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Statement of Significance 22 

Tidal channel networks are typical morphological features of coastal landscapes. A key question 23 

is how biotic and abiotic processes control their long-term geomorphic development. This 24 

knowledge gap is of theoretical and practical importance. The comprehensive understanding of 25 

how these driving forces work would inform on how channel network systems evolve and help 26 

forecast the long-term resilience of these landscapes to climate change and human interference. 27 

Based on observational research, we found that salt marshes dominated by different grass species 28 

do display different channel networks, but this difference seems driven more by physical than 29 

biological factors. We developed sample models, which can explain more than 60% of the 30 

variability in mean unchanneled path length. Our work contributes significantly to a broader 31 

understanding of coastal landscape morphodynamics, and provides insights into future model 32 

development and testing of landscape evolution models.  33 



Abstract: 34 

Biotic and abiotic processes control the formation and evolution of tidal channel networks. 35 

However, which factor regulates the planimetric geometry of the network remains unclear. Here, 36 

we compare the geometric properties of tidal channel networks in fourteen salt marshes along the 37 

coasts of the USA and China. Significant difference in the geometric properties of tidal channel 38 

networks was found in salt marshes dominated by different vegetation species. Physical parameters 39 

better explained these differences, while vegetation parameters had a weaker effect on the network 40 

geometry. In particular, mean marsh elevation and tidal range were found to be the best variables 41 

to explain the variability in drainage density, mean unchanneled path length and sinuosity (R2 42 

values range from 0.239 to 0.465), while biotic parameters (i.e., aboveground biomass, stem 43 

density, height and diameter) were only significant predictors for one or two of these geometric 44 

properties (R2 values range from 0.005 to 0.312). We used multiple regressions to develop sample 45 

models, explaining more than 60% of the variability in mean unchanneled path length. Our 46 

findings underline the key role of physical factors in shaping tidal channel networks. We conclude 47 

that physical processes are more important than vegetation species in determining the long‐term 48 

development of tidal channels.  49 



Text: 50 

Introduction 51 

A long-standing challenge in landscape morphodynamics is to elucidate how biotic and abiotic 52 

processes drive the development of geomorphic patterns and to predict the long-term dynamics of 53 

landforms (Murray et al., 2008; Reinhardt et al., 2010; Corenblit et al., 2011; van Maanen B et al., 54 

2015; Schwarz et al., 2018). Tidal channel networks are typical morphological features of coastal 55 

landscapes. They promote exchange of materials (water, sediments, nutrients, biota) between 56 

coastal marshes and the open sea, hence maintaining the structure and function of salt marshes 57 

(French and Stoddart, 1992; Vandenbruwaene et al., 2012; Kearney and Fagherazzi, 2016; Li et 58 

al., 2019). A comprehensive understanding of the initial formation and long-term evolution of 59 

channel networks is fundamental to address their response to climate change and human 60 

interference (Kearney and Fagherazzi, 2016; Schwarz et al., 2018).  61 

Numerous field surveys, laboratory studies and numerical models have shown that tidal 62 

channels typically form because of water flow concentration within small-scale topographic 63 

depressions, leading to an increase in flow velocity, and hence erosion and deepening of the initial 64 

depressions (Fagherazzi and Furbish 2001; D’Alpaos et al. 2006; Stefanon et al. 2010). This 65 

process drives further flow concentration and creates a positive feedback mechanism between 66 

erosion and channel formation (Tambroni et al., 2005; Vlaswinkel et al., 2011; Fagherazzi et al., 67 

2012). Other studies have shown that also the presence of vegetation can trigger the formation of 68 

dense, efficient tidal channel networks (Temmerman et al., 2007; Vandenbruwaene et al., 2013; 69 

Kearney & Fagherazzi, 2016; Schwarz et al., 2018; Taramelli et al., 2018). For example, the 70 

establishment of dense pioneer vegetation patches on an initially bare landscape can partially force 71 

the water flow around these patches, leading to an increase in flow velocity (Zong & Nepf, 2010), 72 



erosion (Bouma et al., 2007) and, in some cases, channel incision (Temmerman et al., 2007; 73 

Schwarz et al., 2014). It is now widely accepted that both biotic and abiotic processes can influence 74 

the formation and long-term evolution of tidal channel networks (Temmerman et al., 2007; 75 

Fagherazzi et al., 2012; van Maanen et al., 2013; Schwarz et al., 2018). However, the relative 76 

importance of these two groups of drivers has never been studied on a global scale. 77 

Previous studies revealed that the formation, deepening and expansion of channel networks are 78 

facilitated with high tidal ranges and low water depths (Kirwan and Guntenspergen, 2010; 79 

Stefanon et al., 2010; Van Maanen et al., 2013). There is however growing recognition that 80 

vegetation-landform interactions play a key role in shaping intertidal landscapes (Fagherazzi et al., 81 

2012; Coco et al., 2013; Vandenbruwaene et al., 2013; Kearney and Fagherazzi, 2016; Schwarz et 82 

al., 2018), although some studies suggest that the influence of vegetation is only secondary 83 

(Vandenbruwaene and Temmerman, 2012; Li et al., 2019). In general, several numerical model 84 

studies have reported enhanced channel formation due to vegetation in early stages of development 85 

(D'Alpaos et al., 2007; Temmerman et al., 2007; Tal and Paola, 2010; Schwarz et al., 2014; Bij de 86 

Vaate et al., 2020), but they did not consider later stages of channel evolution. 87 

It is now widely accepted that the formation and evolution of channel networks result from the 88 

interactions between hydrodynamic conditions (e.g. tidal currents, waves, tidal prism), 89 

geomorphic characteristics (e.g. elevation, slope, coastal alignment, sediment properties) and 90 

vegetation traits (e.g. above- and belowground biomass, stem density, height and diameter) 91 

(Fagherazzi and Sun, 2004; Fagherazzi et al., 2012; Schwarz et al. 2018; Li et al., 2019). These 92 

factors govern the balance between erosion and deposition and vary across channel network 93 

systems. Despite these studies, we still lack an understanding of which biotic and abiotic processes 94 

dominate the long‐term morphology of salt marshes. This knowledge gap is of theoretical and 95 



practical importance. The comprehensive understanding of how these driving forces work would 96 

inform on how channel network systems evolve and potentially help forecast the long-term 97 

resilience of these landscapes to disturbances.  98 

Here, we compare geometric properties of channel networks in 14 different salt marshes along 99 

the US and Chinese coastlines, each dominated by one typical salt marsh species, with seven 100 

different species in total. We first investigate whether different vegetation species lead to different 101 

geometrical channel network characteristics. We then examine the relationships between 102 

geometrical characteristics of channel networks and various physical and biological parameters to 103 

determine the relative importance of biotic and abiotic drivers. Finally, we develop a sample model 104 

to predict geometrical characteristics of tidal channel networks from these drivers; the model 105 

further tests the relative importance of biotic versus abiotic factors. The results of this work lend 106 

insight into future model development of salt marsh evolution. 107 

 108 

Methods 109 

Study Sites and data sources 110 

We selected seven plant species dominant in salt marshes along the coasts of the US and China: 111 

Salicornia virginica Linn., Spartina alterniflora Loisel., Juncus roemerianus Scheele, Spartina 112 

patens (Aiton) Muhl., Carex lyngbyei Hornem., Scirpus triqueter Linn. And Suaeda salsa (L.) Pall. 113 

For each species, we selected two different sites where it is dominant. For each site, we selected 114 

three watersheds (Fig. 1a).  115 

 116 



Fig 1. Map of study sites (a), and example of satellite imagery (b), channel network (c) and 118 

unchanneled path length (d) of a Spartina alterniflora marsh in the Virginia Coast Reserve, USA. 119 

For the maps of the other study sites see Fig. S1. 120 

 121 

We collected different biotic and abiotic parameters characterizing the different sites. Due to 122 

scarcity of elevation data in China, the collection of elevation data and hydroperiod is limited to 123 

the US sites. Tidal data (i.e., tidal range, mean sea level and astronomical tide water levels) were 124 

obtained from the Center for Operational Oceanographic Products and Services (CO-OPS) 125 

(https://tidesandcurrents.noaa.gov/). For each site, we used the data from the closest station (Fig. 126 



2b; Table S1). The distance between the marsh watersheds and the corresponding tidal stations 127 

range from 1 to 50 km, with an average distance of about 13 km (Table S2). Elevation data for the 128 

study area were provided by a digital elevation model (DEM) from the US Geologic Survey's 129 

National Elevation Dataset (NED) (http://nationalmap.gov/elevation.html) (Fig. S2), which was 130 

used in other geomorphic studies (e.g. Ganju et al., 2017; Daly et al., 2017). NED is a seamless 131 

raster format dataset, which was developed by merging diverse source datasets, such as high-132 

quality LiDAR data, USGS DEM collection, SRTM (Shuttle Radar Topography Mission) and other 133 

sources (U.S. Geological Survey, 2017). The horizontal resolution is 1/9 arc-second (i.e., about 3 134 

m for our sites). The vertical accuracy varies spatially because of the different sources, with an 135 

estimated error of 20-30 cm (Gesch et al., 2014; Amante, 2018). The vertical error can increase in 136 

dense vegetation areas where LiDAR signals do not easily detect the ground beneath the vegetation 137 

canopy. For example, Rosso et al. (2006) measured a vertical error of about 20-30 cm in Spartina 138 

marshes of the San Francisco Bay, California, USA. Elevation data were expressed relative to local 139 

mean sea level by accounting for the difference between the North American Vertical Datum of 140 

1988 (NAVD 88; reference datum used in NED) and the observed mean sea level at the closest 141 

CO-OPS station (Table S1). In this study, we used the mean value of elevation of each watershed 142 

for our analysis, thus there are six elevation data for each vegetation species (Fig. 2a; Fig. S2). We 143 

also calculated the mean overmarsh hydroperiod as the total inundated time during which 144 

astronomical tide water levels are above the mean marsh elevation for one lunar month (i.e., 29.5 145 

days) (Fig. S3). 146 

 147 
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parameters derived from different methodologies, we only included measurements performed at 159 

the end of the growing season (July-September) and in their native populations. We also excluded 160 

measurements located near a channel to focus on measurements from relatively homogenous 161 

topographic and hydrologic environments. For Spartina alterniflora, we only included 162 

measurements of their short form, which typically occupies the expansive marsh interior. In 163 

general, we collected those biotic parameters from marshes close to our study areas. If not available, 164 

we used data in the same state or in neighboring states (Table S3). At the end, for each parameter, 165 

we used the average value from the collected data of a given species (Fig. 2c; Table S4). 166 

 167 

Geometric Properties of Channel Networks 168 

For each site in the USA and China, we selected three watersheds and manually extracted tidal 169 

channel networks from Google Earth satellite imagery (Table S1 for corresponding dates). 170 

Channels were identified based on tuning the image’s brightness (Fagherazzi et al. 1999). To 171 

exclude uncertainties in the visual interpretation, all images were down-sampled to 1-meter pixel 172 

resolution and those parts of the channel networks with channel width less than 1 m were neglected 173 

(Liu et al., 2020). Then we calculated six parameters that quantify geometric properties of tidal 174 

channel networks and the surrounding marshes. The drainage density is calculated as the ratio 175 

between the total channel length and the watershed area (Marani et al., 2003). The mean 176 

unchanneled path length (UPL) is calculated as the average shortest distance between any location 177 

on the vegetated platforms and the nearest channel edge (Tucker et al., 2001, Marani et al. 2003). 178 

The geometric efficiency is the Hortonian length divided by the mean UPL, which gives an 179 

indication of how efficiently a channel network can distribute sediments to the marsh platforms 180 

(Marani et al. 2003; Kearney and Fagherazzi, 2016). The Hortonian length is defined as the inverse 181 



of drainage density (Kearney and Fagherazzi, 2016). The sinuosity is calculated as the ratio 182 

between the length of a channel along its centerline and the straight-line distance from start to end 183 

(Kearney and Fagherazzi, 2016). As each channel has its own sinuosity, we take here the average 184 

value over all channels to quantify the sinuosity at the watershed scale, excluding channels with a 185 

width lower than 1 m or a length lower than 100 m. Finally, the unvegetated-vegetated marsh ratio 186 

(UVVR) is calculated as the area of channels and ponds divided by area of the vegetated marsh 187 

(Ganju et al., 2017). 188 

 189 

Statistical Analyses 190 

Statistical differences in elevation relative to mean sea level and aboveground biomass between 191 

the different vegetation species were assessed using a one-way ANOVA and LSD tests. Statistical 192 

differences in geometric properties of channel networks between the different vegetation species 193 

were also assessed using a one-way ANOVA and LSD tests. To investigate the relative importance 194 

of each abiotic and biotic parameters to explain the observed variability in channel networks, 195 

simple linear regressions were used. Shapiro-Wilk normality tests were conducted to evaluate the 196 

normality of the different explanatory variables (Table S5). Hydroperiod, aboveground biomass 197 

and stem density were log‐transformed prior to the analysis as they were deviating from a normal 198 

distribution. Furthermore, we used dummy variable regression models (with vegetation species as 199 

dummy variables and Salicornia virginica as the reference species) to check whether the influence 200 

of biotic parameters was already embedded in the abiotic parameters (tidal range and mean marsh 201 

elevation).  202 

We used a Stepwise Multiple Linear Regression to develop sample models that can predict 203 

geometric properties of channel networks with a combination of the abiotic and biotic parameters 204 



that we have collected. Using a forward selection, the stepwise regression starts with no variable 205 

and adds new variables one by one. The independent variable with the largest correlation with 206 

regards to the dependent variable is the first selected, then the variable with the second largest 207 

correlation, and so on (Schwingshackl et al., 2018). During this process, every coefficient of the 208 

parameter in the equation must reach the level of significance p < 0.05. Variables were also 209 

disregarded if they would cause the tolerance of another variable already in the regression model 210 

to drop below the tolerance criterion, specified as the probability of F > 0.1 (Yang 2012). To 211 

validate the different regression models, we compared predicted and observed geometric 212 

properties of channel networks. We computed the variance inflation factor (VIF), a diagnostic tool 213 

to assess multicollinearity in the models, which exists when the independent variables are highly 214 

correlated with each other. The VIF is computed post-analysis and measures how much the 215 

variance of the estimated regression coefficients is inflated compared to conditions when the 216 

independent variables are uncorrelated (Drobot and James, 2002). Neter et al. (1990) suggested 217 

that a collinearity exists amongst the parameters when VIF > 10. Results in Table 3 indicate that 218 

no collinearity exists among independent variables in our multivariate regression models. All 219 

analyses were conducted with SPSS 25.0 for Windows. 220 

Due to scarcity of elevation data in China, some analyses were limited to the US sites. Statistical 221 

differences in aboveground biomass and geometric properties of channel networks between the 222 

different vegetation species were assessed in all sites and associated vegetation species in the US 223 

and China (Fig. 2 c and 3). However, the analyses of statistical differences in elevation relative to 224 

mean sea level between the different vegetation species was limited to the US sites (Fig. 2a). 225 

Furthermore, linear regressions and Shapiro-Wilk normality tests were also limited to the US sites 226 

and associated vegetation species (Fig. 4, 5, 6 and S4; Tables 1, 2, 3 and S5). 227 



 228 

Results 229 

Variability in Channel Network Geometry 230 

In general, most geometric properties of tidal channel networks vary considerably among 231 

marshes dominated by different vegetation species (Fig. 3), with the exception of geometric 232 

efficiency (for which there is no significant difference among the different species, F=1.532, 233 

P=0.197, Fig. 3d). For the other parameters, we can distinguish two groups: Salicornia virginica, 234 

Spartina alterniflora and Juncus roemerianus on the one hand, and Carex lynbyei, Scirpus 235 

triqueter and Suaeda salsa on the other hand. Indeed, our results indicate that the first group 236 

presents significantly higher drainage density (Fig. 3a), lower mean UPL (Fig. 3b), higher 237 

sinuosity (Fig. 3e) and higher UVVR (Fig. 3c) than the second group. Moreover, S. patens has 238 

significantly higher mean UPL than S. virginica and S. alterniflora (Fig. 3b), and higher sinuosity 239 

than C. lynbyei, S. triqueter and S. salsa (Fig. 3e). J. roemerianus also has significantly higher 240 

sinuosity than S. virginica and S. patens (Fig. 3e). S. virginica has significantly higher UVVR than 241 

S. alterniflora and S. patens, while Suaeda salsa marshes have the lowest UVVR among these 242 

vegetation species (Fig. 3c). 243 

 244 
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properties of tidal channel networks among marshes dominated by different vegetation species 256 

(Fig. 3) are more likely to be attributed to abiotic parameters, rather than biotic parameters. Mean 257 

marsh elevation was the best single variable explaining (negatively) variability in drainage density 258 

and sinuosity (R2 values of 0.304 and 0.465, respectively), with tidal range the second-best 259 

predictor (negatively) (R2 values of 0.239 and 0.362, respectively) (Fig. 4). Tidal range was the 260 

best single variable explaining (positively) variability in mean UPL (R2 = 0.398) and explaining 261 

(negatively) variability in UVVR (R2 = 0.233), with mean marsh elevation the second-best 262 

predictor (R2 values of 0.346, 0.347 and 0.225, respectively) (Fig. 4). The hydroperiod also 263 

significantly explained (positively) variability in drainage density (R2 values of 0.149), but showed 264 

insignificant relationships with mean UPL, sinuosity and UVVR (p values of 0.024, 0.109 and 265 

0.095, respectively) (Fig. S4). None of the considered biotic and abiotic parameters were able to 266 

explain a significant part of the variability in geometric efficiency (Table 1). 267 

 268 



Fig. 4. Channel network properties as a function of tidal range, elevation, and aboveground 270 

biomass. R2
adj is the adjusted R-Square of the regression. Vegetation types is also included as 271 

dummy variable. The units of biomass read “grams of dry weight per square meters”. 272 

 273 

  Although abiotic parameters are better predictors of channel network geometry, biotic 274 

parameters do explain a significant part of their variability (Table 1). For example, the 275 

aboveground biomass is a significant predictor for all variables (except for geometric efficiency) 276 

and the best biotic predictor for sinuosity and UVVR (R2 values of 0.344 and 0.193, respectively) 277 

(Fig. 4; Table 1). The other biotic parameters were significant predictors for only one or two 278 



geometric properties, with stem density the best biotic predictor for the mean UPL (R2 = 0.244) 279 

and stem height for drainage density (R2 = 0.216) (Fig. 5; Table 1).  280 

 281 

Fig. 5. Channel network properties as a function of vegetation stem density, height and diameter. 283 

 284 

In Figure 4, a general linear model with vegetation species as dummy variables confirmed that 285 

vegetation species had a significant impact on channel network patterns, as the adjusted R2 values 286 

were higher than the linear model without dummy variables (Fig. 4). This indicates that the linear 287 

regression model included vegetation species better explained the variability of geometric 288 

properties of tidal channel networks. The abiotic variables measured were correlated with biotic 289 

factors (biomass, density, stem diameter, stem height) (Table S6). In particular, tidal range was 290 

significantly correlated with stem diameter. Elevation and hydroperiod were strongly correlated 291 

with aboveground biomass and stem height (Table S6). Therefore, we suggest that the geometrical 292 
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dr ai n a g e d e nsit y  (Fi g.  6). H er e t h e l a c k of tr ai ni n g d at a mi g ht pl a y a r ol e. I n t h e c as e of U V V R, 3 1 0  



however, our results indicate that other processes are probably at play, for example the marsh 311 

sediment budgets, and whether a marsh is eroding or accreting (Ganju et al., 2017). The 312 

multivariate models explain about 50% of the variability in sinuosity and more than 60% of the 313 

variability in mean UPL (Table 2).  314 

 315 

Table 2. Multiple regression models with forward selection for channel network properties. 316 

Channel 

properties 

Model (* = P < 0.05, ** = P < 0.01, *** = P < 

0.001) 
adjusted R2 

Drainage 

density 

0.031*** – 0.016 elevation**  0.304 (F=12.230, 

RMSE=0.010, 

P=0.002) 

Mean UPL -209.256* + 5.296 tidal range + 58.584 

log(density)* + 0.238 height* + 99.753 diameter* 

0.615 (F=12.587, 

RMSE=14.644, P 

<0.001) 

Sinuosity 2.024*** – 0.47 elevation*** 0.465 (F=24.327, 

RMSE=0.2173, P 

<0.001) 

UVVR 0.234*** – 0.041 tidal range** – 0.001 height* 0.337 (F=8.385, 

RMSE=0.0577, P 

=0.001) 

 317 



Fig. 6. Comparison between the measured channel network parameters and the corresponding 319 

values predicted from the models. 320 

 321 

Table 3. Summary of the stepwise multivariate regression models. 322 

Dependent 

variable 

Variables 

included 
Coefficients t-statistic p-level 

Collinearity Statistics 

Tolerance VIF 

Drainage density 
Intercept 0.031 6.698 <0.001   

Elevation  -0.016 -3.497 0.002 1.000 1.000 

Mean UPL 

Intercept -209.256 -3.537 0.002   

Tidal range 5.296 0.993 0.330 0.449 2.226 

Density  58.584 3.602 0.001 0.137 7.295 

Height  0.238 2.762 0.011 0.753 1.328 

Diameter  99.753 2.153 0.041 0.154 6.489 

Sinuosity 
Intercept 2.024 20.980 <0.001   

Elevation  -0.470 -4.932 <0.001 1.000 1.000 

UVVR Intercept 0.234 7.460 <0.001   



Tidal range -0.041 -2.921 0.007 0.990 1.010 

Height  -0.001 -2.562 0.016 0.990 1.010 

 323 

Discussion and conclusions           324 

In recent years, the effect of vegetation on channel formation in salt marshes have received 325 

particular attention. Recent results suggest that salt marsh plants affect drag and turbulence, 326 

promoting channel formation on an initially bare tidal flat (Kearney & Fagherazzi, 2016; Schwarz 327 

et al., 2018). Our results indicate instead that the difference in the geometric properties of fully 328 

developed tidal networks is mainly driven by physical factors (elevation and tidal range), and only 329 

secondary by vegetation parameters (Fig. 4 and 5). Therefore, we suggest that hydrodynamic 330 

conditions, sediment availability and marsh elevation might have a strong control on the geometry 331 

of the channel network, even within the same region and for homogeneous vegetation covers. For 332 

example, Liu et al., (2020) found that drainage density and mean UPL of Suaeda salsa marshes 333 

vary by a factor of four and eight, respectively, due to different elevations and distances from the 334 

fluvial source of sediments. The influence of specific vegetation species seems secondary for the 335 

final configuration of the tidal network, but it might be important during marsh evolution and 336 

channel development (Fig. 4 and 5).   337 

 338 

Abiotic processes affect the geometry of tidal networks 339 

Previous studies suggested that channel network formation occurs more rapidly when the tidal 340 

range is high or when the initial basin depth is low (Vandenbruwaene and Temmerman 2012; Van 341 

Maanen et al. 2013; Zhou et al., 2014). Our results also found that marsh surface elevation had 342 

significant negative correlation with channel drainage density (Table 1). The sites selected here for 343 

S. patens and C. lyngbyei are mesotidal, and the marsh platform is at high elevation with respect 344 



to mean sea level (Fig. 1a and 2a). Such a high platform reduces the tidal prism, and therefore the 345 

flux of water flooding the marsh decreases. Reduced tidal fluxes lead to a less developed tidal 346 

networks, with lower drainage density, narrower channels, and a smaller unvegetated area (Fig. 3) 347 

(O'Brien 1931; Jarrett 1976; Vandenbruwaene et al., 2013). Few long channels are present (higher 348 

Hortonian length) because they are not in competition among themselves for drainage area 349 

(Scheidegger 1968; Kirchner 1993; Iwasaki et al., 2013). On the contrary, a salt marsh low in the 350 

tidal frame, as those dominated by S. virginica and J. roemerianus in this study (Fig. 2a), have 351 

likely a larger tidal prism and higher tidal discharges that scour more channels thus increasing the 352 

drainage density and reducing the mean UPL (O'Brien 1931; Jarrett 1976; Vandenbruwaene et al., 353 

2013). These channels are larger, reducing the overall vegetated area (high UVVR) (Fig. 3). Large 354 

tidal prism in low-elevated marshes dominated by S. virginica, S. alterniflora and J. roemerianus 355 

might increase tidal velocities, which favor the formation of meanders (Peakall et al., 2012, Fig. 356 

3e). 357 

Mesotidal and microtidal marshes are also more susceptible to tidal inundation than macrotidal 358 

marshes. Based on field‐based observations and numerical models of marsh evolution, Kirwan et 359 

al. (2010) found that an increase in inundation depth produces a faster expansion of the channel 360 

network in microtidal marshes than in macrotidal marshes. Previous studies also suggest that 361 

extensive ponds formation and expansion are more common in low tidal range environments, 362 

increasing the UVVR (Redfield, 1972; Kearney et al., 1988; Turner and Rao, 1990). When tidal 363 

oscillations are small, even limited meteorological variations in water levels can increase the tidal 364 

prim, favoring channel formation. Therefore, it is not surprising to find that S. patens and C. 365 

lynbyei marshes with a large tidal range and high elevation with respect to mean sea level have 366 

tidal channel networks with smaller drainage density, higher UPL, and lower sinuosity (Fig. 4). 367 



 368 

Biotic processes affect the geometry of tidal networks 369 

While vegetation type seems having a secondary role with respect to physical drivers, it still 370 

exerts a control on the geometric characteristics of the tidal channel network. In particular 371 

aboveground biomass, which is often used by scientists to characterize vegetation cover in salt 372 

marshes (e.g. Mudd et al. 2004; Mudd et al. 2010), is significantly correlated to all network 373 

parameters. Our results found that a salt marsh with higher vegetation biomass has lower drainage 374 

density, higher mean UPL, and lower sinuosity and UVVR (Fig. 4). A thick vegetation cover can 375 

in fact prevent erosion and reduce channelization (low drainage density, high mean UPL), the few 376 

channels draining the marsh become longer (higher Hortonian length) for lack of competition. 377 

Dense vegetation also protects channel banks from erosion, hindering channel migration (low 378 

sinuosity) and enlargement (low UVVR). 379 

Numerous studies showed that the flow concentration between vegetated patches is responsible 380 

for enhanced erosion. As a result, during marsh formation drainage density increases with denser 381 

vegetation (Temmerman et al., 2007). Our results indicated, however, that vegetation may reduce 382 

the overall drainage density of a mature marsh, and biomass has a significant positive correlation 383 

with mean UPL (Fig. 4). A possible explanation of these contrasting results is that vegetation plays 384 

different roles during the life of a marsh. In the early stages of development, patches of dense 385 

vegetation favor incisions by deflecting water in channels (Temmerman et al., 2007; 386 

Vandenbruwaene et al., 2013; Schwarz et al., 2014). These patches have merged by lateral 387 

encroachment when the marsh is mature. The resulting dense, homogeneous vegetation cover 388 

reduces sediment mobility, stabilizing the substrate. Thick vegetation would hamper headward 389 

erosion and lateral migration of the channels, thus affecting the final geometry of the network 390 



(Coops et al., 1996; Hughes et al., 2009; Silliman et al., 2019). 391 

All these effects are therefore captured by vegetation biomass. When we analyze specific 392 

vegetation parameters (stem density, height, and diameter), the relationships become weaker and 393 

more confused. For example, vegetation density increases mean UPL, but stem height decreases it 394 

(Fig. 5). We therefore conclude that biomass is a more robust predictor of the role of vegetation in 395 

wetland hydrodynamics, in line with recent modeling efforts that link hydrodynamic parameters 396 

to biomass (Fagherazzi et al. 2012; Fagherazzi et al. 2020).  397 

Biomass and vegetation parameters used here were derived from the literature, and were 398 

collected at very few locations, sometime in nearby marshes (Table S2). Very often we had only 399 

one value per species, failing to capture differences in vegetation across sites having similar 400 

vegetation. We ascribe the weak predictive power of vegetation parameters to the lack of high-401 

resolution data, particularly for stem density, height and diameter. We believe that in the future, 402 

when spatially distributed data on vegetation characteristics derived from remote sensing data will 403 

be available (e.g. Sun et al. 2018; Fagherazzi et al. 2020), the link between vegetation and the 404 

geometry of tidal networks will be fully determined. 405 

In this study, we show that the different marsh networks have a statistically identical geometric 406 

efficiency (Fig. 3). In terms of network efficiency, the main difference is therefore whether the 407 

surface is vegetated or not, rather than what kind of plants colonizes the platform. The impact of 408 

different marsh grasses on hydrodynamics and channel development might therefore be subtle, 409 

and detectable only with high resolution data. It would be of interest to compare our results to 410 

channels developing in mangroves. Mangrove trees and shrubs are geometrically very different 411 

from grasses, and might control the tidal propagation in very different ways (Wolanski et al., 1980; 412 



van Maanen et al., 2015). Future research will shed light on the difference between tidal networks 413 

in salt marshes and mangroves.  414 
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