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A B S T R A C T   

Functionalization of dental and orthopedic implants with multiple bioactivities is desirable to obtain surfaces 
with improved biological performance and reduced infection rates. While many approaches have been explored 
to date, nearly all functionalized surfaces are static, i.e., non-responsive to biological cues. However, tissue 
remodeling necessary for implant integration features an ever-changing milieu of cells that demands a responsive 
biomaterial surface for temporal synchronization of interactions between biomaterial and tissue. Here, we 
successfully synthesized a multi-functional, dynamic coating on titanium by co-immobilizing GL13K antimi
crobial peptide and an MMP-9 – a matrix metalloproteinase secreted by bone-remodeling osteoclasts – responsive 
peptide. Our co-immobilized peptide surface showed potent anti-biofilm activity, enabled effective osteoblast 
and fibroblast proliferation, and demonstrated stability against a mechanical challenge. Finally, we showed 
peptide release was triggered for up to seven days when the multi-peptide coatings were cultured with MMP-9- 
secreting osteoclasts. Our MMP-9 cleavable peptide can be conjugated with osteogenic or immunomodulatory 
motifs for enhanced bone formation in future work. Overall, we envisage our multifunctional, dynamic surface to 
reduce infection rates of percutaneous bone-anchored devices via strong anti-microbial activity and enhanced 
tissue regeneration via temporal synchronization between biomaterial cues and tissue responses.   

1. Introduction 

Long-term implant fate is dictated by a “race” between microbial 
colonization of the implant surface and tissue integration [1]. Bacterial 
colonization of implant surfaces can lead to biofilm formation and 
hamper cellular adhesion and tissue integration [2]. Rapid wound 
healing and peri-implant bone regeneration could both reduce healing 
times and infection [3]. Unfortunately, the generally bio-inert nature of 
titanium (Ti; still the most widely-used material for manufacturing 
dental and orthopedic implants due to its excellent mechanical proper
ties, chemical stability, and biocompatibility) [4–6] has no ability to 
harness the host’s immune system, is not beneficial to osteoprogenitors 
and hinders rapid bone formation, and favors biofilm formation [7,8]. 
Titanium’s lack of bioactivity contributes to the failure rates for ortho
pedic and dental implants, which comprehensive meta-analyses suggest 
place at 12.2% and 17%, respectively [9,10]. High failure rates 

combined with increasing number of implants placed each year – the 
prevalence of dental implants could be as high as 23% of the entire adult 
US population by 2026 – motivates the development of new materials 
capable of increasing long-term success rates [11]. 

Functionalization of implant surfaces with bioactive molecules offers 
a tempting solution for overcoming slow peri-implant bone regeneration 
via immunomodulation, presentation of cell-instructive cues, and pre
vention of biofilm formation [12–14]. A variety of bioactive molecules 
including proteins [15–19], nucleotides [20,21], peptides [22–24], and 
antimicrobial agents [25–27] have been immobilized to functionalize 
titanium implants. However, these coatings typically display a single 
biofunction, which may not offer sufficient simultaneous or 
sequentially-controlled concerted relief against biofilm formation and 
slow bone regeneration. A related, pernicious problem is that some 
bioactive molecules facilitating enhanced osteoprogenitor activity are 
also highly-stimulative for adhesion of bacteria compared to bare 
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titanium [28]. One pertinent example is fibronectin - an extracellular 
matrix protein commonly used to improve cell attachment - that ex
presses a binding domain against Staphylococci spp. [29] A multifunc
tional coating with the ability to enhance cellular responses and 
simultaneously inhibit biofilm formation would be beneficial toward 
reducing implant infection rates. 

Another drawback of existing implant surface functionalization 
methods - and implants as a whole - is they do not respond to physio
logical cues; implant surfaces themselves are static. This has been widely 
recognized for 3-dimensional tissue scaffolds, and as a result, a range of 
materials responsive to internal or external stimuli such as pH, ionic 
strength, magnetism, or enzymes have been developed [30–32]. How
ever, this approach has been scarcely explored for biomaterial surfaces; 
indeed, the traditional paradigm for biomaterial surfaces is stability 
[33,34] with the notable exception of thermoresponsive surfaces for cell 
sheet production [35,36]. Static surfaces are in opposition to bone 
remodeling and implant site healing where an ever-changing milieu of 
osteoprogenitor and immune cells demands a responsive biomaterial 
surface [37,38]. As a result, dynamic implant surfaces for bone regen
eration would be advantageous for synchronization of activity of 
biomaterial cues that would accelerate tissue responses. 

Here, we co-immobilized oligopeptides to obtain a multi-functional 
dynamic surface toward the long-term goal of reducing bone- 
anchored, transdermal, dental, and orthopedic implant failure. First, 
we selected an antimicrobial peptide (AMP), GL13K, derived from the 
human salivary Parotid Secretory Protein (BPIFA2) [39]. AMPs gener
ally feature low host cytotoxicity, low bacterial resistance, and broad 
spectrum activity against Gram negative and Gram positive bacteria, 
fungi, and viruses [40,41]. Second, we selected a matrix metalloprotease 
9 (MMP-9) cleavable peptide (MMP9-CP) [42]. MMPs are zinc- 
dependent proteases responsible for degradation of extracellular ma
trix (ECM) components including collagen, fibronectin, and various 
proteoglycans during normal remodeling and repair processes [43,44]. 
MMP cleavable sequences have been applied in bio-degradable scaffolds 
for tissue engineering and regenerative medicine [45,46]. including 
MMP-9 sensitive sequences [47,48]. However, the covalent immobili
zation of MMP cleavable peptides on solid substrates for the purpose of 
controlled release of bioactive motifs has been much less investigated 
[49,50]. 

MMP-9 is highly expressed and involved in osteoclast-mediated bone 
remodeling and during initial implant site clearing, as well as secreted 
by inflammatory cells such as neutrophils, macrophages, and B-lym
phocytes [51–53]. This expression profile make the selected MMP9-CP 
an excellent candidate for enzyme-mediated release since the stimuli 
(MMP-9 expression) would be a physiologically-normal inflammatory 
reaction or remodeling process when tissue healing and bone formation 
after surgical implantation is most active [54]. MMP9-CP can be easily 
coupled with bone regenerative peptides [55,56] or immunomodulatory 
motifs [57] in the future to build a multifunctional coating with com
bined antimicrobial and enhanced bone regeneration and healing ac
tivity triggered by active bone remodeling. 

Here, we demonstrate in vitro that a multi-functional, dynamic 
surface composed of co-immobilized AMP and MMP9-CP showed 
simultaneous strong antimicrobial activity against an early colonizer of 
oral surfaces and responsiveness to enzymatic activity mediated by 
protease secretion from osteoclasts. 

2. Material and methods 

2.1. Fabrication of multi-peptide coatings 

Peptide coatings on Ti surfaces were prepared through a three step 
method. Ti was first activated by NaOH etching and then silanized using 
(3-chloropropyl)triethoxysilane (CPTES). Immobilization of mono or co- 
immobilized coatings on CPTES-modified Ti surfaces was then per
formed as we have described [23,58,59]. 

Commercially pure titanium Grade II discs (McMaster-Carr) were 
ground, polished, and soaked in 5 M NaOH overnight at 60 ◦C to form 
reactive –OH groups on Ti surfaces (eTi group). Samples were then 
placed in 7 mL anhydrous pentane, 1.2 mL (3-chloropropyl)triethox
ysilane (CPTES; Sigma-Aldrich) and 0.6 mL diisopropylethylamine 
(DIEA; Sigma-Aldrich). Periodic two minute ultrasonication cycles were 
applied every ten minutes for one hour. GL13K and MMP9-CP peptides 
(purity>98%) were synthesized by solid-phase peptide synthesis and 
purchased from AAPPTec (Louisville, KY). Covalent immobilization of 
peptides was accomplished by immersing silanized Ti discs into a mixed 
solution with 0.1 mM GL13K (GKIIKLKASLKLL-NH2) and 0.1 mM 
MMP9-CP (KKGGGPLGMYS) in 0.5 mg/mL Na2CO3 overnight as 
described below. The two additional lysines and three glycines in 
MMP9-CP were used to promote surface orientation at the N-terminus 
and as spacers, respectively [24,60]. 

The effect of synthesis conditions on co-immobilization was assessed; 
namely, solution pH and sequential or simultaneous addition of pep
tides. Our purpose was to systemically discern reaction conditions that 
favored a balanced surface ratio of each peptide on the surface (i.e., 
obtain surface multifunctionality). Ti samples were treated with three 
different treatments: 1) silanized Ti disc were submerged in a solution of 
GL13K for 3.5 h (pre-immobilized with GL13K), followed by adding 
MMP9-CP peptide and co-immobilizing overnight; 2) silanized Ti discs 
were submerged in MMP9-CP solution for 3.5 h (pre-immobilized with 
MMP9-CP), followed by adding GL13K peptide and co-immobilizing 
overnight; 3) silanized Ti discs were submerged in a solution of mixed 
GL13K and MMP9-CP (1:1 by mole) peptides and simultaneously co- 
immobilized with the two peptides overnight. Three pHs (9.5, 10.5, 
and 11.5) for peptide immobilization were tested for each treatment (3 
treatment groups × 3 pH groups yielding 9 total groups) to obtain 
different surface ratios of GL13K and MMP9-CP. Ti surfaces function
alized with only one of the two peptide - GL13K (mono-immobilized 
GL13K group) or MMP9-CP (mono-immobilized MMP9-CP group) - were 
prepared by submerging silanized Ti discs in GL13K only or MMP9-CP 
only solution (both at pH = 9.5) overnight as controls. 

2.2. Selection of best peptide co-immobilization condition 

Fluorescently labeled GL13K-FAM and MMP9-CP-TAMRA (>95% 
purity) were covalently immobilized on Ti surface alone (mono-immo
bilized GL13K and mono-immobilized MMP9-CP groups) or combined 
under different co-immobilization conditions (9 total experimental 
conditions plus 2 mono-immobilized controls) as described above. 
Samples were collected after immobilization, rinsed with distilled water 
and acetone, and the fluorescence signal on surfaces were measured 
with a Synergy TM 2 multi-mode microplate reader (BioTek). GL13K 
signal intensity was measured as surface optical density (OD) value at a 
wavelength of 485/528 nm and MMP9-CP was read at 575/620 nm. 
Surface fluorescence were also observed under a multi-channel fluo
rescent microscope (Eclipse E800, Nikon). Three samples were used per 
group. 

2.3. X-ray photoelectron spectroscopy (XPS) 

XPS was performed (SSX-100, Al Kα x-ray, 1 mm spot size, 35◦ take- 
off angle) to characterize the atomic composition of the surface. Survey 
scans (0–1100 binding energy, 4 scans/sample) were done at a 1 eV step- 
size. The peak fittings and semi-quantification of surface chemical 
composition were conducted using ESCA 2005 software provided with 
the XPS system. 

2.4. Mechanical stability of the coatings 

The surface prepared under best co-immobilization condition (sur
face pre-immobilized with GL13K, pH = 9.5 (Mixture group); selection 
rationalization described in Results) and mono-immobilized MMP9-CP 

N.G. Fischer et al.                                                                                                                                                                                                                              



Materials Science & Engineering C 125 (2021) 112108

3

were mechanically-challenged by ultrasonication in deionized water for 
2 h and incubated for one week in deionized water at 37 ◦C. Fluores
cence visualization of the surfaces was performed with fluorescence 
microscopy (Leica DM6 B) and quantified using ImageJ (NIH, USA). 
Control eTi served as a background control. Three samples, with three 
micrographs taken per sample, were used per group. 

2.5. Antimicrobial activity of the coatings 

Streptococcus gordonii M5 was inoculated in 2 mL Bacto Todd-Hewitt 
broth (BD Biosciences). This overnight culture was diluted ten-fold with 
0.9% NaCl and then fifty-fold with Todd-Hewitt broth. Four groups of Ti 
discs (eTi, GL13K coated Ti, MMP9-CP coated Ti and Mixture peptide 
coated Ti; three samples per group) were placed under UV for ten mi
nutes and then placed into a 48-well plate. One mL of the diluted culture 
was added to each well and incubated at 37 ◦C under mild shaking for 
24 h. The discs were then removed and carefully rinsed with 1 mL NaCl 
solution three times. The discs were transferred to a new 48-well plate 
and incubated for additional two hrs. After incubation, Ti discs were 
thoroughly rinsed with 0.9% NaCl to remove loosely attached bacteria 
and then sonicated in 300 μL NaCl for 10 min to collect adhered bacteria 
on the surface. One hundred μL of the collected solution was mixed with 
100 μL of the BacTiter-Glo™ Microbial Cell Viability kit (Promega) in an 
opaque 96-well plate. After five minutes of incubation at 37 ◦C, the 
luminescence was measured by a microplate luminometer (BioTek). 
Another 100 μL of collected solution was used for measuring colony- 
forming units (CFU). Briefly, 100 μL of the obtained solution was 
diluted serially 10, 100, 1000 and 10,000-fold. Then, 10 μL of solutions 
at each concentration were plated on Todd-Hewitt Agar plates and 
incubated overnight at 37 ◦C in a humidified atmosphere of 5% CO2. The 
number of CFU was then quantified. 

2.6. Evaluation of coating cytocompatibility 

MC3T3-E1 murine pre-osteoblast cells (ATCC CRL-2593) were 
grown in MEM-α complete medium containing 10% fetal bovine serum 
and 1% penicillin-streptomycin (all Thermo Fisher Scientific). NIH-3 T3 
murine fibroblast cells (ATCC CRL-1658) were grown in DMEM medium 
10% fetal bovine serum, and 1% penicillin-streptomycin (all Thermo 
Fisher Scientific). Media was changed in the wells every 48 h. MC3T3 
murine osteoblast cells and NIH3T3 fibroblast cells were seeded on eTi, 
Mixture, and tissue culture polystyrene control surfaces (TCPS) and MTT 
(3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assays 
(Thermo Fisher Scientific) were performed after 24, 72 and 168 h of 
culture. Samples were measured at 570 nm to determine cell metabolic 
activity (proliferation) [61]. Five samples for each group were taken at 
each time interval. Substrates were also washed with phosphate buff
ered saline (PBS) and fixed with 4% paraformaldehyde for 10 min at 
room temperature after 24 and 120 h. Nuclei were stained with DAPI 
and observed using a fluorescence microscope (Eclipse E800, Nikon, 
Japan). 

2.7. MMP-9 cleavable peptide release with osteoclast secreted MMP-9 

2.7.1. Primary osteoclast culture 
C57BL/6 (wild type; WT) mice were obtained from Jackson Labo

ratory, Bar Harbor, ME, USA. The use and care of these mice were 
reviewed and approved by the University of Minnesota Institutional 
Animal Care and Use Committee, IACUC protocol number 1806A36053. 
Tibiae and femora were dissected from WT mice and adherent tissue was 
removed. Primary bone marrow macrophages were isolated by flushing 
the bone marrow from the tibiae and femora. Red blood cell lysis buffer 
(150 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA, pH = 7.4), was used to 
lyse red blood cells from the flushed bone marrow. The resulting cells 
were then plated in 10 cm tissue culture dishes (TPP, MidSci) and 
cultured overnight in osteoclast media (phenol red-free alpha-MEM 

(Gibco), 400 mM L-Glutamine (Invitrogen), 25 units/mL penicillin/ 
streptomycin (Invitrogen), and with 5% (by volume) heat inactivated 
fetal bone serum (Atlanta Biologicals) and supplemented with 1.5% 
CMG 14–12 [culture supernatant containing M-CSF (macrophage stim
ulating colony-stimulating factor); Dr. Sunao Takeshita, Nagoya City 
University, Nagoya, Japan] [62]. Non-adherent cell populations, 
including osteoclast precursor cells, were removed and replated on top 
of bone slices placed in transwell inserts (Corning) at a concentration of 
1 × 105 cells per well in osteoclast media supplemented with 1.5% CMG 
culture supernatant; MMP9-CP or Mixture surfaces were in the bottom 
portion of the well (one disc per well). Cells were refed every two days 
with osteoclast media containing 1.5% CMG plus 10 ng/mL of RANKL 
(R&D Systems) to initiate osteoclast differentiation for up to 7 days [63]. 

2.7.2. Immunofluorescence of MMP-9 
To visualize protein expression of MMP-9 in osteoclasts, cells that 

were grown on the bone slices were fixed in 4% paraformaldehyde for 
20 min following 7 days in culture. The cells were then washed with 
PBS, and permeabilized in PBS/0.3% Triton X-100 for 5 min. Discs were 
then blocked in immunofluorescence buffer (3% BSA, 20 mM MgCl2, 
0.3% Tween-20 in PBS) for 20 min and incubated at 4 ◦C with an MMP-9 
(Abcam, ab38898) primary antibody for 3.5 h in immunofluorescence 
buffer. MMP-9 antibody was used 1:40. Cells were then washed three 
times for 5 min with PBS/0.1% Triton X-100. Cells were then incubated 
for 1.5 h with an Alexa-conjugated secondary antibodies at 1:200 
(Invitrogen, A21428). Cells were then again washed three times for 5 
min with PBS/0.1% Triton X-100. Cells were stained with DAPI, washed 
with PBS and bone slices were placed on glass slides for imaging. Images 
were obtained using an Olympus BX51 microscope. 

2.7.3. Evaluation of MMP-9 cleaving activity of co-immobilized coatings 
with osteoclasts 

A 40 μL aliquot of osteoclast media was taken each day after plating 
and read on a platereader at 575/620 nm (corresponding to MMP9-CP- 
TAMRA, where the fluorophore may function as mock, conjugated cargo 
for release) for Mixture and mono-immobilized MMP9-CP. In parallel, 
ten-fold dilutions of neat MMP9-CP in osteoclast media were incubated 
and read at each timepoint along with the aliquot. An individual stan
dard curve (MMP9-CP in culture media) was read at each timepoint to 
determine MMP9-CP release taking into account possible changes in 
fluorescence signal strength associated with incubation in solution for 
extended times [64]. Fluorescence background was subtracted by hav
ing an additional set of mono-immobilized MMP9-CP and Mixture sur
faces cultured without osteoclast (i.e., without MMP-9). Finally, release 
since the last timepoint (i.e., new release) was determined taking media 
changes or lack thereof since the last timepoint into account. Three 
samples were used per condition; this experiment was performed twice. 

2.8. Statistical analysis 

Statistically significant differences among groups were assessed 
using a one-way ANOVA with a Dunnett post hoc test for antimicrobial 
activity (control: eTi). A one-way ANOVA with a Tukey post hoc test was 
used for MTT metabolic activity within each time point. A Student’s t- 
test was used to compare proliferation within each time point and to 
compare MMP9-CP osteoclast-mediated release within each time point. 
A Student’s t-test was also used to compare MMP9-CP mono-immobi
lized fluorescent intensity after challenges compared to Mixture MMP9- 
CP. Statistical significance for all tests was assessed at p < 0.05. 

3. Results and discussion 

3.1. Fabrication of multi-peptide coatings 

Co-immobilized biofunctionalized Ti surfaces were obtained through 
a three-step method (etching/surface activation + silanization/coupling 
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agent + peptide tethering) using CPTES as a coupling agent (Fig. 1A). 
CPTES enabled the final covalent bonding of the peptides to the silan
ized surface by a direct nucleophilic substitution between free amines of 
the peptides (nucleophile) and chlorine atoms from the organofunc
tional groups of CPTES (leaving group) [65]. GL13K (GKIIKLKASLKLL- 
NH2) has four lysines plus its N-terminus that are potential sites of 
immobilization; our previous work has shown that the antimicrobial 
activity of GL13K is insensitive to site-specificity [66]. To favor the 

surface orientation of MMP9-CP (KKGGGPLGMYS; cleavable at 
PLGMYS) at the N-terminus, we designed our peptide with two addi
tional lysines - each one providing a potentially reacting free amine - like 
in previous work [24]. Three glycines were used as a spacer [60] be
tween the lysines and the enzyme cleavable domain. 

The co-immobilization of the mixed peptides was conducted in 9 
different conditions; all combinations of three different solution pHs and 
three immobilization orders of adding the peptides in order to find 

Fig. 1. Reaction scheme and fluorimetry of co-immobilized peptide surfaces and mono-peptide control surfaces. (A) Reaction scheme showing the chemical route of 
three-step immobilization. (B) OD values of fluorescently-labeled GL13K (green) and MMP9-CP (red) peptides on mono-immobilized MMP9-CP surfaces; mono- 
immobilized GL13K surfaces; pre-immobilized GL13K at three pHs (pH = 9.5, 10.5, and 11.5); pre-immobilized MMP9-CP at three pHs; and simultaneous co- 
immobilization at three pHs. Merged channel fluorescence micrographs of co-immobilized peptides for (C) pre-immobilized GL13K at pH = 9.5 (‘Mixture’ 
coating in following Figures), (D) pre-immobilized MMP9-CP at pH = 9.5, and (E) simultaneously co-immobilized at pH = 9.5. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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reaction conditions that favored balanced co-immobilization (Fig. 1B). 
pH was explored as a variable because charge can affect competitive 
electrostatic attraction/repulsion between GL13K and MMP9-CP as they 
move from solution to the CPTES-silanized surface [67]. The order of 
adding GL13K and MMP9-CP for immobilization was explored because 
adsorption and covalent attachment kinetics may differ between each 
peptide [68]. Surfaces co-immobilized with the peptides simultaneously 
showed red MMP9-CP dominating the surface leading to a weak GL13K 
green signal (Fig. 1E). Surfaces pre-immobilized with MMP9-CP for 3.5 
h before adding GL13K again showed a weak GL13K signal (Fig. 1D). 
However, relatively similar signals were detected for both peptides 
(Fig. 1C) when surfaces were pre-immobilized with GL13K for 3.5 h 
before adding MMP9-CP. These results suggest MMP9-CP has a higher 
affinity to CPTES-silanized Ti surfaces than GL13K. GL13K has more 
lysines (four) in its sequence than MMP9-CP (only two lysines), which 
provide more amine groups to favor the nucleophilic immobilization 
reaction. However, the lysines in GL13K are scattered through the 
sequence (disregarding potential formation of secondary structures and/ 
or supramolecular assemblies of either peptide in solution) while the 
lysines are clustered in the N-terminal of MMP9-CP; this clustering may 
cause a higher polarization of the MMP9-CP molecules that may favor 
the electrostatic attraction and, thus, immobilization of MMP9-CP over 
GL13K. Additionally, the MMP9-CP peptides contain fewer number of 
hydrophobic amino acids than the GL13K, rendering a more polar 
peptide, which has been shown as the preferential physical-chemical 
property governing adsorption of GL13K on solid substrates [69]. 
These factors may explain the need for GL13K pre-immobilization for a 
more “balanced” peptide co-immobilized coating. Solution pH might 
also influence the peptide co-immobilization. However, as the isoelec
tric points are rather similar between these two peptides (GL13K; pH =
11.01 and MMP9-CP; pH = 10.08), pH likely had a minor effect on the 
selection of the peptide preferentially immobilized on the silanized Ti 
surfaces. Results showed (Fig. 2A) relatively similar signals on pre- 
immobilized GL13K and MMP9-CP as well as simultaneously co- 
immobilized at each of three pHs. Within the pre-immobilized GL13K 
group, pH = 9.5 seemed to favor a balanced peptide co-immobilization. 
Therefore, the optimized condition for co-immobilization was selected 
as pH = 9.5 with surfaces pre-immobilized with GL13K (“Mixture” 
group henceforth). 

3.2. Chemical characterization of multi-peptide mixture coating 

XPS results confirmed the successful immobilization of the peptide 
coatings on Ti surfaces. A more detailed XPS analysis of mono- 
immobilized GL13K may be found in our previous work [23]. Fig. 2A 
shows the elemental composition of the treated surfaces (survey 
spectra). eTi surfaces revealed characteristic C1s (ca. 285 eV), Ti2p (ca. 
460 eV) and O1s (ca. 530 eV) peaks. All of the surfaces with covalently 
immobilized peptides (GL13K, MMP9-CP, and Mixture) showed a strong 

nitrogen signal (N1s peak at ca. 400 eV) attributable to amino acids 
suggesting the successful immobilization of peptides on Ti surfaces. 
Quantification of XPS atomic % ratios (Fig. 2B) demonstrated a N1s/ 
Ti2p ratio, again attributable to amino acids immobilized on a Ti sur
face, of between 1.44 and 1.68 for GL13K, MMP9-CP, and Mixture. 

3.3. Mechanical stability of the multi-peptide mixture coating 

In order to test the stability of the peptide coatings, we ultrasonicated 
the Mixture surface in distilled water for 2 h and re-examined the signal 
of fluorescently labeled peptides after this mechanical challenge. Fig. 2C 
demonstrates that newly synthesized surfaces produced both green 
(GL13K) and red (MMP9-CP) homogenous signals and the merging of 
those two showed yellowish images, as expected. Both green and red 
signal were strongly retained on the Mixture surface after ultra
sonication (GL13K: 97.2 ± 11.4% and MMP9-CP: 89.09 ± 27.0% of 
newly synthesized) and incubation at 37 ◦C in DI water (GL13K: 90.8 ±
18.9% and MMP9-CP: 87.67 ± 14.36%) for one week, indicating the 
robust stability of both GL13K and MMP9-CP peptides (Fig. 2D), and 
again suggesting that sequential immobilization of the two different 
peptides did not hinder tethering of the second peptide, MMP9-CP in this 
case. Mono-immobilized MMP9-CP showed less stability (ultra
sonication: 64.6 ± 14.8%; one week incubation: 47.11 ± 27.2%), sug
gesting the hydrophobic GL13K helps protect against peptide loss. This 
peptide loss is likely due to hydrolysis of the anchoring silane layer but 
further investigation is needed to confirm this [70]. Additional work is 
necessary to confirm peptide biological activity after incubation, 
although our past work has shown GL13K demonstrates antimicrobial 
potency after 18 days when adsorbed to dentin under incubation with a 
highly cariogenic biofilm [71]. 

3.4. Antimicrobial activity of the multi-peptide mixture coating 

The antimicrobial activity of the mixture surfaces were evaluated 
with S. gordonii, a primary colonizer on oral surfaces that provides 
attachment for subsequent pathogenic biofilm formation by other spe
cies such as Porphyromonas gingivalis [72,73]. We selected a 24 h culture 
time based on past work that showed robust biofilm formation after this 
time period on control substrates [74–76]. S. gordonii has also been 
found in the microbiota of colonizing bacteria after dental implants 
surgery [77]. eTi, mono-immobilized GL13K, and MMP9-CP surfaces 
were used as controls. Our previous work has shown that GL13K pos
sesses strong antimicrobial activity against S. gordonii [78]. Indeed, we 
have previously shown in a drip flow biofilm reactor, which enables in 
vitro simulation of some of the important conditions for bacteria biofilm 
development in vivo, GL13K immobilized on titanium is antimicrobial 
against S. gordonii after 3 days of culture [78]. Similarly, we showed 
GL13K retained antimicrobial activity when elastin-like recombinamers 
terminated with GL13K where immobilized on titanium and oral 

Fig. 2. Chemical analysis and stability of Mixture pep
tide coatings. (A) Chemical analysis (XPS) of immobilized 
peptides surfaces and controls (eTi and eTi-sil). B) XPS 
atomic % ratio (At.% ratio). (C) Fluorescent micrographs 
of co-immobilized peptide Mixture surfaces (GL13K: 
green, MMP9-CP:red, Merged:yellow). (D) Fluorescent 
intensity of mono-immobilized MMP9-CP and co- 
immobilized peptide Mixture surfaces after ultra
sonication in deionized water for 2 h and incubation in DI 
water for one week at 37 ◦C compared as a percentage of 
newly synthesized surfaces. * denotes a statistically sig
nificant difference between MMP9-CP fluorescent in
tensities on mono-immobilized MMP9-CP vs. Mixture 
surfaces. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web 
version of this article.)   
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microcosm biofilms were cultured in a drip flow biofilm reactor for 7 
total days [79]. 

In this work (Fig. 3), we also observed the significantly reduced 

bacteria viability (shown by CFU values; Fig. 3A) and metabolism 
(shown by ATP values; Fig. 3B) on GL13K surfaces in comparison with 
eTi surfaces. Notably, the Mixture surface obtained comparable 

Fig. 3. Antimicrobial activity of Mixture peptide coatings against S. gordonii. (A) CFU/mL and (B) ATP RLU of control eTi, mono-peptide GL13K and MMP9-CP 
coatings and co-immobilized peptides Mixture coating. * denotes a statistically significant difference compared to eTi control. 

Fig. 4. Cytocompatibility of Mixture peptide coatings and control eTi and TCPS surfaces with pre-osteoblasts and fibroblasts. (A) Metabolic activity of pre-osteoblasts 
through 168 h. (B) Representative fluorescence micrographs of DAPI-stained pre-osteoblasts. (C) Metabolic activity of fibroblasts through 168 h. (D) Representative 
fluorescence micrographs of DAPI-stained fibroblasts. A bar denotes no statistically significant differences between groups at each timepoint. 
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antimicrobial effect as mono-immobilized GL13K. On the other hand, 
mono-immobilized MMP9-CP did not display a significant antimicrobial 
effect, indicating the strong antimicrobial activity on the Mixture sur
face was exclusivity due to GL13K. This confirmed that a completely 
homogenous layer of GL13K (i.e., mono-immobilization) is not neces
sary for potent antimicrobial activity [80] and that co-immobilization 
did not hinder the activity of GL13K. Further work will be required to 
confirm these findings under more in vivo simulatory settings or in 
animal studies. Indeed, development of animal models for testing po
tency of antimicrobial materials/coatings is an unaddressed challenge in 
the field. Recent reviews [81,82] have noted the lack of guidelines and/ 
or standards, “enormous” microbial dosing required to generate wounds 
in young animals, and under-powered models. 

3.5. Cytocompatibility of the multi-peptide mixture coating 

We next evaluated the cytocompatibility of our Mixture coating 
compared to eTi and tissue culture polystyrene (TCPS). Our long-term 
goal is multifunctional coatings with combined antimicrobial and 
enhanced bone regenerative activity triggered by active bone remodel
ing. As a result, we tested cytocompatibility using pre-osteoblasts 
(Fig. 4A and B) and fibroblasts (Fig. 4C and D) (as bone-anchored 
transdermal implants can come into contact surrounding soft tissues) 
[83] for up to 168 h (7 days) of culture. Our results showed no statis
tically significant differences in metabolic activity between Mixture 
surfaces compared to control eTi and TCPS for both pre-osteoblasts 
(Fig. 4A) and fibroblasts (Fig. 4C). DAPI-staining showed similar num
ber of nuclei per field of view (Fig. 4B - pre-osteoblasts and Fig. 4D - 
fibroblasts) between groups with a clear increase in the number of cells 
in all groups from 24 to 120 h (5 days). These results are in agreement 
with our previous results for mono-immobilized GL13K23 and overall 

suggest these coatings allow cellular proliferation and are cytocompat
ible to a similar extent as the gold-standard controls eTi and TCPS. 

3.6. MMP9-CP release from multi-peptide mixture coating mediated by 
osteoclast secreted MMP-9 

We measured the release profile of the MMP9-CP peptide carrying a 
fluorescent probe to prove the dynamic response of our MMP-9 sensi
tive, multifunctional surface, in the presence of MMP-9 secreted by os
teoclasts. We used a transwell to culture osteoclasts on bone slices in the 
upper well to stimulate MMP-9 production to cleave MMP9-CP from 
mono-immobilized MMP9-CP and Mixture surfaces in the bottom well 
(Fig. 5A, top). We collected aliquots everyday post- seeding for up to a 
week, where osteoclast differentiation was initially stimulated at day 2 
via the addition of RANKL (Fig. 5A, bottom left) [84]. The release profile 
of MMP-9 from osteoclasts is well described (increasing after RANKL 
addition toward a peak at 5 days; this corresponds to our day 7) [85] and 
we confirmed MMP-9 expression in our system at day 7 (Fig. 5A, bottom 
right). The release profile was plotted as new release since the previous 
timepoint (Fig. 5B) and as cumulative release (Fig. 5C) of mono- 
immobilized MMP9-CP and Mixture. A slight decrease in release be
tween days 1 and 2 (Fig. 5B) suggests desorption of non-covalently 
sorbed peptides to the surface, perhaps from insufficient washing prior 
to testing. Both mono-immobilized MMP9-CP and Mixture showed 
similar release kinetics but we attribute the greater MMP9-CP release 
from mono-immobilized MMP9-CP to the presence of hydrophobic 
GL13K (which is hydrolytically and proteolytically stable) [86,87] likely 
inhibiting water penetration and enzyme accessibility to the Mixture 
surface. Mixture’s lower release also likely relates to a lower overall 
surface loading of MMP9-CP on the mixture surface as it competes with 
GL13K for a finite number of chlorine atoms from the organofunctional 

Fig. 5. Osteoclast-secreted MMP9-CP peptide release profile of mono-immobilized MMP9-CP and Mixture peptide coatings. (A) Schematic of experimental set-up 
culturing osteoclasts for endogenous MMP-9 secretion and representative MMP-9 osteoclast immunofluorescence at 7 days (DAPI is stained blue and MMP-9 is 
stained red; scale bar is 200 μm). (B) MMP9-CP release from mono-immobilized MMP9-CP and Mixture (ng peptide release since last time period per well) with 
background subtracted. (C) Cumulative MMP9-CP release of MMP9-CP mono-immobilized and Mixture (ng peptide release total per well) with background sub
tracted. * denotes a statistically significant difference between MMP9-CP and Mixture. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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groups of CPTES on the surface. However, the reduced release of MMP9- 
CP on the mixture surface may benefit long-term delivery of the bioac
tive motif it carries (e.g. bone regenerative or immunomodulatory 
motif) to achieve extended release profiles. 

Future work will focus on the conjugation of osteogenic and immu
nomodulatory motifs onto MMP9-CP for enhanced bone healing utiliz
ing these release profiles. Possible candidates include Ln2-P3 
(DLTIDDSYWYRI) [88], which enhances peri-implant bone regeneration 
[89,90], or angiopoietin-1 (QHREDGS) [91] which similarly stimulates 
osteogenic differentiation of osteoprogenitors when immobilized on Ti 
[92]. Immunomodulatory peptide candidates include the well-used RGD 
peptide that has an inhibitory effect on neutrophil chemotactic activity 
and phagocytic functionality and can reduce both phagocytosis and pro- 
inflammatory cytokine production in stimulated and unstimulated 
macrophages [93,94]. IDR-1018 [95], an otherwise antimicrobial pep
tide, is another possible candidate known to blunt macrophage proin
flammatory cytokine production. 

4. Conclusion 

We have successfully engineered a dynamic, multi-functional pep
tide-based coating on titanium with antimicrobial and MMP-9 mediated 
release activity for synchronization of selected potential biological ac
tivities during bone remodeling. We envisage our coatings to reduce 
infection rates and overall enhance the success rates of all percutaneous, 
bone-anchored devices. 
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