KARRIKIN UPREGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of 1 2 karrikin and KAI2 ligand metabolism in Arabidopsis thaliana 3 Claudia Sepulveda<sup>1</sup>, Michael A. Guzmán<sup>1</sup>, Qingtian Li<sup>1</sup>, José Antonio Villaécija-Aguilar<sup>2,3</sup>, 4 5 Stephanie Martinez<sup>1</sup>, Muhammad Kamran<sup>4</sup>, Aashima Khosla<sup>1</sup>, Wei Liu<sup>5</sup>, Joshua M. Gendron<sup>5</sup>, Caroline Gutjahr<sup>2</sup>, Mark T. Waters<sup>4</sup>, David C. Nelson<sup>1\*</sup> 6 7 8 <sup>1</sup>Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 USA <sup>2</sup>Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), 85354 9 10 Freising, Germany <sup>3</sup>LMU Munich, Faculty of Biology, Genetics, Biocenter Martinsried, 82152, Martinsried, Germany 11 12 <sup>4</sup>School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia 13 <sup>5</sup>Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, 14 CT 06511 USA 15 16 Running title: Feedback inhibition of karrikin signaling 17 18 Corresponding author: David C. Nelson, david.nelson@ucr.edu 19

**Keywords:** plant hormones, signaling, biosynthesis, proteolysis, photomorphogenesis

20

2122

Classification: Plant biology

#### **ABSTRACT**

2324

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Karrikin (KAR) molecules found in smoke stimulate seed germination of many plant species that emerge after fire. Genetic studies in Arabidopsis thaliana have identified core components of the KAR signaling pathway, including an  $\alpha/\beta$ -hydrolase, KARRIKIN INSENSITIVE2 (KAI2), that is required for KAR responses. Although KAI2 is often considered a KAR receptor, recent evidence suggests that KARs may require metabolism to become bioactive signals. In addition to sensing KARs or a KAR-derived signal, KAI2 is thought to recognize an unknown endogenous signal, KAI2 ligand (KL). We generated loss-of-function mutations in KARRIKIN-UPREGULATED F-BOX1 (KUF1), which is a transcriptional marker of KAR/KL signaling in Arabidopsis thaliana and other plants. The kuf1 mutant in Arabidopsis shows several phenotypes that are consistent with enhanced activity of the KAI2 pathway, including reduced hypocotyl elongation and enhanced cotyledon expansion in light-grown seedlings, increased root hair density and elongation, and differential expression of KAR/KL-responsive transcriptional markers. Seedling phenotypes of kuf1 are dependent on KAI2 and its signaling partner MORE AXILLARY GROWTH2 (MAX2). Furthermore, kuf1 mutants are hypersensitive to KAR<sub>1</sub>, but not to other molecules that can signal through KAI2 such as GR24. This implies that kuf1 does not increase the overall responsiveness of the KAI2-dependent signaling pathway, but specifically affects the ability of KAI2 to detect certain signals. We hypothesize that KUF1 imposes feedback inhibition of KL biosynthesis and KAR<sub>1</sub> metabolism. As an F-box protein, KUF1 likely participates in an E3 ubiquitin ligase complex that imposes this regulation through polyubiquitylation of a protein target(s).

44 45

### **SIGNIFICANCE**

Karrikins are chemicals in smoke that stimulate regrowth of many plants after fire. However, karrikin responses are not limited to species from fire-prone environments and can affect growth after germination. Putatively, this is because karrikins mimic an unknown signal in plants, KAI2 ligand (KL). Karrikins likely require modification in plants to become bioactive. We identify a gene, *KUF1*, that appears to negatively regulate biosynthesis of KL and metabolism of a specific karrikin. *KUF1* expression increases in response to karrikin or KL signaling, thus forming a negative feedback loop that limits further activation of the signaling pathway. This discovery will advance understanding of how karrikins are perceived and how smoke-activated germination evolved. It will also aid identification of the elusive KL.

#### INTRODUCTION

Karrikins (KARs) are a class of butenolide compounds found in smoke that promote germination of many species and can also influence seedling development. Plants have evolved several adaptations that enable rapid regrowth in the post-fire environment, including germination of buried seeds in response to chemical cues in smoke. Approximately 1200 angiosperms are known to have positive germination responses to smoke or smoke-water treatments (1). A potent germination stimulant, KAR<sub>1</sub>, was identified in smoke in 2004, followed by several similar compounds (2, 3). Unexpectedly, KAR responses are neither limited to germination nor to species from fire-prone environments. For example, KARs enhance *Arabidopsis thaliana* germination and seedling growth responses to light (4, 5). Smoke-water and/or KAR<sub>1</sub> treatment have also been reported to enhance seedling vigor or accelerate development of several crop plants (6, 7). The capacity to respond to KARs may be widespread among angiosperms, with some fire-following species having evolved more sensitive germination responses to KARs (1, 8).

Two genes are required for KAR responses in Arabidopsis thaliana. The first is MORE AXILLARY GROWTH2 (MAX2), which encodes an F-box protein that is also necessary for responses to the plant hormone strigolactone (SL) (9-11). As an F-box protein, MAX2 functions as an adapter component of SCF (Skp1, Cullin1, F-box) E3 ubiquitin ligase complexes, which mark proteins for degradation by attaching polyubiquitin chains. The second is KARRIKIN INSENSITIVE2 (KAI2)/HYPOSENSITIVE TO LIGHT (HTL), an ancient paralog of the SL receptor DWARF14 (D14)/DECREASED APICAL DOMINANCE2(DAD2). KAI2 and D14 encode α/β-hydrolases with strictly conserved Ser-His-Asp catalytic triads that are important for their signaling activity (12). During SL signaling, a methylbutenolide "D-ring" moiety of SL is hydrolyzed by D14 and covalently attached to the catalytic His residue (13, 14). It is currently under debate which step in the process of SL binding, hydrolysis, and release constitutes activation of D14 (13-15). Regardless, SL induces a conformational change in D14 that promotes its association with SCF<sup>MAX2</sup> and a subclade of proteins in the SMAX1-LIKE (SMXL) family that are orthologous to the rice protein DWARF53 (D53). D53-type SMXL proteins (i.e. SMXL6, SMXL7, and SMXL8 in Arabidopsis) are then polyubiquitinated and rapidly degraded by the 26S proteasome, activating the expression of a set of downstream target genes that carry out growth responses to SLs (13, 16-18). KAR signaling proceeds similarly. Activation of KAI2 promotes interactions with SCF<sup>MAX2</sup> and the target proteins SMAX1 and SMXL2, leading to their polyubiquitination and proteolysis (19-23). In addition to mediating KAR signaling, Arabidopsis

KAI2 responds to GR24<sup>ent-5DS</sup>, a component of racemic GR24 (*rac*-GR24) whose D-ring is in a 2'S stereochemical configuration that is not found in natural SLs. Although *rac*-GR24 is commonly used as a synthetic SL analog, its constituent enantiomers GR24<sup>5DS</sup> and GR24<sup>ent-5DS</sup> preferentially activate D14 and KAI2, respectively (24, 25).

KARs have been detected in smoke-water, post-fire soil, and biochars, but there is currently no evidence that KARs are produced by living plants (3, 26, 27). Thus KARs may be strictly abiotic, or at least non-plant, signals. However, growing evidence suggests that KARs mimic an endogenous signal in plants that is recognized by KAI2 (28-30). For example, kai2 and max2 have several phenotypes that are not found in d14 or SL biosynthesis mutants (9), and are opposite to the effects of applied KAR. Although the putative KAI2 ligand (KL) remains unknown, insights into its functions can be gained by examining kai2 phenotypes and by using KARs or chemicals such as GR24 ent-5DS or desmethyl-GR24 (dGR24) as substitutes (24, 31). Mutant kai2 seed have increased dormancy, while kai2 seedlings have impaired photomorphogenesis that results in elongated hypocotyls and reduced cotyledon expansion (12). Recent studies have expanded the known roles of KAI2, and by proxy KAR/KL signaling, beyond germination and seedling growth. In rice, KAI2 is necessary for the formation of symbiotic interactions with AM fungi (32, 33). In Arabidopsis, KAI2 influences the shape of leaves, promotes several drought and abiotic stress resistance traits, increases root hair density, and promotes root hair elongation (34-37). In the liverwort Marchantia polymorpha, a KAI2-SCF<sup>MAX2</sup>-SMAX1 signaling pathway regulates thallus growth and orientation, and cell proliferation in gemmae (38).

Because KAI2 is necessary for KAR responses and has been demonstrated to bind KAR $_1$ , it is often referred to in the literature as a KAR receptor. This may be misleading, however, as there is conflicting evidence that KARs can activate KAI2 directly. Several studies have demonstrated KAR $_1$  binding by KAI2 through isothermal calorimetry (ITC), equilibrium microdialysis, intrinsic fluorescence, heteronuclear single quantum coherence, and CPM-dye-based thermal denaturation assays (39–45). These methods produced Kd estimates for KAR $_1$  ranging from 5  $\mu$ M to 147  $\mu$ M for Arabidopsis KAI2, which indicates a lower affinity than expected considering KAR $_1$  affects Arabidopsis growth at 1  $\mu$ M and lower concentrations. It must be considered that evidence of a molecule binding to a receptor is not necessarily evidence that the receptor is activated. Differential scanning fluorimetry (DSF) has emerged as a useful tool to identify ligands that activate D14. Upon exposure to a SL, D14 undergoes a shift in melting temperature

that presumably reflects a conformational change or propensity for structural shifts (46). The abilities of different SL analogs to trigger a melting temperature shift in D14 correlates well with their bioactivities, although the extent of the temperature shift can vary in different D14 proteins (13, 15, 47, 48). Similarly, KAI2 undergoes destabilization in DSF assays in the presence of *rac*-GR24 and GR24<sup>ent-5DS</sup>, consistent with KAI2-mediated growth responses to these chemicals, and an intact catalytic triad is required to do so. However, KAI2 shows no response to KAR<sub>1</sub> or KAR<sub>2</sub> in DSF assays (8, 29). Similarly, yeast two-hybrid (Y2H) interactions between KAI2 and SMAX1 are promoted by *rac*-GR24 and GR24<sup>ent-5DS</sup>, but not by KAR<sub>1</sub> or KAR<sub>2</sub> (22). Therefore, in yeast and in DSF assays, KARs are not equivalent agonists to GR24. Recent evidence suggests that this is also true in plants. Co-IP of SMAX1 and SMXL2 by KAI2 is triggered by GR24<sup>ent-5DS</sup>, but KAR<sub>1</sub> and 2'*R*-configured GR24 stereoisomers (e.g. GR24<sup>5DS</sup>) are ineffective at stimulating KAI2-SMXL2 interactions. KAR<sub>1</sub> is also much slower than GR24<sup>ent-5DS</sup> to induce polyubiquitination and degradation of SMXL2 (23). This raises the possibility that KAR<sub>1</sub> requires metabolism in plants to become an active ligand for KAI2, but GR24<sup>ent-5DS</sup> does not.

There are two additional reasons to question KAR<sub>1</sub> as a KAI2 ligand. First, KAR<sub>1</sub> has been crystallized in complex with KAR-responsive KAI2 proteins from *Arabidopsis thaliana* (AtKAI2) and the parasitic plant Striga hermonthica (ShKAl2iB)(39, 42). Although these proteins have highly similar structures, the KAR<sub>1</sub> molecules have very different orientations in their ligandbinding pockets. It is unclear which structure, if either, correctly shows KAR1 binding to the receptor. Neither KAI2 structure captures a substantial conformational change compared to the unbound apo-protein. Second, KAI2 is an extant representative of the evolutionary ancestor of D14. SL perception evolved again more recently in a clade of KAI2 paralogs that emerged in the parasitic Orobanchaceae (12, 49, 50). In both D14 and SL-responsive KAI2d proteins in parasites, the mechanism of SL perception involves hydrolysis of SL and covalent attachment of the cleaved butenolide ring to the His residue in the catalytic triad (13, 14, 47). The triad is essential for KAI2 activity, and KAI2 hydrolyzes GR24 ent-5DS in vitro (25, 29). Although it has not yet been reported whether Arabidopsis KAI2 signals after forming a covalently linked intermediate molecule (CLIM) from GR24 ent-5DS, as D14 and KAI2d proteins do with GR24 DS, the most parsimonious explanation is that the hydrolysis-based signaling mechanism is conserved. If so, it is unclear how KARs may activate KAI2, as the butenolide ring in KARs cannot be cleaved through the same mechanism.

These observations led us and others to hypothesize that KAR<sub>1</sub> requires metabolism in plants before it can be recognized by KAI2 (29, 43). Here we present support for this hypothesis that emerged unexpectedly during a reverse genetic study of KARRIKIN-UPREGULATED F-BOX1 (KUF1)/ SKP1/ASK-interacting protein 25 (SKIP25). KUF1/SKIP25 (At1g31350) is a transcriptional marker of KAR/KL signaling that was first identified among 121 transcripts upregulated by KAR<sub>1</sub> treatment in a microarray analysis of primary dormant *Arabidopsis thaliana* seed (5). KUF1 was later shown to be induced by KAR treatment in seedlings as well (5, 9, 12, 19, 20). Upregulation of KUF1 by KAR<sub>1</sub> in Arabidopsis requires KAI2 and MAX2. Furthermore, KUF1 transcripts are reduced in kai2 and max2 mutants, and increased in smax1 smxl2 (5, 9, 12, 20, 35, 51, 52), which have inactive and constitutive KAR/KL signaling pathway activities. respectively. KUF1 transcripts are also induced by rac-GR24. This response is partially mediated by D14 (12, 53). However, KUF1 expression is normal in the d14 mutant, suggesting that KUF1 is not regulated by endogenous SL signaling. Instead, the response to exogenous GR24 is likely due to D14 crosstalk with SMXL2 and/or SMAX1 (23). Although KUF1 expression is upregulated in smax1 smxl2 seedlings, it is the same as wild type in smxl6 smxl7 smxl8. Furthermore, KUF1 expression in smax1 smxl2 is not further affected by treatments that activate D14 (23) (Figure S1). Therefore, KUF1 upregulation is a specific consequence of SMAX1 and SMXL2 degradation, which is typically caused by KAR/KL signaling through KAI2-SCF<sup>MAX2</sup>. Here we present evidence that this transcriptional response creates a negative feedback loop that putatively regulates the conversion of KAR<sub>1</sub> into a bioactive signal and KL biosynthesis.

188 189

190

191

192

193

194

195

196

197

198

199

187

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185186

#### RESULTS

## Loss of KUF1 causes constitutive KAR/KL responses in seedlings

KUF1 is predicted to have an N-terminal F-box domain, which mediates association with Skp1 in an SCF complex. Prior yeast two-hybrid screens found putative interactions between KUF1 and the Arabidopsis Skp1 proteins ASK1, ASK2, and ASK18 (54, 55). Consistent with these results, we observed F-box-domain-dependent interactions between KUF1 and ASK1 in directed yeast two-hybrid assays (Figure S2A). This suggests that KUF1 is a functional F-box protein. UniProt also predicts that KUF1 has five C-terminal Kelch repeats, which are likely to mediate protein-protein interactions with downstream targets. A *de novo* structural prediction by AlphaFold indicates that KUF1 may have a six-bladed rather than five-bladed β-propeller structure, however (Figure S2B) (56).

We hypothesized that *KUF1* may have a role in activating downstream growth responses to KAR/KL. To investigate this idea, we used an egg cell-specific promoter-controlled CRISPR-Cas9 system (57) to introduce loss-of-function mutations in *KUF1*. Two sites in *KUF1* were targeted simultaneously. We identified a 200 bp deletion between these sites. This allele, *kuf1-1*, is likely to be null, as it causes a translational frameshift that retains only the first 36 aa of the 395 aa protein (Fig. 1A). Contrary to our expectations, *kuf1-1* seedlings grown under continuous red light had reduced hypocotyl elongation and enlarged cotyledons, similar to *smax1* and KAR-treated wild type (Col-0) seedlings (Fig. 1B). The *kuf1-1* (hereafter, *kuf1*) hypocotyl phenotype is recessive and was rescued by introduction of a wild-type *KUF1p:KUF1* transgene (Fig. 1B, S3).

To determine whether *kuf1* and *smax1* shared more than morphological similarities, we investigated the expression of transcriptional markers of KAR/KL response in *kuf1* seedlings grown under red light. *D14-LIKE2* (*DLK2*), *B-BOX DOMAIN PROTEIN 20/SALT TOLERANCE HOMOLOG 7/bzr1–1D SUPPRESSOR* (*BBX20/STH7/BZS1*), and *SMAX1-LIKE 2* (*SMXL2*) are positively regulated by KAR/KL signaling, whereas *INDOLE-3-ACETIC ACID 6* (*IAA6*) is negatively regulated by KAR/KL signaling (5, 12, 19, 23, 29). All four genes were differentially expressed in *kuf1* relative to wild type to a similar or stronger extent than we observed in *smax1* and KAR<sub>1</sub>-treated wild type seedlings (Fig. 1C). KAR<sub>1</sub> treatment of *kuf1* seedlings further enhanced the differential expression of these genes (Fig. 1C). Therefore, *kuf1* has constitutive KAR/KL responses, similar to *smax1*, but remains responsive to KAR<sub>1</sub> treatment. Collectively, the seedling growth and gene expression phenotypes of *kuf1* indicated that *KUF1* inhibits the activity or output of the KAR/KL signaling pathway. This suggested that *KUF1* upregulation after KAI2-SCF<sup>MAX2</sup>-mediated degradation of SMAX1 and SMXL2 may be part of a negative feedback mechanism.

#### KUF1 acts upstream of KAI2 and MAX2

We initially considered three hypotheses to explain *kuf1* phenotypes: 1) *KUF1* may control seedling growth independently of the KAR/KL signaling pathway, 2) *kuf1* may reduce the abundance or activity of SMAX1/SMXL2 proteins independently of KAI2-SCF<sup>MAX2</sup>, or 3) *kuf1* may enhance SMAX1/SMXL2 degradation by increasing the abundance or activity of KAI2 or MAX2 proteins. The first two hypotheses predict that *kuf1* will at least partially suppress the seedling phenotypes of *kai2* and *max2*, which over-accumulate SMAX1 and SMXL2. To test this, we generated double mutants between *kuf1* and *max2*, *kai2*, and *d14*. We found that *kai2* and *max2*, which have elongated hypocotyls and small cotyledons, are epistatic to *kuf1* (Fig. 2).

In contrast, *kuf1 d14* mutant seedlings were similar to *kuf1*. This indicated that a functional KAI2-SCF<sup>MAX2</sup> signaling mechanism, but not a SL signaling mechanism, is necessary for expression of the *kuf1* phenotype. These results led us to reject the first two hypotheses.

# 

#### kuf1 seedlings are hypersensitive to KAR<sub>1</sub> but not other KAI2-mediated signals

To investigate the third hypothesis, we first compared the abundance of KAI2 protein in wild-type and *kuf1* seedlings grown under red light. We did not observe a significant difference in KAI2 protein abundance in *kuf1* (Fig. 3*A*). We also used a ratiometric, dual-fluorescent reporter system to examine how *KUF1* affects KAI2 abundance (22, 58). We transiently co-expressed 35S:KUF1 or a 35S:kuf1Δ mutant with an AtKAI2 ratiometric reporter in *Nicotiana benthamiana* leaves (Fig. 3*B*). After three days, we measured fluorescence from the KAI2-mScarlet-I fusion protein relative to fluorescence from a simultaneously expressed reference protein, Venus. We found that co-expression of wild-type *KUF1* had no effect on the relative abundance of KAI2-mScarlet-I, consistent with our observations in Arabidopsis seedlings (Fig. 3*B*). Therefore, KAI2 is unlikely to be a target of SCF<sup>KUF1</sup>, which agrees with the prior finding that KAI2 is not polyubiquitinated or degraded after KAR<sub>2</sub> treatment by the 26S proteasome (59).

Nonetheless, the possibilities remained that MAX2 is more abundant in kuf1, or that kuf1 somehow enhances the activity of KAI2 and/or SCF<sup>MAX2</sup>, putatively resulting in more effective degradation of SMAX1/SMXL2. A reasonable prediction of either case is that kuf1 seedlings would be hypersensitive to all chemical signals that activate KAI2. Therefore, we examined the seedling growth responses of kuf1 and KUF1p:KUF1 kuf1 rescue lines to KAR1, KAR2, and rac-GR24. As demonstrated by dose-response experiments, the degree to which these treatments inhibit hypocotyl elongation offers a simple and sensitive readout of MAX2-dependent signaling activity (5, 60). We found that KAR responses were altered in kuf1 seedlings in unexpected ways. Prior studies have consistently shown that Arabidopsis is more sensitive to KAR2 than KAR1 (4, 5, 8, 59). In kuf1 seedlings, however, 1  $\mu$ M KAR1 caused a stronger reduction in hypocotyl elongation than 1  $\mu$ M KAR2 (Fig. 4). This was mostly due to an enhanced response to KAR1, as the percentage of growth inhibition by 1  $\mu$ M KAR2 was also weaker in kuf1 than wild type. By contrast, the growth response to 1  $\mu$ M rac-GR24 was similar in kuf1 and wild-type

hypocotyls (Fig. 4B, S4A). The unusual KAR responses of *kuf1* hypocotyls were rescued by a wild-type *KUF1* transgene (Fig. 4B, S4A).

We also compared the ability of KAR<sub>1</sub>, KAR<sub>2</sub>, and rac-GR24 to stimulate degradation of a bioluminescent reporter of SMAX1 abundance, SMAX1<sub>D2</sub>-LUC, in wild-type and kuf1 backgrounds. This reporter is a translational fusion of the C-terminal D2 domain of SMAX1, which is sufficient for SCF<sup>MAX2</sup>-induced degradation, to firefly luciferase (22). Supporting the hypocotyl experiment results, we found that KAR<sub>1</sub> caused a stronger decline in SMAX1<sub>D2</sub>-LUC abundance in kuf1 seedlings than in wild type during the first 12 h after treatment. By contrast, there was no statistically significant difference (p < 0.01) in the response of kuf1 and wild-type seedlings to either KAR<sub>2</sub> or rac-GR24 (Fig. S4B).

We found that the hypersensitive response to KAR $_1$  in *kuf1* seedlings was influenced by the intensity of red light. At 3.8 to 15 µmol m $^2$  s $^{-1}$  red light, the percentage of growth inhibition of *kuf1* hypocotyls by 1 µM KAR $_1$  was approximately double that observed in wild-type seedlings (Fig. S5A). At higher intensities of red light, the response of wild-type seedlings to KAR $_1$  increased; under 60 µmol m $^2$  s $^{-1}$  red light the relative responses of wild type and *kuf1* to KAR $_1$  were the same. In all red light intensities tested, *kuf1* hypocotyls were shorter than wild type (Fig. S5A). In the dark, however, *kuf1* mutants grew to the same length as wild type and did not show hypocotyl growth responses to KAR $_1$  or KAR $_2$  (Fig. S5B). We investigated whether changes in *KUF1* expression might explain the varied effects of KAR $_1$  on hypocotyl elongation observed under different light fluences. While we found some evidence for higher *KUF1* expression in wild-type seedlings grown in the dark than in red light (p = 0.029 to 0.057), there was no clear difference in *KUF1* expression across low to high red light fluences (Fig. S5C). Therefore, other genetic factors likely contribute to KAR $_1$  responsiveness.

Because KAR<sub>2</sub> and *rac*-GR24 are more potent stimulants of KAI2-dependent signaling in Arabidopsis seedlings than KAR<sub>1</sub>, we reasoned that responses to these signals may appear compressed in *kuf1* if a maximum growth inhibition were approached. That is, *kuf1* might also be hypersensitive to KAR<sub>2</sub> and *rac*-GR24, but an enhanced response cannot be detected if KAI2 activation is already saturated. Therefore, we tested *kuf1* responses to lower concentrations of KAR<sub>2</sub> and *rac*-GR24 (Fig. 5). At all concentrations, KAR<sub>1</sub> caused stronger growth inhibition of *kuf1* hypocotyls than wild type. In contrast, *kuf1* responses to KAR<sub>2</sub> were similar to those of wild type at 100 nM and 300 nM concentrations, and less than wild type at 1

 $\mu$ M (Fig. 5*A*). At all concentrations tested, *kuf1* showed growth responses to *rac*-GR24 that were similar to wild type (Fig. 5*B*). Notably, we observed in wild-type seedlings that 100 nM *rac*-GR24 caused an equivalent degree of hypocotyl growth inhibition as 1  $\mu$ M KAR<sub>1</sub> (23% vs. 24%, respectively; Fig. 5*A*,*B*). The *kuf1* seedlings showed a wild-type response (25% growth inhibition) to this low concentration of *rac*-GR24, despite having an enhanced response to 1  $\mu$ M KAR<sub>1</sub> (47% growth inhibition). Therefore, *kuf1* is hypersensitive to KAR<sub>1</sub> but not KAR<sub>2</sub> or *rac*-GR24.

We considered the possibility that the similar responses of *kuf1* and wild-type hypocotyls to *rac*-GR24 could reflect the ability of *rac*-GR24 to activate both KAI2 and D14, whereas KAR<sub>1</sub> only signals through KAI2. This led us to test the *rac*-GR24 responses of *kuf1* seedlings in the absence of signaling contributions from D14. As previously demonstrated, *d14* was less responsive to *rac*-GR24 than wild type (12) (Fig. 5*C*). However, we found that hypocotyl elongation of *d14* and *kuf1 d14* seedlings was inhibited to a similar degree by *rac*-GR24 (39% vs. 36%, Fig. 5*C*). Therefore, the KAI2-SCF<sup>MAX2</sup> signaling pathway in *kuf1* responds normally to *rac*-GR24.

## A fourth hypothesis for KUF1 function

A previous study showed that ~25-fold overexpression of *KAI2* causes Arabidopsis seedlings to become hypersensitive to both KAR<sub>2</sub> and *rac*-GR24, but does not impact hypocotyl length in the absence of such treatments (Waters and Smith, 2013). In contrast, we observed that 1) *kuf1* is specifically hypersensitive to KAR<sub>1</sub> but not KAR<sub>2</sub> or *rac*-GR24, and 2) *kuf1* affects seedling growth in the absence of treatments in a KAI2-SCF<sup>MAX2</sup>-dependent manner. This implied that *kuf1* does not increase the overall sensitivity or responsiveness of the KAI2 signaling pathway as proposed by the third hypothesis above, but instead modifies the ability of specific signals to be perceived by KAI2. Therefore, we hypothesized that KUF1 negatively regulates metabolism of KAR<sub>1</sub> into a bioactive signal. In addition, the phenotypes of *kuf1* seedlings are similar to those of *smax1* or KAR-treated wild-type seedlings, suggesting that the KAR/KL signaling pathway is more active than normal (Fig. 1). This could be explained if KUF1 also negatively regulates KL biosynthesis or availability. Such a model would be consistent with the observation that *kuf1* phenotypes are dependent on *MAX2* and *KAI2* (Fig. 2).

### KL abundance is likely increased in kuf1

It was not possible for us to directly test whether KL biosynthesis and KAR<sub>1</sub> metabolism are enhanced in kuf1 because KL and KAR<sub>1</sub> metabolites have not yet been identified. Instead, we used three strategies to indirectly investigate KUF1 effects on KL levels and KAR<sub>1</sub> metabolism. First, we took advantage of the diversified ligand preferences found among KAI2 paralogs in root parasitic plants in the Orobanchaceae. A gene from witchweed (Striga hermonthica), ShKAl2i, encodes a subfunctionalized receptor that responds well to KAR<sub>1</sub> and appears to be less sensitive to KL (28, 49). Introducing ShKAI2i into an Arabidopsis kai2 mutant produces seedlings that retain similar morphology to kai2. However, the ShKAl2i kai2 transgenic line is fully responsive to KAR<sub>1</sub> treatment, and the degree of hypocotyl elongation inhibition by KAR<sub>1</sub> is in fact stronger than wild type, indicating that ShKAl2i is functional in Arabidopsis (28). At a later stage of development, ShKAl2i partially rescues the altered rosette morphology of kai2 mutants grown in short day conditions. Putatively, ShKAl2i does not rescue kai2 seedlings and only partially rescues kai2 leaf development because it has reduced sensitivity to KL (28). We reasoned that the ShKAl2i kai2 line may provide a way to test whether KL levels are increased in kuf1 seedlings. According to our model, loss of KUF1 should not reduce the hypocotyl elongation of ShKAl2i kai2 as strongly as it does wild type because ShKAl2i would be less sensitive to increased KL abundance than the native AtKAI2 protein. Responses to KAR<sub>1</sub>, however, should be increased by kuf1 at least as strongly when ShKAl2i is the available KAl2 receptor as when AtKAI2 is.

To test this, we used CRISPR-Cas9 to re-create the identical 200 bp *kuf1-1* deletion in *ShKAl2i kai2* and its corresponding wild-type ecotype, Ler. Similar to what we previously observed in the Col-0 ecotype, the *kuf1* mutation enhanced the response to KAR<sub>1</sub> treatment in both Ler and *ShKAl2i kai2* backgrounds (Fig. 6A). However, under mock-treated conditions - when only endogenous KL is available to seedlings - hypocotyl elongation was reduced by 41% in *kuf1* compared to Ler, and by only 25% in *kuf1 ShKAl2i kai2* compared to *ShKAl2i kai2* (Fig. 6A). These results are consistent with the idea that KL is increased in *kuf1* mutants, but has a smaller effect on the growth of *ShKAl2i kai2* seedlings than wild type because ShKAl2i protein is less able to perceive it than AtKAl2.

Second, we compared the abundance of the SMAX1<sub>D2</sub>-LUC reporter in untreated wild-type and *kuf1* seedlings. We observed lower luminescence in *kuf1* seedlings than in wild-type, suggesting reduced abundance of SMAX1<sub>D2</sub>-LUC and presumably SMAX1, which would be consistent with higher KL levels (Figure 6*B*).

Third, we used the ratiometric reporter system to examine how KUF1 affects SMAX1 abundance and its degradation after KAR<sub>1</sub> treatment (22, 58). We transiently co-expressed 35S:KUF1 with a SMAX1 ratiometric reporter in *N. benthamiana* leaves for three days, treated excised leaf discs with KAR<sub>1</sub>, and measured the ratio of SMAX1-mScarlet-I to Venus fluorescence after 16 h. We noted across many experiments that the abundance of the SMAX1 reporter was consistently higher in mock-treated leaves co-expressing wild-type KUF1 compared to those co-expressing an empty vector or a  $kuf1\Delta$  frameshift allele (Figure 6C, S6). This observation is consistent with the hypothesis that KUF1 overexpression blocks production of KL, thus promoting stabilization of SMAX1.

We also found that co-expression of wild-type *KUF1* prevented KAR<sub>1</sub>-induced degradation of the SMAX1 reporter (Fig. 6*C*). This led us to test whether *KUF1* overexpression impacts the ability of other treatments to trigger SMAX1 degradation. In wild-type *N. benthamiana* plants, *KUF1* overexpression blocked degradation of the SMAX1 reporter by KAR<sub>2</sub> as well as KAR<sub>1</sub>, but *rac*-GR24 was still active (Fig. S6*A*). To determine whether the remaining *rac*-GR24 response was mediated by D14 or KAI2, we also performed the experiment in an *Nbd14a,b* double mutant that has loss-of-function mutations in the two *D14* homoeologs in *N. benthamiana* (61). We found that the SMAX1 reporter was not degraded in response to KAR<sub>1</sub>, KAR<sub>2</sub>, or *rac*-GR24 in *Nbd14a,b* leaves when *KUF1* was overexpressed (Fig. S6*B*). This suggests that *KUF1* overexpression inhibits all KAI2-mediated degradation of SMAX1 in *N. benthamiana*, which was not expected from the characterization of Arabidopsis *kuf1*. This effect is not due to the loss of KAI2 protein (Fig. 3*B*), and is at the moment difficult to explain given that GR24 should not require metabolism to activate KAI2.

#### Are KUF1 expression patterns a cause or an effect of KL distribution?

Because KUF1 expression is an output of KAR/KL signaling, its expression pattern in plants may reveal where KL is most abundant, KAI2 is most active, and/or SMAX1 and SMXL2 abundance is lowest. An alternative, non-mutually exclusive possibility is that KUF1 expression patterns are imposed in certain tissues or by other cellular pathways as a way to restrict KL abundance and KAI2 activity. We generated transcriptional reporters for KUF1 by using the -2967 bp region upstream of KUF1 to drive expression of the  $\beta$ -glucuronidase (GUS) reporter. This upstream region provides appropriate cis-regulation for KUF1 to rescue the kuf1 mutant (Fig. 4, S3).

We found that in seedlings the *KUF1* promoter region drives *GUS* expression in the root cap, newly emerged leaves, and mature vasculature in the root, but not in the differentiation or elongation zones of the root. GUS activity was also generally lacking in the hypocotyl (Fig. 7). In some strongly expressing lines, we observed GUS activity in the stomata of cotyledons. In five-week-old adult plants, the *KUF1* promoter was active in leaves, rosette axillary buds, sepals, and anthers (Fig. S7). We investigated whether *KUF1* expression is limited to specific tissues in seedlings because of ligand (i.e. KL) availability or because only some tissues are competent to respond to KAI2 agonists. These possibilities may be distinguished respectively by whether KAR and *rac*-GR24 treatments increase the spatial distribution or only the intensity of *KUF1* expression. We observed that KAR<sub>2</sub> and *rac*-GR24 tended to intensify, rather than expand, the regions with GUS activity in 5-d old seedlings grown in red light. Therefore, the ability to express *KUF1*, or KAI2-SCF<sup>MAX2</sup> signaling itself, may be limited to specific tissues. Interestingly, the expression pattern of *KUF1* corresponds well with that of *SMAX1* (34).

#### KUF1 negatively regulates KA/2-mediated root hair development

The expression of *KUF1* in roots led us to consider whether it has a role in root development. Because Arabidopsis root hair density and elongation are positively regulated by the KAR/KL pathway, we investigated the effects of *kuf1* on root hair growth (37). As previously demonstrated, we observed that KAR<sub>1</sub> and KAR<sub>2</sub> increased root hair density and elongation in a *KAI2*- and *MAX2*-dependent manner (Fig. 8). Moreover, *kai2* and *max2* mutants showed reduced root hair density and elongation under mock treatment. We found that *kuf1* seedlings have increased root hair density and root hair elongation compared to wild type under mock treatment, which is consistent with a constitutive KAR/KL response (Fig. 8). This phenotype was rescued by *KUF1p:KUF1*. In addition, KAR<sub>1</sub> enhanced root hair density more than KAR<sub>2</sub> in *kuf1* but not wild-type roots, similar to our observations of KAR<sub>1</sub> hypersensitivity in *kuf1* hypocotyls (Fig. 8A). Therefore, KUF1 imposes negative feedback regulation on multiple developmental processes regulated by KAI2-SCF<sup>MAX2</sup> in Arabidopsis.

#### DISCUSSION

KUF1 is one of approximately 103 F-box proteins with C-terminal Kelch repeats in *Arabidopsis* thaliana. It is the sole member of one of eight "superstable" clades of F-box Kelch genes that have been defined based on having orthologs in eudicots *Arabidopsis thaliana*, *Populus* 

trichocarpa, and Vitis vinifera; the monocots Oryza sativa and Sorghum bicolor; the lycophyte Selaginella moellendorffii; and the bryophyte Physcomitrella patens (62). These superstable F-box genes are under purifying selection and therefore have been proposed to carry out developmental or physiological functions that are conserved in land plants (62). Here we identified roles for KUF1 in Arabidopsis seedling and root hair development that likely arise from its molecular function as a negative regulator of responses to KAR1 and KL. This raises the possibility that KUF1 may affect other aspects of plant growth and development regulated by KAR/KL signaling such as seed germination, drought tolerance, and symbiotic interactions with arbuscular mycorrhizal fungi.

It is possible that upregulation of *KUF1* after activation of SCF<sup>MAX2</sup>-regulated signaling pathways is a widely conserved response in land plants. In *Physcomitrella patens*, at least one of the four *KUF1* orthologs (Pp3c2\_34130v3.1) shows induced expression following *rac*-GR24 treatment and is downregulated in a *Ppmax2* mutant. Induction of *KUF1* by *rac*-GR24 is dependent on *PpMAX2*, at least when the moss is grown in the light (63). In *Oryza sativa* (rice), *OsKUF1* (LOC\_Os06g49750) is upregulated several-fold in *smax1* and is also induced by KAR<sub>1</sub> and GR24<sup>ent-5DS</sup> in a KAI2/D14L-dependent manner (64). In *Pisum sativum* (pea) buds, *PsKUF1* (Psat2g143160) is reported in a preprint to be upregulated by *rac*-GR24 in the SL-deficient *rms1/ccd8* and *rms5/ccd7* backgrounds, by GR24<sup>5DS</sup> in *rms1/ccd8*, and, unexpectedly, by KAR<sub>1</sub> in *rms4/max2* only (65). In *Lactuca sativa* (lettuce), we have found that at least one of its three *KUF1* homologs shows increased expression in achenes imbibed for 6 h with 1 μM KAR<sub>1</sub> or KAR<sub>2</sub> relative to mock treatment (Fig. S8).

The *kuf1* loss-of-function mutant shows several developmental and transcriptional phenotypes that are consistent with hyperactive KAR/KL signaling. We considered several hypotheses for how *KUF1* may reduce the effects of the KAR/KL pathway on plant growth and development. Although *KUF1* expression is negatively regulated by *SMAX1* and *SMXL2*, epistasis analysis demonstrated that *KUF1* acts upstream of *KAI2* and *MAX2*. This suggests a negative feedback loop. We also observed that *kuf1* seedlings are hypersensitive to KAR<sub>1</sub> but not *rac*-GR24. Therefore, KUF1 affects the ability of different molecules to be perceived by KAI2. This leads us to hypothesize that KUF1 negatively regulates metabolism of KAR<sub>1</sub> into a bioactive ligand of KAI2 (Fig. 9). Because *kuf1* phenotypes under control conditions are similar to *smax1* and KAR-treated wild-type seedlings, we further propose that KUF1 negatively regulates biosynthesis of the unknown endogenous KAI2 ligand, KL. One way this could occur is through SCF<sup>KUF1</sup>-

mediated polyubiquitylation and proteolysis of an enzyme(s) that metabolizes KAR<sub>1</sub> and/or KL. Indeed, if there were an enzyme that carried out both KAR<sub>1</sub> metabolism and KL biosynthesis it could help explain the potential for KAR response in non-fire following angiosperms such as Arabidopsis, for which the selective pressure to maintain a KAR response mechanism is not obvious. Alternatively, negative regulation of a KAR<sub>1</sub>/KL-metabolizing enzyme(s) by KUF1 could be less direct, such as by modulating the abundance of a transcription factor(s) that controls expression of the enzyme(s) or production of an enzyme co-factor. In this model, upregulation of *KUF1* expression in response to SCF<sup>MAX2</sup>-mediated degradation of SMAX1/SMXL2 represents a negative feedback mechanism for KL homeostasis that occurs through proteolysis rather than transcriptional repression (Fig. 9).

Our results raise the question of why *rac*-GR24 responses remain normal in *kuf1*. We propose that *rac*-GR24, or more specifically the GR24<sup>ent-5DS</sup> stereoisomer, is a "ready-to-go" ligand that is able to be recognized directly by KAI2 without metabolism. This is supported by the observation of thermal stability shifts in KAI2 after GR24<sup>ent-5DS</sup> treatment in DSF assays and by yeast two-hybrid interactions between KAI2 and SMAX1 in the presence of *rac*-GR24 and GR24<sup>ent-5DS</sup> (8, 22, 29) In addition, GR24 has a hydrolyzable butenolide D-ring that KARs lack, which has been shown to be important for signaling activity in many D14 agonists. KAR<sub>2</sub> responses in *kuf1*, which are not enhanced and even seem to be decreased under 1 µM treatments, are difficult to explain at this time. Presumably KAR<sub>2</sub> also requires metabolism by plants, as it is inactive on KAI2 in DSF and yeast two-hybrid assays, but this might be carried out by a protein or mechanism not regulated by KUF1. Different responses to KAR<sub>1</sub> and KAR<sub>2</sub> also occur in *Lotus japonicus*; both compounds affect hypocotyls, but only KAR<sub>1</sub> affects root growth (66). Because the receptor that mediates KAR<sub>2</sub> responses, LjKAI2a, is active in both hypocotyls and roots, tissue-specific metabolism of KAR<sub>2</sub> that is independent of KAR<sub>1</sub> metabolism might explain this phenomenon.

A notable weakness of the proposed model (Fig. 9) is the inability to directly evaluate KL abundance. Until KL is identified, alternative explanations of these data that we have not considered remain possible. One observation that is currently difficult to reconcile with the model is the effect of *KUF1* overexpression on SMAX1 degradation in *N. benthamiana*, which blocks responses to KAR<sub>1</sub>, KAR<sub>2</sub>, and *rac*-GR24 rather than just KAR<sub>1</sub>. One possibility is that a metabolic precursor of KL overaccumulates when *KUF1* is overexpressed that competitively inhibits activation of KAI2 by other molecules.

It is notable that although *kuf1* has a shortened hypocotyl phenotype, *KUF1* expression was either absent or very low in Arabidopsis hypocotyls compared to other seedling tissues. This suggests that *KUF1* effects on hypocotyl elongation are not locally mediated. Similarly, another transcriptional marker of KAR/KL signaling, B-box domain protein BBX20/STH7, regulates hypocotyl elongation but has very low expression in seedling hypocotyls compared to other tissues (52). There are a number of possibilities for how KUF1 could act at a distance to affect hypocotyl elongation, including direct or indirect control of a mobile signal or protein. For example, KL may be transported from its site(s) of synthesis to act in other tissues. Auxin is another attractive candidate for a mobile signal. KAI2 remodels auxin distribution in seedlings during photomorphogenesis, putatively by controlling the abundance of the auxin efflux carriers PIN1, PIN3, and PIN7 at the plasma membrane. This in turn influences hypocotyl elongation and root development (67)

An outstanding goal for the SL and KAR field is the identification of KL, which will give insights into the function of KAI2 as well as the evolutionary history of the SL and KAR signaling pathways. This characterization of KUF1 reveals new strategies to achieve this goal. First, *kuf1* tissues may provide a more abundant source of KL than wild type for bioassay-guided fractionation approaches to isolate purified KL. Second, identification of the protein(s) targeted for degradation by SCF<sup>KUF1</sup> should provide insights into how KL and KAR<sub>1</sub> metabolism occur and may even uncover enzymes that are directly involved in KL biosynthesis. Biochemical approaches to identify proteins that interact with KUF1 and/or genetic approaches to identify *kuf1* suppressors may prove fruitful for discovering these targets.

#### **MATERIALS & METHODS**

#### Materials

Arabidopsis thaliana alleles in the Col-0 ecotype used here were d14-1, htl-3 ("kai2" here for clarity), d14-1 htl-3, smax1-2, max2-1, max2-2, and smax1-2 smxl2-1 (12, 19, 20, 41, 68). The kai2-2 allele (Ler ecotype) and the ShKAl2i kai2-2 transgenic line are also described previously (12, 49). SMAX1<sub>D2</sub>-LUC kuf1 was derived through crossing kuf1-1 into the previously described UBQ10:SMAX1<sub>D2</sub>-LUC2-\*F2A-mScarlet-I transgenic Arabidopsis line (22). Figure 8 uses a kai2-2 allele backcrossed six times into the Col-0 background. KAR<sub>1</sub>, KAR<sub>2</sub>, and rac-GR24 were synthesized and provided by Dr. Gavin Flematti and Dr. Adrian Scaffidi (University of Western Australia). KAR and rac-GR24 stocks were prepared in acetone, stored at -20°C, and freshly

diluted before use. Oligonucleotide primer sequences for cloning, genotyping, and expression analysis are described in Table S1. Additional detailed methods are described in Supplementary Materials and Methods.

542543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

539

540

541

#### Isolation and rescue of kuf1

Based on cDNA and EST support, the gene model At1g31350.1 (395 aa) was used for KUF1 instead of At1g31350.2 (431 aa). Two KUF1 sites, 5'-GAAAACTCCGCTTTAATCGAAGG-3' and 5'-CGGTTTATGTGTTCAACCCGG-3' (protospacer adjacent motif underlined), with a minimum mismatch of 5 nt to the next closest genomic sequence were selected from the CRISPR-PLANT gRNA database for gene editing by CRISPR-Cas9 (69). Both gRNA sequences were introduced into pHEE401E through GoldenGate cloning as previously described, but with Q5 DNA polymerase (New England Biolabs) during cassette amplification steps (57, 70). Arabidopsis was transformed by floral dip with Sanger sequence-verified pHEE401E-KUF1. Seed was screened on 0.5x Murashige-Skoog (MS) media with hygromycin B (20 μg/mL) to identify T<sub>1</sub> plants. The kuf1-1 allele (200 bp deletion between +107 to +307 of the coding sequence) was identified by PCR (Table S1) and verified by Sanger sequencing. The kuf1-1 allele generated in Col-0 and Ler backgrounds was identical at the nucleotide level. The pHEE401E-KUF1 T-DNA was removed from the kuf1-1 allele in Col-0 ecotype through segregation, but was not removed in the Ler ecotype kuf1 lines. To rescue kuf1, a genomic KUF1 sequence (from -2967 upstream of the translational start codon to the stop codon) was cloned into pDONR221A, a Gateway entry vector modified to have ampicillin resistance), sequence-verified, and transferred into pGWB501 (71) with LR clonase II (Invitrogen). The resulting pGWB501-KUF1p:KUF1 was introduced into kuf1-1 by floral dip. Homozygous, singleinsertion transgenic lines were characterized.

562563

564

565

566

567

568

569570

571

## Seedling growth assays

Surface-sterilized seeds were plated on solid 0.5x MS media supplemented with KARs, *rac*-GR24, or an equivalent volume of solvent as indicated. Seeds were stratified in the dark for 3 d at 4 C, then moved to a HiPoint DCI-700 LED Z4 growth chamber to grow at 21°C under white light (150 µmol m<sup>-2</sup>s<sup>-1</sup>) for 3 h, dark for 21 h, and red light (30 µmol m<sup>-2</sup> s<sup>-1</sup> unless noted otherwise) for 4 d. Multiple fluences were simultaneously achieved with foil-lined boxes covered with neutral density gel sheets (Lee Filters 209, 210, 211, 299) placed under 60 µmol m<sup>-2</sup> s<sup>-1</sup> red light. Hypocotyl lengths of photographed seedlings were measured with ImageJ (NIH).

572 Cotyledon surface areas were measured in ImageJ from photographs of seedlings mounted in 573 water on glass slides. 574 575 Statistical analysis 576 Statistical analysis was performed in Prism 9 (GraphPad). Post-hoc statistical comparisons 577 were performed after ANOVA or two-way ANOVA. Box plots show the median, 25th percentile, 578 and 75th percentile. Tukey whiskers on box plots extend 1.5 times the interquartile range 579 beyond the 25th/75th percentile up to the minimum/maximum value in the data set. Outlier data 580 beyond Tukey whiskers are shown as individual points. 581 582 **ACKNOWLEDGMENTS** 583 Funding was provided by the National Science Foundation to DCN (IOS-1856741) and JG (IOS-584 1856452); by the Australian Research Council to MTW (DP21013078), and the Emmy Noether 585 program (GU1423/1-1) of the Deutsche Forschungsgemeinschaft (DFG) to CG. We thank Dr. 586 Gavin Flematti and Dr. Adrian Scaffidi (University of Western Australia) for graciously supplying 587 KARs and rac-GR24. 588 589 **AUTHOR CONTRIBUTIONS** 590 Experiments were designed, carried out, and analyzed by CS, MG, QL, JAV-A, SM, MK, AK, 591 and WL. Figure preparation by DCN and MTW. Manuscript preparation by DCN with 592 contributions and final approval from all authors. Project design by DCN, JG, CG, and MTW. 593 Funding to support the project was secured by DCN, JG, CG, and MTW. 594 595 CONFLICT OF INTEREST STATEMENT

The authors have no conflicts of interest to declare.

#### 597 **REFERENCES**

- 598 1. D. C. Nelson, G. R. Flematti, E. L. Ghisalberti, K. W. Dixon, S. M. Smith, Regulation of seed germination and seedling growth by chemical signals from burning vegetation. *Annu. Rev. Plant Biol.* **63**, 107–130 (2012).
- G. R. Flematti, E. L. Ghisalberti, K. W. Dixon, R. D. Trengove, A compound from smoke that promotes seed germination. *Science* **305**, 977 (2004).
- G. R. Flematti, E. L. Ghisalberti, K. W. Dixon, R. D. Trengove, Identification of alkyl substituted 2H-furo[2,3-c]pyran-2-ones as germination stimulants present in smoke. *J. Agric. Food Chem.* 57, 9475–9480 (2009).
- 4. D. C. Nelson, *et al.*, Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. *Plant Physiol.* 149, 863–873 (2009).
- 5. D. C. Nelson, *et al.*, Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. *Proc. Natl. Acad. Sci. U. S. A.* 107, 7095–7100 (2010).
- 6. M. G. Kulkarni, M. E. Light, J. Van Staden, Plant-derived smoke: Old technology with possibilities for economic applications in agriculture and horticulture. *S. Afr. J. Bot.* **77**, 972–979 (2011).
- 7. M. Antala, O. Sytar, A. Rastogi, M. Brestic, Potential of Karrikins as Novel Plant Growth Regulators in Agriculture. *Plants* **9** (2019).
- 8. Y. K. Sun, *et al.*, Divergent receptor proteins confer responses to different karrikins in two ephemeral weeds. *Nat. Commun.* **11**, 1264 (2020).
- D. C. Nelson, *et al.*, F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. *Proc. Natl. Acad. Sci. U. S. A.* 108, 8897–8902 (2011).
- 10. V. Gomez-Roldan, *et al.*, Strigolactone inhibition of shoot branching. *Nature* **455**, 189–194 (2008).
- 11. M. Umehara, *et al.*, Inhibition of shoot branching by new terpenoid plant hormones. *Nature* **455**, 195–200 (2008).
- M. T. Waters, *et al.*, Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. *Development* 139, 1285–1295 (2012).
- 13. R. Yao, *et al.*, DWARF14 is a non-canonical hormone receptor for strigolactone. *Nature* 536, 469–473 (2016).
- 14. A. de Saint Germain, *et al.*, An histidine covalent receptor and butenolide complex mediates strigolactone perception. *Nat. Chem. Biol.* **12**, 787–794 (2016).
- 15. Y. Seto, *et al.*, Strigolactone perception and deactivation by a hydrolase receptor DWARF14. *Nat. Commun.* **10**, 191 (2019).

- 16. L. Jiang, *et al.*, DWARF 53 acts as a repressor of strigolactone signalling in rice. *Nature* 504, 401–405 (2013).
- 17. F. Zhou, *et al.*, D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. *Nature* **504**, 406–410 (2013).
- L. Wang, et al., Strigolactone Signaling in Arabidopsis Regulates Shoot Development by
  Targeting D53-Like SMXL Repressor Proteins for Ubiquitination and Degradation. Plant
  Cell 27, 3128–3142 (2015).
- 19. J. P. Stanga, S. M. Smith, W. R. Briggs, D. C. Nelson, SUPPRESSOR OF MORE
  AXILLARY GROWTH2 1 controls seed germination and seedling development in
  Arabidopsis. *Plant Physiol.* 163, 318–330 (2013).
- 20. J. P. Stanga, N. Morffy, D. C. Nelson, Functional redundancy in the control of seedling growth by the karrikin signaling pathway. *Planta* **243**, 1397–1406 (2016).
- M. T. Waters, C. Gutjahr, T. Bennett, D. C. Nelson, Strigolactone Signaling and Evolution.
  Annu. Rev. Plant Biol. 68, 291–322 (2017).
- A. Khosla, *et al.*, Structure-Function Analysis of SMAX1 Reveals Domains that Mediate its
  Karrikin-Induced Proteolysis and Interaction with the Receptor KAI2. *The Plant Cell*,
  tpc.00752.2019 (2020).
- L. Wang, et al., Strigolactone and Karrikin Signaling Pathways Elicit Ubiquitination and
  Proteolysis of SMXL2 to Regulate Hypocotyl Elongation in Arabidopsis. Plant Cell 32,
  2251–2270 (2020).
- A. Scaffidi, *et al.*, Strigolactone Hormones and Their Stereoisomers Signal through Two
  Related Receptor Proteins to Induce Different Physiological Responses in Arabidopsis.
  *Plant Physiol.* **165**, 1221–1232 (2014).
- 657 25. G. R. Flematti, A. Scaffidi, M. T. Waters, S. M. Smith, Stereospecificity in strigolactone biosynthesis and perception. *Planta* **243**, 1361–1373 (2016).
- 659 26. H. M. Ghebrehiwot, *et al.*, Karrikinolide residues in grassland soils following fire: Implications on germination activity. *S. Afr. J. Bot.* **88**, 419–424 (2013).
- J. Kochanek, R. L. Long, A. T. Lisle, G. R. Flematti, Karrikins Identified in Biochars Indicate
  Post-Fire Chemical Cues Can Influence Community Diversity and Plant Development.
  PLoS One 11, e0161234 (2016).
- 28. C. E. Conn, D. C. Nelson, Evidence that KARRIKIN-INSENSITIVE2 (KAI2) Receptors may
  Perceive an Unknown Signal that is not Karrikin or Strigolactone. *Front. Plant Sci.* 6, 1219
  (2015).
- M. T. Waters, *et al.*, A Selaginella moellendorffii Ortholog of KARRIKIN INSENSITIVE2
  Functions in Arabidopsis Development but Cannot Mediate Responses to Karrikins or
  Strigolactones. *Plant Cell* 27, 1925–1944 (2015).
- 30. Y. K. Sun, G. R. Flematti, S. M. Smith, M. T. Waters, Reporter Gene-Facilitated Detection of Compounds in Arabidopsis Leaf Extracts that Activate the Karrikin Signaling Pathway. *Front. Plant Sci.* **7**, 1799 (2016).

- 31. J. Yao, *et al.*, Desmethyl butenolides are optimal ligands for karrikin receptor proteins. *New Phytol.* **230**, 1003–1016 (2021).
- 32. C. Gutjahr, *et al.*, Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. *Science* **350**, 1521–1524 (2015).
- 33. J. Choi, *et al.*, The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice. *Nat. Commun.* **11**, 2114 (2020).
- 34. I. Soundappan, *et al.*, SMAX1-LIKE/D53 Family Members Enable Distinct MAX2 Dependent Responses to Strigolactones and Karrikins in Arabidopsis. *Plant Cell* 27, 3143–3159 (2015).
- 35. W. Li, *et al.*, The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. *PLoS Genet.* **13**, e1007076 (2017).
- 36. L. Wang, M. T. Waters, S. M. Smith, Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment. *New Phytol.* **219**, 605–618 (2018).
- 37. J. A. Villaécija-Aguilar, *et al.*, SMAX1/SMXL2 regulate root and root hair development downstream of KAl2-mediated signalling in Arabidopsis. *PLOS Genetics* **15**, e1008327 (2019).
- 38. Y. Mizuno, *et al.*, Major components of the KARRIKIN INSENSITIVE2-dependent signaling pathway are conserved in the liverwort Marchantia polymorpha. *Plant Cell* **33**, 2395–2411 (2021).
- 39. Y. Guo, Z. Zheng, J. J. La Clair, J. Chory, J. P. Noel, Smoke-derived karrikin perception by
  the α/β-hydrolase KAI2 from Arabidopsis. *Proc. Natl. Acad. Sci. U. S. A.* 110, 8284–8289
  (2013).
- 696 40. M. Kagiyama, *et al.*, Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. *Genes Cells* **18**, 147–160 (2013).
- 41. S. Toh, D. Holbrook-Smith, M. E. Stokes, Y. Tsuchiya, P. McCourt, Detection of parasitic plant suicide germination compounds using a high-throughput Arabidopsis HTL/KAI2 strigolactone perception system. *Chem. Biol.* **21**, 988–998 (2014).
- 701 42. Y. Xu, *et al.*, Structural basis of unique ligand specificity of KAI2-like protein from parasitic weed Striga hermonthica. *Sci. Rep.* **6**, 31386 (2016).
- 43. Y. Xu, *et al.*, Structural analysis of HTL and D14 proteins reveals the basis for ligand selectivity in Striga. *Nat. Commun.* **9**, 3947 (2018).
- 705 44. I. Lee, *et al.*, A missense allele of KARRIKIN-INSENSITIVE2 impairs ligand-binding and downstream signaling in Arabidopsis thaliana. *J. Exp. Bot.* **69**, 3609–3623 (2018).
- 707 45. M. Bürger, *et al.*, Structural Basis of Karrikin and Non-natural Strigolactone Perception in Physcomitrella patens. *Cell Rep.* **26**, 855–865.e5 (2019).
- 709 46. C. Hamiaux, *et al.*, DAD2 is an  $\alpha/\beta$  hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. *Curr. Biol.* **22**, 2032–2036 (2012).

- 711 47. R. Yao, *et al.*, ShHTL7 is a non-canonical receptor for strigolactones in root parasitic weeds. *Cell Res.* **27**, 838–841 (2017).
- 48. C. Hamiaux, *et al.*, Inhibition of strigolactone receptors by N-phenylanthranilic acid derivatives: Structural and functional insights. *J. Biol. Chem.* **293**, 6530–6543 (2018).
- 49. C. E. Conn, *et al.*, PLANT EVOLUTION. Convergent evolution of strigolactone perception enabled host detection in parasitic plants. *Science* **349**, 540–543 (2015).
- 717 50. R. Bythell-Douglas, *et al.*, Evolution of strigolactone receptors by gradual neofunctionalization of KAI2 paralogues. *BMC Biol.* **15**, 52 (2017).
- 51. C. Van Ha, *et al.*, Positive regulatory role of strigolactone in plant responses to drought and salt stress. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 851–856 (2014).
- 52. K. Bursch, E. T. Niemann, D. C. Nelson, H. Johansson, Karrikins control seedling
  photomorphogenesis and anthocyanin biosynthesis through a HY5-BBX transcriptional
  module. *Plant J.* (2021) https://doi.org/10.1111/tpj.15383.
- 724 53. K. Mashiguchi, *et al.*, Feedback-regulation of strigolactone biosynthetic genes and
  725 strigolactone-regulated genes in Arabidopsis. *Biosci. Biotechnol. Biochem.* 73, 2460–2465
  726 (2009).
- 54. E. P. Risseeuw, *et al.*, Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. *Plant J.* **34**, 753–767 (2003).
- 55. Arabidopsis Interactome Mapping Consortium, Evidence for network evolution in an Arabidopsis interactome map. *Science* **333**, 601–607 (2011).
- 56. J. Jumper, *et al.*, Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583–589 (2021).
- 733 57. Z.-P. Wang, et al., Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates
  734 homozygous mutants for multiple target genes in Arabidopsis in a single generation.
  735 Genome Biol. 16, 144 (2015).
- 58. A. Khosla, C. Rodriguez- Furlan, S. Kapoor, J. M. Van Norman, D. C. Nelson, A series of dual- reporter vectors for ratiometric analysis of protein abundance in plants. *Plant Direct* 4 (2020).
- 739 59. M. T. Waters, A. Scaffidi, G. Flematti, S. M. Smith, Substrate-Induced Degradation of the
  740 α/β-Fold Hydrolase KARRIKIN INSENSITIVE2 Requires a Functional Catalytic Triad but Is
  741 Independent of MAX2. *Mol. Plant* 8, 814–817 (2015).
- 742 60. M. T. Waters, S. M. Smith, KAI2- and MAX2-mediated responses to karrikins and
  743 strigolactones are largely independent of HY5 in Arabidopsis seedlings. *Mol. Plant* 6, 63–75
  744 (2013).
- 745 61. A. R. F. White, J. A. Mendez, A. Khosla, D. C. Nelson, Rapid analysis of strigolactone
  746 receptor activity in a Nicotiana benthamiana dwarf14 mutant. *bioRxiv*, 2021.05.11.443507
  747 (2021).
- 748 62. N. Schumann, A. Navarro-Quezada, K. Ullrich, C. Kuhl, M. Quint, Molecular evolution and

- selection patterns of plant F-box proteins with C-terminal kelch repeats. *Plant Physiol.* **155**, 835–850 (2011).
- 751 63. M. Lopez-Obando, *et al.*, Physcomitrella patens MAX2 characterization suggests an ancient role for this F-box protein in photomorphogenesis rather than strigolactone signalling. *New Phytol.* **219**, 743–756 (2018).
- 754 64. J. Zheng, *et al.*, Karrikin Signaling Acts Parallel to and Additively with Strigolactone
  755 Signaling to Regulate Rice Mesocotyl Elongation in Darkness. *Plant Cell* 32, 2780–2805
  756 (2020).
- 757 65. S. C. Kerr, *et al.*, Hormonal regulation of the BRC1-dependent strigolactone transcriptome involved in shoot branching responses. *bioRxiv*, 2020.03.19.999581 (2020).
- 759 66. S. Carbonnel, *et al.*, Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy. *PLoS Genet.* **16**, e1009249 (2020).
- 761 67. M. Hamon-Josse, *et al.*, KAI2 regulates seedling development by mediating light-induced remodelling of auxin transport. *bioRxiv*, 2021.05.06.443001 (2021).
- 68. P. Stirnberg, K. van De Sande, H. M. O. Leyser, MAX1 and MAX2 control shoot lateral branching in Arabidopsis. *Development* **129**, 1131–1141 (2002).
- 765 69. K. Xie, J. Zhang, Y. Yang, Genome-wide prediction of highly specific guide RNA spacers
  766 for CRISPR-Cas9-mediated genome editing in model plants and major crops. *Mol. Plant* 7,
  767 923–926 (2014).
- 70. H.-L. Xing, *et al.*, A CRISPR/Cas9 toolkit for multiplex genome editing in plants. *BMC Plant Biol.* **14**, 327 (2014).
- 71. T. Nakagawa, *et al.*, Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. *Biosci. Biotechnol. Biochem.* **71**, 2095–2100 (2007).

#### FIGURE LEGENDS

- 777 Fig. 1. Isolation of a *kuf1* mutant in *Arabidopsis thaliana*.
- 778 (A) Diagram of KUF1 protein domains and KUF1 gene structure. Filled arrow, exon; red
- 779 triangles, gRNA target sites; dashed lines, boundaries of genomic deletion in kuf1-1. (B)
- 780 Seedlings grown 4 d in red light on 0.5x Murashige-Skoog (MS) medium supplemented with
- 781 0.1% (v/v) acetone, 1  $\mu$ M KAR<sub>1</sub>, or 1  $\mu$ M KAR<sub>2</sub>. KUF1 kuf1-1 is a KUF1p:KUF1 kuf1-1
- 782 transgenic rescue line. (C) Expression of DLK2, BBX20/STH7/BZS1, IAA6, and SMXL2 relative
- 783 to CACS reference transcripts in seedlings grown 4 d in red light on 0.5x MS medium
- supplemented with 0.1% (v/v) acetone (gray) or 1 μM KAR<sub>1</sub> (orange), measured by quantitative
- real-time RT-PCR. Relative expression values scaled to Col-0. (n = 5 pools of seedlings; mean
- 786 ± SD). Letters indicate statistical groups, p<0.05, Dunnett's T3 multiple comparisons test.

## 787

776

#### 788 Fig. 2. Epistasis analysis of *kuf1* and KAR/SL signaling mutants.

- 789 (A) Hypocotyl lengths (n = 80) and (B) individual cotyledon areas (n = 73-78) of seedlings grown
- 4 d in red light on 0.5x MS medium. Box plots have Tukey whiskers. \*, p<0.01, Dunnett's T3
- 791 multiple comparisons test.

## 792 793

## Fig. 3. KAI2 protein abundance under KUF1 perturbation

- 794 (A) Western blot analysis of KAI2 protein abundance in 60 mg total protein extracted from wild-
- 795 type and kuf1 Arabidopsis seedlings grown 4 d in red light. Actin and Rubisco large subunit
- 796 (RbcL) were used as loading controls and imaged by Western blot or 2,2,2-trichloroethanol
- 797 staining, respectively. Relative KAI2 abundance was scaled to Col-0. (n = 3 pools of seedlings;
- 798 mean ± SD) (B) Ratio of KAI2-mScarlet-I to Venus fluorescence in Nicotiana benthamiana
- 799 leaves co-infiltrated 3 d with the pRATIO3212-KAI2 ratiometric reporter plasmid and the 35S-
- 800 driven overexpression plasmids pGWB402-kuf1Δ or pGWB402-KUF1. \*F2A causes separation
- 801 of KAI2-mScarlet-I and Venus proteins during translation. The kuf1Δ mutation has a deletion
- that causes premature truncation after the N-terminal 46 aa of KUF1. (n = 4 leaves, each leaf
- value is the mean relative fluorescence of six leaf discs; mean  $\pm$  SD). ns, p > 0.05, two-tailed
- 804 unpaired t-test.

## 805 806

## Fig. 4. Hypocotyl elongation response of *kuf1* to KARs and *rac-*GR24.

- 807 (A) Representative images and (B) hypocotyl lengths of seedlings grown 4 d in red light on 0.5x
- MS medium supplemented with 0.1% (v/v) acetone, 1  $\mu$ M KAR<sub>1</sub>, 1  $\mu$ M KAR<sub>2</sub>, or 1  $\mu$ M rac-GR24.
- 809 Box plots have Tukey whiskers. Percent growth inhibition relative to the mock-treated control for

each genotype is indicated below box plots of experimental treatments. (n = 100). \*, p<0.01,

Dunnett's multiple comparisons test, compared to Col-0 with same treatment. #, p<0.01,

Dunnett's multiple comparisons test, KAR<sub>1</sub> vs. KAR<sub>2</sub> within genotype.

813814

816

817

818

819

820

821

812

810

## Fig. 5. Response of *kuf1* to low concentrations of KARs and *rac-*GR24.

Hypocotyl lengths of wild-type and kuf1 seedlings grown 4 d in red light on 0.5x MS medium supplemented with 0.1% (v/v) acetone, 100 nM, 300 nM, or 1  $\mu$ M (A) KAR<sub>1</sub> or KAR<sub>2</sub> (n = 60), or (B) rac-GR24 (n = 80). For (A) \*, p<0.01, Tukey's multiple comparisons test. (C) Hypocotyl lengths of seedlings grown 4 d in red light on 0.5x MS medium supplemented with 0.1% (v/v) acetone or 1  $\mu$ M rac-GR24. (n = 80). Box plots have Tukey whiskers. Percent growth inhibition relative to the mock-treated control for each genotype is indicated below box plots of experimental treatments.

822823824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

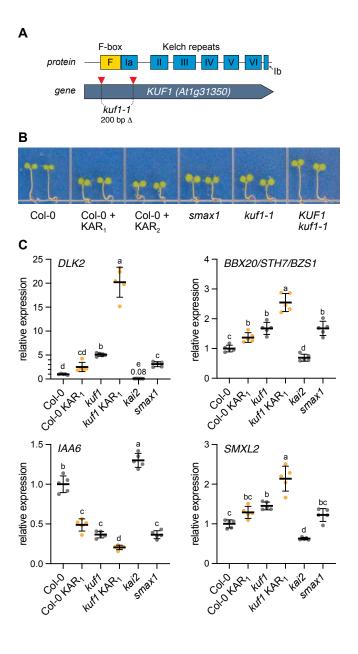
## Fig. 6. Indirect tests of KUF1 effects on KAR and KL metabolism.

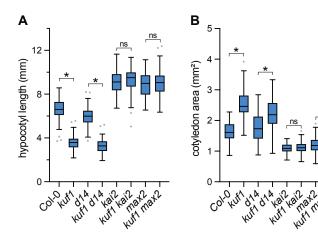
(A) Hypocotyl lengths of seedlings grown 4 d in red light on 0.5x MS medium supplemented with 0.1% (v/v) acetone or 1 µM KAR<sub>1</sub>. The kuf1 allele is identical to kuf1-1 but it was made in the Ler ecotype and the CRISPR-Cas9 T-DNA has not been removed. ShKAI2i kai2 expresses KAI2i from Striga hermonthica under control of an Arabidopsis KAI2 promoter in the kai2-2 mutant background. Percent growth inhibition relative to the mock-treated control for each genotype is indicated below box plots of KAR<sub>1</sub> treatments. Percent growth inhibition due to kuf1 is indicated above box plots. (n = 80-100) (B) Arbitrary relative luminescence units of 9-d-old SMAX1<sub>D2</sub>-LUC Col-0 and *kuf1* seedlings grown in 16 h white light:8 h dark, normalized to each seedling's leaf and cotyledon surface area. Wt and kuf1 leaf/cotyledon surface areas were not different (p>0.05), (n = 36 seedlings) \*, p<0.01, Student's two-tailed t-test. (C) Ratio of SMAX1mScarlet to Venus fluorescence in Nicotiana benthamiana leaves co-infiltrated 3 d with the pRATIO1212-SMAX1 ratiometric reporter plasmid and the overexpression plasmids pGWB402 (empty), pGWB402-kuf1D, or pGWB402-KUF1, after 16 h treatment with 0.02% (v/v) acetone or 10 μM KAR<sub>1</sub>. The kuf1D mutation has a deletion that causes premature truncation after the Nterminal 46 aa of KUF1. (n = 14-18). Letters indicate statistical groups, p<0.01, Tukey's multiple comparisons test. Box plots have Tukey whiskers.

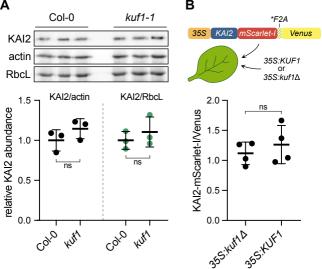
841842

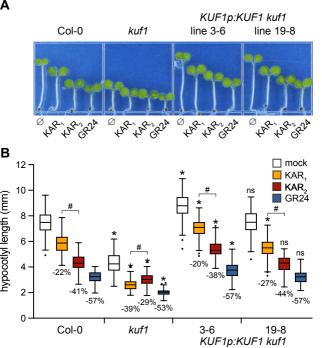
843

Fig. 7. *KUF1* expression patterns in *Arabidopsis* seedlings. Representative micrographs of  $\beta$ -glucuronidase staining (blue) in (*A*) cotyledons, (*B*) shoot apices, (*C*) mature root cells, (*D*)


lateral root primordia, and (*E*) primary root tips of *KUF1p:GUS* seedlings grown 4 d in red light on 0.5x MS supplemented with 0.1% (v/v) acetone,  $1 \mu M$  KAR<sub>2</sub>, or  $1 \mu M$  rac-GR24.

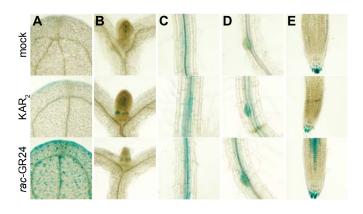

## Fig. 8. Root hair density and elongation in *kuf1*.

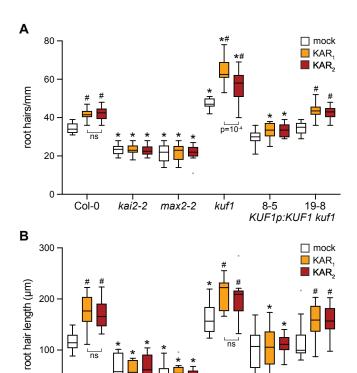

(A) Root hair density (n = 10). and (B) root hair length (n = 10 roots, represented by average of 10 root hairs from each) of 5-d-old seedlings grown vertically in white light (120 µmol m<sup>-2</sup> s<sup>-1</sup>) on 0.5x MS medium supplemented with 1% (w/v) sucrose and 0.07% (v/v) methanol, 1 µM KAR<sub>1</sub>, or 1 µM KAR<sub>2</sub>. The *kai2-2* allele was introgressed into the Col-0 background. Box plots have Tukey whiskers. \*, p<0.01, Dunnett's multiple comparisons test, compared to Col-0 with same treatment. \*, p<0.01, Dunnett's multiple comparisons test, compared to mock treatment within genotype.


## Fig. 9. Model of a KUF1-mediated negative feedback loop.

Activation of KAI2 by an unknown endogenous ligand (KL), a putative KAR<sub>1</sub> metabolite (\*KAR<sub>1</sub>), or GR24<sup>ent-5DS</sup> triggers its association with SCF<sup>MAX2</sup> and SMAX1/SMXL2. SMAX1/SMXL2 proteins are polyubiquitinated and degraded by the 26S proteasome, causing an increase in *KUF1* transcripts. KUF1 likely acts within an SCF-type E3 ubiquitin ligase complex to target (an) unknown protein(s) for polyubiquitination and proteasomal degradation. The KUF1 target(s) positively regulate(s) KL biosynthesis and conversion of KAR<sub>1</sub> into a bioactive signal. Thus, upregulation of *KUF1* following SMAX1/SMXL2 degradation dampens the plant's capacity to produce additional ligands for KAI2 but does not affect its ability to respond to GR24<sup>ent-5DS</sup>. For simplicity, components of the E3 ubiquitin ligase complex other than Arabidopsis Skp1 (ASK1) are not shown.





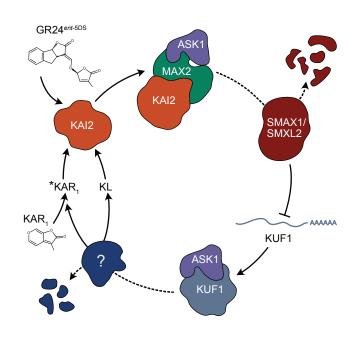












kai2-2 max2-2

kuf1

8-5 19-8 KUF1p:KUF1 kuf1

0

Col-0

