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Sensing and classification of drought stress levels are very important to agricultural production. In this work, rice 
drought stress levels were classified based on the commonly used chlorophyll a fluorescence (ChlF) parameter (Fv/Fm), 
feature data (induction features), and the whole OJIP induction (induction curve) by using a Support Vector Machine 
(SVM). The classification accuracies were compared with those obtained by the K-Nearest Neighbors (KNN) and 
the Ensemble model (Ensemble) correspondingly. The results show that the SVM can be used to classify drought 
stress levels of rice more accurately compared to the KNN and the Ensemble and the classification accuracy (86.7%) 
for the induction curve as input is higher than the accuracy (43.9%) with Fv/Fm as input and the accuracy (72.7%) 
with induction features as input. The results imply that the induction curve carries important information on plant 
physiology. This work provides a method of determining rice drought stress levels based on ChlF.

Introduction 

With global climate and environmental changes, the 
frequency and duration of irregular precipitation and 
continuous drought stress caused by extreme weather are 
increasing, and the degree of crop damage and loss is also 
rising (Webber et al. 2018, Xu et al. 2020). In addition, 
pollution further exacerbates the water resource crisis.  

As a major crop, rice demands a high level of soil moisture 
(Carrijo et al. 2018). Water is tightly connected with crop 
photosynthetic capacity, which can seriously impact the 
yield and quality of rice (Rosegrant and Cline 2003, Xu 
et al. 2020). With the shortage of water, drought stress  
has become an important factor in reducing rice yield 
(Iturbe-Ormaetxe et al. 1998, Yang et al. 2019, Melandri 
et al. 2020). Thus, to improve rice production and reduce 
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irrigation costs, it is of great significance to study rice 
drought stress measures (Sayed 2003). 

Photosynthesis is an important physiological process, 
which is closely related to plant water status, and it is very 
sensitive to water shortage. Photosynthetic rate decreases 
under drought stress (Miyashita et al. 2005). When leaf 
water content drops to a certain extent, plant photosynthesis 
will be inhibited or even completely stopped. Drought 
events are usually characterized by drought indices 
(Marcos-Garcia et al. 2017, Mukherjee et al. 2018). In 
agriculture, drought monitoring methods can be divided 
into three categories: meteorological monitoring methods 
(Jiao et al. 2019), remote sensing methods (Kumar et al. 
2014, West et al. 2019), and integrated remote sensing 
monitoring methods (Haboudane et al. 2004, Sánchez et al. 
2018). However, these methods do not directly relate to 
photosynthetic efficiency. There is still a lack of universal, 
noninvasive, convenient, and affordable plant-physiology-
based measures of drought stress that can reflect the 
influence of drought on photosynthesis. 

ChlF emission from photosystem II (PSII) couples with 
light energy absorption, transmission, dissipation, and 
distribution, and it plays an important role in determining 
photosynthesis (Lazár 2006, Maghsoudi et al. 2015, 
Urban et al. 2017). It can sense the effects of the external 
environment on the photosynthesis and physiology of 
plants, even if the changes in the external environment  
are very subtle. It is widely used in photosynthesis 
analysis, plant stress physiology research, oceanography, 
and remote sensing (Feng et al. 2018, Xia et al. 2018, Fu 
et al. 2019, Wang et al. 2019), and even genetic breeding 
under drought environments (Woo et al. 2008, Faraloni  
et al. 2011, Guo and Tan 2015, Zendonadi et al. 2021). 
ChlF measurement does not damage plant cells or cause 
harm to organisms. Thus, it may be used to measure the 
effect of drought on rice (Maghsoudi et al. 2015). 

In the literature, researchers studied the influence 
of environmental factors on ChlF to indirectly study the 
influence of the environment on plant photosynthesis.  
The minimum dark ChlF (Fo), the maximum dark ChlF 
(Fm), and the parameters calculated according to some 
feature data on the ChlF induction are often used for 
analysis (Banks 2018, Meravi and Prajapati 2020). At 
the same time, most of the data on the measured ChlF 
induction curve is not used for the analysis of plants; 
however, it may contain useful information and enhance 
the signal-to-noise ratio.

Support Vector Machine (SVM) is a very effective 
classification tool and has been widely used in agricultural 
plant recognition. SVM algorithm is a supervised learning 
model defined by separating hyperplanes based on the 
statistical learning theory. It is a method in the field of 
artificial intelligence and data mining. The generalization 
performance of SVM focuses on the principle of structural 
risk minimization (SRM), rather than minimizing the 
error in the training data, which thus avoids common 
overfitting problems in most Artificial Neural Network 
(ANN) models. Therefore, in an SVM model, even if the 
dimensionality of the training samples is very high, SVM 
can obtain high generalization ability. A large number of 

applications also show that SVM has good classification 
capabilities in processing a small number of samples, 
nonlinear, and high-dimensional pattern recognition.

SVM was widely applied in agriculture, for example, 
material identification (Karimi et al. 2006, Guerrero et al. 
2012, Kour and Arora 2019, Qiao et al. 2019), adulteration 
percentage classification (Timsorn et al. 2017), plant 
substance content prediction (Ignat et al. 2013, Wang et al. 
2018), and disease classification (Alam and Kwon 2017). 
Although SVM has been widely used in agricultural plants, 
it has not been used in plant drought stress recognition 
based on ChlF. 

Drought stress is one of the main environmental factors 
that restrict rice growth. The damage of drought stress to 
rice growth is multifaceted and the response mechanism 
of rice to drought stress is also extremely complex, which  
can lead to rice yield reduction and even death. The 
research on rice drought stress response has reached 
the molecular level, involving cloning, positioning, and 
functional analysis of drought resistance genes. However, 
there is a lack of a universal, noninvasive, convenient, 
and economic method for determining drought stress 
levels based on plant physiology to reflect the impact of 
drought stress on photosynthesis. Therefore, in this work, 
SVM was used to classify rice drought stress levels with 
the entire OJIP induction curve or computed induction 
feature(s) as input variables. In addition, the K-Nearest 
Neighbors (KNN) and the Ensemble methods were used 
for comparison. 

Materials and methods 

Experimental samples: Rice plants (Oryza sativa L.) were 
uprooted from a production field at 6:30 h in July 2019 
after growing for about 40 d. To reduce initial differences 
in moisture contents, the roots of rice were immersed in 
water for two hours. Then the roots were put into a 20% 
polyethylene glycol (PEG) solution for different durations 
(D0 – no drought stress treatment; D1 – drought stress 
treatment for 1 h; D4 – drought stress treatment for 4 h) 
to achieve different levels of drought stress. PEG-induced 
drought is commonly used in plant drought stress research 
(Wang et al. 2005, Cai et al. 2015, Faseela et al. 2020). We 
used 883 rice plants.

Fluorescence measurement: ChlF of the treated plant 
samples was measured with a FluorPen hand-held 
fluorometer (Model FF 110, Photon Systems Instruments, 
Czech Republic) set to its OJIP protocol.

Data analysis: The measured ChlF induction responses 
were used as inputs and the drought level (D0, D1, and 
D4) as the classifier or output. The induction responses 
were used in three ways: (1) a ChlF parameter: maximum 
photochemical quantum yield of PSII in the dark (Fv/Fm); 
(2) induction features: computed features of ChlF  
induction (Fo, Fj, Fi, Fm, Fv, Vj, Vi, Fm/Fo, Fv/Fo, Fv/Fm, M0, 
Area, Fix Area, Sm, Ss, φP0, ψ0, φE0, φD0, φPav, PIABS,  
ABS/RC, TR0/RC, ET0/RC, and DI0/RC) (see Appendix 
for a more detailed explanation about ChlF parameters); 
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(3) induction curve: all the data of the ChlF induction 
curve. Before analysis or feature computation, the ChlF 
induction data were normalized by using the Min-Max 
method. 

Statistical analysis was performed on the induction 
features with the statistical software package SPSS (SPSS 
Inc., version 21.0, Chicago, USA). Statistical differences 
between different levels of drought stress were determined 
by using the least significant difference (LSD) method at 
the 0.05 probability level. 

SVM, KNN, and the Ensemble toolbox in MATLAB 
(The MathWorks, Natick, MA, USA) were used to classify 
the plant samples into the three drought levels. The 
parameters or settings for each method were determined 
experimentally for the best classification accuracy. The 
cubic kernel was used as the SVM kernel function, the 
kernel scale was set to ‘automatic’, ‘boxconstraint’ level to 
1, and the multiclass method to ‘one-vs-one’. The distance 
metric of KNN was set as ‘cosine’, the number of neighbors 
was set as 10, the distance weight was set as ‘equal’.  
The Ensemble method was set as ‘subspace’, learner type 
was set as ‘discriminant’, the number of learners was set as 
30, and the subspace dimension was set as 13.

To test the generalization ability of the three methods, 
80% of the samples were randomly selected as the training 
dataset, and the remaining 20% were selected as the test 
dataset. 

Results

ChlF induction curves under three different drought stress 
durations were measured. It cannot be seen that drought 
stress resulted in differences in the curves due to ChlF 
variations between samples within groups (Fig. 1). 

Induction features were computed and subjected to the 
least significant difference (LSD) analysis to determine 
if they are statistically different for different durations 
of drought stress treatments (Fig. 2). Fo, Fj, Fi, Vi, PIABS,  
ABS/RC, Ss, Sm, N, M0, DI0/RC, and Area differed  
between the three drought levels. Vj, Fm/Fo, Fv/Fo, Fv/Fm,  
φE0, φP0, φD0, ψ0, and HACH Area do not show the  

statistical difference between the non-drought (D0) and 
1-h drought stress treatments (D1) while Fm, Fv, φPav, 
and ET0/RC did not differ between the 1-h (D1) and 
4-h (D4) drought stress treatments. Since the ChlF 
induction features varied, they are potentially useful for 
distinguishing drought levels in rice plants. It lays a base 
for the classification of different rice drought levels by 
using ChlF. However, the statistical difference does not 
mean that the classification accuracy for drought stress 
levels may be very high because of sample variations 
within groups.

Three classification techniques (SVM, KNN, and 
Ensemble) were applied to classify the plant samples  
into different drought levels with the commonly used 
maximum photochemical quantum yield of PSII in the  
dark (Fv/Fm), the induction features, or the whole induction 
curve shown in Fig. 2. Table 1 shows the maximum 
classification accuracy (Max), the minimum classification 
accuracy (Min), and the average classification accuracy 
(Average) of running the test dataset 10 times by SVM, 
KNN, and Ensemble, respectively. It can be seen that 
among the three classification methods, the average 
classification accuracy rate of the SVM method with the 
induction curve as input is the highest, which is 88.5%.  
In addition, the induction curve as input performed better 
than just the induction features except for the KNN method. 

To test the consistency of classification by the three 
methods (SVM, KNN, and Ensemble) for drought levels 
of rice, the Cohen's kappa coefficient was calculated to 
analyze the consistency between the actual stress levels 
and the predicted stress levels. Generally, the kappa 
coefficient is between 0 and 1, which is divided into five 
intervals to represent the consistency between the actual 
category and the predicted category: 0.00–0.20 indicates 
very low consistency, 0.21–0.40 indicates fair consistency, 
0.41–0.60 indicates moderate consistency, 0.61–0.80 
indicates high consistency, and 0.81–1.00 indicates 
almost perfect consistency. The kappa coefficient values 
for the three classification methods are shown in Table 2.  
The kappa coefficient (0.82) of the SVM method with the 
induction curve as input is the highest. This result shows 
that SVM has great advantages in the qualitative analysis 
of rice drought levels.

For conciseness, only the results from SVM are 
further reported and discussed. The SVM classification 
results for the training dataset are shown in Fig. 3 and 
the classification results for the test dataset are listed in  
Table 4. Fig. 3 shows the confusion matrix of SVM 
classification of rice drought levels for the training 
dataset. The values in the confusion matrix represent the 
probability that the true drought stress levels are denoted 
by the vertical axis classified as the predicted drought 
stress levels denoted by the horizontal axis through 
the SVM classifier. The larger the diagonal value in the 
confusion matrix, the higher the classification accuracy. 
The total classification accuracy of drought stress levels 
is 47.0% (the mean of the truly positive results in Fig. 3A) 
only based on the maximum photochemical quantum 
yield of PSII (Fv/Fm) in Fig. 3A. Fig. 3B shows that the 

Fig. 1. Mean ChlF induction curves for three different drought 
levels (no drought, drought for 1 h, and drought for 4 h). The 
error bars are the standard deviations of O, J, I, and P points of 
the rice samples under the same drought stress level.
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total classification accuracy of drought stress levels 
can reach 73.3% (the total classification accuracy of the  
three drought levels based on the induction features, 
which is the mean of the true positive rate in Fig. 3B) and 
the correct classification rate for the 4-h drought stress 
treatment (D4) can reach 80.0% when only induction 
features were used as the SVM model input. However, 
the classification accuracy can reach 88.3% [the total 

classification accuracy of the three drought levels based 
on the induction curves, which is the mean of the truly 
positive rate in Fig. 3C and the classification rate for the 
4-h drought treatment (D4) can reach 91.0% when the data 
of the whole induction curve was used as the SVM model 
input (Fig. 3C)]. Most of the misclassified cases were 
classified into the neighbor groups. For example, samples 
of D4 have an 80% chance to be classified as drought 

Fig. 2. One-way ANOVA of ChlF induction features under different drought levels (different lowercase letters indicate significant 
differences at p<0.05). Fo – minimal chlorophyll a fluorescence intensity in the dark; Fj – chlorophyll a fluorescence intensity at the J 
step; Fi – chlorophyll a fluorescence intensity at the I step; Fm – maximal chlorophyll a fluorescence intensity; Fv – variable fluorescence 
intensity in the dark; Vj – relative variable fluorescence intensity at the J step; Vi – relative variable fluorescence intensity at the I step; 
Fm/Fo – electron transport through PSII; Fv/Fo – quantum efficiency of PSII; Fv/Fm – maximum photochemical quantum yield of PSII 
in the dark; M0 – approximated initial slope (in ms–1) of the fluorescence transient; Area – area between fluorescence curve and Fm 
(background subtracted); Fix Area – area below the fluorescence curve between F40μs and F1s (background subtracted); Sm – normalized 
area between ChlF induction curve and the line F = Fm, (multiple turnover);Ss – the smallest Sm turnover (single turnover); N – reduction 
times of QA from Fo to Fm; φP0 – maximum quantum yield of PSII; ψ0 – probability that a trapped exciton moves an electron further than 
QA

–; φE0 – quantum yield of electron transport; φD0 – quantum yield of energy dissipation; φPav – average (from time 0 to tFm) quantum 
yield for primary photochemistry; PIABS – performance index for energy conservation from exciton to the reduction of intersystem 
electron acceptors; ABS/RC – absorption per reaction center; TR0/RC – trapped energy flux per reaction center; ET0/RC – electron 
transport per reaction center; DI0/RC – dissipation per reaction center (at t = 0).
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treatment for 1-h (D1) but unlikely as non-drought rice 
(D0) in Fig. 3C. 

Tables 3, 4, and 5 show the SVM classification results 
for the test dataset based on the Fv/Fm, induction features, 
and induction curve, respectively. Table 3 shows the 
classification accuracy for the total rice samples is 43.9% 
based on Fv/Fm and the kappa coefficient value is 0.159. 
The classification accuracy for the total rice samples is 
72.7% based on induction features as shown in Table 4 
and the classification accuracy for the total rice samples 
is 86.7% based on induction curves as shown in Table 5.  
The total classification accuracy using the induction  
curves is 42.7% and 14.0% higher than that using Fv/Fm 
and the induction features, respectively. In general, using 
the induction curve as input proved to be advantageous 
over using only Fv/Fm or induction features as shown by the 
higher each or total correct classification percentages and 
a greater kappa coefficient value (0.80 vs. 0.60 or 0.16). 
The correct classification rates using the induction curve 
for the non-drought treatment and 4-h drought treatment 
were relatively high in Table 5, which should be related 
to the physiological changes of rice samples induced by 
drought stress.

Discussion

The difference of ChlF induction under different drought 
durations as shown in Fig. 1 and the statistical difference 
of some parameters under different drought durations 
as shown in Fig. 2 are consistent with findings in the 
literature. Under drought stress, different parts of electron 
transport of PSII are affected (Oukarroum et al. 2007, 
Zivcak et al. 2013, Bano et al. 2021). The changes of 
plant photosynthesis with external factors can be traced 
by measuring the ChlF induction and correlated with the 
drought stress (Saglam et al. 2014). The different steps  
and stages of ChlF induction can be linked to PSII, PSI, 
and the electron transfer efficiency between the two photo
systems, components of photosynthetic electron transport 

Table 1. Comparison of drought stress level classification accuracy [%] obtained from different methods (SVM, KNN, and Ensemble) 
and inputs for the test dataset. Fv/Fm – maximum photochemical quantum yield of PSII.

Methods SVM KNN Ensemble
Max Min Average Max Min Average Max Min Average

Fv/Fm [%] 46.24 43.59 45.45 45.13 38.46 41.95 44.62 40.51 41.91
Induction features [%] 75.21 72.14 73.21 68.21 61.71 65.26 68.03 63.76 65.88
Induction curve [%] 88.51 85.50 86.84 67.80 60.45 63.22 87.57 83.05 85.37

Table 2. Comparison of the kappa coefficients obtained from different methods (SVM, KNN, and Ensemble) for the test dataset.  
Fv/Fm – maximum photochemical quantum yield of PSII.

Methods SVM KNN Ensemble
Max Min Average Max Min Average Max Min Average

Fv/Fm 0.23 0.15 0.18 0.18 0.08 0.13 0.17 0.11 0.13
Induction features 0.63 0.58 0.60 0.52 0.43 0.48 0.52 0.46 0.49
Induction curve 0.83 0.78 0.82 0.52 0.41 0.45 0.81 0.75 0.78

Fig. 3. Confusion matrix of Support Vector Machine (SVM) 
classification of rice drought levels for the training dataset.  
(A) Based on the maximum photochemical quantum yield of PSII 
(Fv/Fm), (B) based on induction features, (C) based on the induc
tion curve. D0, D1, and D4 indicate no drought treatment, drought 
treatment for 1 h, and drought treatment for 4 h, respectively.
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(Stirbet and Govindjee 2011, Brestic et al. 2015). Previous 
studies found that ChlF has a strong correlation with rice 
drought stress. In our study, we expanded the research by 
proposing a machine learning method based on ChlF to 
classify drought levels. 

Our results show that there are statistical differences in 
some induction features under different drought durations, 
which is consistent with the results in the literature (Kumar 
et al. 2016). The classification accuracy of using all the 
data on the OJIP induction curve as inputs is higher than 
the accuracy of only using Fv/Fm or some ChlF feature 
parameters as inputs. In addition, the kappa coefficients in 
Table 5 also show that all the data on the OJIP induction 
curve as the model input lead to better classification 
performance for rice drought stress levels. This implies 
that drought stress level classification accuracy can be 

significantly improved by using the whole ChlF induction 
curve although there is no clear visible difference between 
ChlF signals for rice samples with different levels of 
drought stress treatment. This also implies that there is rich 
useful hidden biological information in the ChlF induction 
curve and the information can be used in future research 
for more application through machine learning techniques.

SVM is a supervised learning method. Its decision 
boundary is the maximum margin plane of the learning 
sample solution. In addition, the regularization term is 
added to the solution system to optimize the structural risk, 
so it has certain advantages in classification. Therefore, 
compared with the KNN and the Ensemble model, the 
SVM model has better capability to classify different 
levels of rice drought stress. And the kappa coefficients in 
Table 4 also show that the consistency of the classification 
results using SVM is relatively better. Machine learning 
methods are useful for the analysis of ChlF induction 
curves, especially in rice drought classification, which has 
been proved in this paper. This work demonstrated SVM 
had advantages in classifying rice drought stress levels 
with the ChlF data and the whole OJIP induction contains 
more plant physiological information. 

Conclusion: In this work, the SVM technique was used 
for the classification of drought stress levels based on 
ChlF. The results show that the SVM model is a useful 
tool in rice drought stress level classification. In addition, 
the whole OJIP induction contains more information about 
the physiological state of plants, which was often omitted 
in literature when only the ChlF characteristic features are 
used in the analysis. In future work, more ChlF data under 
different environmental conditions should be considered 
to extend the developed method. It is expected that this 
ideal will be useful to improve agricultural production and 
agricultural genetic breeding under environmental stress.
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Appendix. Chlorophyll a fluorescence parameters.

OJIP parameters Definitions

Fo Minimal chlorophyll a fluorescence intensity in the dark
Fj Chlorophyll a fluorescence intensity at the J step
Fi Chlorophyll a fluorescence intensity at the I step
Fm Maximal chlorophyll a fluorescence intensity
Fv = Fm – Fo Variable fluorescence intensity in the dark 
Vj = (Fj – Fo)/(Fm – Fo) Relative variable fluorescence intensity at the J step
Vi = (Fi – Fo)/(Fm – Fo) Relative variable fluorescence intensity at the I step
Fm/Fo Electron transport through photosystem II
Fv/Fo = (Fm – Fo)/Fo Quantum efficiency of photosystem II
Fv/Fm = (Fm – Fo)/Fm Maximum photochemical quantum yield of photosystem II in the dark
M0 = 4(F300 – Fo)/(Fm – Fo) Approximated initial slope (in ms–1) of the fluorescence transient
Area Area between fluorescence curve and Fm (background subtracted)
Fix Area Area below the fluorescence curve between F40μs and F1s

Sm = Area/(Fm – Fo) Normalized area between ChlF induction curve and the line F = Fm

Ss The smallest Sm turnover (single turnover)
N = Sm × M0 × (1/Vj) Reduction times of QA from Fo to Fm

φP0 = 1 – (Fo/Fm) (or Fv/Fm) Maximum quantum yield of PSII
ψ0 = 1 – Vj Probability that a trapped exciton moves an electron further than QA

–

φE0 = (1 – Fo/Fm) × (1 – Vj) Quantum yield of electron transport
φD0 = 1 – φP0 = Fo/Fm Quantum yield of energy dissipation
φPav = φP0 × (1 – Vj) Average (from time 0 to tFm) quantum yield for primary photochemistry
PIABS = RC/ABS × [φP0/(1 – φP0)] × 
× [ψ0/(1 – ψ0)]

Performance index for energy conservation from exciton to the reduction of intersystem 
electron acceptors

ABS/RC = (M0/Vj)(1/φP0) Absorption per reaction center
TR0/RC = M0 × (1/Vj) Trapped energy flux per reaction center
ET0/RC = (M0/Vj)(1 – Vj) Electron transport per reaction center
DI0/RC = ABS/RC – TR0/RC Dissipation per reaction center (at t = 0)
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