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Abstract

We present the results of a high-cadence spectroscopic and imaging monitoring campaign of the active galactic
nucleus (AGN) of NGC 4395. High signal-to-noise-ratio spectra were obtained at the Gemini-N 8 m telescope
using the GMOS integral field spectrograph (IFS) on 2019 March 7 and at the Keck I 10 m telescope using the
Low-Resolution Imaging Spectrometer with slit masks on 2019 March 3 and April 2. Photometric data were
obtained with a number of 1 m-class telescopes during the same nights. The narrow-line region (NLR) is spatially
resolved; therefore, its variable contributions to the slit spectra make the standard procedure of relative flux
calibration impractical. We demonstrate that spatially resolved data from the IFS can be effectively used to correct
the slit-mask spectral light curves. While we obtained no reliable lag owing to the lack of a strong variability
pattern in the light curves, we constrain the broad-line time lag to be less than 3 hr, consistent with the photometric
lag of ∼80 minutes reported by Woo et al. By exploiting the high-quality spectra, we measure the second moment
of the broad component of the Hα emission line to be 586± 19 km s−1, superseding the lower value reported by
Woo et al. Combining the revised line dispersion and the photometric time lag, we update the black hole mass to
(1.7± 0.3)× 104 Me.

Unified Astronomy Thesaurus concepts: Active galactic nuclei (16)

1. Introduction

Intermediate-mass black holes (IMBHs) with masses
between 100Me and 106Me are perhaps the most elusive
astrophysical black holes. Only a small number of them have
been reported so far (e.g., Greene et al. 2020). Detecting
IMBHs and carrying out a census of the population is an active
subject of research, with potentially far-reaching implications
for the formation and growth mechanism of all supermassive
black holes (SMBHs; e.g., Volonteri et al. 2003, 2008; Barai &
de Gouveia Dal Pino 2019).

Probing IMBHs via spatially resolved kinematics is
extremely difficult as the sphere of influence ( =Rinf

sGM•
2
*
, where M• and σ* denote the black hole mass and

the stellar velocity dispersion, respectively) is extremely hard
to resolve with current technology. For example, resolution
better than∼1 pc is needed for a 105Me black hole, which is
beyond the limit of the Hubble Space Telescope or adaptive-
optics-assisted spectroscopy even for the most nearby galaxies
(e.g., Nguyen et al. 2017).

For active IMBHs, reverberation mapping provides an
opportunity to measure the black hole mass by resolving the
broad-line region (BLR) through time monitoring rather than
using high-angular-resolution observations. As a first approx-
imation, the black hole mass is given by the time delay (τ)
between the continuum and a broad line, in combination with
the line width (ΔV ), via the formula M•= f cτ(ΔV )2/G, where
f is the virial coefficient (Peterson 2014).
NGC 4395 is a nearby dwarf galaxy with a stellar mass of

∼109 Me (Filippenko & Sargent 1989; Reines et al. 2013). It
contains the least-luminous broad-lined active galactic nucleus
(AGN) known to date, with a bolometric luminosity lower
than 1041 erg s−1 (Filippenko & Sargent 1989; Filippenko et al.
1993; Lira et al. 1999; Moran et al. 1999; Filippenko &
Ho 2003; Cho et al. 2020). While the mass of the central black
hole is most likely less than the 106 Me limit for IMBHs, its
exact mass has been in dispute, with estimates ranging from
9× 103 Me to 4× 105 Me (e.g., Filippenko & Ho 2003;
Peterson et al. 2005; Edri et al. 2012; den Brok et al. 2015;
Woo et al. 2019). For example, Peterson et al. (2005) measured
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(3.6± 1.1)× 105 Me based on spectroscopic reverberation
mapping of the C IV broad emission line, with a time lag of
48–66 minutes and a broad-line width of σ≈ 3000 km s−1. In
contrast, Woo et al. (2019) measured the mass to be
(9.1± 1.6)× 103 Me based on the 83 minute time lag obtained
from narrowband photometric reverberation mapping of Hα
combined with the Hα broad-line width of σ= 426 km s−1.
Note that the discrepancy between C IV–based and Hα-based
black hole masses is mainly due to the dramatic difference in
the measured velocity of the two emission lines (see discussion
by Woo et al. 2019).

As a follow-up of the previous narrowband photometric
reverberation mapping (Woo et al. 2019; Cho et al. 2020), we
carried out a high-cadence spectroscopic monitoring campaign
of NGC 4395 in 2019, with the goal of resolving this tension
and firming up the black hole mass measurement. We observed
the AGN over three separate nights, aiming to measure the
short time lag between the AGN continuum and broad Balmer
emission lines. We improved traditional slit-based spectro-
photometric calibration using the Gemini integral field
spectrograph (IFS) data. In this paper, we present the analysis
method for flux calibration and the results. While we obtained
no conclusive spectroscopic lag of Hα owing to a combination
of insufficient variability structure in the light curve and bad-
weather losses, we were able to constrain the Hα lag to be less
than 3 hr. At the same time, the high-quality spectra enabled us
to improve the determination of the Hα line dispersion and
update the black hole mass measurement.

The paper is organized as follows. In Section 2, we describe
the observations and data-reduction procedures. Section 3
presents the data analysis. The revised black hole mass of NGC
4395 is discussed in Section 4, and the results are summarized
in Section 5.

2. Observations and Data Reduction

Over three nights in 2019, we performed a series of optical
spectroscopic observations using GMOS on the Gemini-N 8 m
telescope and the Low-Resolution Imaging Spectrometer
(LRIS; Oke et al. 1995; McCarthy et al. 1998) on the Keck I
10 m telescope, accompanied by eleven 1–2 m class telescopes
for photometric observations. Previous studies showed that the
BLR size is ∼1–2 lt-hr (Peterson et al. 2005; Woo et al. 2019;
Cho et al. 2020), consistent with the extrapolation of the BLR
size–luminosity relation (Bentz et al. 2013; Cho et al. 2020) to
low luminosities. In order to measure the time lag, we designed
our observations to obtain spectra every 5–10 minutes over a
full night (7–8 hr), thus spanning a multiple of the expected lag
while sampling it with high cadence. Thanks to multiple
telescopes at different longitude, the photometric light curves
are more extended in length and have higher cadence than the
spectroscopic data.

2.1. Gemini GMOS

We observed NGC 4395 on 2019 March 7 (UT dates are
used throughout this paper) with Gemini GMOS (Program ID:
GN-2019A-C-2) in integral field unit (IFU-R) mode, which
provided a 3 5× 5″ field of view (FoV); see Figure 1) and a
sufficiently high signal-to-noise ratio (S/N). We used the R831
grating with a central wavelength of 5780Å. In this
configuration, the spectral resolving power was R= 7090, or
s = -18 km sres

1, which was sufficiently high for resolving
AGN emission lines. Because of clouds in the early part of the
night, only ∼5 hr of spectroscopic data were obtained. The
seeing was 1″ at the beginning of the night and improved
steadily to 0 2 by the end of the night. The exposure time of
individual spectra was 300 s.

Figure 1. Left: example V-band image of NGC 4395, constructed by averaging 140 images with 120 s exposure each obtained with the Faulkes Telescope North on
2019 March 3. The FoV is ¢ ´ ¢10 10 . The magenta square near the center is magnified in the right panel. Right: magnified image of NGC 4395 with slit masks shown.
Red rectangles mark the 1″ wide slits (from west to east, 71″ long (the AGN), 22″ long (S1), and 37″ long (S2)) used at Keck LRIS to obtain spectra of the AGN and
of the comparison stars, while blue rectangles mark the object field (3 5 × 5″) and the sky field (1 75 × 5″) of the Gemini GMOS IFS.
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The data were reduced using a modified version of the Py3D
pipeline, which is a package for fiber-fed IFU spectrographs
originally developed for the reduction of the Calar Alto Large
Integral Field Area (CALIFA) survey data (Husemann et al.
2013). The master bias image was constructed by taking the
median of 45 associated bias images and then subtracting it
from all images. Internal flat-field images were used to trace the
fibers, and a twilight flat field was used to correct for
differences in the response of each fiber. A wavelength
solution was obtained using a Cu–Ar calibration lamp. For
each image, a relatively blank and featureless sky region ~ ¢1
from the nucleus was simultaneously measured and subtracted
from a bundle of sky fibers. We used a spectrum of the
spectrophotometric standard star HZ 44 to derive the response
function and applied it to all epochs obtained throughout the
night. Then, each series of fiber spectra was assembled into
three-dimensional (3D) data cubes using the drizzle algorithm
implemented in Py3D. Atmospheric dispersion (Filippenko
1982) was corrected by fitting the flux centroid position as a
polynomial function of wavelength.

Figure 2 shows GMOS spectral images, which were
integrated over the spectral range of each of the three emission
lines, after averaging over the data obtained under the best sky
conditions. Note that a secondary peak in the line-flux
distribution was clearly identified at a ∼1″ distance from the
AGN core, representing an extended narrow-line region (NLR)
(see the blue circle in Figure 2).

For each IFU datacube, a one-dimensional spectrum was
extracted within an aperture consisting of two patches, one
circle with a radius of 1″ centered on the AGN core, and
another circle with a radius of 0 6 at 1 2 west of the AGN
core. The relatively large aperture of an effective area of 4.2″2

was used to enclose most of the flux from both the AGN core
and the extended NLR to minimize the effect of various seeing
during the night. An example of the extracted spectrum is
presented in Figure 3 (bottom panel).

2.2. Keck LRIS

We observed NGC 4395 on 2019 March 3 and 2019 April 2
using Keck LRIS with a slit mask in order to include the AGN
as well as two comparison stars for secondary flux calibration
(similar to the strategy adopted by Williams et al. 2020). The
slits were 1″ wide, as shown in Figure 1. On the blue side, we
used the 600/4000 grism with R= 1441. On the red side, we

used the 1200/7500 grating, and we measured R= 8522 or
s = -15 km sres

1 from the night-sky emission lines.
On 2019 March 3, we obtained spectra for 8 hr under good

sky conditions, with a seeing of ∼1″. In contrast, sky
conditions were worse with a seeing of∼1 5 on 2019 April
2, and we were able to acquire only two blocks of exposures of
3 hr and 1 hr each, with a pause of 3 hr between them due to
high humidity. For exposure time of individual epochs, we
used 369 s for the red-side CCD and 400 s for the blue-side
CCD in order to match the cadence of the two channels,
accounting for the different readout times.
The data were preprocessed using the PypeIt v0.13.0

pipeline (Prochaska et al. 2020). After bias subtraction, dome
flat-field images were used to create pixel flats as well as to
trace slits. We derived wavelength solutions from spectra of
Ne–Ar lamps on the red side and Hg–Cd–Zn lamps on the blue
side. The sky spectra were estimated from the model derived by
the PypeIT pipeline to better interpolate the pixels influenced
with cosmic rays.
Instrumental flexures were manually corrected by comparing

the night-sky emission-line centers to the line centers measured
by Cosby et al. (2006). Object spectra, along with the spectra of
two bright comparison stars (2MASS J12255090+3333100
(S1) and WISEA J122551.24+333125.7 (S2)), were extracted
from the reduced spectral images using an aperture with a
width of 1 755. The flux was then calibrated for each exposure
by deriving the response function for each spectrum using the
comparison stars, as detailed in Section 2.2.1. The average
spectrum is shown in Figure 3 (top panel).

2.2.1. Flux Calibration

Because there are no available flux-calibrated spectra of
these two comparison stars, we fitted them with spectra taken
from a library. First, we estimated the spectral types from their
SDSS ugriz and 2MASS JHK magnitudes using a spectra-type
fitter (Pickles & Depagne 2010; https://lco.global/~apickles/
SpecMatch/). Then, using spectra in the Indo-US Library of
Coudé Feed Stellar Spectra (Valdes et al. 2004) with similar
spectral types to templates, we fitted the spectra of S1 and S2
using pPXF (Cappellari 2017). We fitted Hα (red side) and Hβ
(blue side) absorption lines and other nearby stellar absorption
lines with template spectra using a second-order multiplicative
polynomial and without any additive terms. Finally, we
determined the best-fitting templates to be HD 165341
(K0 V) for S1 on the red side and HD 208110 (G0 IIIs) for
S2 on the blue side.
To determine the response functions, we first degraded the

template spectra using pPXF to match the resolution of the
observed spectra. Then, resolution-matched template spectra
were scaled to match the photometric magnitudes obtained
from SDSS. Raw spectra of S1 and S2 were divided by the
resolution-matched library spectra to obtain quotient spectra.
Then, quotient spectra from all epochs were scaled to have the
same median values, and the shape of the quotients was
determined by taking their median. Finally, quotient spectra
were fitted with the shape of quotients multiplied by a low-
order polynomial or a power-law function to obtain the
response functions. The response functions were applied to
the corresponding spectra to produce flux-calibrated spectra of
the AGN.

Figure 2. Line-flux distribution of [O III] λ5007 (left), Hα (middle), and [S II]
λ6717 (right), which were constructed with GMOS-IFU data. Intensity is
shown on a logarithmic scale. The size of each panel represents the FoV of the
GMOS-IFU (i.e., 3 5 × 5″). Two circles indicate the aperture used for
extracting one-dimensional spectra, one covering the AGN core (red) and the
other covering the extended NLR (blue).
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2.3. Optical Photometric Observations

In addition to obtaining spectra, we performed photometric
observations in the V band to obtain continuum light curves,
using Las Cumbres Observatory (LCOGT) telescopes (Teide
0.4 m, McDonald 0.4 m and 1 m, and Haleakala 0.4 m and
Faulkes Telescope North; Brown et al. 2013), the San Pedro
Mártir Observatory 0.84 m telescope, the MDM Observatory
1.3 m telescope, the Mt. Laguna Observatory 1 m telescope, the
Mt. Lemmon Optical Astronomy Observatory 1 m telescope,
the Bohyunsan Optical Astronomy Observatory 1.8 m tele-
scope, and the Deokheung Optical Astronomy Observatory 1 m
telescope. The exposure time for each telescope was set to
ensure that the relative photometric error of the AGN is< 0.02
mag, without exceeding 5 minutes to preserve the cadence. For
each set of observations, we observed Landolt standard-star
fields (Landolt 1992) for absolute flux calibration.

Standard data reduction was performed including bias
subtraction and flat fielding using IRAF (Tody 1986, 1993;
National Optical Astronomy Observatories 1999) procedures or
the Ccdproc package (Craig et al. 2015) and cosmic-ray
rejection using the L.A.Cosmic algorithm (van Dokkum 2001)
as implemented in the Astro-SCRAPPY package (McCully &
Tewes 2019). After the reduction, data quality was assessed
based on visual inspection, and any epoch with quality issues

(e.g., failed tracking or performance trouble reported in the
observing log) was rejected from further photometric analysis.

3. Analysis

3.1. Decomposition of the Broad Hα Line

To obtain the flux and width of the broad Hα emission line,
we decomposed the observed spectra as follows. First, we
modeled the continuum as a power law using suitable windows,
i.e., 5950–6000Å, 6140–6240Å, 6800–6880Å, and 7220Å or
redder. Note that a power-law model was chosen because the
observed continuum exhibited no significant stellar absorption
feature. Second, after continuum subtraction, we modeled the
[S II] λλ6717, 6731 doublet using two Gaussian components for
each line, because both [S II] lines show a blue-wing component,
which represents gas outflows (see right panels of Figure 4).
Third, we modeled the Hα and [N II] λλ6548, 6583 lines using
two Gaussian components for each narrow line as consistently
performed for [S II], along with two additional Gaussian
components for representing the broad Hα line. For the Hα
and [N II] narrow lines, priors for the line-of-sight (LOS)
velocity and the velocity dispersion were taken from the [S II]
line measurements. Examples of emission-line spectra and their
decompositions are presented in Figure 4. In the case of the
broad Hα line, we measured the line flux from the best-fit model

Figure 3. Flux-calibrated spectra obtained from Keck LRIS on 2019 March 3 (upper panel) and Gemini GMOS on 2019 April 2 (lower panel). Note that the Gemini
GMOS spectrum is extracted from a region fully enclosing both the core and the narrow-line region as shown in Figure 2. As a result, the peak of Balmer lines and the
Hα-to-Hβ flux ratio changes depending on the contribution from the extended NLR, where the Hα-to-Hβ flux ratio is close to a factor of 3. For clarity, the peaks of the
[O III] and Hβ emission lines are shown in the inset box.
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and determined the line dispersion by calculating the second
moment of the broad-line model, which was constructed with
two Gaussian components, after correcting for the instrumental
resolution.

For each night, we obtained a mean spectrum by averaging
individual spectra taken on that night. For comparison, we
report the line dispersion of the broad Hα line, from these mean
spectra in Table 1. We also provide the line dispersion of each
component in the Gaussian model for both broad Hα and
narrow lines in Table 1. Overall, the line dispersion of the
broad Hα ranges from 560 to 600 km s−1, of which two
Gaussian components have line dispersion of 220–240 km s−1

and 800–860 km s−1, respectively.

3.2. Spectroscopic Hα Light Curves

For the Gemini GMOS spectra, the response function was
measured once throughout the night. Thus, we calibrated the
flux of broad Hα by assuming constant [S II] fluxes, following
the method by van Groningen & Wanders (1992). This method
is applicable because our apertures were chosen to be large
enough to enclose most of the broad- and narrow-line emission
for the two components. We modeled the [S II] lines as
described in Section 3.1, fixing the difference between the
central velocities and the velocity variances of two Gaussian
components, as well as the flux ratio between two components,

while allowing the center and the width of the core component
to be free. We convolved each spectrum with Gaussian kernels
to enforce the same spectral resolutions and remove spectral
shifts between different exposures, and we scaled the spectra so
that the [S II] lines exhibit exactly the same flux throughout the
exposures. We decomposed each spectrum with a power-law
continuum, two Gaussians for each narrow line, and two
Gaussians for the broad Hα component, but we fixed the
narrow emission-line kinematics to be the same. Because the
[S II] lines were assumed to have the same flux, the [N II] and
Hα narrow lines were also considered to be constant. At the
end of these steps, we took the flux of the broad Hα
components from the decomposition.
In contrast, this method could not be applied to the Keck

LRIS long-slit spectra, because the [S II] line fluxes showed
significant variability in their ratio, even after flux calibration
using the comparison stars. We attribute this variability to
contamination from the secondary peak of narrow-line emission,
which contributes a different amount to each exposure based on
the seeing conditions and the mask alignment. Owing to the lack
of stable narrow lines to be used as spectral calibrators, we could
not apply the van Groningen & Wanders (1992) method. Thus,
after we modeled and subtracted the continua as described in
Section 3.1, the flux within the wavelength range 6480–6640Å
in the rest frame is summed to estimate the total flux of broad
Hα and narrow Hα and [N II]. Finally, we used the method
described in Section 3.2.1 to separate the narrow-line flux from
the broad-line flux.

3.2.1. Narrow-line Variability of Keck LRIS Spectra

Figure 5 shows the spatial distribution of the [S II] λ6717/
λ6731 ratios (hereafter [S II] ratio) from the GMOS-IFU data. It
is clear that the central part of the AGN has a significantly lower
[S II] ratio compared to the secondary peak of the NLR to the
west. Thus, as observed, we expect changes in narrow-line flux
due to contamination from the extended NLR to be accompanied
by changes in the [S II] ratio. We use the following approach to
disentangle the broad Hα flux from the narrow lines.
First, we assume that the observed spectrum is a mixture of

two distinct spectra from the core and the secondary peak. If
the flux calibration based on comparison stars were perfect, we
could describe the expected total [S II] flux (F) as a function of
the [S II] ratio (β),

( ) · ( )b
b
b

b b
b b

=
+
+

-
-

F F
1

1
, 10

A

B A

B

where βA= 0.75 and βB= 1.02 are obtained from the spectra
extracted from the regions specified in Figure 5. The flux of
[S II] lines at the core, F0, can be determined by fitting the data.
The result is presented in Figure 6. The reduced c =n 1.122

suggests that the model explains the data well. This supports
our hypothesis that the flux variation in narrow lines is indeed
due to the flux of the NLR secondary peak seeping into the
extraction aperture differently for each epoch. We thus
conclude that the flux and the line profile of narrow Hα and
[N II] changed during the observations owing to the varying
contribution from the secondary peak, rendering the Hα
decomposition inaccurate.
Figure 7 demonstrates our flux-correction method to

compensate for the excess narrow-line fluxes and isolate
the broad Hα light curve. First, we estimated the [S II]
λλ6717, 6731 excess by subtracting the model [S II] flux

Figure 4. Examples of decomposition of Hα and [S II] emission-line regions
from Gemini GMOS (top, on 2019 March 7) and Keck LRIS (bottom, on 2019
March 3) spectra (black lines). Purple lines represent continuum, blue/green
lines denote core/wing components of narrow emission lines, while red thick
lines show the broad Hα, which is modeled with two Gaussian components
(red thin lines).
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F(β= 0.75)= 2.28× 10−14 erg s−1 cm−2 from the measured
[S II] flux. Then, we measured the total flux of the [N II] and
Hα narrow lines in the NLR secondary peak to be 2.33± 0.01
times that of [S II] fluxes and multiplied it by the [S II] excess to
calculate the Hα and [N II] excess flux for each spectrum.
Finally, we calculated the total flux of Hα and [N II] (including
both narrow and broad lines) for each spectrum and subtracted
the excess [N II] and Hα flux, the result of which should only
contain the flux of broad Hα and invariant narrow lines. Note
that the shape of the corrected light curve would be drastically
different if we followed the recipe of van Groningen &
Wanders (1992).

3.3. Differential Photometry

We follow the method demonstrated by Cho et al. (2020) to
obtain the continuum-flux light curves. We first constructed
point-spread functions (PSFs) for each image based on isolated,
bright, and unsaturated stars. Second, we matched the
resolution of the images taken during each night by convolving
the sharpest images with a suitable kernel.

Third, we performed aperture photometry of the AGN and
nearby comparison stars on the PSF-matched images using the
photutils package (Bradley et al. 2019). We estimated and
subtracted the global sky background using the SExtrac-
torBackground estimator implemented in the photutils

package. For each source, we estimated the residual sky
background from annuli with inner and outer radii of
(respectively) two to three and three to five times the seeing
FWHM intensity to subtract from the signal. We determined
the aperture size so as to maximize the S/N of the integrated
AGN flux (typically ∼2 times the seeing FWHM). The aperture
size of comparison stars was fixed to be the same as that of
the AGN.
To obtain the relative AGN light curves, we calculated

offsets of the instrumental magnitudes of comparison stars
(δVCi) and adopted the mean offset for each image as the
relative normalization value (d d= á ñV V i iC ). The variances of
the offsets were added as systematic uncertainties to estimate
the total uncertainties of the AGN light curve. Finally, the light
curves of different telescopes for the same night were
intercalibrated by adding a linear shift in the magnitudes so
that they share the same average magnitude within the
overlapping portion of the light curve. We only used sets of
the light curves with average magnitude uncertainties below
0.02 mag for the time-lag measurements.

3.4. Time-lag Measurements

The time lag between the V and Hα light curves was
computed following the method described by Cho et al. (2020).
For each pair of light curves, we computed the interpolated

Table 1
Line Widths

Instrument Date (UT) Broad Hα Line Narrow Lines

Comp. 1 Comp. 2 Total Core Wing Total
(1) (2) (3) (4) (5) (6) (7) (8)

Keck LRIS 2019-03-03 226 ± 1 855 ± 5 598 ± 3 41.1 ± 0.1 116.5 ± 3.8 59.2 ± 1.2
Gemini GMOS 2019-03-07 229 ± 1 802 ± 3 564 ± 2 31.9 ± 0.1 83.0 ± 1.6 48.1 ± 0.6
Keck LRIS 2019-04-02 240 ± 1 838 ± 6 597 ± 4 43.0 ± 0.1 111.4 ± 1.9 59.4 ± 0.6

Note. Units are in km s−1. Uncertainties shown here are 68% central confidence intervals from the Markov Chain Monte Carlo fit posterior.

Figure 5. Differences in the [S II] line ratio between the core (A) and the NLR secondary peak (B). Left: map of the [S II] doublet flux and its flux ratio. Right: the line
profile of the [S II] doublet from the core (red) and the secondary peak (blue), with appropriate scaling. The two regions show different [S II] λ6717/λ6731 ratios as
well as different line-of-sight velocities.
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cross-correlation function (ICCF; White & Peterson 1994),
with the flux randomization/random-subset selection method
(FR/RSS; Peterson et al. 1998; see also Peterson et al. 2004) to
estimate its uncertainty. The ICCF r(τ) was computed
over−2 hr< τ< 3 hr for the 2019 March 3 observation with
a long light curve, and over−1 hr< τ< 3 hr for the other two
nights. ICCF centroids were calculated over an interval (I)
containing the ICCF peak ( ( )t Î =r I rpeak max) with
( )t Î >r I r0.8 max. We simulated 2000 realizations with the
FR/RSS, and the median and the lower/upper bounds of the
68% central confidence interval of the centroid distribution
were taken as the time lag and its lower/upper uncertainty. We
also used the z-transformed discrete correlation function
(zDCF; Alexander 1997) and the JAVELIN method (Zu
et al. 2011) to check the consistency with the ICCF results. The
measurements are summarized in Table 2, and CCFs and time-
lag measurements are presented in Figures 8, 9, 10, and 11.

We did not conclusively measure a time lag in the 2019
March 3 observation even though it had the longest time
baseline with a significant variability amplitude. This is
because the AGN variability pattern during that night was
mostly a monotonic decrease in flux, without a strong pattern or
inflection points, which could help in reducing the uncertainty
of the time lag in the cross-correlation analysis. In the case with
the data taken on 2019 March 7 and 2019 April 2, we only
tentatively measured the time lag between V and Hα to be
∼30 minutes with larger uncertainty. Note that due to bad
weather the time baseline is short and the number of
spectroscopic epochs is relatively small in the Hα light curve,
which aggravated the cross-correlation analysis. When we
combined the light curves obtained during different nights, the
improvement of the lag measurement was not significant.

Therefore, we conclude that these lag measurements are not
reliable, and additional monitoring is needed to verify them.
On the other hand, we note that both the ICCF and zDCF

reduce to negligible numbers in all of the combinations above
when the time lag is close to 3 hr. This, combined with the
shape of the light curves, suggests that the time lag cannot be
longer than 3 hr.

4. Discussion

4.1. Broad-line Width and AGN Mass

We determine the mean width of broad Hα to be
σBHα= 586± 19 km s−1 by taking the average and standard
deviation of individual measurements from each of three nights
(see Table 1). This is 36% broader than the measurement
reported by Woo et al. (2019), who used a single Gaussian for
fitting the broad Hα (i.e., σ= 426± 1 km s−1). Note that the
difference in the decomposition model is responsible for the
difference in the line dispersion measurement of broad Hα.
Specifically, in Woo et al. (2019) the continuum near Hα was
estimated as a linear function over a short range of
wavelengths, whereas we modeled the continuum as a power
law using a much wider range of wavelengths. A linear fit can
overestimate the power-law-like continuum near Hα, which
leads to a reduced flux in the wing of the broad Hα line. A

Figure 6. Observed [S II] line flux against the [S II] line ratio from Keck LRIS.
The abscissa represents the line ratio of the [S II] λ6717/λ6731 doublet, and
the ordinate represents the total flux of [S II] λλ6717, 6731 in
erg s−1 cm−2; both are on logarithmic scales. Each point represents a
measurement from each spectrum obtained on 2019 March 3. The blue curve
shows our model for the relationship between them, assuming the narrow-line-
flux variation is completely explained by the flux of the nearby NLR secondary
peak seeping into the slit. The shape of the curve is determined from the
GMOS-IFU analysis, and the flux scale (y-intercept in the plot) is obtained by
minimum χ2

fitting, with c =n 1.122 for the best-fit model.

Figure 7. Correction of Hα flux using the [S II] flux. The top panel shows the
flux of [S II] lines (yellow), and the bottom three panels show the measured
total flux of Hα and [N II] lines, both narrow and broad, in magnitude
difference units. (a) The raw total flux of Hα and [N II] (blue). (b) Total flux of
Hα and [N II] corrected by the van Groningen & Wanders (1992) scheme—i.e.,
the total raw flux of Hα and [N II] divided by the [S II] flux (red). (c) Total flux
of Hα and [N II] after subtracting excess narrow-line flux, which is calculated
from the [S II] line-flux excess (black). This is based on the assumption that the
flux calibration is reliable and consequently that the observed narrow-line
fluxes are not constant. We argue (c) to be correct, as demonstrated in
Section 3.2.1.
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reanalysis of the spectrum presented in that paper using the
methods described here yields σBHα= 592 km s−1. This is in
excellent agreement with the values measured with the newly
obtained spectra, and the Bayesian information criterion, as
well as the cn

2 of the fit, shows strong evidence in favor of a
two-Gaussian fit for the broad Hα. We note that in our double-
Gaussian model, the narrower of the two components has a
dispersion of only ∼230 km s−1. Despite the narrow width, this
component is at least twice as broad as the Gaussian
components of forbidden lines, as listed in Table 1. Because
it has no corresponding component in forbidden lines, we argue
that this component is not a part of narrow emission lines but
indeed originated from the BLR.

Combining our updated broad Hα line width with the
photometric time lag of 83± 14minutes based on the 2018
campaign by Woo et al. (2019), we report the mass of the black
hole in NGC 4395 to be (1.7± 0.3)× 104 Me (with the virial
coefficient f= 4.47 fromWoo et al. 2015)—a factor of∼2 larger
than reported by Woo et al. (2019). If we take the uncertainty in
the virial coefficient into account (i.e., ( )s =flog 0.12;10 Woo
et al. 2015), the mass measurement should read as ´-

+1.7 0.5
0.7

104 Me with the photometric lag. When we consider the
constraint of<3 hr on the time lag from this spectroscopic
campaign, we obtain the mass constraint of<4× 104 Me. While
these are close to what Filippenko & Ho (2003) estimated via
the BLR size–luminosity relation, it is significantly smaller
than the C IV broad-line reverberation-mapping result by

Peterson et al. (2005). As Woo et al. (2019) discussed, the
difference seems to originate not from the time-lag measurement,
but from differences in the broad-line widths; Peterson et al.
(2005) reported a C IV BLR size of 48–66minutes, while the
line dispersion is estimated to be σB C IV≈ 2900 km s−1 based
on the noisy rms spectra. This emphasizes that the line-width
measurement plays a critical role in the mass determination of
the AGN. We argue that the consistency of the broad Hα width
between our work and that inferred from the data by Woo et al.
(2019) indicates that our Hα line-width measurement is reliable.
In contrast, our time-lag measurement, as well as the aforemen-
tioned photometric time lags, is not significantly different from
that of Peterson et al. (2005).
One interpretation of the discrepancy of the mass is that the

BLR structures for these two emission lines in NGC 4395
exhibit very large differences, resulting in different virial
coefficients. If this is the case, the virial coefficient for C IV has
to be larger than that of Hβ by more than a factor of 20.
However, based on a large sample of AGNs, a number of
studies showed that the virial coefficients of the two emission
lines are not dramatically different although C IV is somewhat
broader than Hβ (e.g., Vestergaard & Peterson 2006; Park et al.
2013, 2017; Shen & Liu 2012; Williams et al. 2021) While
recent work comparing the virial coefficient for C IV and
Balmer lines (Williams et al. 2020) does not find evidence for
major differences in the virial coefficients, the situation could

Table 2
Hα Time-lag Measurements

Date (UT) ICCF zDCF JAVELIN
(1) (2) (3) (4)

2019-03-03 -
+9 12

13 minutes - -
+4 14

10 minutes - -
+6 9

11 minutes

2019-03-07 -
+32 9

14 minutes -
+34 20

26 minutes -
+33 57

96 minutes

2019-04-02 -
+29 45

70 minutes -
+12 76

36 minutes -
+64 82

73 minutes

03-03 & 03-07 -
+3 17

20 minutes -
+21 16

37 minutes -
+52 116

96 minutes

03-03 & 04-02 - -
+7 13

16 minutes - -
+10 14

25 minutes - -
+5 8

7 minutes

03-07 & 04-02 -
+21 40

21 minutes -
+36 14

22 minutes -
+58 32

64 minutes

All -
+0 17

18 minutes -
+36 24

21 minutes -
+19 97

105 minutes

Note. Uncertainties shown here are at 68% central confidence interval.

Figure 8. Light curves and time-lag measurement using Gemini/GMOS on
2019 March 7. The left panels show the light curves from V (upper left) and Hα
(lower left). The right panels show the CCF (upper right) and the time-lag
measurements (lower right). ICCF, zDCF, and JAVELIN are indicated by blue,
red, and green, respectively. Vertical solid lines represent the median of each
measurement, while dashed lines mark the 16th percentile and 84th percentile
as uncertainties.

Figure 9. Light curves and time-lag measurement using Keck/LRIS on 3
March 2019. The left panels show the light curves from V (upper left) and Hα
(lower left). The right panels show the CCF (upper right) and the time-lag
measurements (lower right). ICCF, zDCF, and JAVELIN are indicated by blue,
red, and green, respectively. Vertical solid lines represent the median of each
measurement, while dashed lines mark the 16th percentile and 84th percentile
as uncertainties.

Figure 10. Light curves and time-lag measurement using Keck/LRIS on 2 April
2019. The left panels show the light curves from V (upper left) and Hα (lower left).
The right panels show the CCF (upper right) and the time-lag measurements
(lower right). ICCF, zDCF, and JAVELIN are indicated by blue, red, and green,
respectively. Vertical solid lines represent the median of each measurement, while
dashed lines mark the 16th percentile and 84th percentile as uncertainties.
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be different for NGC 4395 given the widely different masses.
On the other hand, the C IV line from Peterson et al. (2005)
exhibited an irregular profile which, combined with the noisy
rms spectra, can make the line-width measurement difficult.

Finally, while we did not conclusively measure a time lag,
our results show that the Hα spectroscopic time lag during our
2019 campaign is broadly consistent with the photometric time
lags we previously reported (Woo et al. 2019; Cho et al. 2020).
It is possible that the time lag has changed and became much
shorter than 30 minutes, while judging from the shapes of
CCFs it is unlikely to be longer than 3 hr. Thus, we argue that
the uncertainty in the mass measurement induced by the time
lag is at most a factor of 3, although additional monitoring
campaigns are needed to draw a firm conclusion. Based on
these results, we find no significant evidence that NGC 4395
exhibits a departure from the M•−σ* relation, especially when
considering the uncertainty of σ*.

4.2. Narrow-line Flux as a Light-curve Calibrator

Narrow lines are often assumed to be invariant over the
period of a reverberation-mapping campaign, so they can be
used as a built-in calibrator for the flux and spectral shape of
broad lines between different exposures, as demonstrated by
van Groningen & Wanders (1992). However, for a nearby
AGN where the host galaxy and its NLR are typically resolved
using ground-based telescopes, the variation of the flux
contamination from the extended NLR can be significant
depending on the seeing conditions and their variability
throughout the campaign, thus invalidating the assumptions
behind the method of van Groningen &Wanders (1992). As we
demonstrated in Section 3.2.1, modeling the physical properties
of narrow emission lines provides a way to correct for
differential slit losses.

This source of systematic uncertainty can be eliminated by
monitoring the AGN using an IFU spectrograph. The spatial

information afforded by an IFS enables the integration of the
spectra over a selective region of the sky, mitigating the seeing
variation via PSF matching and having more accurate flux
calibration via simultaneous comparison-star observations if
the FoV is sufficiently large to include one.

5. Conclusions

We performed spectroscopic and photometric monitoring of
the intermediate-mass AGN in NGC 4395 over three nights in
2019 using the Gemini and Keck telescopes along with a
number of 1 m-class telescopes. The main results are
summarized as follows.
(1) We detected significant variation of the narrow emission-

line flux (i.e., [S II]) among exposures in the slit-based spectra.
We demonstrated that the variability is due to seeing-dependent
contamination from the extended NLR by investigating the
relation between the [S II] λ6717/λ6731 ratio and the total flux
of the [S II] doublet. By developing a method to correct for this
effect, we presented the calibrated light curves of the broad Hα.
(2) By modeling the narrow lines ([N II], Hα, [S II]) with two

Gaussian components and the broad Hα with two additional
Gaussian components, we improved the decomposition of
emission lines and determined the line dispersion of broad Hα
to be σBHα= 586± 19 km s−1, which is 40% larger than that
reported by Woo et al. (2019).
(3) While we obtained no conclusive spectroscopic lag

between the AGN continuum and broad Hα, owing to a
combination of insufficient variability structure and partly bad
weather, we constrained the lag to be between 0 and 3 hr,
which is consistent with the photometric lag of ∼80 minutes
determined by Woo et al. (2019).
(4) We reported the updated mass of the AGN in NGC 4395

as ( ) ´-
+1.7 100.3

0.3 4 Me by combining the revised line dispersion
of Hα and the photometric lag of Hα (Woo et al. 2019). Even if
we consider the upper limit of the time lag from our campaign,

Figure 11. Time-lag measurements using combinations of observed light curves. The top panels show the CCF, while the bottom panels show the time-lag
measurements. ICCF, zDCF, and JAVELIN are indicated by blue, red, and green, respectively. Four sets of panels show the results when combining all light curves,
all but 2019-04-02, all but 2019-03-07, and all but 2019-03-03 (from left to right). Vertical solid lines represent the median of each measurement, while dashed lines
mark the 16th percentile and 84th percentile as uncertainties.
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the mass should be smaller than 4× 104 Me. Our estimated
black hole mass is significantly different from that reported by
Peterson et al. (2005) based on C IV. Reconciling the black hole
mass estimates would require substantially different virial
coefficients for the two emission lines. On the other hand, the
difference between the virial coefficients of C IV and Balmer
lines seems to be much smaller than the required amount. This
tension highlights the importance of precise line-width
measurements with a sufficient S/N for estimating the mass
of black holes in AGNs.
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