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Abstract
The network influence model is a model for binary out-
come variables that accounts for dependencies between
outcomes for units that are relationally tied. The basic
influence model was previously extended to afford a
suite of new dependence assumptions and because of
its relation to traditional Markov random field models
it is often referred to as the auto logistic actor-attribute
model (ALAAM). We extend on current approaches
for fitting ALAAMs by presenting a comprehensive
Bayesian inference scheme that supports testing of
dependencies across subsets of data and the presence of
missing data. We illustrate different aspects of the pro-
cedures through three empirical examples: masculinity
attitudes in an all-male Australian school class, educa-
tional progression in Swedish schools, and unemploy-
ment among adults in a community sample in Australia.
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1 INTRODUCTION

In social statistics it has become commonplace to take dependencies between outcomes into
account using multilevel models (e.g. Goldstein, 1995; Snijders & Bosker, 2011). Thus, when we
consider educational outcomes, we may account for compositional or contextual factors with
random effects for school classes or neighbourhoods. If we acknowledge the possibility of our
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observational units being connected with each other through social networks, we can account
for some of the dependence this induces using multilevel models (Tranmer et al., 2014) but we
cannot capture the detail and diversity of what the social networks literature has termed social
influence (Robins, 2015). The notion of attitudes and information spreading through friendship
networks was already a premise inMoreno’s (1934) seminal work explaining a runaway epidemic
in a reformatory. Coleman et al.’s (1957) study of the diffusion of the prescription of a novel drug
among a network of physicians has been followed by numerous empirical studies of spread on
different types of networks (e.g. Strang, 1991; Strang & Tuma, 1993; Valente, 1995). Here, one of
our examples aims to investigate if a young, male student’s masculinity attitude, coded as high
(1) or low (0), depends on whether their friends’ attitudes are high or low.

Social influence in social network analysis can broadly be seen as representing processes
whereby people tend to be, or become, similar to their friends (or contacts) in their behaviours,
attitudes, or beliefs. Social influence is sometimes referred to as social contagion (e.g. Burt, 1987;
Robins et al., 2012) by analogy to how diseases spread through contact between individuals. Net-
work models are indeed frequently used to model disease spread and epidemics (Jenness et al.,
2016; Krivitsky & Morris, 2017; Morris, 2004; Rolls et al., 2012) even though the mechanisms of
social contagion may differ. The current canonical empirical framework for investigating social
influence is stochastic actor-orientedmodels, SAOMs (Steglich et al., 2010).While a powerful tool,
SAOMs require longitudinal network data and researchers do not always have the resources or
opportunity to collect network data at multiple points in time. For cross-sectional network data,
even if you have to assert the existence of contagion or influence, controlling for dependencies
is a statistical reality (see e.g. Bailey & Hoff, 2015) and neglecting these dependencies may have
adverse effects (Doreian et al., 1984; Lubbers & Snijders, 2007). Consequently, we defer to other
work for discussions and analysis of identification of peer effects (An, 2011; Bramoullé et al.,
2009; Manski, 1993) and focus here on the inferential aspects of a well-defined framework for
accounting for network dependence in individual outcomes.

We consider a class of models for investigating social influence for cross-sectional data called
auto-logistic actor-attribute models (ALAAMs) (Daraganova & Robins, 2013; Robins et al., 2001)
where the outcome of interest is binary. A number of continuousmodels for social influence exist
(Agneessens&Koskinen, 2016; Doreian, 1982; Leenders, 2002;Marsden&Friedkin, 1994; Sewell,
2017; Vitale et al., 2016) that can easily be modified to suit binary outcome variables (Koskinen
& Stenberg, 2012; Zhang et al., 2013) but these do not allow specifying the types of dependencies
that the ALAAM does.

Gibbs random fields, such as the auto-logistic Ising model (Besag, 1972), have been studied in
great detail in statistics and employed in various forms in spatial statistics for modelling binary
outcomes with neighbourhood dependencies. To accommodate interpretations in terms of the
Behavioural and Social Sciences, Robins et al. (2001) elaborated on these Gibbs-distributions and
derived a class of ‘social influence’ models from a set of specific dependence assumptions. These
were later extended by Daraganova (2009) to form a family of actor-attribute auto-logistic mod-
els for inferring contagion in cross-sectional data. Exponential random graph models (ERGMs)
is a related class of models aimed at modelling the network ties conditional on fixed actor covari-
ates (see Lusher et al., 2013, for an introduction). There are known problems with ERGMs
(Handcock, 2003; Schweinberger, 2011) and it is well-known that simple model-specifications do
not work, for example, in the sense that the maximum likelihood does not exist or predictive dis-
tributions place most of their mass on empty or complete graphs (Schweinberger, 2011; Snijders
et al., 2006; see also section 3.1 of Schweinberger et al., 2020). For ALAAMs this is less of an issue
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but inhomogeneous ALAAMs still present considerable challenges relative to the simpler Ising
model.

Maximum likelihood estimation for the elaborated model as described in Daraganova and
Robins (2013) is implemented in the statistical software packageMPnet (Wang et al., 2014) and is
becoming increasingly more popular (some recent studies include acquisition of norms through
networks, Kashima et al., 2013; network effects on performance, Letina, 2016; and ‘contagion’
of depression and PTSD, Bryant et al., 2017; see Parker et al., 2021, for a review). Maximum
likelihood estimation follows Snijders’ (2002) implementation of the Robbins and Monro (1951)
algorithm and the square roots of the diagonal elements of the inverse Fisher information matrix
are used as standard errors. These standard errors are motivated by the usual (large n) asymp-
totics for exponential families, asymptotics that do not apply for ERGMs (Schweinberger et al.,
2020). There is no reason to assume that the required asymptotics apply for ALAAMs either
which means that a Bayesian inference procedure offers considerable advantages over the maxi-
mum likelihood approach, the latter not having well defined measures of uncertainty. Similarly,
whereas the asymptotics required for, for example, Akaike’s Information are not available (nor
are the number of observations defined), Bayesian model selection criteria are well-defined. In
addition, the Bayesian approach offers a flexible framework for handling missing data and lends
itself to extensions to hierarchical modelling.

Møller et al. (2006) proposed an auxiliary variable MCMC for Bayesian inference for auto
logisticmodels.While this works well for the Isingmodel, it fails for the inhomogeneous ALAAM
of the more elaborate model of Robins et al. (2001), and modified MCMC samplers are required
(Koskinen, 2008). To accommodate the challenges presented by realistic ALAAM specifications
with multiple covariates, we draw on an adoption of the exchange algorithm (Murray et al.,
2006) that has previously been applied by Caimo and Friel (2011) to exponential family random
graphmodels. This is an improvement on the previous Bayesian inference approach for ALAAMs
(Koskinen, 2008) and provides a straightforward and flexible inference scheme. We demonstrate
how this inference procedure caters to the practical issues often encountered when working with
complex empirical network data, such as handling missing data, performing goodness-of-fit, and
choosing between competing models. We introduce the model by describing it in some detail.
We then proceed to outline various aspect of inference for the model, something that we then
illustrate in three empirical examples.

2 NOTATIONAL PRELIMINARIES

We consider networks represented as graphs or digraphs G(V , E) on a fixed set of nodes

V = {1, 2, … , n}, with an arc-setE ⊂ V (2) = {(i, j) ∈ V × V ∶ i ≠ j}, for digraphs, andE ⊂

(
V
2

)
for

graphs. In social network research, the nodes typically represent n individuals and E the set of
connections amongst them (Robins, 2015). We further assume a stochastic binary vertex labelling
𝜙 : V → {0, 1}V , that corresponds to the binary outcome variable of interest for the nodes of the
graph. We represent G(V , E, 𝜙) by its n × n binary adjacency matrix X = (Xij ∶ (i, j) ∈ V2), where
the tie-indicators

Xij =

{
1, if there is a tie from i to j in G
0, else

,

and the attribute indicators Y = (Yi)ni=1
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Yi =

{
1, if 𝜙(i) = 1
0, else

.

We denote the space of all adjacency matrices by  = {0, 1}V (2) and the support of the attribute
vector by  = {0, 1}V . We allow for binary and continuous, fixed and exogenous covariates, but
suppress the notational dependency on these for the sake of exposition.

In the examples to follow in Section 5, V consists of 108 males in a Year 10 level Australian
secondary school; 403 sixth grade students across 19 school classes in Sweden; and 551 adult indi-
viduals in Australia. For the first two cases, the network ties X are friendship nominations (both
directed) and for the third, nominations of whom you are close to and/or with whom you discuss
employment matters (treated as undirected). The outcome variables (Y ) are a binary masculine
attitudes index, progression to higher education (intention), and employment status respectively.

3 THE AUTO-LOGISTIC ACTOR ATTRIBUTE MODEL

The general form of the log-linear model used here is

p𝜃(y|x) = Pr(Y = y|X = x, 𝜃) = exp{𝜃⊤z(y, x) − 𝜓(𝜃)}, (1)

where z(⋅) is a p × 1 vector-valued function on G, 𝜃 ∈ Rp are the natural parameters, and

𝜓(𝜃) = log
∑
y∈

exp{𝜃⊤z(y, x)},

is a normalising constant. In the next section we proceed to define dependence assumptions from
which the statistics z(⋅) may be derived.

3.1 Dependence

The simplest form of an ALAAM is a model in which Yi and Yj are independent conditional on
X and a fixed set of exogenous covariates, for all i, j ∈ V . In this case the ALAAM reduces to a
logistic regressionmodel. Auto-logisticmodels relax the assumption of independence by allowing
the state of sites to depend on the states of their neighbours in, for example, a lattice like in the
Isingmodel (Besag, 1972). Besag (1974) elaborate auto-logistic models for different types of lattice
systems and define dependencies of the first as well as the second order. The neighbourhood for
lattice systems is straightforwardly given by the index set of the site variables. In a rectangular
lattice, the variable yi,j has neighbours yi−1,j,yi+1,j,yi,j−1, and yi,j+1. As social networks rarely are
regular graphs, nodes will differ both in the number of neighbours they have as well as their
structural positionwithin a graph. Thismakes for a possibly rich dependence structure but it is not
self-evident that just taking the observed network as representing the neighbourhood structure
makes for a coherent probability model (especially in the case of directed graphs that are not
chordal and that have cycles). Besag (1974) briefly discuss how to define neighbourhoods for
non-lattice systems such as points distributed in the plane but this offers little advice for general
structures such as networks.
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Frank and Strauss (1986) derived a class of exponential family models for the network ties
X from dependence assumptions represented by a dependence graph. Robins et al. (2001) simi-
larly specified a dependence graph for the variables Y conditionally on X = x. In the dependence
graph, the absence of a tie between two variables means that the two variables are condition-
ally independent. Throughout, we will aim to model the conditional probability structure of Y
given X = x and make no statement about the marginal probability Pr(X = x). To capture the
fact that X are assumed to be exogenous and Y endogenous, we define a two-block chain graph
(Wermuth & Lauritzen, 1990) , with a block consisting of parent variables X and a block con-
sisting of child variables Y , and where there may be directed ties from nodes in the parent block
to nodes in the child block, and possibly undirected ties between variables within the same
block. For the purposes of describing the dependence structure, we will use a relabelled index set
T = {n + 1, … , n + t} for the tie-variables whenever there is no ambiguity, where t = n(n − 1) or
t = n(n − 1)/2 according to whether the network is directed or not respectively. It is convenient to
denote the whole set of variables byM = (Mi)i∈S, whereMi = Yi for i ∈ V andMi = Xi for i ∈ T,
S = V ∪ T. Lower casem is taken to be the corresponding realisation ofM.

There is a directed tie from a parent node Xi, i ∈ T, to a child node Yh, if Xj is a parent of
Yh, denoted Xi ∈ pa(Yh). We say that Xi ∈ pa(Yh) if the functional form Pr(Yh = yh ∣ X = x,Y−h =
y−h) depends on xi and define mutual conditional dependence among child variables Yi and Yj as
occurring if the functional formof Pr(Yi = yi ∣ Y−i = y−i,X = x) depends on yj and if the functional
form of Pr(Yj = yj ∣ Y−j = y−j,X = x) depends on yi.

Themoral graph of a chain graph is obtained by adding undirected edges between parents
of the same child and tuning all directed ties in  into undirected. Writing Q(m) = log Pr(Y =
y | X = X) − log Pr(Y = 0 | X = X), following our definition of and Besag’s (1974) application of
the Hammersley-Clifford theorem, Q(y) =

∑
A 𝛾A⊆S

∏
i∈A Mi, where 𝛾A are non-zero if and only if

A is a clique in  (see section A of the Supplementary Material for further details). This is of the
form of Equation (1) with statistics that have elements zA =

∏
i∈A Yi

∏
jk∈A Xjk.

We proceed to describe three basic classes of dependence assumptions that imply three basic
types of models. These models are characterised by their own specific set of statistics.

3.1.1 Network activity dependence

The simplest form of ALAAM that still accounts for some dependence on the network ties leads
to a model where outcomes are conditionally independent, conditionally on the network. Robins
et al. (2001) followed the method of Frank and Strauss (1986) in defining a dependence graph
based on the elements of the index set V of Y and X . They define the ‘Network Activity’ [NA]
dependence assumption.

Assumption [NA]: An attribute variable Yi is conditionally dependent on the network
tie-variable Xkh if and only if {i} ∩ {k,h} ≠ ∅.

The [NA] dependence assumption defines the chain graph (a) in Figure 1 whose moral graph
is (b) in Figure 1. Cliques in are the singletons of typeYi, two-cliques of the type (Xij,Yi), (Xik,Yi),
and (Xih,Yi), as well as three-cliques corresponding to labelled network 2-stars (Xij,Xik,Yi) and
four-cliques corresponding to labelled network 3-stars (Xij,Xik,Xih,Yi), as well as higher order
cliques, all corresponding to the association of different stars with the attribute value yi = 1.
The model (1) thus has statistics of the form yixi,k1 · · · xi,ks with parameters 𝜃i,k1,… ,ks , for i ∈ V
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(a) (b)

F IGURE 1 Dependence graph (a) and Moral graph (b) of network activity dependence model (Robins
et al., 2001), where Xij are tie variables and Yi binary nodal outcomes, for i, j ∈ V

and s-element subsets (k1, … , ks) ∈
(
V−i
s

)
. To reduce the number of parameters, the following

homogeneity assumption may be imposed:

𝜃i,k1,… ,ks = 𝜃s

for all i ∈ V and (k1, … , ks) ∈
(
V−i
s

)
. Thus, for example the interaction terms XikXijYi and

XjkXjiYj both contribute to the same sufficient statistic (see Koskinen et al., 2018, on homogeneity
constraints in ERGMs).

While [NA] takes the dependence on network ties into account, the nodal outcomes are con-
ditionally independent for all i∈V conditional onX = x. Thus, while the dependence assumption
of Frank and Strauss (1986) for the conditional model of X given Y induces dependencies, [NA]
does not induce dependence for the elements of Y given X . In the network activity model, the
statistic

∑
i Yi acts as regular intercept term. The activity statistic,

∑
i YiXi+ informs us of the extent

to which nodes that have a high degree (are popular) are more or less likely to have a non-zero

outcome on Y . The two-stars statistic
∑

i Yi
(
Xi+
2

)
effectively acts as a quadratic degree effect.

Higher order star statistics may similarly be interpreted as various forms of accounting for the
effect on the outcome of heterogeneity in the degree distribution. For directed networks, the net-
work activity dependencemodel allows for a richer description of the dependence of the outcome
on the network structure. In addition to the baseline effect of degree, the model includes a reci-
procity statistic

∑
i Yi

∑
j≠i XijXji which may capture the extent to which nodes that have many

reciprocated ties are more or less likely to have the outcome. Among directed stars, we may have
out-2-stars YiXijXik; in-2-stars YiXjiXki; as well two-paths YiXijXki. The two-stars have relevance
from an influence perspective to the extent that they relate to nodes that are in-between other
nodes, acting as brokers (Burt, 1987).

3.1.2 Network contagion dependence

Modelling social influence requires us to define a model that relaxes independence of outcomes
for actors. A number of different network social influencemechanisms have been specified (Burt,
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1987; Friedkin, 1984; Marsden & Friedkin, 1994). Here we define network contagion in terms of
dependence between Yi and Yj for pairs (i,j) ∈ E. We cannot simply represent this in the chain
graph by adding edges between child variables. For modelling network ties, Pattison and Robins
(2002) defined partial conditional dependence in order to extend the local dependence assump-
tions of Frank and Strauss (1986) by allowing the dependence between variables to be contingent
on the states of a third variable. Daraganova (2009) elaborated a number of partial conditional
dependence assumptions for the ALAAM that define a number of contagion parameters. We call
the first dependence assumption ‘Direct Contagion’ denoted as [DC].

Assumption [DC]: Any two attribute variablesYi andYj are conditionally dependent if and only
if they are connected by a tie xij = 1.

This dependence assumption can be represented by a series of partial dependence structures
B for subsets of variables B ⊆ S. The node set of B is S⧵B and {i, j} ∈ B if Mi and Mj are
conditionally dependent, given thatMh = mh for h ∈ S⧵{i,j} andMh = 0 for h ∈ B. Consequently,
for [DC], {Yi.Yj} is not an edge ofB for B = S⧵{Yi,Yj}, but {Yi,Yj}may be an edge ofB for B =
S⧵{Yi,Yj,Xij}. The partial dependence structures prescribe what interactions among variables S
are zero in (1) (see section B of the Supplementary Material for further details):

If A ⊆ S⧵B and A is not a clique inB for some B ⊂ S⧵A, then the parameter 𝜃A corresponding
to the statistic

∏
i∈A Mi is 0. It follows that the parameter 𝜃A is non-zero if and only if A is a clique

in  and in all B for which A ∩ B = ∅.
Thus, every possible outcome x ∈  determines a dependence structure described by the

moral graph  and the associated sequence of partial dependence structures B. Non-zero inter-
actions in (1) under assumption [DC] include the non-zero interactions of the network activity
model as well as the contagion statistic

∑
i<j YiYjXij. A positive parameter for the contagion statis-

tic means that a node is more likely to have the outcome if it is connected to another node that
has the outcome. Note that the cliques corresponding to non-zero interactions are not necessar-
ily hierarchical. For example, while YiYjXij may be a non-zero interaction, YiYj is not for {i, j} ⊂ B.
Further, a model with the activity star statistics and the contagion term satisfies [DC] but so does
a model with additional interactions. The choice of what parameters to set to zero thus involves
decisions that, albeit arbitrary, can bemotivated from the perspective of parsimony. For the direct
contagion model, it would be wise to set all interactions involving more than two outcome vari-
ables to zero. Directed ties in the network allow for more elaborate network effects and network
contagion effects but care has to be taken to respect the symmetry of the mutual dependencies
among child variables (see section E of the Supplementary Material for further details).

3.1.3 Indirect network and contagion dependencies

Dependencies of outcomes can be further elaborated to incorporate nodes at distances greater
than one.We can allow for dependencies of outcome variables on indirect ties. A first assumption,
‘Indirect Structural Influence’ [ISI], elaborates on the structural effects of [NA].

Assumption [ISI]: An attribute variable Yi is conditionally dependent on any network
tie-variable Xhk. h, k ≠ i, if and only if xik = 1 or xih = 1.

The assumption [ISI] affords statistics that capture how being connected to nodes that them-
selves have many ties (are popular) may affect the outcome as well as the effect of triadic closure
(see Figure 6a in the SupplementaryMaterials).Wemay also allow for dependence of the outcome
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(a)

(e) (f) (g)

(b) (c) (d)

F IGURE 2 Statistics associated with the [NA] dependence assumption (a and b); the [DC] dependence
assumption (c); the indirect structural dependence assumption (d); and the indirect dependent attribute
assumption (e, f, and g). Filled nodes indicate yi = 1, and unfilled nodes represent yi = 0 or yi = 1

of Yi, on outcomes Yj, of those nodes j to whom node i is only indirectly connected, in order to
capture a form of indirect contagion (Brock & Durlauf, 2002; Marsden & Friedkin, 1993) through
the ‘Indirect Dependent Attribute’ [IDA] assumption.

Assumption [IDA]: Any two attribute variables Yi and Yk (i ≠ k) are conditionally dependent if
and only if they are directly connected or connected by a path of length two, xij = xjk = 1,
for some j ≠ i, k.

In a regular lattice, [IDA] yields the second-order neighbourhoods of Besag’s (1974)
auto-logistic model for Plantago Ianceolata but [DC], [ISI], and [IDA] taken together and applied
to general network structures yield an extensive set of possible non-zero interactions. Non-zero
interactions of two tie-variables and three outcome variables that are derived out of the partial
dependence structures (see section D of the Supplementary Material) are depicted in Figure 2.
Indirect contagion (Figure 2e) reflects processes where someone for example is likely to believe
in something if the friends of their friends believe in it. Partner activity (Figure 2f) reflects pro-
cesses where someone for example is likely to believe in something if the friends that believe in
the same things are also very popular.

4 INFERENCE

4.1 Simulating from the model

The expression of Equation (1) cannot be evaluated analytically as the normalising constant 𝜅(𝜃)
is a sum over all of  . Simulation for Markov random fields is however straightforward and has
a long history. Many algorithms have been proposed and they typically draw on the conditional
independence that implies that

logit {Pr𝜃(Yi = 1 ∣ Y−i = y−i,X = x)} = 𝜃⊤{z(Δ+
i y, x) − z(Δ−

i y, x)}

where z(⋅) is the vector of sufficient statistics, Δ+
i y is the vector y with element i set to one, and

Δ−
i y is the vector y with element i set to zero. For a nearest neighbour algorithm we can update y

iteratively by selecting i at random from V and either update it using a Gibbs-update, or through
a Metropolis updating step by proposing to change the value from yi to 1 − yi. It is also possible
to update multiple variables in parallel using Besag (1974) coding scheme approach for the Ising
mode. For example, outcomes for nodes that are isolated in a graph can be updated independently
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of all other values. Blocks of variables may also be updated independently of each other if they
are well separated in the sense of Pattison et al. (2013).

Snijders (2002) discusses a number of sampling schemes for improving mixing for ERGMs
and Butts (2018) has shown that perfect sampling is possible for ERGMs and, by implication,
ALAAMs. Here we prefer the standard Metropolis algorithm since it is robust and has low mem-
ory overhead. Snijders (2002) developed the rule that the burnin for sampling from the ERGM
should be a multiple of n2d(1 − d), with the rationale that each variable is given an opportunity
to change but themore ties there are (in the distribution), the longer the burning needs to be. The
tie-no-tie algorithm, used for example by Caimo and Friel (2013), addresses the latter problem by
having different proposal probabilities for null-ties and ties. Here we set the burnin to 𝛾n which,
for the same multiplication factor 𝛾 , allows for longer burnin than that of Snijders (2002).

4.2 Estimation

Themain obstacle to Bayesian inference for themodel of Equation (1), is that the posterior is dou-
bly intractable in the sense that both the normalising constant of the posterior and the likelihood
are intractable. With prior distribution 𝜋(𝜃), the posterior distribution is

𝜋(𝜃 ∣ y, x) =
exp{𝜃⊤z(y, x) − 𝜓(𝜃)}𝜋(𝜃)

∫ exp{𝜃⊤z(y, x) − 𝜓(𝜃)}𝜋(𝜃)d𝜃
,

where we note that the numerator contains the intractable normalising constant 𝜓(𝜃) and the
denominator involves an intractable integral (of an intractable expression). The auxiliary vari-
able MCMC elegantly avoids having to evaluate 𝜓(𝜃) by drawing variables from an auxiliary
distribution with the same set of parameters (Møller et al., 2006). The performance of the
auxiliary-variableMCMC relies critically on howwell the values of the parameters in the auxiliary
distribution represent the true but unknown posterior. The linked importance sample auxil-
iary variable MCMC (Koskinen, 2008) alleviates this issue by introducing bridging distributions,
linking the reference distribution to the likelihood. The performance of the linked importance
sample auxiliary variable MCMC is however dependent on a good choice of auxiliary variable
parameters. The exchange algorithm (Murray et al., 2006) removes the need for the parame-
ters of the auxiliary variable to be fixed and in the process not only reduces computational
overheads but also automatically tunes the auxiliary parameters in the course of the MCMC.
Caimo and Friel (2011) adopted the exchange algorithm to ERGMs approximating the Gibbs
updating step by a Metropolis MCMC. Here we adopt this approximate exchange algorithm to
ALAAMs.

For the ALAAM, the exchange MCMC has as its target distribution the joint distribution

𝜋(𝜃, y∗, 𝜃∗|y, x, ) ∝ exp{𝜃⊤z(y, x) − 𝜓(𝜃)}𝜋(𝜃)h(𝜃∗|𝜃) exp{𝜃∗⊤z(y∗, x) − 𝜓(𝜃∗)}

where y∗ is a variable with the same distributional form as y but with a parameter 𝜃∗, the prior
of which is h(𝜃∗|𝜃). In other words, y∗ follows the same ALAAM as data y but with a different
parameter. Marginalising this joint posterior with respect to y∗ and 𝜃∗, we obtain our desired
posterior for 𝜃 given y.

A sample {𝜃t, y∗t , 𝜃
∗
t }

T
t=1, is generated through a two-step updating procedure in each iteration

t. Given the current values 𝜃t−1, y∗t−1, and 𝜃
∗
t−1, we first propose 𝜃

∗ from h(𝜃∗|𝜃t−1), and conditional
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on the proposed value, draw y∗ from p𝜃∗ (⋅|x). Given these proposed values, we propose to swap
the parameters with probability min{1, H}

H =
p𝜃∗ (y|x)p𝜃t−1(y∗|x)
p𝜃t−1(y|x)p𝜃∗ (y∗|x) h(𝜃t−1|𝜃

∗)
h(𝜃∗|𝜃t−1) 𝜋(𝜃∗)

𝜋(𝜃t−1)
,

setting 𝜃t = 𝜃∗ and 𝜃∗t = 𝜃t−1. Similar to the case of (non-curved) ERGMs (Caimo & Friel, 2011),
the acceptance probability 𝛼(𝜃t−1, 𝜃∗|y∗) simplifies to

𝛼(𝜃, 𝜃∗|y∗) = min
[
1, exp{(𝜃 − 𝜃∗)⊤(z(y∗, x) − z(y, x))}𝜋(𝜃∗)∕𝜋(𝜃)

]
. (2)

It is convenient to use a symmetric proposal distribution for h(⋅|⋅). In particular, we propose a
simplistic multivariate normal with mean vector 𝜃t−1 and a variance-covariance matrix that is
set to cp−1∕2 times the inverse of Cov𝜃0(z(Y , x), z(Y , x)), approximated from a short initial sample
(y(t)) from the model defined by the initial value 𝜃0. For exponential family models in canonical
formwe have that I(𝜃) = Cov𝜃0(z(Y , x), z(Y , x))

−1 (this procedure was also used by Koskinen et al.,
2013, for tuning the algorithm for ERGMs). We set 𝜃0 to theMLE under a model where contagion
parameters are set to zero. As this model is equivalent to logistic regression, the MLE is readily
available using standard estimation techniques.

We draw y∗ as described in Section 4.1 and hence the algorithm is an approximate exchange
sampler. Everitt (2012) discusses the implications of the approximation for the properties of the
sampler, but ultimately the performance of the algorithm will depend on how well the draws of
y∗ mixes for different 𝜃, something which will have to be decided on a case by case basis.

4.3 Missing data

Assume that we observe data y only for a subset of actors given by the missing data indicator
(Ii)ni=1, where Ii = 1 if the response yi is unobserved for i and Ii = 0 if the response yi is observed
for i. Following Rubin (1976) and Little and Rubin (1987) we define a missing data mechanism
f (I|y, 𝜙) conditional on the response variables where the parameter 𝜙 is distinct from the model
parameters 𝜃. Initialising y by assigning initial values to missing entries, with a prior 𝜋(𝜙), the
estimation is carried out as above with two additional updating steps in each iteration. The first
consists of updating the missing values and is done by, for each i ∈ {i ∈ V ∶ Ii = 1}, proposing to
set yi = 1 − yi, and accepting this with probability

min
[
1, exp{𝜃⊤(z(Δiy, x) − z(y, x))}

f (I|Δiy, 𝜙)
f (I|y, 𝜙)

]
where Δiy is y with element i toggled and set to 1 − yi. To update 𝜙, propose a move to 𝜙∗ drawn
from a proposal distribution q(⋅|𝜙), and accept this with probability

min
{
1,
f (I|y, 𝜙∗)𝜋(𝜙∗)
f (I|y, 𝜙)𝜋(𝜙)

}
.

If data aremissing not at random (MNAR)we can define amissing data generatingmechanism to
test the sensitivity of our inference for 𝜃 to deviations from data being missing at random (MAR).
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4.4 Goodness of fit

For ERGMs it has become standard practice to evaluate model fit by considering the predic-
tive distributions for a range of different features of the network (Hunter et al., 2008; Robins &
Lusher, 2013). This is partly because the high-dimensional network space admits a number of
projections. The outcomes in an influence model have a range-space that is considerably more
straightforward to summarise. Given the suite of different statistics that the different dependence
assumptions of Daraganova (2009) imply, it is still however necessary to consider a number of
functions of  ×  as these may inform us of dependencies in data that we have not captured.
Similar to the Bayesian goodness-of-fit (GOF) for ERGMs (Koskinen et al., 2010, 2013), the GOF
distribution is the posterior predictive distribution, marginalised over the parameters. The pre-
dictive distribution {y(t)} is obtained from drawing y(t) from the ALAAM defined by the posterior
draw 𝜃t. In the MCMC that generates the posterior draws, whenever 𝜃 is updated we set 𝜃 = 𝜃∗.
As the auxiliary variable y∗ is drawn from the distribution p𝜃∗ (⋅|x) = p𝜃(⋅|x), the draw of y∗ is also
a draw from the posterior predictive distribution. Thus, if we let y(t) = y∗ for every t such that
𝜃t ≠ 𝜃t−1, and y(t) = y(t−1), otherwise, we have a draw {y(t)} from the posterior predictive distribu-
tion at the termination of the estimation algorithm. Note that the BayesianGOF is based on draws
of replicate data from the predictive distribution 𝜋(⋅|y) and as such accounts for uncertainty in
parameters. Assuming that we have modelsM1, … ,MK with posterior distributions 𝜋(Mk|y), we
can average the predictive distributions over models.

4.5 Model selection

Caimo andFriel (2013) propose an across-model procedure to evaluatemodel evidence for ERGM.
They note that within-model estimation of evidence that relies on density estimation of the poste-
rior breaks down for high-dimensional parameter vectors (greater than 5). Friel (2013) proposes
an elegantmethod for estimation of Bayes factors of pair-wise nestedmodels based on theMCMC
updating in the exchange algorithm and demonstrates their application to two simple Markov
random fieldmodels (the Isingmodel and aMarkov two-star ERGM) (Everitt et al., 2017, propose
direct estimation of the marginal likelihood using an importance sampling scheme that circum-
vents the need to evaluate 𝜓(⋅) using the trick of Møller et al., 2006). Here we aim to provide
a within-model estimation scheme that works for the types of complex models that you would
expect when modelling outcomes in the social and behavioural sciences. We follow an adoption
of Chib and Jeliazkov (2001) that has previously been used for ERGMs (Koskinen, 2004). First we
note from the so-called basic marginal likelihood identity that

m(y) =
p𝜃(y|x)𝜋(𝜃)

𝜋(𝜃|y)
where m(y) is the marginal likelihood or equivalently the normalising constant of the posterior
distribution of 𝜃 given y. This equality holds for any choice of 𝜃 and thus we can calculate the
marginal likelihood by picking any value 𝜃′ and evaluate the basic marginal likelihood for 𝜃 = 𝜃′.
We can use the path sampler to evaluate the likelihood ordinate (as inCaimo&Friel, 2013;Hunter
& Handcock, 2006; for details see e.g. Gelman & Meng, 1998) but obtaining a good numerical
approximation of the posterior ordinate 𝜋(𝜃′|y) is hard.



12 KOSKINEN and DARAGANOVA

Proceeding by the method of Chib and Jeliazkov (2001), we define the subkernel of the M-H
update as

p(𝜃, 𝜃∗, y∗) = 𝛼(𝜃, 𝜃∗ ∣y∗)h(𝜃∗ ∣𝜃)p𝜃∗ (y∗ ∣x),

in which 𝛼(𝜃, 𝜃∗|y∗) is defined as (2). By construction
𝜋(𝜃 ∣y)p(𝜃, 𝜃∗, y∗) = 𝜋(𝜃∗ ∣y)p(𝜃∗, 𝜃, y∗)

𝜋(𝜃 ∣y)p𝜃∗ (y∗ ∣x)𝛼(𝜃, 𝜃∗|y∗)h(𝜃∗ ∣𝜃) = 𝜋(𝜃∗ ∣y)p𝜃(y∗ ∣ x)𝛼(𝜃∗, 𝜃 ∣y∗)h(𝜃 ∣𝜃∗),
(3)

which can be verified by direct calculation. Upon integrating both sides of (3) with respect to 𝜃

over Θ and taking the sum over y∗ we obtain

∫
[∑
y∗∈

p𝜃∗ (y∗|x)𝛼(𝜃, 𝜃∗|y∗)h(𝜃∗|𝜃)
]
𝜋(𝜃|y)d𝜃 = 𝜋(𝜃∗|y)∫

[∑
y∗∈

p𝜃(y∗|x)𝛼(𝜃∗, 𝜃|y∗)
]
h(𝜃|𝜃∗)d𝜃.

We recognise the summands as expectations with respect to the likelihood, and the integrands
as expectations with respect to the posterior (LHS) and the proposal distribution (RHS). Conse-
quently, solving for 𝜋(𝜃|y), for any parameter value 𝜃′, the posterior ordinate can be written as a
ratio of expectations

𝜋(𝜃′|y) = E𝜋(𝜃|y) [Ep𝜃′ (y∗|x) {𝛼(𝜃, 𝜃′|y∗)h(𝜃′|𝜃)}]
Eh(𝜃|𝜃′) [Ep𝜃 (y∗|x) {𝛼(𝜃′, 𝜃|y∗)}] . (4)

We can evaluate the numerator using the Monte-Carlo estimate, taking 𝜃 from our posterior
draws {𝜃t}Tt=1 and for the inner expectation we can take a sample of auxiliary variables for each 𝜃

′.
We may also change the order of the expectations in the numerator, meaning that we draw one
large sample {y(g)}Gg=1 from the distribution defined by 𝜃 = 𝜃′ and average 𝛼(𝜃(t), 𝜃′|y(g))h(𝜃′|𝜃(t)).
For the denominator we draw a number of {𝜃j} from the proposal distribution h(⋅|𝜃′) and
similarly calculate Monte Carlo averages of the conditional acceptance probability 𝛼(⋅) across
samples from  .

With missing data in Y , the likelihood is given by exp {𝜓(𝜃, 𝜙, I) − 𝜓(𝜃)} where 𝜓(𝜃, 𝜙, I) =
log

[∑
yi∶Ii=1

exp{𝜃⊤z(y, x)}f (I|y, 𝜙)]. We can evaluate 𝜓(𝜃, 𝜙, I) using the path sampler with the
restriction that Yi = yi are fixed for i such that Ii = 0. With missing data Equation (4) needs to
be modified to account for the uncertainty in the missing outcomes. When evaluating the accep-
tance probability in the numerator of Equation (4), we may take the Monte Carlo average over
the joint posterior of 𝜃 and {yi|Ii = 1} for the corresponding draws from the joint posterior. For
the denominator of Equation (4), the Monte Carlo average will be taken with respect to draws
from h(𝜃|𝜃′) and draws of {yi|Ii = 1} from the conditional distribution p𝜃′ (y|x). The Monte Carlo
estimate of (4) with missing data is written as follows

𝜋̂(𝜃′|{yi ∶ Ii = 0}) =
∑G

g=1G−1∑T
t=1T−1𝛼(𝜃t, 𝜃′|y(g), vt)h(𝜃′|𝜃t)∑J

j=1J−1
∑M

m=1M−1𝛼(𝜃′, 𝜃j|y(j,m),uj)
, (5)

where {vt} are posterior draws of {yi ∶ Ii = 1}, {y(g)} are draws from p𝜃′ (⋅|x), {𝜃j} are independent
draws from h(⋅|𝜃′), {uj} are draws of {yi ∶ Ii = 1} from themodel p𝜃j(⋅|x), and finally {y(j,m)} areM
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draws from p(⋅|𝜃j). The numerator in Equation (5) is computationally cheap to evaluate aswe only
need one large sample {y(g)} from the distribution defined by 𝜃′. The denominator in Equation (5)
does however require a sample of size M from the model defined by 𝜃j for all j = 1, … , J. The
variance of the estimator is not very sensitive to the size ofM and G and setting both to about 100
appears sufficient. As discussed in Chib and Jeliazkov (2001), the estimator requires awellmixing
sample from the posterior for the numerator of a length T of the order 10,000 to 20,000. Here
we have to factor in the variation in the evaluation of the likelihood (as well as the acceptance
probability) and a precise estimate is likely to require T in excess of 20,000. (A brief illustration of
the effect of different sample sizesT on the estimator is provided in sectionF of the Supplementary
Material.)

4.5.1 Prior distributions

There are good reasons for performing inference for ALAAMs with prior distributions that are
proper. With an improper prior distribution for 𝜃, the posterior distribution is proper if the
observed vector of statistics is in the relative interior of the convex hull on, where is the image
of under z(⋅) . Since there are instances where z(y, x) does not fall in the (relative interior of the)
convex hull on (Handcock, 2003), a proper prior distribution formally is a safeguard against the
risk of the posterior not being defined. The Bayes factor 𝜋(y |Mi)∕𝜋(y |Mj) is only properly defined
if the prior distributions for the parameters of both models are proper. A convenient choice for
prior distribution for the canonical parameters for an exponential family model is a multivariate
normal distributionNp(𝜇,Σ).While one canmotivate setting 𝜇 = 0 a priori to reflect no bias on the
parameters, setting the scale throughΣ is less straightforward. For related binomial models, Chen
et al. (2008) argue the merits of using Jeffreys’ prior (Jeffreys, 1946). Here, this would translate to
the prior being 𝜋(𝜃) ∝ |I(𝜇0)|1∕2, for 𝜇 = 0 which motivates the scalable normal prior with vari-
ance covariancematrix 𝜆I(𝜇0)−1. The informationmatrix is straightforward to obtain as theMonte
Carlo estimate of the variance covariance of themodel sufficient statistics under 𝜃 = 𝜇0. For some
data sets where

∑
i yi is small, one can motivate using a data-dependent prior with (𝜇0)1 = 𝜃̂MLE,

where 𝜃̂MLE = − log(y − 1). As 𝜆will shrink the prior distribution and pull parameters towards the
origin, setting (𝜇0)1 = 𝜃̂MLE will reduce the influence of the intercept which is largely a nuisance.

4.5.2 Posterior deviance

To evaluatemodel fit with constant or reference priors, posterior predictive p-values (Meng, 1994)
may be applied for any function of the network and attributes that are typically used in GOF
(Hunter et al., 2008; Robins & Lusher, 2013). For single value summaries of model fit wemay also
consider functions of the deviance. In the context of complex networkmodels, Aitkin et al. (2017)
considered evidence in terms of the posterior distribution of the deviance (a full discussion of
this approach is given in Aitkin, 2010). This provides a useful graphical representation of relative
fit of a model that can be summarised using the deviance information criterion (Gelman et al.,
2004; Spiegelhalter et al., 2002). As the likelihood of Equation (1) is intractable, we need to eval-
uate the log-likelihood for each draw 𝜃t numerically using the path-sampler (Gelman & Meng,
1998; Hunter & Handcock, 2006). With missing data defined as in Section 4.3, the likelihood is
estimated as 𝓁̂(𝜃t) = 𝜓̂(𝜃t, 𝜙, I) − 𝜓̂(𝜃t). Here the likelihood is estimated using the path sampler
relative to the MLE for a nested independent model.
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5 APPLICATIONS

We demonstrate the proposed inference procedures using three data sets, two sociocentric school
networks and one snowball-sampled data set on unemployment status.

5.1 Masculine attitudes in a school class

Lusher and Dudgeon (2007) developed a scale, MAI, for measuring male dominance attitudes. In
school classes it may be of interest to know if a (male) pupil’s attitudes to masculinity is contin-
gent on those of his friends. MAI scores as well as friendship nominations were collected for 106
pupils in a Year 10 level in a single-sex, religious secondary school inAustralia (Lusher, 2011). The
response variable yi is the MAI dichotomised at the mean. Controls are: ‘dominant culture’ (indi-
cates if i has an Anglo-Australian ethno-cultural background (1) or not (0)); the socio-economic
status of the pupil’s household (as measured by standardised SES based on postcode); the occupa-
tional score for the father of the pupil ; the equivalently defined occupational score for themother
of the pupil (see Lusher, 2011, for further details of the network data). The network is depicted in
Figure 3.
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F IGURE 3 Friendship network among 106 pupils in an all-male school. Dominant culture indicated by
squares (1) and circles (0), and outcome black (yi = 1), grey (yi = 0), for high and low masculinity index,
respectively
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5.1.1 Direct contagion

Figure 4 provides theMCMC output for a model under assumption [DC] with 20,000 draws using
the standard settings of Section 4.2, namely with the proposal variance-covariance matrix based
on cI(𝜃), where I(𝜃) is the inverse of the covariance matrix of the statistics under 𝜃; 𝜃 estimated
from a simulation of statistics under the MLE for a logistic regression with contagion parameters
set to 0; and the tuning constant is set to c = 1, and the multiplication factor for drawing from
the likelihood is set to 𝛾 = 30. These settings will be used also for the rest of the examples unless
otherwise specified. The auto-correlation for the contagion parameter is fairly large even at large
lags. This can be improved upon by setting the proposal covariancematrix equal to the covariance
of the posteriors (this reduces the sample autocorrelation function, SACF, greatly). According to
the posterior summaries provided in Table 1, there is evidence for a positive contagion parameter.

5.1.2 Indirect contagion

To infer whether there is evidence of influence on MAI being transmitted through indirect
ties under assumption [IDA], we add the statistic yi

∑
j yj

∑
k,k≠i,j xikxkj. In addition we include

a statistic for the number of nodes that are reachable from an individual, the number of indi-
rect ties

∑
i yi

∑
j,k xikxkj. The potential for a brokerage effect on Y is controlled for by the mixed

2-path effect
∑

i yi
∑

j,k xijxik. The results for the elaborated model are provided in Table 2. The
introduction of the additional contagion effect reduces the direct contagion (posterior correla-
tion of −0.69), making interpretation less conclusive than in the simpler model. The number of
indicted ties is positive with a large posterior probability suggesting that pupils that are indirectly
connected to many others are likely to have masculine attitudes.

5.1.3 GOF

The posterior predictive distributions for some functions of (Y , X) are provided in Table 3. For
reference, predictive distributions for a latent network effects model (LNAM) are provided (with
estimates in Table 1). For this model we assume that there exists an n × 1 vector u that follows the
standard network effects model u = 𝛼Wu + 𝛽⊤B + 𝜖, where W is the row-normalised adjacency
matrix, 𝛼 ∈ (−1, 1) is the network effects parameter (Marsden&Friedkin, 1994),B is amatrix with
the same fixed covariates as for the ALAAM in Table 1, and 𝜖 are i.i.d. standard normal variates.
As Y is binary, we use u as the latent variable for a probit link-function by letting yi = 1{ui ≥ 0}.
Estimation of 𝛼 and 𝛽 largely follows Koskinen and Stenberg (2012). We assume the same form
of prior, as described in Section 4.5, for the 𝛽 in the network effects model and 𝜃 in the complex
contagion model with the exception that the 𝛼 in the former is not included in the regression
parameters.

For this relatively limited set of attribute and network interactions, the ALAAM marginally
outperforms the LNAM judging by the posterior predictive p-values of Table 3. However, for
this dataset there is no clear evidence of the LNAM completely failing to reproduce any
of the observed statistics. The goodness-of-fit does also illustrate that the simpler specifica-
tion of the ALAAM is sufficient for explaining higher-order dependencies such as indirect
contagion.
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F IGURE 4 MCMC output for ALAAM contagion-model for masculine attitudes in an Australian school.
Density estimate, trace plot, and SACF for each of the parameters reported in Table 1

TABLE 1 Posterior summaries for an ALAAM and an LNAM of contagion of masculine attitudes in a
school in Australia

ALAAM LNAM

Mean SD ESS SACF 10 SACF 30 2.5 perc 97.5 perc Mean SD

Intercept −4.94 5.78 269.73 0.72 0.37 −16.23 6.33 −7.52 3.91

Contagion 0.17 0.07 251.07 0.70 0.35 0.03 0.29

Outdegree 0.03 0.07 292.16 0.72 0.37 −0.10 0.16 −0.04 0.03

Indegree −0.12 0.06 293.03 0.74 0.42 −0.23 −0.00 0.13 0.04

Domculture −0.32 0.43 235.78 0.70 0.38 −1.28 0.47 −0.61 0.31

SES 5.04 6.14 271.11 0.73 0.38 −7.90 17.11 7.85 4.11

Father −0.00 0.01 281.46 0.68 0.34 −0.02 0.01 −0.01 0.01

Mother 0.00 0.01 285.92 0.68 0.31 −0.01 0.01 0.01 0.00

Alpha 0.49 0.18
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TABLE 2 Posterior summaries for an ALAAM with indirect contagion of masculine attitudes in a school in
Australia

Mean SD ESS SACF 10 SACF 30 2.5 perc 97.5 perc

Intercept −6.83 6.53 314.11 0.78 0.44 −20.14 5.31

Contagion 0.21 0.13 281.64 0.79 0.51 −0.05 0.48

Indirect cont −0.02 0.02 275.48 0.79 0.52 −0.06 0.01

Outdegree −0.48 0.27 242.09 0.80 0.54 −1.02 0.02

Indegree 0.07 0.16 324.60 0.79 0.50 −0.27 0.38

Brokerage −0.01 0.02 323.54 0.79 0.51 −0.05 0.02

Indirect ties 0.07 0.03 211.01 0.80 0.53 0.02 0.13

Domculture −0.41 0.49 292.16 0.79 0.51 −1.30 0.59

SES 7.28 6.64 305.18 0.77 0.43 −6.32 20.32

Father −0.01 0.01 1256.67 0.78 0.46 −0.03 0.01

Mother −0.00 0.01 305.47 0.79 0.49 −0.02 0.01

TABLE 3 Posterior predictive p-values for ALAAM and latent network autocorrelation models of Table 1

ALAAM LNAM

Statistic Observed Mean p-Value Mean p-Value

Intercept 55 55.87 0.21 53.02 0.20

Direct contagion 272 277.94 0.25 250.54 0.17

Reciprochal contagion 75 78.17 0.24 74.39 0.22

Indirect contagion 2069 2132.74 0.26 1880.53 0.17

Closure contagion 763 790.04 0.26 695.57 0.17

Transitive contagion 456 534.64 0.24 456.68 0.28

Indegree 428 432.53 0.24 393.71 0.14

Outdegree 478 488.87 0.21 481.77 0.23

Two-paths 3859 3972.61 0.22 3786.91 0.22

Out-2-star 2362 2404.59 0.22 2452.69 0.17

In-2-star 1780 2082.39 0.19 1701.24 0.18

Out-triangles 1368 1404.57 0.21 1385.58 0.22

In-triangles 1210 1191.38 0.23 1048.03 0.11

Transitive triangles 1004 1033.12 0.23 951.75 0.19

Indirecct ties 3957 3914.89 0.25 3895.86 0.24
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5.2 Stockholm Birth Cohort

The Stockholm Birth Cohort is a large cohort study in the Stockholm Metropolitan area that
includes detailed surveys and school-class network data (Stenberg, 2018; Stenberg & Vågerö,
2006). The networks are the best-friend nominations of school children and for each pupil there
are a range of sociological, psychological, and educational variables. The surveywas carried out in
May 1966 when the pupils were nearing the end of the sixth grade. This is when they would have
started considering whether they were going to proceed to higher secondary education (grades
10 and above) and been talking about this with their peers. We chose for our example 19 school
classes out of the 1966 survey.

We let X be the directed best-friend network (this had a cap of three nominations), and y be
indicators yi = 1 of whether pupil i said that they intended to proceed to higher secondary school,
and yi = 0 otherwise (in accordance with the model of Koskinen & Stenberg, 2012). By design
there are no ties between pupils in different school classes. The proportion of missing entries
range from 0 to 0.286 with an average of 0.079. We apply the ALAAM specified by assumption
[DC] but set the parameter for out-stars (of the form yixi,+) to zero as the nominationswere capped
at three and there is little variance in the out-degree distribution. In addition to this structural part,
we control for: sex (female:1); family support (an 11-point scale measuring the family’s attitude
toward school ranging from least positive, 0 to most positive 10); average school marks (scaled to
range from 0 to 10); an indicator of whether the father belongs to the top social class or not. The
network is visualised in Figure 5.

F IGURE 5 Best friend network in four schools in the Stockholm Birth Cohort. Sex indicated by squares
(girl) and circles (boys), and outcome – intention to proceed to higher secondary education – black (yi = 1), grey
(yi = 0), and white for missing
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TABLE 4 Model 1 posterior summaries for contagion-model for progression to upper-secondary school in
SBC (posterior means, SD, and probability interval based on a thinned sample of 10,000 iterations, taking every
20th iteration, with burnin of 1000; SACF and ESS based on un-thinned sample)

Mean SD ESS SACF 10 SACF 30 2.5 perc 97.5 perc

Intercept −9.67 1.11 178.03 0.68 0.32 −11.83 −7.51

Contagion 0.16 0.10 183.10 0.68 0.32 −0.04 0.35

Indegree −0.07 0.11 183.55 0.67 0.32 −0.29 0.13

Sex −0.09 0.29 134.35 0.70 0.39 −0.66 0.47

Family attitude 0.48 0.09 164.22 0.70 0.32 0.33 0.65

Marks 0.99 0.15 168.66 0.68 0.32 0.69 1.28

Social class 1 0.59 0.32 198.40 0.66 0.24 −0.06 1.19

The results from the MCMC with 10,000 iterations with constant priors 𝜋(𝜃)∝ c are sum-
marised in Table 4 (the table is based on default settings with a burnin of 1000 and thinning of
20 iterations, and the same proposal as in the previous example; 𝛾 = 7.5). Mixing of the MCMC
can be said to be satisfactory with default settings. There is strong evidence for a positive family
attitude to school and high grades to increase the likelihood of the intention to proceed to higher
education. The evidence is inconclusive for other effects. In particular, the contagion parameter
is positive with posterior probability 0.93.

5.2.1 Testing difference in contagion

The classes come from 4 schools that differ in socio economic status of uptake area as reflected
in the composition of social class of pupils. We divide the schools into one subset with less than
15% of students (across school classes) from the highest social class and a subset with more than
15% of students from the highest social class. Table 5 presents the results for a model (M2) that
includes an interaction of the contagion parameter and an indicator for the type of school (=1
for schools with low proportion of pupils from the highest social class) as well as the main effect.
There is stronger evidence than for model 1 for a contagion effect (the contagion parameter is
positive with 0.988 posterior probability). There is weak evidence for contagion being absent in
schools with a lower proportion of pupils from the highest social class (the posterior distribution
for 𝜃2 + 𝜃9 has a mean of 0.0328 and a standard deviation of 0.144 and is negative with 0.435
posterior probability).

Consider first evaluating the evidence forM1 againstM2 based on the results in Tables 4 and
5 that are based on improper priors. We estimate the likelihood as in Section 4.5.2, relative to
the MLE for a model with the contagion parameter, composition, and contagion interaction set
to zero. We estimate 𝓁̂(𝜃t) for a thinned sample of 226 posterior draws, using 20 bridges and 100
samples for each. In fact, using half of these posterior draws and only 5 sampled networks for
each give virtually identical results. Figure 6 (left panel) shows that the deviance distributions
are stochastically ordered (Aitkin et al., 2017) and that model 2 is the preferred model. Based
on the posterior deviances of Figure 6 (left panel), we provide two versions of the DIC measure
(Gelman et al., 2004; Spiegelhalter et al., 2002) in Table 6, both of which suggest that M2 is
preferred overM1.
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TABLE 5 Model 2 posterior summaries for contagion-model for progression to upper-secondary school in
SBC with an interaction between social contagion and social class (Posterior Means, SD, and probability interval
based on thinned sample of 10,000 iterations, taking every 20th iteration, with burnin of 1000; SACF and ESS
based on un-thinned sample)

Mean SD ESS SACF 10 SACF 30 2.5 perc 97.5 perc

Intercept −10.13 1.19 168.32 0.76 0.44 −12.81 −8.04

Contagion 0.24 0.12 143.31 0.72 0.39 0.02 0.48

Indegree −0.08 0.12 122.80 0.75 0.41 −0.33 0.13

Sex −0.09 0.28 126.04 0.76 0.45 −0.69 0.47

Family attitude 0.48 0.08 140.26 0.72 0.38 0.34 0.65

Marks 1.01 0.14 265.08 0.72 0.40 0.76 1.31

Composition 0.91 0.55 137.33 0.74 0.39 −0.25 1.97

Social class 1 0.57 0.34 143.59 0.73 0.37 −0.07 1.21

Contagion × social class 1 −0.21 0.16 152.15 0.72 0.37 −0.51 0.11
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F IGURE 6 Left panel: The posterior deviance for model 1 (Table 4) (solid) and model 2 (Table 5) (dashed).
Right panel, model evidence for model 1 (o−) and model 2 (∗−) for prior Np(𝜇0, 𝜆I(𝜇0)−1) with scale 𝜆 and 𝜇0 = 0

TABLE 6 Deviance information criteria (DIC) evaluated for for Models 1 and 2 fitted to the SBC

D+ pD D+ pV

Model 1 332.94 333.68

Model 2 330.32 329.73

Examining the evidence for the two models in Figure 6 (right panel), the interaction model,
Model 2, is preferred for 𝜆 between 1 and 4. As 𝜆 gets larger, the prior variance increases,
penalising model complexity and thus favouring the more parsimonious model (c.p. Bartlett,
1957). The figure is meant to illustrate the dependence on 𝜆 and the precision of the estimates
of the evidence is not sufficient to draw firm conclusions (estimates in the range 𝜆 ∈ (1, 3)
are the average of three estimates with T = J = 2152, the rest are based on T = 19,000; a
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F IGURE 7 Posterior summaries (95% CI) for parameters of model 2 (Table 5) for SBC against missing not
at random parameter 𝜙1

brief illustration of the effect of the sample size is provided in section F of the Supplementary
Material).

5.2.2 Sensitivity to MAR assumption

To test the sensitivity of the posteriors to violations of the MAR assumption, we posit the MNAR
missing data mechanism assuming the logistic form

logit {Pr(Ii = 1|y, x)} = 𝜙0 + 𝜙1yi + 𝜙2x+i

independently for all i ∈ V conditional on y. With 𝜙1 < 0 the interpretation would be that pupils
that do not intend to proceed to higher secondary education are less likely to respond. Assuming
that receiving few best-friend nominations is associated with social isolation, a negative𝜙2 would
mean that socially relatively isolated pupils are more likely to be missing. Fixing 𝜙, only 𝜙1 will
affect inference as the covariate dependent 𝜙2 and the intercept 𝜙0 cancel out in simulating Yi
for missing cases. Figure 7 plots the change in credibility intervals for some of the parameters of
model 2. If missingness is strongly predicted by an intention to proceed to higher secondary edu-
cation (𝜙1 positive), the contagion effect is weakened. If pupils not intending to proceed are more
likely to be missing, the contagion effect is strengthened. The strength of the MNARmechanism
also affects the composition parameter and the interaction with composition and contagion. The
bias, as represented by 𝜙1, does however need to be strong to have an effect (at 𝜙1 = 4, yi = 1
almost with probability 1 for missing cases).

5.3 Unemployment in a large network

When the node-set of a network is not unambiguously defined or the population size is too big
to allow for a complete census of the network, we may still want to estimate network-related
effects from a sample of the population network. We consider a dataset analysed previously
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TABLE 7 Posterior summaries for a model for employment status for a sample from Victoria, Australia,
estimated conditional on outcomes in waves 3 and greater

Mean SD 2.5 perc 97.5 perc

Intercept −1.582 0.246 −2.119 −1.13

Contagion 0.324 0.131 0.03 0.548

Degree −0.106 0.048 −0.204 −0.005

Sex 0.541 0.264 0.01 1.099

Age 0.001 0.128 −0.264 0.242

by Daraganova and Pattison (2013) that consists of 551 individuals recruited via a three-wave
snowball sample (Frank, 2005; Goodman, 1961) in Australia. Drawing on Besag’s (1974) coding
scheme, Pattison et al. (2013) demonstrated how the dependence assumptions of an ERGM can
be used to define a conditional inference scheme. For ALAAMs this translates to estimating the
model as described above with the condition that yi remains fixed at their observed values for
i ∈ A ⊂ V , where A is a set that separates (Pattison et al., 2013) data in  ×  . For the three-wave
snowball sample this means conditioning on the outcomes of nodes in wave 3 (184 nodes), and
conditionally on these nodes, modelling only the outcomes of the seed nodes, and outcomes
of nodes in waves 1 and 2 (367 nodes). The outcome variable of interest is employment status,
with ‘employed individuals’ being defined as those individuals who worked full or part time, and
students who worked part time (Y = 0); and ‘unemployed individuals’ was defined as those indi-
viduals who did not work at the time of the interview (Y = 1). In addition we use a reduced set
of other variables, namely the number of network partners (degree); sex (male: 0; female: 1); and
age (ranging from 19 to 67 with a mean of 37).

The results of Table 7 largely agree with the analysis of Daraganova and Pattison (2013), and
there is clear evidence of a positive association between people that are relationally tied (the poste-
rior mean is 0.322) and a lower risk of being unemployed the more people that you are connected
to. Of course, for a sample of a community network we cannot discount the possibility that the
network and outcomes are spatially clustered (Butts, 2003; Daraganova et al., 2012 ) or that there
are other geographical network effects (Sohn et al., 2019).

6 SUMMARY

Building on previous work on ALAAMs (Daraganova, 2009; Daraganova & Robins, 2013; Robins
et al., 2001) we draw on advances in modelling Markov random fields (Caimo & Friel, 2011;
Friel, 2013) to improve on previous Bayesian estimation schemes (Koskinen, 2008) for the social
influence model.1

We illustrated various aspects of fitting themodel using three example datasets.We found that
pupils that have friends that have male-dominance attitudes also tend to have male-dominance
attitudes themselves. Posterior predictive p-values show that a simplemodelwith direct contagion
is sufficient for explaining more complex interactions and in addition shows that the ALAAM
compares favourably with an alternative network dependence model. For a Swedish dataset we
found that pupils that have friends that intend to proceed to higher education are more likely to

1Code is available at https://github.com/johankoskinen/ALAAM

https://github.com/johankoskinen/ALAAM
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have the same intention themselves. We also found tentative evidence for this ‘contagion’ effect
to be present in schools with pupils of higher social class than in schools with a lower proportion
of pupils from a high social class. The estimates for the contagion effect was demonstrated to be
robust to violations of the MAR assumption. Finally, a dataset collected using snowball sampling
in Australia showed that people that have unemployed friends are more likely to be unemployed
themselves.

A benefit of the Bayesian estimation approach for ALAAMs is that the coherent treatment of
uncertainty allows greater flexibility in handling missing data and performing model evaluation
relative to the maximum likelihood approach. This likelihood-based framework is also readily
extended to hierarchical modelling so that we for example can analyse social influence jointly for
multiple datasets (c.p. the continuous case, Agneessens & Koskinen, 2016).

Cross-sectional network data does not allow us to distinguishing social influence and social
contagion from social selection (Steglich et al., 2010), but when only cross-sectional network data
are available it is still necessary to account for peer-dependence through network ties. A Bayesian
ALAAM framework allows us to take a number of different types of network dependencies into
account.

For ERGMs a number of alternatives to the approximate exchange algorithm have been pro-
posed, such as those in Alquier et al. (2016). Given that the dependencies in ALAAMs are weaker
than those in ERGMs, approximate algorithms that do not sample from the model hold some
promise for ALAAMs.
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