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ARTICLE INFO ABSTRACT

Keywords: Functionalization of dental and orthopedic implants with multiple bioactivities is desirable to obtain surfaces
Multifunctional surface with improved biological performance and reduced infection rates. While many approaches have been explored
Imp}ar}t . . to date, nearly all functionalized surfaces are static, i.e., non-responsive to biological cues. However, tissue
Antimicrobial peptide deli for impl. . ion f hangi ili £ cells that d d .

Osteoclasts remodeling necessary for implant integration features an ever-changing milieu of cells that demands a responsive
MMP biomaterial surface for temporal synchronization of interactions between biomaterial and tissue. Here, we
Antimicrobial successfully synthesized a multi-functional, dynamic coating on titanium by co-immobilizing GL13K antimi-

crobial peptide and an MMP-9 — a matrix metalloproteinase secreted by bone-remodeling osteoclasts — responsive
peptide. Our co-immobilized peptide surface showed potent anti-biofilm activity, enabled effective osteoblast
and fibroblast proliferation, and demonstrated stability against a mechanical challenge. Finally, we showed
peptide release was triggered for up to seven days when the multi-peptide coatings were cultured with MMP-9-
secreting osteoclasts. Our MMP-9 cleavable peptide can be conjugated with osteogenic or immunomodulatory
motifs for enhanced bone formation in future work. Overall, we envisage our multifunctional, dynamic surface to
reduce infection rates of percutaneous bone-anchored devices via strong anti-microbial activity and enhanced

Stimuli-responsive

tissue regeneration via temporal synchronization between biomaterial cues and tissue responses.

1. Introduction

Long-term implant fate is dictated by a “race” between microbial
colonization of the implant surface and tissue integration [1]. Bacterial
colonization of implant surfaces can lead to biofilm formation and
hamper cellular adhesion and tissue integration [2]. Rapid wound
healing and peri-implant bone regeneration could both reduce healing
times and infection [3]. Unfortunately, the generally bio-inert nature of
titanium (Ti; still the most widely-used material for manufacturing
dental and orthopedic implants due to its excellent mechanical proper-
ties, chemical stability, and biocompatibility) [4-6] has no ability to
harness the host’s immune system, is not beneficial to osteoprogenitors
and hinders rapid bone formation, and favors biofilm formation [7,8].
Titanium’s lack of bioactivity contributes to the failure rates for ortho-
pedic and dental implants, which comprehensive meta-analyses suggest
place at 12.2% and 17%, respectively [9,10]. High failure rates

combined with increasing number of implants placed each year - the
prevalence of dental implants could be as high as 23% of the entire adult
US population by 2026 — motivates the development of new materials
capable of increasing long-term success rates [11].

Functionalization of implant surfaces with bioactive molecules offers
a tempting solution for overcoming slow peri-implant bone regeneration
via immunomodulation, presentation of cell-instructive cues, and pre-
vention of biofilm formation [12-14]. A variety of bioactive molecules
including proteins [15-19], nucleotides [20,21], peptides [22-24], and
antimicrobial agents [25-27] have been immobilized to functionalize
titanium implants. However, these coatings typically display a single
biofunction, which may not offer sufficient simultaneous or
sequentially-controlled concerted relief against biofilm formation and
slow bone regeneration. A related, pernicious problem is that some
bioactive molecules facilitating enhanced osteoprogenitor activity are
also highly-stimulative for adhesion of bacteria compared to bare
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titanium [28]. One pertinent example is fibronectin - an extracellular
matrix protein commonly used to improve cell attachment - that ex-
presses a binding domain against Staphylococci spp. [29] A multifunc-
tional coating with the ability to enhance cellular responses and
simultaneously inhibit biofilm formation would be beneficial toward
reducing implant infection rates.

Another drawback of existing implant surface functionalization
methods - and implants as a whole - is they do not respond to physio-
logical cues; implant surfaces themselves are static. This has been widely
recognized for 3-dimensional tissue scaffolds, and as a result, a range of
materials responsive to internal or external stimuli such as pH, ionic
strength, magnetism, or enzymes have been developed [30-32]. How-
ever, this approach has been scarcely explored for biomaterial surfaces;
indeed, the traditional paradigm for biomaterial surfaces is stability
[33,34] with the notable exception of thermoresponsive surfaces for cell
sheet production [35,36]. Static surfaces are in opposition to bone
remodeling and implant site healing where an ever-changing milieu of
osteoprogenitor and immune cells demands a responsive biomaterial
surface [37,38]. As a result, dynamic implant surfaces for bone regen-
eration would be advantageous for synchronization of activity of
biomaterial cues that would accelerate tissue responses.

Here, we co-immobilized oligopeptides to obtain a multi-functional
dynamic surface toward the long-term goal of reducing bone-
anchored, transdermal, dental, and orthopedic implant failure. First,
we selected an antimicrobial peptide (AMP), GL13K, derived from the
human salivary Parotid Secretory Protein (BPIFA2) [39]. AMPs gener-
ally feature low host cytotoxicity, low bacterial resistance, and broad
spectrum activity against Gram negative and Gram positive bacteria,
fungi, and viruses [40,41]. Second, we selected a matrix metalloprotease
9 (MMP-9) cleavable peptide (MMP9-CP) [42]. MMPs are zinc-
dependent proteases responsible for degradation of extracellular ma-
trix (ECM) components including collagen, fibronectin, and various
proteoglycans during normal remodeling and repair processes [43,44].
MMP cleavable sequences have been applied in bio-degradable scaffolds
for tissue engineering and regenerative medicine [45,46]. including
MMP-9 sensitive sequences [47,48]. However, the covalent immobili-
zation of MMP cleavable peptides on solid substrates for the purpose of
controlled release of bioactive motifs has been much less investigated
[49,50].

MMP-9 is highly expressed and involved in osteoclast-mediated bone
remodeling and during initial implant site clearing, as well as secreted
by inflammatory cells such as neutrophils, macrophages, and B-lym-
phocytes [51-53]. This expression profile make the selected MMP9-CP
an excellent candidate for enzyme-mediated release since the stimuli
(MMP-9 expression) would be a physiologically-normal inflammatory
reaction or remodeling process when tissue healing and bone formation
after surgical implantation is most active [54]. MMP9-CP can be easily
coupled with bone regenerative peptides [55,56] or immunomodulatory
motifs [57] in the future to build a multifunctional coating with com-
bined antimicrobial and enhanced bone regeneration and healing ac-
tivity triggered by active bone remodeling.

Here, we demonstrate in vitro that a multi-functional, dynamic
surface composed of co-immobilized AMP and MMP9-CP showed
simultaneous strong antimicrobial activity against an early colonizer of
oral surfaces and responsiveness to enzymatic activity mediated by
protease secretion from osteoclasts.

2. Material and methods
2.1. Fabrication of multi-peptide coatings

Peptide coatings on Ti surfaces were prepared through a three step
method. Ti was first activated by NaOH etching and then silanized using
(3-chloropropyl)triethoxysilane (CPTES). Immobilization of mono or co-
immobilized coatings on CPTES-modified Ti surfaces was then per-
formed as we have described [23,58,59].
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Commercially pure titanium Grade II discs (McMaster-Carr) were
ground, polished, and soaked in 5 M NaOH overnight at 60 °C to form
reactive —OH groups on Ti surfaces (eTi group). Samples were then
placed in 7 mL anhydrous pentane, 1.2 mL (3-chloropropyltriethox-
ysilane (CPTES; Sigma-Aldrich) and 0.6 mL diisopropylethylamine
(DIEA; Sigma-Aldrich). Periodic two minute ultrasonication cycles were
applied every ten minutes for one hour. GL13K and MMP9-CP peptides
(purity>98%) were synthesized by solid-phase peptide synthesis and
purchased from AAPPTec (Louisville, KY). Covalent immobilization of
peptides was accomplished by immersing silanized Ti discs into a mixed
solution with 0.1 mM GL13K (GKIIKLKASLKLL-NH,) and 0.1 mM
MMP9-CP (KKGGGPLGMYS) in 0.5 mg/mL NayCOs overnight as
described below. The two additional lysines and three glycines in
MMP9-CP were used to promote surface orientation at the N-terminus
and as spacers, respectively [24,60].

The effect of synthesis conditions on co-immobilization was assessed;
namely, solution pH and sequential or simultaneous addition of pep-
tides. Our purpose was to systemically discern reaction conditions that
favored a balanced surface ratio of each peptide on the surface (i.e.,
obtain surface multifunctionality). Ti samples were treated with three
different treatments: 1) silanized Ti disc were submerged in a solution of
GL13K for 3.5 h (pre-immobilized with GL13K), followed by adding
MMP9-CP peptide and co-immobilizing overnight; 2) silanized Ti discs
were submerged in MMP9-CP solution for 3.5 h (pre-immobilized with
MMP9-CP), followed by adding GL13K peptide and co-immobilizing
overnight; 3) silanized Ti discs were submerged in a solution of mixed
GL13K and MMP9-CP (1:1 by mole) peptides and simultaneously co-
immobilized with the two peptides overnight. Three pHs (9.5, 10.5,
and 11.5) for peptide immobilization were tested for each treatment (3
treatment groups x 3 pH groups yielding 9 total groups) to obtain
different surface ratios of GL13K and MMP9-CP. Ti surfaces function-
alized with only one of the two peptide - GL13K (mono-immobilized
GL13K group) or MMP9-CP (mono-immobilized MMP9-CP group) - were
prepared by submerging silanized Ti discs in GL13K only or MMP9-CP
only solution (both at pH = 9.5) overnight as controls.

2.2. Selection of best peptide co-immobilization condition

Fluorescently labeled GL13K-FAM and MMP9-CP-TAMRA (>95%
purity) were covalently immobilized on Ti surface alone (mono-immo-
bilized GL13K and mono-immobilized MMP9-CP groups) or combined
under different co-immobilization conditions (9 total experimental
conditions plus 2 mono-immobilized controls) as described above.
Samples were collected after immobilization, rinsed with distilled water
and acetone, and the fluorescence signal on surfaces were measured
with a Synergy TM 2 multi-mode microplate reader (BioTek). GL13K
signal intensity was measured as surface optical density (OD) value at a
wavelength of 485/528 nm and MMP9-CP was read at 575/620 nm.
Surface fluorescence were also observed under a multi-channel fluo-
rescent microscope (Eclipse E800, Nikon). Three samples were used per
group.

2.3. X-ray photoelectron spectroscopy (XPS)

XPS was performed (SSX-100, Al Ka x-ray, 1 mm spot size, 35° take-
off angle) to characterize the atomic composition of the surface. Survey
scans (0-1100 binding energy, 4 scans/sample) were done ata 1 eV step-
size. The peak fittings and semi-quantification of surface chemical
composition were conducted using ESCA 2005 software provided with
the XPS system.

2.4. Mechanical stability of the coatings
The surface prepared under best co-immobilization condition (sur-

face pre-immobilized with GL13K, pH = 9.5 (Mixture group); selection
rationalization described in Results) and mono-immobilized MMP9-CP
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were mechanically-challenged by ultrasonication in deionized water for
2 h and incubated for one week in deionized water at 37 °C. Fluores-
cence visualization of the surfaces was performed with fluorescence
microscopy (Leica DM6 B) and quantified using ImageJ (NIH, USA).
Control eTi served as a background control. Three samples, with three
micrographs taken per sample, were used per group.

2.5. Antimicrobial activity of the coatings

Streptococcus gordonii M5 was inoculated in 2 mL Bacto Todd-Hewitt
broth (BD Biosciences). This overnight culture was diluted ten-fold with
0.9% NaCl and then fifty-fold with Todd-Hewitt broth. Four groups of Ti
discs (eTi, GL13K coated Ti, MMP9-CP coated Ti and Mixture peptide
coated Ti; three samples per group) were placed under UV for ten mi-
nutes and then placed into a 48-well plate. One mL of the diluted culture
was added to each well and incubated at 37 °C under mild shaking for
24 h. The discs were then removed and carefully rinsed with 1 mL NaCl
solution three times. The discs were transferred to a new 48-well plate
and incubated for additional two hrs. After incubation, Ti discs were
thoroughly rinsed with 0.9% NaCl to remove loosely attached bacteria
and then sonicated in 300 pL NaCl for 10 min to collect adhered bacteria
on the surface. One hundred pL of the collected solution was mixed with
100 pL of the BacTiter-Glo™ Microbial Cell Viability kit (Promega) in an
opaque 96-well plate. After five minutes of incubation at 37 °C, the
luminescence was measured by a microplate luminometer (BioTek).
Another 100 pL of collected solution was used for measuring colony-
forming units (CFU). Briefly, 100 pL of the obtained solution was
diluted serially 10, 100, 1000 and 10,000-fold. Then, 10 pL of solutions
at each concentration were plated on Todd-Hewitt Agar plates and
incubated overnight at 37 °C in a humidified atmosphere of 5% CO». The
number of CFU was then quantified.

2.6. Evaluation of coating cytocompatibility

MC3T3-E1 murine pre-osteoblast cells (ATCC CRL-2593) were
grown in MEM-a complete medium containing 10% fetal bovine serum
and 1% penicillin-streptomycin (all Thermo Fisher Scientific). NIH-3 T3
murine fibroblast cells (ATCC CRL-1658) were grown in DMEM medium
10% fetal bovine serum, and 1% penicillin-streptomycin (all Thermo
Fisher Scientific). Media was changed in the wells every 48 h. MC3T3
murine osteoblast cells and NIH3T3 fibroblast cells were seeded on eTi,
Mixture, and tissue culture polystyrene control surfaces (TCPS) and MTT
(3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assays
(Thermo Fisher Scientific) were performed after 24, 72 and 168 h of
culture. Samples were measured at 570 nm to determine cell metabolic
activity (proliferation) [61]. Five samples for each group were taken at
each time interval. Substrates were also washed with phosphate buff-
ered saline (PBS) and fixed with 4% paraformaldehyde for 10 min at
room temperature after 24 and 120 h. Nuclei were stained with DAPI
and observed using a fluorescence microscope (Eclipse E800, Nikon,
Japan).

2.7. MMP-9 cleavable peptide release with osteoclast secreted MMP-9

2.7.1. Primary osteoclast culture

C57BL/6 (wild type; WT) mice were obtained from Jackson Labo-
ratory, Bar Harbor, ME, USA. The use and care of these mice were
reviewed and approved by the University of Minnesota Institutional
Animal Care and Use Committee, IACUC protocol number 1806A36053.
Tibiae and femora were dissected from WT mice and adherent tissue was
removed. Primary bone marrow macrophages were isolated by flushing
the bone marrow from the tibiae and femora. Red blood cell lysis buffer
(150 mM NH4Cl, 10 mM KHCOg3, 0.1 mM EDTA, pH = 7.4), was used to
lyse red blood cells from the flushed bone marrow. The resulting cells
were then plated in 10 cm tissue culture dishes (TPP, MidSci) and
cultured overnight in osteoclast media (phenol red-free alpha-MEM
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(Gibco), 400 mM i-Glutamine (Invitrogen), 25 units/mL penicillin/
streptomycin (Invitrogen), and with 5% (by volume) heat inactivated
fetal bone serum (Atlanta Biologicals) and supplemented with 1.5%
CMG 14-12 [culture supernatant containing M-CSF (macrophage stim-
ulating colony-stimulating factor); Dr. Sunao Takeshita, Nagoya City
University, Nagoya, Japan] [62]. Non-adherent cell populations,
including osteoclast precursor cells, were removed and replated on top
of bone slices placed in transwell inserts (Corning) at a concentration of
1 x 10° cells per well in osteoclast media supplemented with 1.5% CMG
culture supernatant; MMP9-CP or Mixture surfaces were in the bottom
portion of the well (one disc per well). Cells were refed every two days
with osteoclast media containing 1.5% CMG plus 10 ng/mL of RANKL
(R&D Systems) to initiate osteoclast differentiation for up to 7 days [63].

2.7.2. Immunofluorescence of MMP-9

To visualize protein expression of MMP-9 in osteoclasts, cells that
were grown on the bone slices were fixed in 4% paraformaldehyde for
20 min following 7 days in culture. The cells were then washed with
PBS, and permeabilized in PBS/0.3% Triton X-100 for 5 min. Discs were
then blocked in immunofluorescence buffer (3% BSA, 20 mM MgCl,,
0.3% Tween-20 in PBS) for 20 min and incubated at 4 °C with an MMP-9
(Abcam, ab38898) primary antibody for 3.5 h in immunofluorescence
buffer. MMP-9 antibody was used 1:40. Cells were then washed three
times for 5 min with PBS/0.1% Triton X-100. Cells were then incubated
for 1.5 h with an Alexa-conjugated secondary antibodies at 1:200
(Invitrogen, A21428). Cells were then again washed three times for 5
min with PBS/0.1% Triton X-100. Cells were stained with DAPI, washed
with PBS and bone slices were placed on glass slides for imaging. Images
were obtained using an Olympus BX51 microscope.

2.7.3. Evaluation of MMP-9 cleaving activity of co-immobilized coatings
with osteoclasts

A 40 pL aliquot of osteoclast media was taken each day after plating
and read on a platereader at 575/620 nm (corresponding to MMP9-CP-
TAMRA, where the fluorophore may function as mock, conjugated cargo
for release) for Mixture and mono-immobilized MMP9-CP. In parallel,
ten-fold dilutions of neat MMP9-CP in osteoclast media were incubated
and read at each timepoint along with the aliquot. An individual stan-
dard curve (MMP9-CP in culture media) was read at each timepoint to
determine MMP9-CP release taking into account possible changes in
fluorescence signal strength associated with incubation in solution for
extended times [64]. Fluorescence background was subtracted by hav-
ing an additional set of mono-immobilized MMP9-CP and Mixture sur-
faces cultured without osteoclast (i.e., without MMP-9). Finally, release
since the last timepoint (i.e., new release) was determined taking media
changes or lack thereof since the last timepoint into account. Three
samples were used per condition; this experiment was performed twice.

2.8. Statistical analysis

Statistically significant differences among groups were assessed
using a one-way ANOVA with a Dunnett post hoc test for antimicrobial
activity (control: eTi). A one-way ANOVA with a Tukey post hoc test was
used for MTT metabolic activity within each time point. A Student’s t-
test was used to compare proliferation within each time point and to
compare MMP9-CP osteoclast-mediated release within each time point.
A Student’s t-test was also used to compare MMP9-CP mono-immobi-
lized fluorescent intensity after challenges compared to Mixture MMP9-
CP. Statistical significance for all tests was assessed at p < 0.05.

3. Results and discussion
3.1. Fabrication of multi-peptide coatings

Co-immobilized biofunctionalized Ti surfaces were obtained through
a three-step method (etching/surface activation + silanization/coupling
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Fig. 1. Reaction scheme and fluorimetry of co-immobilized peptide surfaces and mono-peptide control surfaces. (A) Reaction scheme showing the chemical route of
three-step immobilization. (B) OD values of fluorescently-labeled GL13K (green) and MMP9-CP (red) peptides on mono-immobilized MMP9-CP surfaces; mono-
immobilized GL13K surfaces; pre-immobilized GL13K at three pHs (pH = 9.5, 10.5, and 11.5); pre-immobilized MMP9-CP at three pHs; and simultaneous co-
immobilization at three pHs. Merged channel fluorescence micrographs of co-immobilized peptides for (C) pre-immobilized GL13K at pH = 9.5 (‘Mixture’
coating in following Figures), (D) pre-immobilized MMP9-CP at pH = 9.5, and (E) simultaneously co-immobilized at pH = 9.5. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

agent + peptide tethering) using CPTES as a coupling agent (Fig. 1A).
CPTES enabled the final covalent bonding of the peptides to the silan-
ized surface by a direct nucleophilic substitution between free amines of
the peptides (nucleophile) and chlorine atoms from the organofunc-
tional groups of CPTES (leaving group) [65]. GL13K (GKIIKLKASLKLL-
NH;) has four lysines plus its N-terminus that are potential sites of
immobilization; our previous work has shown that the antimicrobial
activity of GL13K is insensitive to site-specificity [66]. To favor the

surface orientation of MMP9-CP (KKGGGPLGMYS; cleavable at
PLGMYS) at the N-terminus, we designed our peptide with two addi-
tional lysines - each one providing a potentially reacting free amine - like
in previous work [24]. Three glycines were used as a spacer [60] be-
tween the lysines and the enzyme cleavable domain.

The co-immobilization of the mixed peptides was conducted in 9
different conditions; all combinations of three different solution pHs and
three immobilization orders of adding the peptides in order to find
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Fig. 2. Chemical analysis and stability of Mixture pep-
tide coatings. (A) Chemical analysis (XPS) of immobilized
peptides surfaces and controls (eTi and eTi-sil). B) XPS
atomic % ratio (At.% ratio). (C) Fluorescent micrographs
of co-immobilized peptide Mixture surfaces (GL13K:
green, MMP9-CP:red, Merged:yellow). (D) Fluorescent
intensity of mono-immobilized MMP9-CP and co-
immobilized peptide Mixture surfaces after ultra-
sonication in deionized water for 2 h and incubation in DI
water for one week at 37 °C compared as a percentage of
newly synthesized surfaces. * denotes a statistically sig-
nificant difference between MMP9-CP fluorescent in-
tensities on mono-immobilized MMP9-CP vs. Mixture
surfaces. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web
version of this article.)

<
<

reaction conditions that favored balanced co-immobilization (Fig. 1B).
pH was explored as a variable because charge can affect competitive
electrostatic attraction/repulsion between GL13K and MMP9-CP as they
move from solution to the CPTES-silanized surface [67]. The order of
adding GL13K and MMP9-CP for immobilization was explored because
adsorption and covalent attachment kinetics may differ between each
peptide [68]. Surfaces co-immobilized with the peptides simultaneously
showed red MMP9-CP dominating the surface leading to a weak GL13K
green signal (Fig. 1E). Surfaces pre-immobilized with MMP9-CP for 3.5
h before adding GL13K again showed a weak GL13K signal (Fig. 1D).
However, relatively similar signals were detected for both peptides
(Fig. 1C) when surfaces were pre-immobilized with GL13K for 3.5 h
before adding MMP9-CP. These results suggest MMP9-CP has a higher
affinity to CPTES-silanized Ti surfaces than GL13K. GL13K has more
lysines (four) in its sequence than MMP9-CP (only two lysines), which
provide more amine groups to favor the nucleophilic immobilization
reaction. However, the lysines in GL13K are scattered through the
sequence (disregarding potential formation of secondary structures and/
or supramolecular assemblies of either peptide in solution) while the
lysines are clustered in the N-terminal of MMP9-CP; this clustering may
cause a higher polarization of the MMP9-CP molecules that may favor
the electrostatic attraction and, thus, immobilization of MMP9-CP over
GL13K. Additionally, the MMP9-CP peptides contain fewer number of
hydrophobic amino acids than the GL13K, rendering a more polar
peptide, which has been shown as the preferential physical-chemical
property governing adsorption of GL13K on solid substrates [69].
These factors may explain the need for GL13K pre-immobilization for a
more “balanced” peptide co-immobilized coating. Solution pH might
also influence the peptide co-immobilization. However, as the isoelec-
tric points are rather similar between these two peptides (GL13K; pH =
11.01 and MMP9-CP; pH = 10.08), pH likely had a minor effect on the
selection of the peptide preferentially immobilized on the silanized Ti
surfaces. Results showed (Fig. 2A) relatively similar signals on pre-
immobilized GL13K and MMP9-CP as well as simultaneously co-
immobilized at each of three pHs. Within the pre-immobilized GL13K
group, pH = 9.5 seemed to favor a balanced peptide co-immobilization.
Therefore, the optimized condition for co-immobilization was selected
as pH = 9.5 with surfaces pre-immobilized with GL13K (“Mixture”
group henceforth).

3.2. Chemical characterization of multi-peptide mixture coating

XPS results confirmed the successful immobilization of the peptide
coatings on Ti surfaces. A more detailed XPS analysis of mono-
immobilized GL13K may be found in our previous work [23]. Fig. 2A
shows the elemental composition of the treated surfaces (survey
spectra). eTi surfaces revealed characteristic Cls (ca. 285 eV), Ti2p (ca.
460 eV) and O1s (ca. 530 eV) peaks. All of the surfaces with covalently
immobilized peptides (GL13K, MMP9-CP, and Mixture) showed a strong

nitrogen signal (N1s peak at ca. 400 eV) attributable to amino acids
suggesting the successful immobilization of peptides on Ti surfaces.
Quantification of XPS atomic % ratios (Fig. 2B) demonstrated a N1s/
Ti2p ratio, again attributable to amino acids immobilized on a Ti sur-
face, of between 1.44 and 1.68 for GL13K, MMP9-CP, and Mixture.

3.3. Mechanical stability of the multi-peptide mixture coating

In order to test the stability of the peptide coatings, we ultrasonicated
the Mixture surface in distilled water for 2 h and re-examined the signal
of fluorescently labeled peptides after this mechanical challenge. Fig. 2C
demonstrates that newly synthesized surfaces produced both green
(GL13K) and red (MMP9-CP) homogenous signals and the merging of
those two showed yellowish images, as expected. Both green and red
signal were strongly retained on the Mixture surface after ultra-
sonication (GL13K: 97.2 + 11.4% and MMP9-CP: 89.09 + 27.0% of
newly synthesized) and incubation at 37 °C in DI water (GL13K: 90.8 +
18.9% and MMP9-CP: 87.67 + 14.36%) for one week, indicating the
robust stability of both GL13K and MMP9-CP peptides (Fig. 2D), and
again suggesting that sequential immobilization of the two different
peptides did not hinder tethering of the second peptide, MMP9-CP in this
case. Mono-immobilized MMP9-CP showed less stability (ultra-
sonication: 64.6 + 14.8%; one week incubation: 47.11 + 27.2%), sug-
gesting the hydrophobic GL13K helps protect against peptide loss. This
peptide loss is likely due to hydrolysis of the anchoring silane layer but
further investigation is needed to confirm this [70]. Additional work is
necessary to confirm peptide biological activity after incubation,
although our past work has shown GL13K demonstrates antimicrobial
potency after 18 days when adsorbed to dentin under incubation with a
highly cariogenic biofilm [71].

3.4. Antimicrobial activity of the multi-peptide mixture coating

The antimicrobial activity of the mixture surfaces were evaluated
with S. gordonii, a primary colonizer on oral surfaces that provides
attachment for subsequent pathogenic biofilm formation by other spe-
cies such as Porphyromonas gingivalis [72,73]. We selected a 24 h culture
time based on past work that showed robust biofilm formation after this
time period on control substrates [74-76]. S. gordonii has also been
found in the microbiota of colonizing bacteria after dental implants
surgery [77]. eTi, mono-immobilized GL13K, and MMP9-CP surfaces
were used as controls. Our previous work has shown that GL13K pos-
sesses strong antimicrobial activity against S. gordonii [78]. Indeed, we
have previously shown in a drip flow biofilm reactor, which enables in
vitro simulation of some of the important conditions for bacteria biofilm
development in vivo, GL13K immobilized on titanium is antimicrobial
against S. gordonii after 3 days of culture [78]. Similarly, we showed
GL13K retained antimicrobial activity when elastin-like recombinamers
terminated with GL13K where immobilized on titanium and oral
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Fig. 3. Antimicrobial activity of Mixture peptide coatings against S. gordonii. (A) CFU/mL and (B) ATP RLU of control eTi, mono-peptide GL13K and MMP9-CP

coatings and co-immobilized peptides Mixture coating. * denotes a statistically significant difference compared to eTi control.
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Fig. 4. Cytocompatibility of Mixture peptide coatings and control eTi and TCPS surfaces with pre-osteoblasts and fibroblasts. (A) Metabolic activity of pre-osteoblasts
through 168 h. (B) Representative fluorescence micrographs of DAPI-stained pre-osteoblasts. (C) Metabolic activity of fibroblasts through 168 h. (D) Representative

fluorescence micrographs of DAPI-stained fibroblasts. A bar denotes no statistically significant differences between groups at each timepoint.

microcosm biofilms were cultured in a drip flow biofilm reactor for 7 bacteria viability (shown by CFU values; Fig. 3A) and metabolism
total days [79]. (shown by ATP values; Fig. 3B) on GL13K surfaces in comparison with
In this work (Fig. 3), we also observed the significantly reduced eTi surfaces. Notably, the Mixture surface obtained comparable

N



N.G. Fischer et al.

GL13K

MMP-9
Cleavable

Osteoclast

Bone

Materials Science & Engineering C 125 (2021) 112108

204 —* MMP9-CP .
- = Mixture

154

104

New Peptide Release (ng)
w0
1

o

=}
-
N
w
IS
o
o
~

Time (days)

€ MMP-9

607 o MMP9-CP

- = Mixture

N
e

n
=3
1

Cumulative Peptide Release (ng)

Time (days)

Fig. 5. Osteoclast-secreted MMP9-CP peptide release profile of mono-immobilized MMP9-CP and Mixture peptide coatings. (A) Schematic of experimental set-up
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tracted. * denotes a statistically significant difference between MMP9-CP and Mixture. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

antimicrobial effect as mono-immobilized GL13K. On the other hand,
mono-immobilized MMP9-CP did not display a significant antimicrobial
effect, indicating the strong antimicrobial activity on the Mixture sur-
face was exclusivity due to GL13K. This confirmed that a completely
homogenous layer of GL13K (i.e., mono-immobilization) is not neces-
sary for potent antimicrobial activity [80] and that co-immobilization
did not hinder the activity of GL13K. Further work will be required to
confirm these findings under more in vivo simulatory settings or in
animal studies. Indeed, development of animal models for testing po-
tency of antimicrobial materials/coatings is an unaddressed challenge in
the field. Recent reviews [81,82] have noted the lack of guidelines and/
or standards, “enormous” microbial dosing required to generate wounds
in young animals, and under-powered models.

3.5. Cytocompatibility of the multi-peptide mixture coating

We next evaluated the cytocompatibility of our Mixture coating
compared to eTi and tissue culture polystyrene (TCPS). Our long-term
goal is multifunctional coatings with combined antimicrobial and
enhanced bone regenerative activity triggered by active bone remodel-
ing. As a result, we tested cytocompatibility using pre-osteoblasts
(Fig. 4A and B) and fibroblasts (Fig. 4C and D) (as bone-anchored
transdermal implants can come into contact surrounding soft tissues)
[83] for up to 168 h (7 days) of culture. Our results showed no statis-
tically significant differences in metabolic activity between Mixture
surfaces compared to control eTi and TCPS for both pre-osteoblasts
(Fig. 4A) and fibroblasts (Fig. 4C). DAPI-staining showed similar num-
ber of nuclei per field of view (Fig. 4B - pre-osteoblasts and Fig. 4D -
fibroblasts) between groups with a clear increase in the number of cells
in all groups from 24 to 120 h (5 days). These results are in agreement
with our previous results for mono-immobilized GL13K?*® and overall

suggest these coatings allow cellular proliferation and are cytocompat-
ible to a similar extent as the gold-standard controls eTi and TCPS.

3.6. MMP9-CP release from multi-peptide mixture coating mediated by
osteoclast secreted MMP-9

We measured the release profile of the MMP9-CP peptide carrying a
fluorescent probe to prove the dynamic response of our MMP-9 sensi-
tive, multifunctional surface, in the presence of MMP-9 secreted by os-
teoclasts. We used a transwell to culture osteoclasts on bone slices in the
upper well to stimulate MMP-9 production to cleave MMP9-CP from
mono-immobilized MMP9-CP and Mixture surfaces in the bottom well
(Fig. 5A, top). We collected aliquots everyday post- seeding for up to a
week, where osteoclast differentiation was initially stimulated at day 2
via the addition of RANKL (Fig. 5A, bottom left) [84]. The release profile
of MMP-9 from osteoclasts is well described (increasing after RANKL
addition toward a peak at 5 days; this corresponds to our day 7) [85] and
we confirmed MMP-9 expression in our system at day 7 (Fig. 5A, bottom
right). The release profile was plotted as new release since the previous
timepoint (Fig. 5B) and as cumulative release (Fig. 5C) of mono-
immobilized MMP9-CP and Mixture. A slight decrease in release be-
tween days 1 and 2 (Fig. 5B) suggests desorption of non-covalently
sorbed peptides to the surface, perhaps from insufficient washing prior
to testing. Both mono-immobilized MMP9-CP and Mixture showed
similar release kinetics but we attribute the greater MMP9-CP release
from mono-immobilized MMP9-CP to the presence of hydrophobic
GL13K (which is hydrolytically and proteolytically stable) [86,87] likely
inhibiting water penetration and enzyme accessibility to the Mixture
surface. Mixture’s lower release also likely relates to a lower overall
surface loading of MMP9-CP on the mixture surface as it competes with
GL13K for a finite number of chlorine atoms from the organofunctional
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groups of CPTES on the surface. However, the reduced release of MMP9-
CP on the mixture surface may benefit long-term delivery of the bioac-
tive motif it carries (e.g. bone regenerative or immunomodulatory
motif) to achieve extended release profiles.

Future work will focus on the conjugation of osteogenic and immu-
nomodulatory motifs onto MMP9-CP for enhanced bone healing utiliz-
ing these release profiles. Possible candidates include Ln2-P3
(DLTIDDSYWYRI) [88], which enhances peri-implant bone regeneration
[89,90], or angiopoietin-1 (QHREDGS) [91] which similarly stimulates
osteogenic differentiation of osteoprogenitors when immobilized on Ti
[92]. Immunomodulatory peptide candidates include the well-used RGD
peptide that has an inhibitory effect on neutrophil chemotactic activity
and phagocytic functionality and can reduce both phagocytosis and pro-
inflammatory cytokine production in stimulated and unstimulated
macrophages [93,94]. IDR-1018 [95], an otherwise antimicrobial pep-
tide, is another possible candidate known to blunt macrophage proin-
flammatory cytokine production.

4. Conclusion

We have successfully engineered a dynamic, multi-functional pep-
tide-based coating on titanium with antimicrobial and MMP-9 mediated
release activity for synchronization of selected potential biological ac-
tivities during bone remodeling. We envisage our coatings to reduce
infection rates and overall enhance the success rates of all percutaneous,
bone-anchored devices.
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