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The modeling of plasma-assisted combustion requires detailed kinetics mechanisms con-
taining many species and reactions to model the non-equilibrium effects of plasma dis-
charges on combustion chemistry. Integrating such large mechanisms into a multi-dimensional,
unsteady framework demands important computing capacities due to the temporal stiffness
of the non-linear dynamics, and the memory requirements associated with the high number
of species. In this work, we apply Principal Component Analysis (PCA) in order to reduce
the dimensionality of a well-established detailed kinetics mechanism for plasma-assisted
combustion. Data are collected from a zero-dimensional two-temperature reactor model,
whereby a nanosecond pulse generates a population of excited-state molecules and radicals
in argon and air mixtures with hydrocarbon fuels. The data from the detailed mecha-
nism are used to describe the evolution of the mixture based on principal components for
plasma-assisted combustion simulations in argon and ethylene-air. The accuracy of the
PCA-based models is compared against the detailed calculations, and their performance is
found satisfactory.

Nomenclature

A Matrix of eigenvectors
ci Species concentration (kmol/m3)
cv,i Species specific heat at constant volume (J/kmol K).
E Energy density (J/m3)
ni Species number density (m−3)
q Number of principal components
Q Number of original variables
QE Power density (J/m3s)
Qel Elastic energy exchange (J/m3s)
Qexc Inelastic energy exchange (J/m3s)
Qloss Recombination and attachment electron energy (J/m3s)
T Gas temperature (K)
Te Electron temperature (K)
U Internal energy (J/m3),
z Principal component
µ Pulse timing (ns)
ρ Density (kg/m3)
ωi Species molar production rate(kmol/m3 s)
FWHM Full-Width-Half-Max (ns)
PCA Principal Component Analysis
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I. Introduction

Plasma-enhanced combustion was proposed as an innovative technique to ensure efficient and stable
operation in difficult regimes. The use of repetitive non-thermal plasma discharges allows for the efficient
ignition of fuel-air mixtures through fast heating and the generation of reactive species such as radicals and
excited atoms and molecules.1,2 The main physical principle behind the kinetic enhancement of combustion
chemistry by plasma discharges is the generation of high-energy, non-thermal electrons that ionize and excite
the neutral molecules. As a result, ions, radicals and vibrationally and electronically excited molecules in the
non-equilibrium plasma will initiate chain-branching reactions towards the ignition of fuel/air mixtures.2–4

Detailed kinetics mechanisms are crucial in modelling the effects of non-equilibrium plasma on com-
bustion chemistry. Mechanisms for plasma-enhanced combustion are a combination of plasma kinetics with
combustion pathways for the simulation of fuel-air mixtures.5–8 Recent developments focused on the interac-
tion of non-thermal electrons with neutral fuel and air species.10 High-energy electrons create a non-thermal
plasma in which the electron temperature is much higher than the temperature of heavy species. Further, the
electron energy distribution function is non-Maxwellian and requires the solution of the Boltzmann equation
in order to evaluate the electron transport coefficients and rate coefficients. A possible approach to modeling
reactions that depend on the electron temperature is to fit the rate coefficients originating from the ab initio
calculations to a range of electron temperatures and include them as such in the detailed mechanism. In
recent literature,11 this method was adopted to assemble a plasma-assisted combustion mechanism to study
the kinetics of plasma-assisted ignition in argon and air. The resulting mechanism was validated by exper-
iments12–14 and used to study radical production and main reaction pathways in argon and air subject to
nanosecond pulse discharges.

Despite the current advancements in computing power, multi-dimensional unsteady simulations remain
a challenge for plasma-assisted combustion applications. Bottlenecks are the large number of species and
reactions included in the mechanisms and the temporal stiffness of the chemical dynamics. Plasma exchanges
take place within nanoseconds, while combustion processes develop over milliseconds.

Time-scale separation offers a first reduction strategy to the aforementioned problem. In such methods,
the fast chemistry is projected onto the slowly varying manifold and only the latter is solved. This is the prin-
ciple behind Rate-Controlled Constrained Equilibrium (RCCE)19 reductions and its derived techniques. In
plasma-assisted combustion applications, it is common to separate the discharge phase from the combustion
simulation to handle the varying time-scales.15–17

Alternatively, detailed kinetics mechanisms can be reduced to a skeletal form by discarding unimportant
species and reactions. The graph-based methods such as the Directed Relation Graph (DRG)20 are widely
adopted techniques. The chemical network is presented as a directed graph where the species are connected
with an interaction coefficient to denote their influence on each other. A skeletal mechanism is obtained by
discarding graph edges and nodes according to a specified graph search procedure.

Lumping techniques offer an alternative species-reduction approach. The objective is to regroup species
with similar compositions and properties and solve them as a lumped pseudo-species.21 In plasma applica-
tions, lumping techniques usually regroup the excited levels of a molecule or species into a separate energy
bin.30

More recently, principal component analysis (PCA) was used to develop reduced-order models (ROMs)
for chemically reacting flows. The idea behind this technique is to analyze correlations between variables
and to define a new reduced set of basis function identified by the principal components. More specifically,
principal components correspond to the directions with the largest variance in the chemical state-space. PCA
was successfully applied to reduce large combustion simulations23,24 and has been combined with Kriging
and regression strategies to optimize the reduction.25,26 Plasma applications were reduced using PCA in
combination with a regression model for vibrational CO2

27 and collisional-radiative models in argon and
nitrogen plasma.28,29

The objective of the present study is to explore the applicability of principal component analysis to
reduce detailed kinetics mechanisms for plasma-assisted combustion applications. PCA will be used to
reduce a well-established mechanism11 for plasma-assisted ignition simulations of low pressure fuel-argon
and ethylene-air mixtures. This paper is structured as follows: Section II presents the reactor model and
ignitions simulations. Section III explains the reduction strategy based on principal component analysis.
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Reduced models for nanosecond pulse discharges in C3H8-O2-Ar and C2H4-air are presented in Section IV.
Conclusions are drawn in Section V.

II. Physical Modeling

A. Reactor model

A system of governing equations is presented to model the time evolution of a closed isochoric and adiabatic
chemical reactor. A two-temperature model is adopted with Te the temperature of the electrons and T
the temperature of all other species. ce indicates the concentration of electrons and ci the concentration
of particles other than electrons (i 6= e). ce and ci evolve according to the following ordinary differential
equations,

dce
dt

= ωe,
dci
dt

= ωi. i 6= e (1)

ωe and ωi are the molar production rate of electrons and species i, respectively. ue = ue(Te) and ui = ui(T )
are the molar internal energy of the electrons and species i. The internal energy densities are Ue = uece for
the electrons and Ui = uici for all other particles. cvi is the specific heat at constant volume of species i and
cve = 3kB/2 for the electrons (kB is the Boltzmann constant). The evolution equations for T and Te are∑

i6=e

cvici
dT

dt
= −

∑
i6=e

ωiui −Qel −Qexc −Qloss,

cvece
dTe
dt

= −ωeue +Qel +Qexc +Qloss +QE .

(2)

Qloss describes the energy lost by the electrons through recombination processes,

Qloss =
∑
k∈K

−ueNAqk, (3)

where K is the set of recombination reactions, qk the rate coefficient for reaction k, ue the internal energy
of the electrons, and NA the Avogadro number. Qexc is the inelastic energy lost by the electrons due to
ionization, dissociation and excitation processes,

Qexc =
∑
`∈L

−Eexc,`NAq`, (4)

where L is the set of reactions involved, and Eexc,` is the excitation or ionization energy. Qel describes the
elastic energy exchanges,

Qel = 3kB

 ∑
i∈S,i 6=e

νeli me/mi

ne(Te − T ). (5)

mi and me are the masses of species i and the electron, νeli is the elastic collision frequency between species
i and the electron. The power deposited by the discharge per unit volume, QE , is modeled as a Gaussian
pulse,

QE(t) =
E

σ
√

2π
exp

(
−1

2

(t− µ)2

σ2

)
, (6)

with µ the time of peak power, σ the pulse width related to the full-width-half-max FWHM = 2
√

2 ln 2σ ≈
2.355σ, and E the energy density of the pulse. The discharge consists of a sequence of pulses with a pulse
frequency f . These parameters are chosen in accordance with experiments to result in an ignition within 10
to 100 µs of the first pulse.14 Equations (1) and (2) are integrated with the stiff solver CVODE.31

B. Simulation test cases

Two well-established detailed mechanisms for plasma-assisted combustion11 are used in this work. The first
one describes a fuel-oxygen mixture with argon diluent (CxHy-O2-Ar) which is valid up to propane (C3H8).
The kinetics is described using 103 species in 876 reactions. From these 876 reactions, 30 depend solely on
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Table 1: Presentation of the simulation test cases with two detailed kinetics mechanisms: C3H8-O2-Ar and
C2H4-air.

case (A) case (B)

Gas argon air

Number of species 103 163

Number of reactions 876 1167

Temperature, K 750 800

Pressure, atm 1 0.5

Fuel C3H8 C2H4

Equivalence ratio 1 1

Peak power density, kW/cm3 30 2000

FWHM, ns 5 15

Pulse frequency, kHz - 100

the electron temperature Te. The argon mechanism includes ionization reactions for 4 ions: Ar+, H+
2 , N+

2

and O+
2 . Ionized hydrocarbons are neglected in this model. The second mechanism is a 163 species fuel-air

mechanism (CxHy-O2) with 1167 reactions. Vibrational and electronic excitation reactions are included,
with the exception of vibrational reactions for O2. For both mechanisms, electron impact reactions are
described for collisions with Ar, O2, H2, CH4, C2H4, C2H2 and C3H8. Rate coefficients for the latter were
predicted using the Boltzmann equation solver, Bolsig+, and tabulated for a large range of electron temper-
atures (0.1 to 100 eV) for a composition of 20% O2 and 80 % N2. Electron momentum effects were neglected.

Both mechanisms were used to simulate two cases as described in Table 1. Case (A) presents the simu-
lation of a single nanosecond pulse discharge in a C3H8-O2 mixture diluted in argon. The mixture does not
ignite. Case (B) simulates the plasma-assisted ignition of a C2H4-air mixture using a burst of nanosecond
pulses. The conditions of case (B) are relevant to supersonic combustion.

Figure 1a shows the time evolution of the species Ar∗, O, H, OH, and O(1D) during a single pulse
discharge in argon as described by case (A) in Table 1. During the discharge phase, internal states of oxygen
and argon are excited and important radicals are generated (O, H and OH). These reactive species will
initiate chain branching an ignition may occur after several discharge pulses. Case (B) presents the plasma-
assisted ignition test case of ethylene-air using multiple pulses. Each pulse produces reactive species (radicals
and excited states) as can be observed in Figure 1b. The combustion products CO2 and H2O increase with
every pulse up to the ignition of the mixture after 4 pulses at ≈ 40 µs. The time to ignite is defined as the
time where the CO2 gradient is maximum with respect to the timing of the peak discharge power during the
first pulse. Figures 2a and 2b represent the time evolution of the electron temperature Te, and the electron
number density ne for cases (A) and (B), respectively. The electron temperature varies according to the
discharge. The peak electron temperatures reaches a maximum of 54,500 K in argon and 49,500 K in air.
Electrons are produced and consumed with every pulse as can be seen in Fig. 2b.

III. Mechanism reduction

Principal component analysis reduces the dimensionality of large kinetic mechanisms by projecting the
detailed model consisting of Q variables on a smaller truncated base consisting of q < Q principal components.
This new base is obtained by analyzing correlation between variables through their variance. A ROM is
obtained as the number of governing equations is compressed from Q variables to a reduced number of
principal components.

Training data are collected starting from high-fidelity simulations with the detailed kinetics mechanism.
The time evolution of each conserved variable is sampled across the computational domain. In this applica-
tion, the conserved variables correspond to the molar concentrations of the species in the detailed mechanism.
The samples are collected in matrix C, of size [n×Q] with n the number of observations or points in space
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(a) Single pulse in a stoichiometric C3H8-O2-Ar mixture
at 750 K and 1 atm.
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(b) Burst of pulses in a stoichiometric C2H4-air mixture
at 800 K and 0.5 atm.

Figure 1: Time evolution of the main species and radicals in a fuel-argon and fuel-air mixture.
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(b) Burst of pulses in a stoichiometric C2H4-air mixture
at 800 K and 0.5 atm.

Figure 2: Time evolution of the electron temperature Te (black dashed line) and electron number density ne
(orange line) in a fuel-argon and fuel-air mixture.

or time.
Prior to the analysis, it is essential to pre-process the data. This includes the removal of outlying obser-

vations and the scaling and centering operations. Outliers are the samples that are either very large or very
small in magnitude with respect to the others. The scaling and centering operations are essential in order
to compare the variables on the same scale in terms of variance. An overview of various scaling techniques
with applications to reacting flows is given in Parente et al.32 and summarized in Table 2.

Principal components are obtained through the solution of an eigenvalue problem on the covariance matrix
S, using the correlated samples in matrix C. The matrix of eigenvectors A, resulting from the eigenvalues L
in the single value decomposition, correspond to the principal components (also called scores),

S =
1

n− 1
CT C = ALAT (7)

A reduced representation is obtained by truncating the matrix of eigenvectors A to a smaller matrix
Aq containing only the variables that contain most of the variance in the system. The matrix of conserved
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variables C is consequently projected on a new base which is made up out of the columns of Aq,

Zq = CAq (8)

C̃q = ZqA
T
q (9)

Analyzing the latter, it is clear that the principal components are a linear combination of the original
variables. A reconstructed set of conserved variables C̃ can be retrieved by inverting Eq. 8.

In practice, it is necessary to rewrite the entire state space in terms of principal components to obtain a
consistent ROM. The governing equations are rewritten in terms of principal components Z, and the species
production source terms are projected onto the new base,

ωZ = ωCAq. (10)

A matrix-vector multiplication is performed every iteration in the solution process in order to retrieve the
conserved variables. These variables are necessary in order to calculate the thermodynamic and kinetic
evolution of the mixture. The computational cost of this operation is negligible with respect to the cost of
solving the ODEs.

The principal components or scores are a linear combination of the original variables,

z =

Q∑
j=1

bijcj i ∈ {1, ..., q} (11)

with z a score or principal component and cj the vector containing the original molar concentrations. The
weights, denoted by bij , are chosen to maximize the variance within the data. Analyzing these weights for
all scores contained in matrix Aq, gives insight into the reaction kinetics.

IV. Discussion

The application presented in this paper is the reduction of a detailed kinetics mechanisms for simulating
nanosecond pulse discharges in fuel-argon and fuel-air mixtures. Principal component analysis is applied on
high-fidelity data obtained with zero-dimensional reactor simulations. First, a model is produced a priori for
which various pre-processing techniques are compared. An interpretation of the principal component weights
is given with respect to the kinetics. The obtained reduced models are thereafter verified a posteriori with
new simulations.

A. Nanosecond pulse discharges in argon

1. PCA-based reduced order model

High-fidelity data are collected using the 0D reactor code with the detailed kinetics model for Ar-O2-C3H8.
The mixture is excited using a single nanosecond pulse discharge using the conditions described in Table 1.

Table 2: Scaling techniques for data pre-processing.

Method Scaling variable

auto (std) s (standard deviation)

level ȳ (mean value)

range max(y)−min(y)

max max(y)

Pareto
√
s

VAriable STability (vast) s2/ȳ
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Data are collected according to the integration time step of the ODE solver. More samples are collected
during the discharge phase to capture fast changes in composition. The pre-processing operation removes
outlying data points and centers and scales the training data. In order to detect the outliers, the distance
of each realization is measured with respect to the data center using the Mahalanobis distance,

DM = (C − C̄)TS−1(C − C̄), (12)

with matrix C̄ a matrix containing the average values of the variables. Observations for with a large DM are
discarded from the set.

The centering operation centers the samples for each variable, in our case each species molar concentration
c, by subtracting its average value c̄. Next, the centered data are scaled by dividing each variable by a scaling
factor s according to Table 2. An optimal scaling technique is determined by comparing the R2 error of the
reconstructed variables after PCA for a decreasing number of retained principal components q as shown in
Figure 3. The error is calculated as follows,

R2 =

∑
(c̃− c̄)2∑
(c− c̄)2

, (13)

with c̃ the reconstructed variables after PCA and c̄ the average value of the variable.

Figure 3 compares various scaling methods for H2O, H2, O, C3H8, OH and H. The optimal technique
for the main species H2O, H2, O and C3H8 is Pareto scaling. Up to 3 principal components, level scaling
remains the best method for the reconstruction of the radicals OH and H. There can be concluded that all
scaling methods perform in similarly up to a small amount of retained principal components. Pareto scaling
shows promising results for most of the species molar concentrations analyzed.

A scree graph is used to determine the optimal amount of principal components in the ROM. In such
a graph, the eigenvalue magnitude is plotted against the species index. A break between small and large
eigenvalues becomes apparent, and guides the selection of the optimal number of components q. Figure 4
presents the scree graph for 4 scaling techniques. Using max scaling, we observe a break after 25 principal
components. Similar results are obtained with level scaling. Using standard scaling, the number of retained
components increases to 30. No break is observed using Pareto scaling. From this scree graph we can there-
fore conclude that the optimal amount of principal components lies around 25. This results in an a priori
model reduction from 103 original variables to 25 principal components, resulting in a dimension reduction
of 76%.

A principal component is a linear combination of the original variables, in our case the species molar
concentrations (Eq. 11). The weights attributed to every variable describe the contribution of the conserved
variables to each principal component. Figure 5 shows the weights for the first 4 principal components in
reduced model with q = 25. The first principal component (PC1 in Figure 5a) shows major contributions
from O2(a1∆), C3H8, C3H6, C2H4 and H2O. Those species directly relate to the fuel-air plasma reactions
involving the oxygen metastable O2(a1∆). The importance of O2(a1∆) in oxygen discharges was demon-
strated in previous work by Franklin.34 The oxygen metastable species is known to have a low destruction
rate and is a long-lived species as demonstrated here. The species C3H8, C3H6, C2H4 and H2O clearly show
the main mechanism towards the oxidation of the fuel and their break-down towards smaller hydrocarbons.
Moreover, PC1 shows important contributions for the species nC3H7 and iC3H7.

The production of radicals occurs during energy deposition by the discharge pulse. In order to explore
this process, principal component analysis was repeated with a special focus on the data obtained in the first
20 nanoseconds of the simulation. Most of the variance, 93%, is carried by the first principal component.
This implies that the first principal component is representative of the discharge dynamics. Figure 6 shows
the weights attributed to species molar fractions in the first principal component. This component clearly
reflects the production of the primary radicals: Ar∗, O(1D) and O2(a1∆). The most important species is
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Figure 3: Comparison of the max, level, Pareto and standard scaling methods for the reconstruction of the
species molar concentrations. R2 error in function of the number of principal components q.
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Figure 4: Normalized eigenvalues against the principal component index for various scaling methods in case
(A).

the argon metastable Ar∗ created by electron impact reactions and consumed by quenching,

e− + Ar −−⇀↽−− Ar∗ + e−, (14)

Ar∗ + Ar −−⇀↽−− Ar + Ar, (15)

Ar∗ + Ar + Ar −−⇀↽−− Ar + Ar + Ar, (16)

Other reactions are the electron impact dissociation of oxygen,

e− + O2
−−⇀↽−− O + O(1 D) + e−, (17)

e− + O2
−−⇀↽−− 2 O(1 D) + e−. (18)

Ions are produced through the following ionization reaction,

e− + Ar −−⇀↽−− Ar+ + 2 e−, (19)

e− + O2
−−⇀↽−− O+

2 + 2 e−. (20)

Small quantities of the oxygen metastable O2(a1∆) are created via electron impact excitation,

e− + O2
−−⇀↽−− O2(a

1
∆) + e−. (21)

The de-excitation of the metastable form of argon results in the break-up of propane into propane as follows,

Ar∗ + C3H8
−−⇀↽−− Ar + C3H6 + 2 H. (22)

2. A posteriori analysis

The PCA-based ROM is used in new simulations to verify its performance. The a priori analysis demon-
strated that 25 principal components contain enough detailed information in order to represent the state-
space accurately. This optimal number may vary in the a posteriori evaluation of the model in which the
solution with the ROMs are compared to the reference solution. The number of principal components in
the model was lowered to 21 in optimized simulations. The number of conserved variables was reduced
from 103 species to 21 principal components. This corresponds to a dimensionality reduction of 80%. Fig-
ure 7a compares the time evolution of O, OH, H, and O(1D) between the detailed solution and the PCA
model with 21 components. An accurate reconstruction was obtained (R2 = 0.95 over the entire simulations).
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Figure 5: Principal component weights with the PCA-based model for argon at 750 K and 1 atm.
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Figure 6: Principal component weights in the discharge phase for case (A).
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(b) Time evolution of the first 4 principal components.

Figure 7: A detailed stoichiometric C3H8-O2-Ar mixture at 750 K and 1 atm (lines) was reduced to a
PCA-based model with 21 components (circles).

Figure 7b represents the time evolution of the principal components over the simulation with the PCA
model of 21 components. The first 4 components (full lines) carry most of the dynamical information. From
the Figure can be observed that the global evolution of the system is carried in principal component 1, while
components 2 and 3 model the discharge. Linking this to the weights in Figs. 5a-5d, we determine what
species are important in each phase of the simulation.

The ROM was trained with data obtained for one particular reactor configuration. Next we will inves-
tigate whether the PCA model with 21 components can be used outside its training conditions. This is an
important aspect to assess the applicability range of the reduced model. The input temperature will be
varied from 750 to 1250 K. The pressure remains constant at 1 atm. Results were accurate using the model
with 21 components. It was mandatory to increase the number of principal components to 40 in order to
reproduce a correct evolution of the species in the reactor. For a smaller number of principal components,
large discrepancies were observed in the species molar concentrations. Table 3 shows the R2 error on the re-
production of O, H, OH and H2O with the ROM of 40 principal components for initial temperatures ranging
from 750 to 1250 K. The model was not able to represent reactor simulations at lower temperatures than its
training temperature 750 K. Possible remedies are (1) training the PCA with a broader set of temperatures
or (2) allowing a large number of principal components in the reduced model. Future work will explore
different remedies to extend the applicability range of the PCA-based models.

Table 3: R2 value for O, OH, H2O and H obtained with 40 principal components outside the training
conditions of case (A).

T [K] O OH H H2O

750 1 1 1 1

850 0.9997 0.9985 0.9932 0.9995

950 0.9996 0.9961 0.9937 0.9065

1050 0.9991 0.9661 0.9935 0.7272

1150 0.9957 0.8861 0.9872 0.5676

1250 0.9878 0.6083 0.9714 0.4137

B. Nanosecond pulse discharges in ethylene-air

A final application of PCA is demonstrated on case (B) where we consider the plasma-assisted ignition of
a stoichiometric ethylene-air mixture at 0.5 atm and 800 K using multiple nanosecond pulse discharges.
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Following the same strategy, principal component analysis is applied on data obtained with the detailed
mechanism. A PCA-based model is derived a priori and evaluated with new simulations.

1. PCA-based reduced order model

Identical pre-processing settings are used to center and scale the data. This implies that the mean value
of each variable is subtracted from each observation. The performance of the scaling methods is evaluated
using the scree plot in Figure 8. Again, Pareto scaling is the best technique as it can represent the total
variance in the system with less principal components than the other methods. According to the scree plot
in Fig. 8, 100 principal components are sufficient to describe the detailed dynamics of the reactor.
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Figure 8: Normalized eigenvalues against the principal component index for various scaling methods in
ethylene-air.

Figure 9 shows the weights for the first four principal components. The first principal component (Figure
9a) shows major contributions of N2 and its first vibrational state N2(v1). This first principal component
is representative of the discharge phase. Main combustion species are represented in the second principal
component (Figure 9b together with N2(v1) and the oxygen metastable O2(a1∆). The vibrational levels are
well represented in the third principal component (Figure 9c). The oxygen metastables appear in the fourth
principal component together with dominant contributions of HO2 and H2O2 (Figure 9d).

2. A posteriori analysis

The a priori study presented a PCA-based model with 100 principal components for a single pulse discharge
in ethylene-air. However, in the a posteriori simulation of the model, this number could be reduced to 80
components. Figure 10a shows a comparison between the detailed model and the model with 80 components
for the time evolution of the number densities of CO2, O, OH, H and H2O. Excellent agreement is obtained.
Perfect agreement is shown in Figure 10b where the gas temperature is compared between the detailed model
and the PCA-base model with 80 components. The gas temperature increases with every pulse and thermal
equilibrium is obtained at 3018 K after 40 µs.

V. Conclusion

A detailed kinetics mechanism for nanosecond pulse discharges in fuel-argon and fuel-air mixtures was
reduced using principal component analysis. The C3H8-O2-Ar mixture containing 103 species and 876 reac-
tions, was reduced to 21 principal components. This corresponds to a dimension reduction of approximately
80%. Using the same strategy, a reduced model was retrieved for the plasma-assisted ignition of C2H4-air
using 80 principal components out of 163 species. The PCA model reduces the dimensionality by 50% in
this second application.
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Figure 9: Principal component weights for the reduced air model at 800 K and 0.5 atm using Pareto scaling.
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Figure 10: Time evolution of the main species and gas temperature comparing the detailed model (lines)
against the PCA-based model (circles) in stoichiometric ethylene-air at 0.5 atm and 800 K.

Pre-processing techniques were analyzed in an a priori study. The new variables in the reduced mecha-
nism, the principal components, directly relate to the original state-space as they are a linear combination of
the original variables. By analyzing the contribution of each original variable to the principal components,
conclusions can be drawn on key species with respect to the non-equilibrium physics.

The PCA-models were evaluated a posteriori with new numerical simulations. Good agreement was
obtained with respect to simulations with the detailed mechanism. The reduced mechanism can be used
outside its training conditions as demonstrated in a study where the inlet temperature was varied from 750
to 1250 K.

Future work will focus on extending the applicability of the PCA-based models to a larger range of reactor
conditions.
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