos kπxL dx∫ L
0 ρ cos kπxL dx∫ L
0 u cos kπxL dx

 =

 0
0

(kπ)2ū
2ĀL

 .

However, the coefficient matrix is singular thanks to (2.5) which implies that this system has
no solution for each k ∈ N+, then we reach a contradiction and this completes the proof of
condition (3.12). Then the statements in Theorem 3.2 follow from Theorem 1.7 of [20]. Λ

3.2 Stability of nonconstant positive steady states

A natural question concerning the stability of the spatially inhomogeneous bifurcating solution
(Ak(s, x), ρk(s, x), uk(s, x)) established in Theorem 3.2 arises. Here the stability or instability
is that of the bifurcating solution regarded as an equilibrium of system (3.1). To this end, we
want to determine the turning direction of the bifurcation branch Γk(s) around each bifurcation
point. It is easy to see that the operator F is C4-smooth, and according to Theorem 1.18 in
[21] we can write the following expansions

Ak(s, x) = Ā+ sPk cos
(
kπx
L

)
+ s2ϕ1(x) + s3ϕ2(x) + o(s3),

ρk(s, x) = ρ̄+ sQk cos
(
kπx
L

)
+ s2ψ1(x) + s3ψ2(x) + o(s3),

uk(s, x) = ū+ s cos
(
kπx
L

)
+ s2γ1(x) + s3γ2(x) + o(s3),

χk(s) = χSk + sK1 + s2K2 + o(s2),

(3.14)
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where (φi, ψi, γi) ∈ Z in (3.11) and Ki are constants for i = 1, 2. o(s3) are taken with respect
to the X -topology and o(s2) is a real number.

One can easily show that each bifurcation branch Γk(s) is of pitch-fork, i.e. being one sided.
Now we give stability of the bifurcating solutions in terms of the sign of K2.

Theorem 3.3. Suppose that all the conditions in Theorem 3.2 are satisfied and let Γk(s) =
{(Ak(s, k), ρk(s, k), uk(s, k), χk(s))} be the kth bifurcation branch given by (3.9)-(3.10). Denote
χ0 = mink∈N+{χSk , χHk } as in (2.7). Then the followings hold:

(i) if χ0 = χSk0 < mink∈N+ χHk , then Γk0(s) around (Ā, ρ̄, ū, χk0) is asymptotically stable for
K2 > 0 and it is unstable for K2 < 0, while Γk(s) around (Ā, ρ̄, ū, χk) is always unstable
for each k 6= k0;

(ii) if χ0 = χHk1 < mink∈N+ χSk , then Γk(s) around (Ā, ρ̄, ū, χk) is always unstable for each
k ∈ N+.

Remark 3.1. Our results suggest that (Ā, ρ̄, ū, χSk ) looses its stability to the stable steady state
bifurcating solution with wavemode number k0 for which χSk achieves its minimum over N+.
When case (ii) occurs, we prove in section 4 that stability is lost to stable Hopf bifurcating
solutions. This is numerically illustrated in Section 5.

Proof of Theorem 3.3. Our proof follows the approaches in [76, 80] based on slight modifications
in the arguments for Corollary 1.13 of [21], or Theorem 3.2 of [76], Theorem 5.5, Theorem 5.6
of [18]. We shall only prove case (ii) and case (i) can be proved very similarly.

For each k ∈ N+, we linearize (1.1) around (Ak(s, x), ρk(s, x), uk(s, x), χk(s)) and obtain the
following eigenvalue problem

DF(Ak(s, x), ρk(s, x), uk(s, x), χk(s))(A, ρ, u) = σ(s)(A, ρ, u), (A, ρ, u) ∈ X × X × X ,

then (Ak(s, x), ρk(s, x), uk(s, x), χk(s)) is asymptotically stable if and only if the real part of
eigenvalue σ(s) is negative.

Sending s → 0 in (3.14), we know from the verification for (3.12) that σ̄ = 0 is a simple
eigenvalue of DF(Ā, ρ̄, ū, χSk ) = σ(A, ρ, u) or equivalently the following problem

DAA
′′ − α1ĀA+ Āρ = σA, x ∈ (0, L),

Dρρ
′′ − 2 ρ̄

Ā
A′′ − (Ā+ ū)ρ− ρ̄u = σρ, x ∈ (0, L),

Duu
′′ − 2χSk

ρ̄
Ā
A′′ = σu, x ∈ (0, L).

A′(x) = ρ′(x) = u′(x) = 0, x = 0, L,

the eigen-space of which is one-dimensional and N
(
DF(Ā, ρ̄, ū, χSk )

)
= {(Pk, Qk, 1) cos kπxL },

which is not in the range of R
(
DF(Ā, ρ̄, ū, χSk )

)
. Multiplying the system above by cos kπxL and

integrating them over (0, L) by parts, we have that σ = 0 is an eigenvalue of (2.3) with χ = χSk
which reads −DA(kπL )2 − α1Ā Ā 0

2 ρ̄
Ā

(kπL )2 −Dρ(
kπ
L )2 − (Ā+ ū) −ρ̄

χSk
ū
Ā

(kπL )2 0 −Du(kπL )2

 .

If χ0 = mink∈N+ χHk < χSk for all k ∈ N+, or χ0 = mink∈N+ χSk < χHk for k 6= k0, we
have from the proof of Proposition 2.1 that this matrix has at least one eigenvalue σ with
positive real part. From the standard eigenvalue perturbation theory in [42], an eigenvalue
σ(s) to the linearized problem above that has a positive real part for s small. Therefore,
(Ak(s, x), ρk(s, x), uk(s, x), χk(s)) is unstable for s ∈ (−δ, δ). Λ
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Theorem 3.3 implies that the only stable bifurcation branch must be Γk0(s) that χk0 =
mink∈N+{χSk , χHk }, and (Ā, ρ̄, ū) loses its stability only to nonconstant steady state with a spatial

profile of the form cos
(
k0πx
L

)
. This gives a wavemode selection mechanism for system (1.1)

when χ is around the bifurcation value. In general, it is very difficult to determine whether
χ0 is achieved at χSk or χHk . According to the discussions after Remark 2.1, if the interval
length L is sufficiently small, χ0 = χS1 < mink∈N+ χHk and the only stable bifurcating solution
has wavemode cos πxL which is spatially monotone. The wavemode section mechanism given in
Theorem 3.3 is verified and illustrated in our numerical studies of (1.1) in the Section 5.

4 Hopf bifurcation and stability of periodic patterns

In this section, we study time-periodic orbits of (3.1) that bifurcate from (Ā, ρ̄, ū) at χ = χHk . We
want to show that if the minimum is achieved at χHk0 for some k0, then the constant equilibrium

(Ā, ρ̄, ū) loses its stability through a Hopf bifurcation as χ surpasses χ0 = mink∈N+ χHk . To
apply the bifurcation theory for (3.1) at point χ = χHk , we must first verify that the real part
of eigenvalue crosses the imaginary axis at χHk .

Discussions above imply that a Hopf bifurcation occurs at (Ā, ρ̄, ū) only if χ = χHk , for which
the stability matrix (2.3) has purely imaginary eigenvalues given by:

σH1 (χHk , k) = −α2(k) < 0, σH2,3(χHk , k) = ±i
√
α1(k).

Moreover, according to Section 3, the stability matrix (2.3) has a pair of purely imaginary
eigenvalues if and only if χ = χHk < χSk . Therefore, a Hopf bifurcation may occur at (Ā, ρ̄, ū, χHk )
only when χHk < χSk . We shall always assume this condition in the coming Hopf bifurcation
analysis.

4.1 Existence of time-periodic patterns

In this subsection, we prove the existence of a Hopf bifurcation. Our main result on the existence
of nontrivial periodic orbits of parabolic system (3.1) states as follows.

Theorem 4.1. Suppose that all parameters in (3.1) are positive and χHk 6= χHj for ∀j 6= k and

χHk < χSk , then there exist a positive constant δ and a unique one-parameter family of nontrivial
periodic orbits ϑk(s) = (uk(s, x, t), Tk(s), χk(s)), s ∈ (−δ, δ)→ C3(R,X 3)× R+ × R with

uk(s, x, t) = (Ā, ρ̄, ū) + s(V +
k e

iτ0t + V −k e
−iτ0t) cos

(
kπx

L

)
+ o(s) (4.1)

such that (uk(s, x, t), χk(s)) is a nontrivial solution of (3.1) and uk(s, x, t) is periodic of time
t with period Tk(s) ≈ 2π

τ0
, τ0 =

√
α1(k), and {(V ±k ,±iτ0)} are eigen-pairs of matrix (2.3).

Moreover, ϑk(s1) 6= ϑk(s2) for all s1 6= s2 ∈ (−δ, δ) and all nontrivial periodic solutions around
(Ā, ρ̄, ū, χHk ) must be on the orbit ϑk(s), s ∈ (−δ, δ). In other words, if (3.1) has a nontrivial
periodic solution u1(x, t) with period T for some χ ∈ R around ϑk(s) and a small positive
constant ε such that |χ − χHk (s)| < ε, |T − 2π

τ0
| < ε and maxt∈R+,x∈Ω̄ |u1(x, t) − (Ā, ρ̄, ū)| < ε,

then there exist constants s0 ∈ (−δ, δ) and θ0 ∈ [0, 2π) such that (T, χ) = (Tk(s0), χHk (s0)) and
u1(x, t) = uk(s0, x, t+ θ0).

Proof. We follow the proof of Theorem 5.2 in [79]. According to Proposition 2.1 and Remark
2.1, the stability matrix (2.3) with χ = χHk has a pair of purely imaginary eigenvalues σH2,3(k) =

±
√
α1(χHk )i; moreover since χHk 6= χHj for ∀j 6= k, matrix (2.3) has no eigenvalue of the form

mτ0i for m ∈ N+\{±1}.
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Let σH1 (χ, k) and σH2,3(χ, k) = λ(χ, k) ± iτ(χ, k) be the unique eigenvalues of (2.3) in a

neighbourhood of χ = χHk . Then σH1 , λ and τ are real and analytical functions of χ such that
λ(χHk , k) = 0 and τ(χHk , k) = τ0 > 0. To apply Hopf bifurcation theory, we need to prove the
following transversality condition

∂λ(χ, k)

∂χ

∣∣∣
χ=χHk

6= 0. (4.2)

Substitute the eigenvalues σH1 (χ, k) and σH2,3(χ, k) = λ(χ, k) ± iτ(χ, k) into the characteristic
polynomial and equate the real and imaginary parts there, then we have

−α2(k) = 2λ(χ, k) + σH1 (χ, k),
α1(k) = λ2(χ, k) + τ2(χ, k) + 2λ(χ, k)σH1 (χ, k),
−α0(χ, k) = (λ2(χ, k) + τ2(χ, k))σH1 (χ, k).

(4.3)

As α1 and α2 are independent of χ, differentiating (4.3) with respect to χ gives us
2λ′ + (σH1 )′ = 0,
2λλ′ + 2ττ ′ + 2λ′σH1 + 2λ(σH1 )′ = 0,

(2λλ′ + 2ττ ′)σH1 + (λ2 + τ2)(σH1 )′ = −α′0 = Du

(
kπ
L

)2
ρ̄ū,

(4.4)

where ′ = d
dχ and we have skipped (χ, k) in each function for simplicity of notation.

Since λ(χHk , k) = 0 and σ1(χHk , k) = −α2(k), the last two equations in (4.4) at χ = χHk imply

(σH1 )′|χ=χHk
=
Du

(
kπ
L

)2
ρ̄ū

τ2 + (σH1 )2

∣∣∣
χ=χHk

> 0,

and then the first equation there easily implies λ′(χHk , k) = −1
2(σH1 )′|χ=χHk

< 0. This verifies

(4.2), and Theorem 4.1 follows from Theorem 1 in [1]. Λ

Theorem 4.1 implies that system (3.1) admits time-periodic spatial patterns that bifurcate
from (Ā, ρ̄, ū, χHk ) if and only if χHk < χSk . Furthermore, it gives the explicit expression of
the time periodic spatial patterns as ϑk mentioned above, which admits spatial profile of the
eigenfunction cos

(
kπx
L

)
.

Figure 1: Bifurcation values χHk and χSk for various diffusion rates with L = π and α = β = 1. We set
Dρ = Du = 0.05 on the left, DA = 0.001, Du = 0.05 in the center, DA = 0.001, Dρ = 0.05 on the right, and
vary DA, Dρ and Du, respectively. These graphs tend to suggest that increasing diffusion rate can lead to
larger values of χHk , hence promoting the emergence of periodic patterns.
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As discussed above, it is difficult to determine the necessary condition for χHk < χSk in terms
of system parameters. Figure 1 presents three plots demonstrating the variation of bifurcation
values against the diffusion rates. All plots indicate that increasing diffusion rate gives rise to
larger χHk and helps promote the emergence of periodic patterns according to our discussions.

However, if the interval L is sufficiently small, it always holds that χHk > χSk for each k ∈ N+.
This indicates that Hopf bifurcations do not occur for small interval lengths. Indeed, from the
discussions after the proof of Theorem 3.3 we know that, in this case, the stability of the
homogeneous solution (Ā, ρ̄, ū) is lost through the first bifurcation branch (Ā, ρ̄, ū, χS1 ), which
has stable stationary solution of (3.1) with eigenfunction cos

(
πx
L

)
.

4.2 Stability of time-periodic patterns

Next, we study the stability of the time-periodic solutions obtained in Theorem 4.1. Again, by
stability here we mean the formal linearized stability of a periodic solution relative to pertur-
bations from ϑk(s). Suppose that χHk0 = mink∈N+ χHk < χSk , ∀k ∈ N+, and assume that all the
conditions in Theorem 4.1 are satisfied, then our stability results show that ϑk(s), s ∈ (−δ, δ)
is asymptotically stable only if χ = χHk0 .

Denote uk(s, x, t) = (Ak(s, x, t), ρk(s, x, t), uk(s, x, t)) and let (uk(s, x, t), Tk(s), χk(s)) be the
periodic solutions on the branch ϑk(s) obtained in Theorem 4.1. Rewrite (3.1) as

duk
dt

= g(uk, χk(s)), t > 0

with

g(uk, χk(s)) =

 DAAxx −A+Aρ+ α
(Dρρx − 2ρAx/A)x − (A+ u)ρ+ β

(Duux − χk(s)uAx/A)x

 ,

where we skip the index k. Differentiating (3.1) against t, with ũk = du
dt we have that

dũk
dt

= gu(uk, χk(s))ũk,

then we observe that zero is a Floquet exponent and one is a Floquet multiplier for uk.
Linearize the periodic solution around the bifurcation branch ϑk(s) by substituting the

perturbed solution uk + we−lt, where w is a sufficiently small T -periodic function and l = l(s)
is a continuous function of s, then we have that

dw(s, t)

dt
= gu(uk, χk(s))w(s, t) + k(s)w(s, t) (4.5)

where gu is the Fréchet derivative with respect to u and it is explicitly given by

gu(uk, χk(s)) =

 DAAxx + (ρk − 1)A+Akρ

Dρρxx − 2
[( ρ
Ak
− ρkA

A2
k

)
(Ak)x + ρk

Ak
Ax
]
x
− ρk(A+ u)− (Ak + uk)ρ

Duuxx − χk(s)
[(

u
Ak
− ukA

A2
k

)
(Ak)x + uk

Ak
Ax
]
x

 .

The stability of the bifurcating solutions around χHk can be determined by computing the
eigenvalues of this reduced equation. When s = 0, (4.5) is associated with the eigenvalue
problem

g0(k)w = k(0)w,
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where

g0(k) =

DA
d2

dx2
− α/Ā Ā 0

−2 ρ̄
Ā

d2

dx2
Dρ

d2

dx2
− (Ā+ ū) −ρ̄

−χHk
ū
Ā

d2

dx2
0 Du

d2

dx2

 ,

and its spectrum is of infinite dimension. Note that g0 corresponds to the matrix

Aj(χHk ) =

−DA( jπL )2 − α/Ā Ā 0

2 ρ̄
Ā

( jπL )2 −Dρ(
jπ
L )2 − (Ā+ ū) −ρ̄

χHk
ū
Ā

( jπL )2 0 −Du( jπL )2

 for j ∈ N+. (4.6)

Suppose that mink∈N+{χHk , χSk } = χHk0 for some k0 ∈ N+. We first show that ϑk(s) around

χHk is unstable for any k 6= k0. Denote the eigenvalues of Ak(χHk ) by σH1 (χHk , k), σH2 (χHk , k) and
σH3 (χHk , k). According to the Proposition 2.1, there exists at least one eigenvalue with positive
real part if χ > χ0. Therefore, for any positive integer k 6= k0, we have that g0(k) must have an
eigenvalue with positive real part hence l(0) < 0 if k 6= k0. By the standard perturbation theory
for an eigenvalue of finite multiplicity [34, 42], l(s) < 0 for s being small if k 6= k0, and all the
bifurcation branches ϑk(s) around (Ā, ρ̄, ū) are unstable if k 6= k0. That being said, if a periodic
bifurcation solution is stable, it must be on the ϑk0(s) branch where χHk0 < mink∈N+ χSk , i.e., it
is on the left-most branch, while the branches on its right hand side are always unstable.

To show the stability of branch ϑk0(s) around (Ā, ρ̄, ū, χHk0), we note from Lemma 2.10 in [22]
that, the eigenvalue l(k) is a continuous function real function of s near the origin. For χ being
around χHk0 , the eigenvalue of (4.6) are σ1(χ, k) and σ2,3(χ, k) = λ(χ, k) ± iτ(χ, k). According
to Theorem 2.13 in [22], l(s) and sχ′k0(s) have the same zeros in small neighbourhood of s = 0

in which l(s) and −λ′(χHk0)sχ′k0(s) are of the same sign (if they are not zero), and

|l(s) + λ′(χHk0)sχ′k0s(s)| ≤ |sχ
′
k0(s)|o(1), as s→ 0.

Then according to Theorem 8.23 in [34], the periodic orbits are stable if l(s) > 0, and are
unstable if l(s) < 0. Because λ(χHk0) < 0, and l(s) and sχ′k0(s) have the same sign, one finds that
supercritical branching solutions are stable and subcritical branches are unstable. Therefore,
one need to compute χ′k0 and/or χ′′k0 similar as above. The calculations using the factorization
theorem in [38, 39] are straightforward but complicated hence skipped here.

In summary, we have proved the following theorem:

Theorem 4.2. Suppose that all the conditions in Theorem 4.1 are satisfied and let ϑk(s) =
{(Ak(s, k), ρk(s, k), uk(s, k), χk(s))}, k ∈ R+ be the bifurcation branches given by (4.1). Denote
χ0 = mink∈N+{χSk , χHk } as in (2.7). Then the following hold:

(i) If χ0 = χHk0 < mink∈N+ χSk , then ϑk0(s) around (Ā, ρ̄, ū, χk0) is asymptotically stable for
χ′′k0(0) > 0 and it is unstable for χ′′k0(0) < 0, while ϑk(s) around (Ā, ρ̄, ū, χk) is always
unstable for each k 6= k0;

(ii) If χ0 = χHk1 < mink∈N+ χSk , then ϑk(s) around (Ā, ρ̄, ū, χk) is always unstable for each
k ∈ N+.

5 Numerical Simulations and Discussion

In this section we present results from several numerical studies of the evolutionary system
(1.1) to demonstrate the formation of time-stationary and time-periodic criminal activities.
Our numerical experiments examine the stability of the stationary and time-periodic spatially
inhomogeneous solutions established in our theoretical analysis with L = π. We focus on
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the effects of the hotspot policing intensity, measured by parameter χ, on the spatio-temporal
dynamics of the coupled quantities. As mentioned earlier, we shall call the policing on-hotspot
when χ = 2, and the rest of the strategies off-hotspot. We point out that the off-hotspot policing
has two subcategories depending on the sign of χ. In particular, we call it the anti–hotspot
policing when χ < 0, and this describes the choice that the police patrol areas that are not
victimized instead of where crime density is high. Our numerical studies of the system will shed
light on the spatio-temporal dynamics of criminal activities under the anti-hotspot policing and
provide an academic comparison between these patrolling policies.

There are a few important observations we can make from these numerical simulations.
First of all, this system of partial differential equations has an extremely rich and complicated
spatio-temporal dynamics, besides those ruled by our rigorous theoretical steady-state and Hopf
bifurcation analysis. Moreover, the dynamics turn out to be sensitive to the variation of system
parameters, which make them intriguing from a mathematical analysis point of viewpoint.
Second, all of our numerical studies begin with a small perturbation of the homogeneous solution.
This choice is made to verify our theoretical findings and suggests a higher complexity within
this system when even parsimonious initial data are allowed. Finally, as mentioned in the
introduction, α and β are set constant in the mathematical modeling, and we will see how their
magnitudes induce the variation of the spatio-temporal dynamics of the system.

5.1 On-spot policing with χ = 2

In this section, we study on-spot policing of system (1.1) with χ = 2. Our numerical studies
begin with the formation of stable stationary hotspots demonstrated in Figures 2-4. In these
simulations, we set DA = 0.01, α = β = 1, χ = 2, and the initial data are chosen to be random
and small perturbations from the homogeneous state (Ā, ρ̄, ū) = (1.6180, 0.3820, 1):

(A0, ρ0, u0) = (Ā, ρ̄, ū) + 0.01×Random,

where Random is a 3× 1 random vector, each with a length less than one.

Figure 2: Formation of stable hotspots in (0, π) out of small and random perturbation from the homogeneous
state (Ā, ρ̄, ū) = (1.6180, 0.3820, 1) under on-spot policing with χ = 2. The rest system parameters are chosen
as DA = 0.01, Dρ = Du = 0.5 and α = β = 1. The numerics find that this homogeneous solution loses
its stability and develops into multiple spatial aggregates in the long time. These aggregates qualitatively
describe the clustering in criminal hotspots.
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Then we shrink diffusion rates Dρ(= Du) from 0.5 in Figure 2 and 0.1 in Figure 3, to 0.05
in Figure 4. According to Proposition 2.1, the constant solution is unstable in all the three
Figures, and this is numerically demonstrated here. Figure 2 serves as the benchmark that
we test the effect of diffusion rates on the dynamics under the on-spot policing. We find that
this homogeneous solution (Ā, ρ̄, ū) = (1.6180, 0.3820, 1) develops into stable multiple spatial
aggregates in the long time. One thing of note is that the number of aggregates, or hotspots,
increases as the diffusion rates shrink. From the physical point of view, Figures 2-4 illustrate that
even when parameters are spatially independent, i.e. the base attractiveness level is spatially
homogeneous, crime seems to be concentrated in certain spatial locations. Asymmetric spikes
are observed in Figure 4 when the diffusion rates are small, and such profiles are studied by [44]
concerning system (1.1) without law enforcement.

Figure 3: Formation of stable hotspots under on-spot policing with χ = 2. The initial data and system
parameters are the same as in Figure 2 except that Dρ = Du = 0.1. The numerics also find that this system
develops criminal hotspots, and more aggregates for smaller diffusion rates. We would like to comment
that, although the weakly nonlinear analysis presented in this paper only predicts the emergence of small-
amplitude stable steady-state solutions, numerical simulations here indicate that these bifurcating solutions
lead to large amplitude spike-type patterns along the solution branch. This comment applies further to
time-periodic solutions as we shall see later.
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Figure 4: Formation of stable asymmetric hotspots under on-spot policing with χ = 2. Again we choose
the same initial data and parameters as in Figure 2 except that Dρ = Du = 0.05. More irregular and
asymmetric criminal hotspots emerge as diffusivity further shrinks. These spiky patterns are beyond the
analytical scope of this paper, whereas bifurcation from spikes is studied by [15, 73]

We next study the formation of time-periodic hotspot within system (1.1). In Figure 5, we
present the formation and development time-oscillating hotspots out of the constant equilibrium
(0.0117, 0.1483, 1). Here the system parameters are α = 0.01, β = 0.15, DA = 0.05, Dρ = Du =
0.05 such a Hopf bifurcation occurs according to Theorem 4.2. The solution gradually decays
to the constant solution for an extremely long time during the transient dynamics and then the
amplitudes expand and the solution develops into stable time-periodic patterns for time t larger
than 300. We would like to note that these oscillating patterns have small amplitude as they
are small perturbations of the homogeneous solution.
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Figure 5: Formation of time-oscillating hotspots under on-spot policing out of small and random perturbation
of the homogeneous state (Ā, ρ̄, ū) = (0.0117, 0.1483, 1). The system parameters are α = 0.01, β = 0.15,
DA = 0.05, Dρ = Du = 0.05 such the Hopf bifurcation occurs according to Theorem 4.2. They give rise to
small-amplitude time-periodic solutions accordingly.

Figure 6 demonstrates the formation of large-amplitude, time-periodic hotspots for a differ-
ent set of system parameters, but also out of the constant solution. We observe that the spiral
dynamics around the constant solution endure for a long time. The dynamics then accelerate af-
ter t > 50 to develop a stable oscillates at around t ≈ 150, through a phase transition at around
t ≈ 100. The phase transition between periodic loops is better illustrated within plots of Figure
7, which, for a fixed spatial location, illustrates the pair-wise oscillations of the unknowns. Note
that the darker regions represent areas where the solutions spend more time and the less dense
regions correspond to the phase transition. Furthermore, larger limiting cycles correspond to a
wider oscillation in the solutions. Contrary to the previously discussed case, in this situation the
crime density alternates in most locations in a time-periodic way. An interesting observation
is that the areas with the highest amount of crime at some point are also the places with the
lowest amount in others; see Figure 6 for an illustration of this.
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Figure 6: Formation of time-periodic hotspots under on-spot policing out of small and random perturbation
of the homogeneous state (Ā, ρ̄, ū) = (1.6180, 0.3820, 1). The system parameters are chosen to be DA =
0.1, Dρ = Du = 0.05 and α = β = 1. The numerics find that this homogeneous solution loses its stability
and develops into time-periodic aggregates with large amplitudes in the long term.

Figure 7: The pair-wise oscillations of the criminal, policing and attractiveness demonstrated within Figure
6 at fixed locations x = 0, π/4, π/2 and 3π/4. The phase transition between loops are presented within the
orbits.

In Figure 8, we continue to vary the system parameters to showcase another set of large-
amplitude periodic solutions. These numerical experiments suggest that these large-amplitude
profiles occur from a second bifurcation, not from the nonconstant solutions, which our analysis
does not cover.
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Figure 8: Time-periodic patterns with large amplitudes from the homogeneous state (Ā, ρ̄, ū) =
(1.6180, 0.3820, 1). The other parameters are chosen to be DA = 0.1579, Dρ = Du = 0.005 and
α = 1.99, β = 5 and χ = 2. The numerics suggest that a bifurcation occurs from the spatially inhomo-
geneous solutions whose analysis lacks.

The stationary and time-periodic patterns shown above not only illustrate our mathemat-
ical analysis but also provide evidence of rich spatio-temporal dynamics of this system which
is perhaps more important from the viewpoint of mathematical modeling. Though a thorough
analysis of these dynamics is far from complete, the long-time regularities developed therein
provide some promises for further mathematical investigations of this system under those pa-
rameter regimes. However, we conclude this section by presenting additional numerical experi-
ments that suggest the system dynamics might be impossible to investigate in other parameter
regimes, which make the mathematical studies of the system intrigue, even under the on-spot
policing regime.

In Figure 9, we conduct an experiment when the parameters are away from the bifurcation
points. In particular, we choose DA = 0.1, Dρ = Du = 0.005 and α = β = 1, and the
initial data be small perturbation from the constant solution, which is unstable. However,
we find that, rather than developing into the seemingly dominating time-stationary or time-
periodic patterns seen above, the dynamics endure a rather coarse and chaotic process, and
the irregularity remains throughout the time of the simulation. They are well presented in the
bottom figure which plots the evolution of L2 distance between the solution and initial data.
The irregularities are also presented by the pair-wise dynamics in Figure 10 as compared to their
regular counterparts in Figure 7. These provide a piece of strong numerical evidence on the
ill-posedness and chaos of the proposed system. We would like to mention that spatio-temporal
patterns of these kinds (with oscillations or chaos) have been numerically in reaction-advection-
diffusion system by various authors, e.g., [27, 37, 46, 53] on Keller–Segel models with cellular
growth, and [75, 77] for predator-prey models with prey-taxis.
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Figure 9: The chaotic oscillations demonstrated within the system for χ = 2. The rest parameters are
DA = 0.1, α = β = 1, and we shrink the diffusion rates Dρ = Du from 0.05 to 0.005. The top presents
the pointwise irregularities within the system and the bottom describes the irregular L2-distance between
the time-dependent solution and the initial data. These dynamics indicate that decreasing the criminal
and police diffusivity further tends to introduce highly intricate and irregular oscillations into the system
evidenced by a positive Lyapunov exponent.

Figure 10: The pair-wise dynamics demonstrated within Figure 9.

We conduct another experiment in Figure 11 by varying α from 1 to 0.1, with the rest
parameters fixed. Again we observe the formation of irregular patterns out of the constant
solution. These findings, besides those not reported here, present a wide range of system
parameters at which system (1.1) is ill-posed.

22



Figure 11: The chaotic oscillations demonstrated within the system for χ = 2. The rest parameters are
DA = 0.1, Dρ = Du = 0.005, α = 0.5 and β = 1. That is, we shrink α from 1 to 0.5.

It is necessary to mention that, we have informally said that these system “chaotic” because
of their apparent spatio-temporal chaos. However, to justify this rigorously one would need to
quantify the rate of separation of infinitesimally close trajectories by the Lyapunov exponent.

Figure 12: The distance between solutions out of two initial data with small perturbation. The Lyapunov
exponent λ(t) within the dynamics of Figure 11.

In Figure 12, we illustrate the Lyapunov exponent computed as the following

λ = lim
t→∞

λ(t),where λ(t) :=
1

t
log

E(t)

E(0)
,
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where E(t) is the L2 error between two infinitesimally-perturbed initial data (A(1), ρ(1), u(1))
and (A(2), ρ(2), u(2))

E(t) := ‖(A(1), ρ(1), u(1))− (A(2), ρ(2), u(2))‖L2 .

Then we find that the L2 error explodes to up to 109 even out of an infinitesimal perturbation.
Our numerical simulation tends to suggest that λ(t) approaches λ ≈ 0.03, though again rigorous
analysis is not a tool that we possess. In practice, a time horizon of up to T = 400 has been a
good approximation of infinity hence the chaos is expected up to this time horizon.

Figure 13: Lyapunov exponents λ(t) of several random initial data.

Finally, we conduct three more tests in Figure 13 which support this observation. In sum-
mary, the chaos and ill-posedness are rampant within (1.1) across system parameters and initial
data. These numerical experiments have important consequences from the point-of-view of
application. Specifically, it cautions against the use of system (1.1) with the incorporation of
data as a potential predictive tool, due to how sensitive the behavior of the solutions are to the
system parameters.

5.2 Off-spot Policing with χ 6= 2

We next present the numerics on the effect of off-spot policing with χ 6= 2. In Figures 14-15,
we choose DA = Dρ = Du = α = β = ū = 1, and have from above arguments that the constant
solution (Ā, ρ̄, ū) = (1.6180, 0.3820, 1) is locally stable for χ ∈ (−14.9443, 163.7345), and is
unstable otherwise. This is examined numerically. For instance, Figure 14 readily presents the
spiral convergence towards the constant solution in the long time, which tends to suggest that a
spiral divergence occurs as χ surpasses 163.7345. This has been rigorously proved by our Hopf
bifurcation theorems above and is now numerically tested in Figure 15 that we choose χ = 165.
The top three plots of Figure 15 present the formation and development of stable time-periodic
patterns, and the bottom is the zoomed-in plot that gives a slightly detailed configuration of
the dynamics.
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Figure 14: Demonstration of spiral convergence to the constant solution with χ = 160 ∈ (χ−, χ+). According
to Proposition 2.1, (Ā, ρ̄, ū) is stable, and here we choose the points x = 0, x = L/4, L/2 and 3L/4 to illustrate
the spiral convergence to the constant, and the same behaviors are observed for all points. Parameters are
chosen to be DA = Dρ = Du = α = β = ū = 1.

Figure 15: Formation of regular oscillating patterns as constant solution loses its stability. All parameters
are chosen to be the same as those in Figure 12 except that we slightly increase χ to 165, for which the
constant solution is unstable. The top, middle and bottom denote those of the A(x, t), u(x, t) and ρ(x, t) at
points x = 0, x = L/4, L/2 and 3L/4.
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In Figures 16-17, we provide another two sets of distinct parameters that support periodic
patterns. Similarities and differences betweens them observe the transitional dynamics in the
long time. In Figure 16, the solution spirally converges to the homogeneous state up to time
t ≈ 20, and then it diverges and stabilizes into a periodic solution after time t ≈ 50. The
dynamics within Figure 17 witness a transition from nodal convergence to spiral divergence.

Figure 16: Formation of stable time-periodic patterns with large amplitude out of small perturbations from
the constant solution (Ā, ρ̄, ū). Here the parameters are chosen DA = 0.01, Dρ = 0.5, Du = 0.5, α = 1, β = 1
and χ = 50.

Figure 17: Formation of stable time-periodic patterns with large amplitude out of small perturbations from
the constant solution (Ā, ρ̄, ū) = (0.7653, 0.5665, 1). Here the parameters are chosen DA = 0.5, Dρ =
0.01, Du = 0.01, α = 0.33175, β = 1 and χ = 3.
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Figure 18 presents another interesting phase transition phenomenon within system (1.1).
Here we choose DA = 1, Dρ = 0.01, Du = 0.01, α = 1, β = 1 and the χ = 47 is away from Hopf
bifurcation value. Starting with a small perturbation from the constant solution (Ā, ρ̄, ū) =
(1.6180, 0.3820, 1), the solution loses its amplitude and spirally converges to the constant solution
to about t = 100. Then a phase transition occurs such that the solution gains momentum to
develop its amplitude for yet another long process. The global dynamics are regular and mild all
the time, and then they surprisingly explode to an orbit with proportionately large amplitude
through another phase transition at t ≈ 400 and develop into a stable periodic orbit after
t ≥ 450. The phase transitions are well presented in Figure 19, which nicely illustrates that the
solutions remains close to the initial data for a very long time. These dynamics add another
dimension in the challenges of the theoretical and numerical studies of the system.

Figure 18: Formation of stable time-periodic patterns with large amplitude out of a small perturbation
from the constant solution (Ā, ρ̄, ū) = (1.6180, 0.3820, 1). Here the parameters are chosen DA = 1, Dρ =
0.01, Du = 0.01, α = 1, β = 1 and χ = 47.
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Figure 19: Pair-wise oscillations observed in Figure 18.

Finally, we examine in Figure 20 the effects of anti-hotspot policing on the dynamics of
(1.1). Similarly as above, we choose the parameters DA = 0.1, Dρ = Du = 0.5, α = β = 1.
Then we vary χ from −2, for which the constant solution is stable, to -5,-20 and -100. Our
numerics suggest that the anti-hotspot policing preferably support stationary hotspots over
time-periodic or chaotic patterns. Instead of driving hotspots to less attractive sites permanently
or periodically, anti-hotspot policing tends to stabilize static spatial patterns and hotspots. As
the anti-hotspot policing intensifies, stable hotspots with more aggregates emerge.
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Figure 20: Effect of anti-hotspot policing on the formation of spatially inhomogeneous steady states out of
small perturbations from the constant solution (Ā, ρ̄, ū) = (1.6180, 0.3820, 1). DA = 0.1, Dρ = Du = 0.5,
α = β = 1
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5.3 Discussion and Future Works

This paper studies the effects on hotspot policing on the formation and development of both
stationary and oscillating hotspot criminal activities in urban burglary. The main conclusion we
draw from this study is the complex dynamic behavior of solutions to system (1.1), stemming
from the inclusion of police dynamics. System (1.1) is thus a mathematically rich and com-
pelling system to study. We have studied four parameter regimes leading to widely changing
behaviors of the solutions. Most importantly, we point out that the parameter sensitivity of the
system makes it difficult for system (1.1) to be used in practice. Also, the limits of the analyti-
cal framework preclude conclusions regarding whether enforcement-oriented programs result in
long-term crime reductions in hot spot areas or crime in general. This work also offers little
insight on the effectiveness of enforcement tactics relative to other broader-based community
problem-solving policing programs (see, e.g. [3, 8, 72, 83]).

Due to the limitation of the analytical theory available, we cannot provide a complete picture
of the system’s dynamics. To study the qualitative behavior of the stationary or periodic
solutions, one must characterize the continuum of bifurcation branches. However, current global
bifurcation theories (e.g., [18, 66]) do not apply to our system due to the complex kinetics. We
also note that the branches established in [16] are essentially local though global bifurcation
is claimed. Indeed, we can not detect secondary bifurcations or predict the stability of the
solution branches far from bifurcation points. This calls for a thorough numerical exploration
of the bifurcation diagram using, for example, numerical bifurcation software, such as AUTO
or MatCont in Matlab. Unfortunately, it is rarely possible to compute the Lyapunov exponent
analytically, but some of the best algorithms for low-dimensional cases involve using a QR
decomposition on the linearized dynamics, see for example [23]. It would also be of interest to
compute the dimension of the attractor and also to visualize it, for example, using techniques
from [19].

An appealing feature of system (1.1) is that under the assumptions that crime can happen
anywhere and that all parameters are spatially and temporally homogeneous, we observe that
crime tends to aggregate in certain areas, for certain parameters which are deemed physical. In
a way, stating that while crime is aggregated, those aggregates do not discriminate based on
geographic location. However, research suggests that a variety of situational factors cause crime
to cluster at particular places and the model studied here ignores such factors. We find this to
be a key limitation of the modeling framework used here and a key opportunity for potential
future exploration. All the simulations are conduced with L = π, and similar (rich and complex)
dynamics are observed but not reported here if the interval changes.

Furthermore, studies regarding the efficiency of hotspot policing depending on the type of
criminal offense have been conflicting, and could be an area where modeling can provide some
insight. For example, the authors of [11] found that hotspot policing worked best for drug
offenses, violent crime and disorder, while it was less effective, but still had some positive effect,
for property crimes. However, other works have concluded that hot spot policing worked best
for the disorder, e.g. loitering, public drinking, solicitation, but was of limited use in dealing
with violent offenses; see [26, 45, 63, 81]. Therefore, it is an interesting and important problem
to understand the differences in these conclusions from a quantitative point of view. From the
viewpoint of mathematical analysis, it is also interesting and important to rigorously study the
ill-posedness of the system, which we have to leave open for future research.
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