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A PRIORI GENERALIZATION ERROR ANALYSIS OF TWO-LAYER
NEURAL NETWORKS FOR SOLVING HIGH DIMENSIONAL

SCHRÖDINGER EIGENVALUE PROBLEMS

JIANFENG LU AND YULONG LU

Abstract. This paper analyzes the generalization error of two-layer neural networks
for computing the ground state of the Schrödinger operator on a 𝑑-dimensional hyper-
cube with Neumann boundary condition. We prove that the convergence rate of the
generalization error is independent of dimension 𝑑, under the a priori assumption that
the ground state lies in a spectral Barron space. We verify such assumption by proving
a new regularity estimate for the ground state in the spectral Barron space. The latter
is achieved by a fixed point argument based on the Krein-Rutman theorem.

1. Introduction

High dimensional partial differential equations (PDEs) arise ubiquitously from sci-
entific and engineering problems which involve many degrees of freedom, examples
include many-body quantummechanics, phase space description of chemical dynam-
ics, learning and control of complex systems, spectral methods for high dimensional
data, just to name a few. While numerical methods for partial differential equations in
low-dimension are quite standard, the numerical solution to high dimensional PDEs
has remained an outstanding challenge due to thewell-known curse of dimensionality.
Namely, the computational cost can grow exponentially as the dimension increases.
Perhaps the most celebrated and important example of such challenge is to determine
the ground state ofmany-body quantum systems, which amounts to solving eigenvalue
problems for high dimensional PDEs.
In recent years, neural networks have shown great success in representing high-

dimensional classifiers or probability distributions in a variety of machine learning
tasks and have led to the tremendous success and popularity of deep learning [32, 38].
Motivated by those recent success, researchers have been actively exploring using deep
learning techniques to solve high dimensional PDEs [10,18,22,23,29,37,45,48] by us-
ing neural networks to parameterize the unknown solution of high dimensional PDEs.
Thanks to the flexibility of the neural network approximations, such methods have
achieved remarkable results for various kind of PDE problems, including eigenvalue
problems for many-body quantum systems (see e.g., [7, 9, 12,19,24–26,36]), where the
high dimensional wave functions are parameterized by neural networks with specific
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architecture design to address the symmetry properties of many-body quantum sys-
tems.
Despite wide popularity and many successful examples of employing neural net-

work ansatz for solving PDEs, their theoretical analyses are still sparse. In [40,41], the
authors obtained the convergence error estimates for PINNs based on both strong and
variational formulations in the context of solving linear elliptic and parabolic PDEs.
In [35], the authors proposed a general framework to study the a-posterior-type gen-
eralization error estimates for PINNs. It is worth to note that in the aforementioned
work, the error estimates were proved under the assumption that the solution belongs
to Sobolev or Hölder spaces and hence those estimates suffer from the curse of dimen-
sionality. In [27, 34, 47], the authors established dimension-explicit a priori-estimates
for the generalization error of two-layer neural networks for solving elliptic PDEs as-
suming (but without verifying) the solution of the PDEs lie in certain Barron spaces.
In our recent work [33], we proved a dimension-independent convergence rate for the
generalization error bound for the deepRitzmethod [18] for solving elliptic PDEswhen
the solutions lie in some spectral Barron space, and more importantly we also estab-
lished new regularity theory in the spectral Barron space for the PDEs.
Nonetheless, to the best of our knowledge, the numerical analysis of neural network

methods for high dimensional eigenvalue problems is not yet established. The goal of
this paper is to provide an a priori generalization analysis of variational methods for
computing the ground state of the Schrödinger operator in high dimension based on
the two-layer neural network ansatz.
Our generalization error analysis follows largely the framework established in our

previouswork [33], where a priori generalization error is analyzed for deepRitzmethod
for solving elliptic equations. In particular, to establish approximation results that do
not deteriorate as dimension increases, we will work in a spectral Barron space that is
firstly defined in the seminal work of Barron [5]. It has been shown in [5,14,30,33,43]
that spectral Barron functions has “lower complexity” than more familiar regularity-
based functions such as Sobolev or Hölder functions in the sense that the former can
be efficiently approximated by two-layer neural networks without curse of dimension-
ality. It is also worth mentioning that another notion of Barron space based on an
integral representation is defined in [15], in which similar neural network approxima-
tion result holds. Discussions on the relationship between the two notions of Barron
spaces and their properties can be found in [8] and [16].
On the other hand, as the Barron space is rather different from Sobolev or Hölder

spaces, the main challenge one faces is to establish regularity theory for high dimen-
sional PDEs in such space. Our previouswork [33] established the appropriate solution
theory for elliptic equations. The key contribution of the present work is to extend such
novel solution theory to Schrödinger eigenvalue problems in high dimension. Sincewe
are working in spectral Barron space, which is a general Banach space without inner
product structure, Lax-Milgram or Courant-Fisher theorems are not applicable, and
thus we have to rely on fixed point theorem to establish the existence of solutions. In
our previous work for elliptic PDEs [33], the Fredholm alternative principle was used;
while in this work, to establish the existence of nontrivial eigenfunctions, we rely on
the Krein-Rutman theorem [31]. We also remark that similar regularity estimates in an
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alternative Barron space [15] were obtained for some nonlinear PDEs [17] and linear
elliptic PDEs [11].
The remainder of this paper is organized as follows. In Section 2 we first set up the

ground state problem of the Schrödinger operator and present the main generalization
results (see Theorems 2.3 and 2.4) and the new regularity estimate on the ground state
in the spectral Barron space (see Theorem 2.5). In Section 3 we prove a key stability es-
timate on the ground state, which allows us to bound the𝐻1-error between the ground
state and its approximation in terms of the energy excess. We present the proof of the
main generalization result in Section 4 and the proof of the new regularity estimate on
the ground state in Section 5.

2. Set-up and main results

2.1. Set-up of problem. LetΩ = [0, 1]𝑑 be the unit hypercube onℝ𝑑 with the bound-
ary 𝜕Ω. Consider the Neumann eigenvalue problem for the Schrödinger operator

ℋ𝑢 = −Δ𝑢 + 𝑉𝑢 = 𝜆𝑢 in Ω,
𝜕𝑢
𝜕𝜈 = 0 on 𝜕Ω,

whereℋ ≔ −Δ+𝑉 is the Schrödinger operator with the potential function𝑉 equipped
with the Neumann boundary condition. We are particularly interested in computing
the ground state ofℋ, that is the eigenfunction associated to the smallest eigenvalue
ofℋ.
Throughout the paper we make the following minimum assumption on the poten-

tial function.

Assumption 2.1. There exist finite positive constants𝑉min and𝑉max such that𝑉min ≤
𝑉(𝑥) ≤ 𝑉max for every 𝑥 ∈ Ω.

Note that we assume without loss of generality that 𝑉min is positive, since one can
always add a constant to 𝑉 without changing the eigenfunctions.
It is well-known that the minimum eigenvalue 𝜆0 can be characterized as the min-

imum of Rayleigh quotient, i.e.

(2.1) 𝜆0 = min
ᵆ∈𝐻1(Ω)

ℛ(𝑢) ≔ min
ᵆ∈𝐻1(Ω)

⟨𝑢,ℋ𝑢⟩𝐻1×(𝐻1)∗

⟨𝑢, 𝑢⟩ = min
ᵆ∈𝐻1(Ω)

∫Ω |∇𝑢|2 + 𝑉𝑢2𝑑𝑥
∫Ω 𝑢2𝑑𝑥

,

where ⟨⋅, ⋅⟩ denotes the inner product on 𝐿2(Ω) and ⟨⋅, ⋅⟩𝐻1×(𝐻1)∗ denotes the dual prod-
uct on 𝐻1 × (𝐻1)∗. Under Assumption 2.1, the minimizer of the variational problem
(2.1) is achieved at the ground state 𝑢0 ∈ 𝐻1(Ω). Moreover, the ground state 𝑢0 is
unique (up to a multiplicative constant) and is strictly positive (up to a global sign) on
Ω; see e.g., [20, Theorem 3.3.2]. Without loss of generality we assume further that the
ground state 𝑢0 is normalized, i.e., ‖𝑢0‖𝐿2(Ω) = 1.
For certain results to hold, we may also need to make the following additional spec-

trum assumption on the Schrödinger operatorℋ.

Assumption 2.2. The operatorℋ has discrete spectrum {𝜆𝑗}∞𝑗=0 with a positive spec-
tral gap, i.e. 𝜆0 < 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑘 ↑ ∞.

Notice that in our setting where the Schrödinger equation is defined on the compact
domain,ℋ always has a discrete spectrum thanks to the well-known Hilbert-Schmidt
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theorem and the fact that (−Δ+𝑉)−1 is a compact self-adjoint operator on 𝐿2 (assuming
the validity of Assumption 2.1). Moreover, the eigenvector ofℋ forms an orthonormal
basis on 𝐿2. As for the spectral gap, it is well-known that the Schrödinger operator
with Dirichlet boundary condition has a positive spectral gap under certain convexity
assumption on the domain and the potential; see e.g. [2, 44]. However, less is known
about the spectral gap for the Neumann Schrödinger operator; some limited results
were obtained by [3, 28] in the one-dimensional setting when the potential is a single
well.
To avoid any confusion with the subscript in the notation, let us denote the ground

state eigenpair by (𝜆∗, 𝑢∗) ≔ (𝜆0, 𝑢0), which our study focuses on.
The natural idea is to seek an approximate solution to Problem (2.1) within some

hypothesis classℱ ⊂ 𝐻1(Ω) that is parameterized by neural networks. In practice, the
Monte Carlo method is employed to compute the high dimensional integrals defined
by the inner products in (2.1), leading to the definition of empirical loss (or risk) mini-
mization. More concretely, let us denote by 𝒫Ω the uniform probability distribution on
the domain Ω. Then the population loss ℛ can be written as

(2.2) ℛ(𝑢) = ℰ𝑉 (𝑢)
ℰ2(𝑢)

≔
E𝑋∼𝒫Ω[|∇𝑢(𝑋)|2 + 𝑉(𝑋)|𝑢(𝑋)|2]

E𝑋∼𝒫Ω[|𝑢(𝑋)|2]
.

Let {𝑋𝑗}𝑛𝑗=1 be a sequence of random variables that are independent and identically dis-
tributed (i.i.d.) according to 𝒫Ω. The population loss is approximated by the following
empirical loss

(2.3) ℛ𝑛(𝑢) =
ℰ𝑛,𝑉 (𝑢)
ℰ𝑛,2(𝑢)

,

where ℰ𝑛,𝑉 and ℰ𝑛,2 are defined by

ℰ𝑛,𝑉 ≔ 1
𝑛

𝑛
∑
𝑗=1

(|∇𝑢(𝑋𝑗)|2 + 𝑉(𝑋𝑗)|𝑢(𝑋𝑗)|2)

ℰ𝑛,2 ≔
1
𝑛

𝑛
∑
𝑗=1

|𝑢(𝑋𝑗)|2.

Note that we have used the fact that |Ω| = 1 in deriving theMonte Carlo approximation
above. Let 𝑢𝑛 be a minimizer of ℛ𝑛 within ℱ, i.e., 𝑢𝑛 = argminᵆ∈ℱ ℛ𝑛(𝑢). Again
sinceℛ𝑛(𝑢) is scaling-invariant, we may assume that ‖𝑢𝑛‖𝐿2 = 1. Our goal is to obtain
quantitative estimates for the error between 𝑢𝑛 and 𝑢∗, and following the statistical
learning literature we will call such error the generalization error.
We are interested in quantifying the error between 𝑢𝑛 and 𝑢∗ in terms of two cri-

teria. The first one is given by the energy excess ℛ(𝑢𝑛) − ℛ(𝑢∗) that quantifies the
approximation of ℛ(𝑢𝑛) to the leading eigenvalue 𝜆∗ = ℛ(𝑢∗).
To introduce the second quantity for measuring the error, we define the projection

operator 𝑃 onto the space of ground state by setting
𝑃𝑢 = ⟨𝑢, 𝑢∗⟩𝑢∗.

Let us also define the operator 𝑃⟂ = (𝐼 − 𝑃), i.e.
𝑃⟂𝑢 = 𝑢 − ⟨𝑢, 𝑢∗⟩𝑢∗.
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Notice that if both 𝑢0 and 𝑢 are normalized, then
‖𝑃⟂𝑢‖2𝐿2 = 1 − |⟨𝑢, 𝑢∗⟩|2.

Therefore ‖𝑃⟂𝑢𝑛‖𝐿2(Ω) quantifies the offset of the direction of𝑢𝑛 from that of𝑢∗. Propo-
sition 2.1 shows that the 𝐻1-norm of 𝑃⟂𝑢 can be bounded above by the energy excess.

Proposition 2.1. Assume thatℋ satisfies Assumptions 2.1 and 2.2. Then for any 𝑢 ∈
𝐻1(Ω),

‖𝑃⟂𝑢‖2𝐿2(Ω) ≤
ℛ(𝑢) − ℛ(𝑢∗)

𝜆1 − 𝜆∗ ‖𝑢‖2𝐿2(Ω),

‖∇𝑃⟂𝑢‖2𝐿2(Ω) ≤ (ℛ(𝑢) − ℛ(𝑢∗))(𝑉max − 𝑉min
𝜆1 − 𝜆∗ + 1)‖𝑢‖2𝐿2(Ω).

In particular, if ‖𝑢‖𝐿2 = 1, then

‖𝑃⟂𝑢‖2𝐻1(Ω) ≤ (𝑉max − 𝑉min + 1
𝜆1 − 𝜆∗ + 1)(ℛ(𝑢) − ℛ(𝑢∗)).

2.2. Main results. Weaim to establish quantitative generalization error estimates be-
tween the approximate ground state 𝑢𝑛 parametrized by neural networks and the exact
ground state 𝑢∗. Our particular interest is to show that under certain circumstances the
generalization error of the neural network solution does not suffer from the curse of
dimensionality. To this end, we will assume (and prove below) that the exact ground
state 𝑢∗ lies in a smaller function space than the usual Sobolev space within which the
functions can be approximated by neural networks without curse of dimensionality.
Specifically, we consider the spectral Barron space [33] defined as follows.
Recall the domain Ω = [0, 1]𝑑. Let us first define the set of cosine functions

𝒞 = {Φ𝑘}𝑘∈ℕ𝑑0
≔ {

𝑑
∏
𝑖=1

cos(𝜋𝑘𝑖𝑥𝑖) | 𝑘𝑖 ∈ ℕ0}.

Let {𝑢̂(𝑘)}𝑘∈ℕ𝑑0 be the expansion coefficients of a function 𝑢 ∈ 𝐿1(Ω) under the basis
{Φ𝑘}𝑘∈ℕ𝑑0 . For 𝑠 ≥ 0, the spectral Barron space ℬ𝑠(Ω) on Ω is defined by

(2.4) ℬ𝑠(Ω) ≔ {𝑢 ∈ 𝐿1(Ω) ∶ ∑
𝑘∈ℕ𝑑0

(1 + 𝜋𝑠|𝑘|𝑠1)|𝑢̂(𝑘)| < ∞},

which is equipped with the spectral Barron norm

‖𝑢‖ℬ𝑠(Ω) = ∑
𝑘∈ℕ𝑑0

(1 + 𝜋𝑠|𝑘|𝑠1)|𝑢̂(𝑘)|.

Note that we use |𝑘|1 to denote the ℓ1-norm of a vector 𝑘. It is clear that ℬ𝑠(Ω) is
a Banach space since it can be viewed as a weighted ℓ1 space ℓ1𝑊𝑠(ℕ

𝑑
0) of the cosine

coefficients defined on the lattice ℕ𝑑
0 with the weight𝑊𝑠(𝑘) = (1 + 𝜋𝑠|𝑘|𝑠1). Moreover,

since functions in ℬ𝑠(Ω) have summable cosine coefficients, we have ℬ𝑠(Ω) ↪ 𝐶(Ω).
When 𝑠 = 2, we adopt the short notation ℬ(Ω) for ℬ2(Ω). Our notion of spectral
Barron space is an adaptation of the Barron space defined in the seminal work [5]; see
also the recent works [4, 15, 30, 42] on other variants of Barron spaces. The original
Barron function 𝑓 in [5] is defined on the whole space ℝ𝑑 whose Fourier transform
̂𝑓(𝑤) satisfies that ∫ | ̂𝑓(𝜔)||𝜔|𝑑𝜔 < ∞. Our spectral Barron space ℬ𝑠(Ω) with 𝑠 = 1,
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defined on the bounded domain Ω, can be viewed as a finite domain analog of the
original Barron space from [5].

Example. We provide an example of the potential function 𝑉 ∈ ℬ([0, 1]𝑑). Consider
the potential 𝑉(𝑥1,⋯ , 𝑥𝑁) of 𝑁 pairwise interacting particles {𝑥𝑖}𝑁𝑖=1 with

(2.5) 𝑉(X) ≔ 𝑉(𝑥1,⋯ , 𝑥𝑁) =
𝑁
∑
𝑖<𝑗

𝐾(𝑥𝑖, 𝑥𝑗).

Here we assume that 𝑥𝑖 ∈ [0, 1]𝑑0 with 𝑑0 ≥ 1. Therefore the vector of 𝑁 particles
is X ∈ [0, 1]𝑑 with 𝑑 = 𝑁𝑑0. The kernel 𝐾 ∶ [0, 1]2𝑑0 → ℝ describes the pairwise
interaction between two particles. A straightforward calculation shows that if 𝐾 ∈
ℬ𝑠([0, 1]2𝑑0), then 𝑉 ∈ ℬ𝑠([0, 1]𝑑) with

‖𝑉‖ℬ𝑠([0,1]𝑑) ≤
𝑁(𝑁 − 1)

2 ‖𝐾‖ℬ𝑠([0,1]2𝑑0 ).

In fact, note that for any 𝑘 ∈ ℕ𝑑
0 ,

̂𝑉(𝑘) = ∫
ℝ𝑁𝑑0

𝑁
∑
𝑖<𝑗

𝐾(𝑥𝑖, 𝑥𝑗)
𝑁
∏
ℓ=1

cos(𝜋𝑘ℓ ⋅ 𝑥ℓ)𝑑X

=
𝑁
∑
𝑖<𝑗

̂𝐾(𝑘𝑖, 𝑘𝑗)
𝑁
∏
ℓ∉{𝑖,𝑗}

𝛿0(𝑘ℓ),

where 𝛿0(0) = 1 and 𝛿0(𝑘) = 0 if 𝑘 ≠ 0. Hence
‖𝑉‖ℬ𝑠([0,1]𝑑) = ∑

𝑘∈ℕ𝑑0

(1 + 𝜋𝑠|𝑘|𝑠1)| ̂𝑉(𝑘)|

≤
𝑁
∑
𝑖<𝑗

∑
𝑘𝑖∈ℕ

𝑑0
0

∑
𝑘𝑗∈ℕ

𝑑0
0

(1 + 𝜋𝑠(|𝑘𝑖|1 + |𝑘𝑗|1)𝑠)| ̂𝐾(𝑘𝑖, 𝑘𝑗)|

= 𝑁(𝑁 − 1)
2 ‖𝐾‖ℬ𝑠([0,1]2𝑑0 ).

Moreover, to give a concrete example of𝐾 ∈ ℬ𝑠([0, 1]2𝑑0), consider the kernel𝐾(𝑥, 𝑦) =
|𝑥 − 𝑦| with 𝑥, 𝑦 ∈ [0, 1]. A straightforward calculation shows that the cosine coeffi-
cients of 𝐾, denoted by { ̂𝐾(𝑚, 𝑛)}(𝑚,𝑛)∈ℕ20 , are given by

̂𝐾(𝑚, 𝑛) = {0, if𝑚 ≠ 𝑛,
− 1
𝑚2𝜋2 if𝑚 = 𝑛.

Therefore by definition, 𝐾(𝑥, 𝑦) = |𝑥 − 𝑦| ∈ ℬ𝑠([0, 1]2) for every 𝑠 ∈ (0, 1) and hence
the corresponding pairwise interacting potential 𝑉(X) ∈ ℬ𝑠([0, 1]𝑁) with 𝑠 ∈ (0, 1).
Moreover, it holds that

‖𝑉‖ℬ𝑠([0,1]𝑁) ≲ 𝑁2.
In particular, the Barron norm of 𝑉 does not increase exponentially in 𝑁.
Remark 2.1. Notice that since the spectral Barron space embeds continuously into the
space of bounded continuous functions, the interacting potential 𝑉 defined by (2.5)
in the example above unfortunately excludes some important physical potentials that
are singular, such as the Coulomb potential. Note also that, in practical applications
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to many body electron systems, when the Coulomb potential is involved, often times
specific ansatz that involve cusp conditions are used for the wave function. In such
practical setting, the effective potential does not contain singularities and the theory
developed here can still apply. Nonetheless, how to establish analogous Barron regu-
larity of the Schrödinger equation with singular potentials remains an interesting open
question. We will leave such cases for future studies.
Functions in the spectral Barron space differ substantially from those in Sobolev or

Hölder spaces; most importantly, they can be approximated with respect to the 𝐻1-
norm by two-layer neural networks without curse of dimensionality. To make this
more precise, we recall an approximation result from [33]. Let us define for an acti-
vation function 𝜙, a constant ℬ > 0 and the number of hidden neurons 𝑚 the set of
functions

(2.6) ℱ𝜙,𝑚(ℬ) ≔ {𝑐 +
𝑚
∑
𝑖=1

𝛾𝑖𝜙(𝑤𝑖 ⋅ 𝑥 − 𝑡𝑖), |𝑐| ≤ 2ℬ, |𝑤𝑖|1 = 1, |𝑡𝑖| ≤ 1,
𝑚
∑
𝑖=1

|𝛾𝑖| ≤ 4ℬ}.

Following our earlier work [33], we will focus on the rescaled Softplus activation func-
tion

SP𝜏(𝑧) =
1
𝜏SP(𝜏𝑧) =

1
𝜏 ln(1 + 𝑒𝜏𝑧),

where 𝜏 > 0 is a rescaling parameter. Observe that SP𝜏 → ReLU pointwisely as 𝜏 → 0
(see [33, Lemma 4.6]).
Let ℱSP𝜏,𝑚(ℬ) be the set of neural networks defined by setting 𝜙 = SP𝜏 in (2.6).

Lemma 2.2 shows that functions in ℬ(Ω) can be well approximated by functions in
ℱSP𝜏,𝑚(ℬ) without curse of dimensionality.
Lemma 2.2. [33, Theorem 2.2] For any 𝑢 ∈ ℬ(Ω), there exists a two-layer neural net-
work 𝑢𝑚 ∈ ℱSP𝜏,𝑚(‖𝑢‖ℬ(Ω)) with 𝜏 = √𝑚, such that

(2.7) ‖𝑢 − 𝑢𝑚‖𝐻1(Ω) ≤
‖𝑢‖ℬ(Ω)(6 ln𝑚 + 30)

√𝑚
.

The proof of the approximation bound (2.7) relies on first establishing a similar
bound for two-layer networks with the ReLU activation function and then replacing
ReLU with SP𝜏; the latter step induces the factor ln𝑚 on the right side of (2.7). We re-
mark that the bound (2.7) does not only hold for two-layer networks with ReLU or SP𝜏
function, but can still be valid for other activation functions. In fact, the recent works
[27,43] have shown that the convergence rate𝑂(𝑚−1/2) of Lemma 2.2 can be improved
to 𝑂(𝑚− 1

2−
𝛼
𝑑 ) if ReLU𝑘 is used as the activation function where 𝛼 > 0 depends on 𝑘.

Since the focus of the present paper is not to achieve the sharpest convergence estimate,
we are content with Lemma 2.2 since this is enough to get a dimensional-independent
rate for the generalization error.
With the above approximation result in Lemma 2.2 at hand, we are ready to state

the main generalization theorem as follows.
Theorem 2.3. Assume thatℋ satisfies Assumptions 2.1 and 2.2. Assume also that the
ground state 𝑢∗ ∈ ℬ(Ω). Let 𝑢𝑚𝑛 be a minimizer of the empirical loss ℛ𝑛 within the set
ℱ = ℱSP𝜏,𝑚(ℬ) with ℬ = ‖𝑢∗‖ℬ(Ω) and with 𝜏 = √𝑚. Given 𝛿 ∈ (0, 13 ), assume that 𝑛
and𝑚 are large enough so that
(2.8) 𝜉𝑖(𝑛, 𝛿) ≤ 1/2, 𝑖 = 1, 2, 3 and 𝜂(ℬ,𝑚) ≤ 1/2,
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where 𝜉𝑖(𝑛, 𝛿) are defined in (4.3), (4.7) and (4.12), and 𝜂(ℬ,𝑚) is defined in (4.16). Then
with probability at least 1 − 3𝛿,

(2.9) ℛ(𝑢𝑚𝑛 ) − ℛ(𝑢∗) ≤
𝐶1 ln( 1𝛿 )√𝑚(ln𝑚 + 1)

√𝑛
+ 𝐶2(ln𝑚 + 1)

√𝑚
,

where 𝐶1 depends on ‖𝑢∗‖ℬ(Ω), 𝑑, 𝑉max polynomially and 𝐶2 depends on ‖𝑢∗‖ℬ(Ω) lin-
early. In particular, with the choice 𝑚 = √𝑛, we have that there exists 𝐶3 > 0 such that
with probability at least 1 − 3𝛿,

ℛ(𝑢𝑚𝑛 ) − ℛ(𝑢∗) ≤ 𝐶3 ln (
1
𝛿 ) ⋅ 𝑛

− 1
4 ln 𝑛.

The proof of Theorem 2.3 relies on decomposing the generalization error into the
sum of the approximation error (the second term on the right side of (2.9)) and statis-
tical error (the first term on the right side of (2.9)) arising from the Monte Carlo ap-
proximation. The statistical error is further bounded by controlling the Rademacher
complexity of certain neural network classes associated to the loss formulation (see
Section 4.3). It is worth to comment that the numerator of the statistical error scales
like𝑂(√𝑚(ln𝑚)) for𝑚 ≫ 1, which seems worse than the bound proved in [15] where
the statistical error (or the Rademacher complexity) scales like𝑂( ‖ᵆ‖ℬ𝑛1/2 ). This is mainly
because [15] only considers the Rademacher complexity bound of Barron functions
with finite Barron norm while we need to bound the Rademacher complexities of sev-
eral neural network classes with𝑚-dependent network parameters.
Let us also comment about the largeness assumption on𝑚 and𝑛. In fact, by tracking

the proof of Theorem 2.3, the condition (2.8) holds as long as 𝑚 and 𝑛 are larger than
𝑃𝑜𝑙𝑦(‖𝑢∗‖ℬ(Ω)). Therefore𝑚 and 𝑛 need not be exponentially in 𝑑 if ‖𝑢∗‖ℬ(Ω) does not
grow exponentially in 𝑑.
Thanks to Proposition 2.1, the generalization error in terms of the energy excess

translates directly to that in terms of the 𝐻1-norm of 𝑃⟂𝑢𝑚𝑛 .

Theorem 2.4. Suppose that the assumption of Theorem 2.3 holds and suppose further
thatℋ has a spectral gap. Then there exist positive constants 𝐶4 and 𝐶5 depending poly-
nomially on ‖𝑢∗‖ℬ(Ω), 𝑑, 𝑉min, 𝑉max and 𝜆1−𝜆0 such that with probability at least 1−3𝛿,

‖𝑃⟂𝑢𝑚𝑛 ‖2𝐻1(Ω) ≤
𝐶4 ln( 1𝛿 )√𝑚(ln𝑚 + 1)

√𝑛
+ 𝐶5(ln𝑚 + 1)

√𝑚
.

Setting 𝑚 = √𝑛 in the above leads to that the following holds for some 𝐶6 > 0 with
probability at least 1 − 3𝛿:

‖𝑃⟂𝑢𝑚𝑛 ‖2𝐻1(Ω) ≤ 𝐶6 ln (
1
𝛿 ) ⋅ 𝑛

− 1
4 ln 𝑛.

Theorem 2.3 and Theorem 2.4 show that with high probability the convergence rate
of the generalization error of two-layer network for approximating the ground state 𝑢∗
and the corresponding leading eigenvalue 𝜆∗ = ℛ(𝑢∗) does not suffer from the curse of
dimensionality provided that the ground state 𝑢∗ ∈ ℬ(Ω).
Finally we justify the regularity assumption on the ground state in Theorem 2.5.

This gives a novel solution theory of high dimensional eigenvalue problems in Barron
type spaces.
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Theorem 2.5. Assume that𝑉 ∈ ℬ𝑠(Ω)with 𝑠 ≥ 0 and𝑉 satisfies Assumption 2.1. Then
the ground state 𝑢∗ ∈ ℬ𝑠+2(Ω).
Our idea of proving Theorem 2.5 differs from the standard proof of Sobolev regu-

larity of eigenfunctions, which usually relies on bootstrapping estimates on the weak
derivative of the eigenfunctions. Instead, we prove Theorem 2.5 by reformulating the
ground state problem as a fixed point problem on the spectral Barron space ℬ𝑠(Ω);
the existence of a nontrivial fixed point is proved by employing the celebrated Krein-
Rutman theorem [31]. See Section 5 for a complete proof.

3. Stability estimate of the ground state (Proof of Proposition 2.1)

In this section, we show that the offset ‖𝑃⟂𝑢‖𝐿2(Ω) of any 𝑢 ∈ 𝐻1(Ω) can be bounded
by the energy excess ℛ(𝑢) − ℛ(𝑢∗).
Proof. Note that by the spectral gap assumption, for any 𝑢 ∈ 𝐻1(Ω),

⟨ℋ(𝑃⟂ − 𝜆0𝑃⟂)𝑢, 𝑢⟩ ≥ (𝜆1 − 𝜆0)‖𝑃⟂𝑢‖2𝐿2(Ω).
Let us decompose

𝑢 = 𝑃𝑢 + 𝑃⟂𝑢 ≕ 𝛼𝑢0 + 𝑢⟂,
where 𝛼 = ⟨𝑢, 𝑢0⟩ and ⟨𝑢⟂, 𝑢0⟩ = 0. Substituting above into the Rayleigh quotient, we
have

ℛ(𝑢) = |𝛼|2𝜆0 + ⟨𝑢⟂,ℋ𝑢⟂⟩
‖𝑢‖2

≥ 𝜆0‖𝑢‖2 + (𝜆1 − 𝜆0)‖𝑢⟂‖2
‖𝑢‖2

= 𝜆0 + (𝜆1 − 𝜆0)
‖𝑢⟂‖2
‖𝑢‖2

= ℛ(𝑢∗) + (𝜆1 − 𝜆0)
‖𝑢⟂‖2
‖𝑢‖2 .

Thus, the 𝐿2-norm of 𝑢⟂ ≡ 𝑃⟂𝑢 can be bounded as

(3.1) ‖𝑢⟂‖2 ≤
ℛ(𝑢) − ℛ(𝑢0)

𝜆1 − 𝜆0
‖𝑢‖2.

Note that this bound cannot be improved as can be seen by taking a linear combination
of the first and second eigenfunctions ofℋ.
To obtain the bound on ∇𝑢⟂, we notice that

ℛ(𝑢) = 𝜆0 +
⟨𝑢⟂, (ℋ − 𝜆0)𝑢⟂⟩

‖𝑢‖2 .

Thus
⟨𝑢⟂, (ℋ − 𝜆0)𝑢⟂⟩ = ‖∇𝑢⟂‖2𝐿2 + ⟨𝑢⟂, (𝑉 − 𝜆0)𝑢⟂⟩

≤ (ℛ(𝑢) − ℛ(𝑢0))‖𝑢‖2.
Rearranging the terms, we arrive at

‖∇𝑢⟂‖2 ≤ −⟨𝑢⟂, (𝑉 − 𝜆0)𝑢⟂⟩ + (ℛ(𝑢) − ℛ(𝑢0))‖𝑢‖2

≤ (𝑉max − 𝑉min)‖𝑢⟂‖2 + (ℛ(𝑢) − ℛ(𝑢0))‖𝑢‖2
(3.1)
≤ (ℛ(𝑢) − ℛ(𝑢0))(

𝑉max − 𝑉min
𝜆1 − 𝜆0

+ 1)‖𝑢‖2. □
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4. Proof of Theorem 2.3

4.1. Oracle inequality for the generalization error. We first introduce an oracle
inequality for the empirical loss that decomposes the generalization error into the sum
of approximation error and statistical error. Recall the population loss ℛ and the em-
pirical loss ℛ𝑛 defined in (2.2) and (2.3) respectively. Consider the minimization of
ℛ𝑛 in a function class ℱ and we denote by 𝑢𝑛 a minimizer of ℛ𝑛 within ℱ, i.e. 𝑢𝑛 =
argminᵆ∈ℱ ℛ𝑛(𝑢).
We aim to bound the energy excess Δℛ𝑛 ≔ ℛ(𝑢𝑛) − ℛ(𝑢∗) where 𝑢∗ is the exact

ground state. Let us first decompose Δℛ𝑛 as follows:

(4.1) Δℛ𝑛 = ℛ(𝑢𝑛)−ℛ𝑛(𝑢𝑛)+ℛ𝑛(𝑢𝑛)−ℛ𝑛(𝑢ℱ)+ℛ𝑛(𝑢ℱ)−ℛ(𝑢ℱ)+ℛ(𝑢ℱ)−ℛ(𝑢∗).

Here 𝑢ℱ = argminᵆ∈ℱ ℛ(𝑢). Note thatℛ𝑛(𝑢𝑛)−ℛ𝑛(𝑢ℱ) ≤ 0 since 𝑢𝑛 is theminimizer
of ℛ𝑛. Therefore

Δℛ𝑛 ≤ (ℛ(𝑢𝑛) − ℛ𝑛(𝑢𝑛)) + (ℛ𝑛(𝑢ℱ) − ℛ(𝑢ℱ)) + (ℛ(𝑢ℱ) − ℛ(𝑢∗)) ≕ 𝑇1 + 𝑇2 + 𝑇3.

Note that the first term𝑇1 is the statistical error arising from the randomapproximation
of integrals, the second term 𝑇2 is the Monte Carlo error and the third term 𝑇3 is the
approximation error term due to restricting the minimization of ℰ from over the set
𝐻1(Ω) to ℱ; see an upper bound of 𝑇3 in Theorem 4.5 when ℱ is chosen as the set of
two-layer neural networks. To control the statistical errors, we employ the well-known
tool of Rademacher complexity, for which we recall its definition as follows.

Definition 4.1. We define for a set of random variables {𝑍𝑗}𝑛𝑗=1 independently dis-
tributed according to 𝒫Ω and a function class 𝒮 the random variable

𝑅̂𝑛(𝒮) ≔ E𝜍[sup
𝑔∈𝒮

||
1
𝑛

𝑛
∑
𝑗=1

𝜎𝑗𝑔(𝑍𝑗)|| || 𝑍1,⋯ , 𝑍𝑛],

where the expectation E𝜍 is taken with respect to the independent uniform Bernoulli
sequence {𝜎𝑗}𝑛𝑗=1 with 𝜎𝑗 ∈ {±1}. The Rademacher complexity of 𝒮 is defined by
𝑅𝑛(𝒮) = E𝒫𝑛Ω [𝑅̂𝑛(𝒮)].

Now we are ready to bound 𝑇1 and 𝑇2 in terms of Rademacher complexities of suit-
able function classes.
Bounding 𝑇1. Thanks to the scale invariance of ℛ and ℛ𝑛, we can assume that 𝑢𝑛

is normalized, i.e. ‖𝑢𝑛‖2 = 1. Hence we have

𝑇1 ≤
|||
ℰ𝑛,𝑉 (𝑢𝑛)
ℰ𝑛,2(𝑢𝑛)

− ℰ𝑉 (𝑢𝑛)
ℰ2(𝑢𝑛)

|||

≤
||ℰ𝑛,𝑉 (𝑢𝑛) − ℰ𝑉 (𝑢𝑛)||

ℰ𝑛,2(𝑢𝑛)
+ ℰ𝑉 (𝑢𝑛)
ℰ2(𝑢𝑛) ⋅ ℰ𝑛,2(𝑢𝑛)

||ℰ2(𝑢𝑛) − ℰ𝑛,2(𝑢𝑛)||
≕ 𝑇11 + 𝑇12.

To bound 𝑇11 and 𝑇12, let us define two sets of functions

(4.2)
𝒢1 ≔ {𝑔 ∶ 𝑔 = 𝑢2 where 𝑢 ∈ ℱ},
𝒢2 ≔ {𝑔 ∶ 𝑔 = |∇𝑢|2 + 𝑉|𝑢|2 where 𝑢 ∈ ℱ}.
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We assume that the set ℱ satisfies supᵆ∈ℱ ‖𝑢‖𝐿∞ ≤ 𝑀ℱ < ∞ so that sup𝑔∈𝒢1 ‖𝑔‖𝐿∞ ≤
𝑀2

ℱ . Assume further that sup𝑔∈𝒢2 ‖𝑔‖𝐿∞ ≤ 𝑀𝒢2 < ∞. Now let us first derive a high-
probability lower bound for ℰ𝑛,2(𝑢𝑛). For doing so, we define for 𝑛 ∈ ℕ and 𝛿 > 0 the
constant

(4.3) 𝜉1(𝑛, 𝛿) ≔ 2𝑅𝑛(𝒢1) + 4𝑀2
ℱ ⋅ √

2 ln(4/𝛿)
𝑛 ,

where 𝑅𝑛(𝒢1) denotes the Rademacher complexity of the set 𝒢1. We also define the
event

𝐴1(𝑛, 𝛿) ≔ {|ℰ𝑛,2(𝑢𝑛) − ℰ2(𝑢𝑛)| ≤ 𝜉1(𝑛, 𝛿)} .
Then applying Lemma 4.3 to 𝒢1 we have that
(4.4) P[𝐴1(𝑛, 𝛿)] ≥ 1 − 𝛿.
Since by assumption ℰ2(𝑢𝑛) = 1, within the event 𝐴1(𝑛, 𝛿) we have ℰ𝑛,2(𝑢𝑛) ≥ 1 −
𝜉1(𝑛, 𝛿) and hence
(4.5) P[ℰ𝑛,2(𝑢𝑛) ≥ 1 − 𝜉1(𝑛, 𝛿)] ≥ 1 − 𝛿.
Notice that ℰ𝑉 (𝑢𝑛) ≤ 𝑀𝒢2 by the assumption on 𝒢2. Therefore if 𝜉1(𝑛, 𝑑) < 1, then

(4.6) P[𝑇12 ≤
𝑀𝒢2 ⋅ 𝜉1(𝑛, 𝛿)
1 − 𝜉1(𝑛, 𝛿)

] ≥ P[𝐴1(𝑛, 𝛿)] ≥ 1 − 𝛿.

Next to bound 𝑇11, let us define the constant

(4.7) 𝜉2(𝑛, 𝛿) ≔ 2𝑅𝑛(𝒢2) + 4𝑀𝒢2 ⋅ √
2 ln(4/𝛿)

𝑛
and the event

𝐴2(𝑛, 𝛿) ≔ { sup
ᵆ∈ℱ

||ℰ𝑛,𝑉 (𝑢) − ℰ𝑉 (𝑢)|| ≤ 𝜉2(𝑛, 𝛿)}.

Then applying again Lemma 4.3 to 𝒢2 leads to
(4.8) P[𝐴2(𝑛, 𝛿)] ≥ 1 − 𝛿.
As a result of (4.5) and (4.8), one has that if 𝜉1(𝑛, 𝑑) < 1 then

(4.9) P[𝑇11 ≤
𝜉2(𝑛, 𝑑)

1 − 𝜉1(𝑛, 𝑑)
] ≥ P[𝐴1(𝑛, 𝛿) ∩ 𝐴2(𝑛, 𝛿)] ≥ 1 − 2𝛿.

Therefore it follows from (4.6) and (4.9) that

(4.10) P [𝑇1 ≤
𝑀𝒢2 ⋅ 𝜉1(𝑛, 𝑑) + 𝜉2(𝑛, 𝑑)

1 − 𝜉1(𝑛, 𝑑)
] ≥ P[𝐴1(𝑛, 𝛿) ∩ 𝐴2(𝑛, 𝛿)] ≥ 1 − 2𝛿.

Bounding 𝑇2. Similar to the process of bounding 𝑇1, by assuming ‖𝑢ℱ‖𝐿2 = 1 we
first bound 𝑇2 as follows

𝑇2 ≤
|||
ℰ𝑛,𝑉 (𝑢ℱ)
ℰ𝑛,2(𝑢ℱ)

− ℰ𝑉 (𝑢ℱ)
ℰ2(𝑢ℱ)

|||

≤
||ℰ𝑛,𝑉 (𝑢ℱ) − ℰ𝑉 (𝑢ℱ)||

ℰ𝑛,2(𝑢ℱ)
+ ℰ𝑉 (𝑢ℱ)
ℰ2(𝑢ℱ) ⋅ ℰ𝑛,2(𝑢ℱ)

||ℰ2(𝑢ℱ) − ℰ𝑛,2(𝑢ℱ)||
≕ 𝑇21 + 𝑇22.
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Since 𝑢ℱ does not depend on the sample points {𝑋𝑖}, applying Hoeffding’s inequality
from Lemma 4.2 yields that

(4.11) P[𝐴3(𝑛, 𝛿)] ≔ P[|ℰ𝑛,2(𝑢ℱ) − ℰ2(𝑢ℱ)| ≤ 𝜉3(𝑛, 𝛿)] ≥ 1 − 𝛿,

where

(4.12) 𝜉3(𝑛, 𝛿) ≔ 𝑀2
ℱ ⋅ √

ln(2/𝛿)
2𝑛 .

Since by assumption ℰ2(𝑢ℱ) = 1, this implies further that

(4.13) P[ℰ𝑛,2(𝑢ℱ) ≥ 1 − 𝜉3(𝑛, 𝛿)] ≥ P[𝐴3(𝑛, 𝛿)] ≥ 1 − 𝛿.

Combining (4.11) and (4.13) implies that if 𝜉3(𝑛, 𝛿) < 1, then

P [𝑇22 ≤
𝑀𝒢2 ⋅ 𝜉3(𝑛, 𝛿)
1 − 𝜉3(𝑛, 𝛿)

] ≥ P[𝐴3(𝑛, 𝛿)] ≥ 1 − 𝛿.

In addition, as a consequence of (4.13) and (4.8), we have

P [𝑇21 ≤
𝜉2(𝑛, 𝛿)

1 − 𝜉3(𝑛, 𝛿)
] ≥ P[𝐴2(𝑛, 𝛿) ∩ 𝐴3(𝑛, 𝛿)] ≥ 1 − 2𝛿.

Therefore it holds that

(4.14) P [𝑇2 ≤
𝜉2(𝑛, 𝛿) + 𝑀𝒢2 ⋅ 𝜉3(𝑛, 𝛿)

1 − 𝜉3(𝑛, 𝛿)
] ≥ 1 − 2𝛿.

Lemma 4.2 (Hoeffding). Let 𝑍1, 𝑍2,⋯ , 𝑍𝑛 be i.i.d. random variables with 𝑎𝑖 ≤ 𝑍𝑖 ≤ 𝑏𝑖
a.s. Then for any 𝑡 > 0,

P(||
∑𝑛

𝑖=1 𝑍𝑖
𝑛 − E𝑍|| ≥ 𝑡) ≤ 2 exp ( − 2𝑛2𝑡2

∑𝑛
𝑖=1(𝑏𝑖 − 𝑎𝑖)2

).

We recall the following useful PAC-type generalization bound via the Rademacher
complexity.

Lemma 4.3. [39, Theorem 26.5] Let 𝑍1, 𝑍2,⋯ , 𝑍𝑛 be i.i.d. random variables. Let 𝒢 be
a function class such that sup𝑔∈𝒢 ‖𝑔‖𝐿∞(Ω) ≤ 𝐶𝒢 and that 𝒢 is symmetric, i.e. 𝒢 = −𝒢.
Then with probability at least 1 − 𝛿,

sup
𝑔∈𝒢

||
1
𝑛

𝑛
∑
𝑖=1

𝑔(𝑍𝑖) − E𝑔(𝑍)|| ≤ 2𝑅𝑛(𝒢) + 4𝐶𝒢√
2ln(4/𝛿)

𝑛 .

Combining the bounds derived above leads to the following oracle inequality. Recall
the quantities 𝜉𝑖(𝑛, 𝛿), 𝑖 = 1, 2, 3 defined in (4.3), (4.7) and (4.12).

Theorem 4.4. Let 𝑢𝑛 = argminᵆ∈ℱ ℛ𝑛(𝑢). Let 𝛿 ∈ (0, 13 ) be fixed. Assume that
𝜉𝑖(𝑛, 𝛿) < 1, 𝑖 = 1, 2, 3.
Then with probability at least 1 − 3𝛿,

(4.15)
ℛ(𝑢𝑛) − ℛ(𝑢∗) ≤

𝑀𝒢2 ⋅ 𝜉1(𝑛, 𝑑) + 𝜉2(𝑛, 𝑑)
1 − 𝜉1(𝑛, 𝑑)

+
𝑀𝒢2 ⋅ 𝜉3(𝑛, 𝛿) + 𝜉2(𝑛, 𝛿)

1 − 𝜉3(𝑛, 𝛿)
+ ( inf

ᵆ∈ℱ
ℛ(𝑢) − ℛ(𝑢∗)).
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4.2. Bounding the approximation error. Recall the spectral Barron space ℬ𝑠(Ω)
defined in (2.4) and the set of two-layer networksℱSP𝜏,𝑚(𝐵) defined by setting 𝜙 = SP𝜏
in (2.6). Theorem 4.5 bounds the approximation error (the third term) in (4.15) when
𝑢∗ ∈ ℬ(Ω) and ℱ = ℱSP𝜏,𝑚.

Theorem 4.5. Let the ground state 𝑢∗ ∈ ℬ(Ω) with ‖𝑢∗‖𝐿2(Ω) = 1. Let 𝑢𝑚 ∈
ℱSP𝜏,𝑚(‖𝑢‖ℬ(Ω)) be defined in Lemma 2.2. Assume that 𝑉 satisfies Assumption 2.1. As-
sume in addition that

(4.16) 𝜂(‖𝑢∗‖ℬ(Ω), 𝑚) ∶=
‖𝑢∗‖ℬ(Ω) ⋅ (6 ln𝑚 + 30)

√𝑚
≤ 1
2 .

Then

(4.17) ℛ(𝑢𝑚) − ℛ(𝑢∗) ≤ (2(1 + 𝑉max)(√
𝜆∗

min(1, 𝑉min)
+ 1) + 3𝜆∗) 𝜂(‖𝑢∗‖ℬ(Ω), 𝑚).

Proof. By assumption ℰ2(𝑢∗) = ‖𝑢∗‖2𝐿2(Ω) = 1. Then ℛ(𝑢∗) = ℰ𝑉 (𝑢∗) = 𝜆∗. Since
𝑉 ≥ 𝑉min > 0, this implies that

(4.18) ‖𝑢∗‖2𝐻1(Ω) ≤
ℰ𝑉 (𝑢∗)

min(1, 𝑉min)
= 𝜆∗
min(1, 𝑉min)

.

Now observe that

(4.19)
ℛ(𝑢𝑚) − ℛ(𝑢∗) = ℰ𝑉 (𝑢𝑚)

ℰ2(𝑢𝑚)
− ℰ𝑉 (𝑢∗)
ℰ2(𝑢∗)

= ℰ𝑉 (𝑢𝑚) − ℰ𝑉 (𝑢∗)
ℰ2(𝑢𝑚)

+ ℰ2(𝑢∗) − ℰ2(𝑢𝑚)
ℰ2(𝑢𝑚)

⋅ ℛ(𝑢∗).

Thanks to Lemma 2.2, ‖𝑢𝑚 − 𝑢∗‖𝐻1(Ω) ≤ 𝜂(‖𝑢∗‖ℬ(Ω), 𝑚) < 1. This implies that

1 − 𝜂(‖𝑢∗‖ℬ(Ω), 𝑚) ≤ ‖𝑢𝑚‖𝐿2(Ω) ≤ 1 + 𝜂(‖𝑢∗‖ℬ(Ω), 𝑚)

and that

|ℰ2(𝑢𝑚) − ℰ2(𝑢∗)| = (‖𝑢∗‖𝐿2(Ω) + ‖𝑢𝑚‖𝐿2(Ω))|‖𝑢∗‖𝐿2(Ω) − ‖𝑢𝑚‖𝐿2(Ω)|
≤ (2 + 𝜂(‖𝑢∗‖ℬ(Ω), 𝑚))𝜂(‖𝑢∗‖ℬ(Ω), 𝑚)
≤ 3𝜂(‖𝑢∗‖ℬ(Ω), 𝑚).

In addition, it follows from the boundedness of 𝑉 that

|ℰ𝑉 (𝑢𝑚) − ℰ𝑉 (𝑢∗)| ≤ (1 + 𝑉max)(‖𝑢∗‖𝐻1(Ω) + ‖𝑢𝑚‖𝐻1(Ω))‖𝑢∗ − 𝑢𝑚‖𝐻1(Ω)

≤ (1 + 𝑉max)(2‖𝑢∗‖𝐻1(Ω) + 𝜂(‖𝑢∗‖ℬ(Ω), 𝑚))𝜂(‖𝑢∗‖ℬ(Ω), 𝑚)

≤ (1 + 𝑉max)(√
𝜆∗

min(1, 𝑉min)
+ 1)𝜂(‖𝑢∗‖ℬ(Ω), 𝑚),

where we have used (4.18) in the last inequality. Finally, the estimate follows simply
by substituting the last two estimates into (4.19). □
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4.3. Bounding the statistical error. In this section we proceed to bound the statis-
tical errors (the first two terms on the right side of (4.15)). This is achieved by control-
ling the Rademacher complexities of the function classes 𝒢1 and 𝒢2 defined in (4.2).
More specifically, since we set the trial functions ℱ = ℱSP𝜏,𝑚, we need to bound the
Rademacher complexities of the following

(4.20)
𝒢SP𝜏,𝑚,1(ℬ) ≔ {𝑔 = 𝑢2 ∶ 𝑢 ∈ ℱSP𝜏,𝑚(ℬ)},
𝒢SP𝜏,𝑚,2(ℬ) ≔ {𝑔 = |∇𝑢|2 + 𝑉|𝑢|2 ∶ 𝑢 ∈ ℱSP𝜏,𝑚(ℬ)}.

Theorem 4.6. Assume that ‖𝑉‖𝐿∞(Ω) ≤ 𝑉max, consider the sets 𝒢SP𝜏,𝑚,1(ℬ) and
𝒢SP𝜏,𝑚,2(ℬ) with 𝜏 = √𝑚 and ℬ > 0. Then there exist positive constants 𝐶1(ℬ, 𝑑, 𝐹)
and 𝐶2(ℬ, 𝑑, 𝑉max) depending polynomially onℬ, 𝑑, 𝑉max such that

𝑅𝑛(𝒢SP𝜏,𝑚,1(ℬ)) ≤
𝐶1(ℬ, 𝑑)√𝑚(√ln𝑚 + 1)

√𝑛
,(4.21)

𝑅𝑛(𝒢SP𝜏,𝑚,2(ℬ)) ≤
𝐶2(ℬ, 𝑑, 𝑉max)√𝑚(√ln𝑚 + 1)

√𝑛
.(4.22)

To prove Theorem 4.6, we rely on the celebrated Dudley’s theorem [13], which
bounds the Rademacher complexities in terms of the metric entropy. Below we restate
the Dudley’s theorem by following [46, Theorem 1.19].

Theorem 4.7 (Dudley’s theorem [46, Theorem 1.19]). Let ℱ be a function class such
that sup𝑓∈ℱ ‖𝑓‖∞ ≤ 𝑀. Then the Rademacher complexity 𝑅𝑛(ℱ) satisfies that

(4.23) 𝑅𝑛(ℱ) ≤ inf
0≤𝛿≤𝑀

{4𝛿 + 12
√𝑛

∫
𝑀

𝛿
√ln𝒩(𝜀,ℱ, ‖ ⋅ ‖∞) 𝑑𝜀},

where𝒩(𝜀,ℱ, ‖ ⋅ ‖∞) denotes the 𝜀-covering number ofℱ w.r.t the 𝐿∞-norm.

In order to applyDudley’s theorem, we need to bound the 𝛿-covering numbers of the
sets 𝒢SP𝜏,𝑚,𝑖(ℬ), 𝑖 = 1, 2. To this end, it will be convenient to introduce the following
functions

ℳ(𝛿,Λ,𝑚, 𝑑) ≔ 4ℬΛ
𝛿 ⋅ (12ℬΛ𝛿 )

𝑚
⋅ (3Λ𝛿 )

𝑑𝑚
⋅ (3Λ𝛿 )

𝑚
,(4.24)

𝒵(𝑀,Λ, 𝑑) ≔ 𝑀(√(ln(4ℬΛ))+ +√(ln(12ℬΛ) + 𝑑 ln(3Λ) + ln(3Λ))+)(4.25)

+√𝑑 + 3∫
𝑀

0
√(ln(1/𝜀))+𝑑𝜀.

Lemma 4.8. Consider the two sets 𝒢SP𝜏,𝑚,𝑖(ℬ), 𝑖 = 1, 2 defined in (4.2) with ℬ > 0.
Then for any 𝛿 > 0,

𝒩(𝛿, 𝒢SP𝜏,𝑚,𝑖(ℬ), ‖ ⋅ ‖∞) ≤ ℳ(𝛿, Λ𝑖, 𝑚, 𝑑), 𝑖 = 1, 2,

where the constants Λ𝑖, 𝑖 = 1, 2 satisfy that

(4.26) Λ1 ≤ 36ℬ(5 + 8ℬ), Λ2 ≤ 64ℬ2√𝑚+ 8ℬ + 36𝑉maxℬ(5 + 8ℬ).

Proof. The proof follows directly from [33, Lemma 5.5] and [33, Lemma 5.7] by slightly
adjusting the constants. We thus omit the details. □
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Proof of Theorem 4.6. First from the definition of ℱSP𝜏,𝑚(ℬ) and the fact that
‖SP𝜏‖𝑊1,∞(Ω) ≤ 3 + 1

𝜏 (see [33, Lemma 4.6]), one has the following uniform bound

sup
ᵆ∈ℱSP𝜏,𝑚(𝐵)

‖𝑢‖𝑊1,∞(Ω) ≤ 2ℬ + 4ℬ‖SP𝜏‖𝑊1,∞(Ω) ≤ 16ℬ.

This implies that
sup

𝑓∈ℱSP𝜏,𝑚(ℬ)
‖𝑓‖𝐿∞(Ω) ≤ 16ℬ = 𝑀ℱ ,

sup
𝑔∈𝒢SP𝜏,𝑚,1(ℬ)

‖𝑔‖𝐿∞(Ω) ≤ (16ℬ)2 ≕ 𝑀1,

sup
𝑔∈𝒢SP𝜏,𝑚,2(ℬ)

‖𝑔‖𝐿∞(Ω) ≤ (1 + 𝑉max)(16ℬ)2 ≕ 𝑀2.

Applying Theorem 4.7 with 𝛿 = 0, we obtain from Lemma 4.8 and the estimates in the
last line that

𝑅𝑛(𝒢SP𝜏,𝑚,𝑖(ℬ)) ≤ 𝒵(𝑀𝑖, Λ𝑖, 𝑑)√
𝑚
𝑛 .

Moreover, after plugging the bounds on Λ𝑖 (see (4.26)) into 𝒵(𝑀𝑖, Λ𝑖, 𝑑) , it is easy to
see that

𝒵(𝑀1, Λ1, 𝑑) ≤ 𝐶1(ℬ, 𝑑),

𝒵(𝑀1, Λ1, 𝑑) ≤ 𝐶2(ℬ, 𝑑, 𝑉max)√ln𝑚,
where the positive constants 𝐶1(ℬ, 𝑑). and 𝐶2(ℬ, 𝑑, 𝑉max) depend on 𝐵 and 𝑑 polyno-
mially. Combining the estimates finishes the proof of Theorem 4.6. □

4.4. Proof of Theorem 2.3. The proof follows directly by combining Theorem 4.4,
Theorem 4.5 and Theorem 4.6.

5. Regularity of the ground state of Schrödinger operator in the
spectral Barron space (Proof of Theorem 2.5)

In this section we aim to prove the regularity of the ground state 𝑢∗ in the spectral
Barron space as shown in Theorem 2.5. Since our proof relies heavily on the spectrum
theory of positive linear operators on ordered Banach spaces (especially the Krein-
Rutman theorem), we first recall some relevant terminologies and useful facts from
linear functional analysis.

5.1. Asimple lemmaon spectral radius. Let𝐸 be a Banach space. Given a bounded
linear operator 𝑇 on 𝐸, we recall the resolvent set of 𝑇 defined by

𝜌𝐸(𝑇) ≔ {𝜆 ∈ ℂ | (𝜆𝐼 − 𝑇) is bijective on 𝐸}.
The spectrum 𝜎𝐸(𝑇) of 𝑇 is the set ℂ ⧵ 𝜌𝐸(𝑇), where we have used the subscript 𝐸
to indicate the dependence on the Banach space 𝐸. We further denote by 𝜎𝑝,𝐸(𝑇) the
point spectrum of 𝑇, i.e.
𝜎𝑝,𝐸(𝑇) = {𝜆 ∈ ℂ | there exists 𝑣 ∈ 𝐸 and 𝑣 ≠ 0 such that (𝜆𝐼 − 𝑇)𝑣 = 0} ⊂ 𝜎𝐸(𝑇),

where we call 𝜆 ∈ 𝜎𝑝,𝐸(𝑇) an eigenvalue of 𝑇 and 𝑣 an eigenvector of 𝑇. The spectral
radius of 𝑇 is given by

𝑟𝐸(𝑇) ≔ sup{|𝜆| | 𝜆 ∈ 𝜎𝐸(𝑇)}.
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Recall the Beurling-Gelfand formula 𝑟𝐸(𝑇) = lim𝑛→∞ ‖𝑇𝑛‖1/𝑛. We also note that if
𝑇 ∶ 𝐸 → 𝐸 is compact, then 𝜎𝐸(𝑇) ⧵ {0} = 𝜎𝑝,𝐸(𝑇) ⧵ {0}.

Lemma 5.1. Let 𝑇 ∶ 𝐸 → 𝐸 be a linear compact operator on a Hilbert space 𝐸 equipped
with an inner product (⋅, ⋅)𝐸 and the associated norm ‖⋅‖𝐸 . Let𝐹 ⫋ 𝐸 be a dense subspace
of 𝐸. Assume that 𝐹 is a Banach space equipped with the norm ‖ ⋅‖𝐹 and that 𝑇 ∶ 𝐹 → 𝐹
is also compact. Then 𝑟𝐸(𝑇) = 𝑟𝐹(𝑇).

Proof. First thanks to 𝐹 ⊂ 𝐸, we claim that 𝑟𝐸(𝑇) ≥ 𝑟𝐹(𝑇). In fact, if 𝑟𝐹(𝑇) = 0,
then this holds trivially. In addition, if 𝑟𝐸(𝑇) = 0, then 𝑟𝐹(𝑇) = 0. Indeed, if assume
otherwise that 𝑟𝐹(𝑇) > 0, then since 𝜎𝐸(𝑇)⧵ {0} = 𝜎𝑝,𝐸(𝑇)⧵ {0} due to the compactness
of 𝑇, there exists 𝜆 ≠ 0 and 𝑣 ∈ 𝐹 ⧵ {0} such that (𝜆𝐼 − 𝑇)𝑣 = 0. Since 𝐹 ⊂ 𝐸, we
have 𝑣 ∈ 𝐸 and hence 𝜆 ∈ 𝜎𝐸(𝑇). This contradicts with the assumption that 𝑟𝐸(𝑇) = 0
and thus proves 𝑟𝐹(𝑇) = 0. Finally, assume that both 𝑟𝐸(𝑇) and 𝑟𝐹(𝑇) are positive. We
claim that 𝜎𝐹(𝑇) ⧵ {0} ⊂ 𝜎𝐸(𝑇) ⧵ {0} which immediately implies that 𝑟𝐸(𝑇) ≥ 𝑟𝐹(𝑇).
In fact, for any 𝜆 ∈ 𝜎𝐹(𝑇) ⧵ {0} = 𝜎𝑝,𝐹(𝑇) ⧵ {0}, there exists 𝑣 ∈ 𝐹 ⧵ {0} such that
(𝜆𝐼 − 𝑇)𝑣 = 0. Since 𝐹 ⊂ 𝐸, we have 𝜆 ∈ 𝜎𝐸(𝑇) ⧵ {0}.
Next we show that 𝑟𝐸(𝑇) = 𝑟𝐹(𝑇). Assume otherwise that 𝑟𝐸(𝑇) > 𝑟𝐹(𝑇). By the

definition of 𝑟𝐸(𝑇) and the assumption that 𝑇 ∶ 𝐸 → 𝐸 is a compact operator, there
exists an eigenvalue 𝜆 ∈ 𝜌𝑝,𝐸(𝑇) such that 𝑟𝐸(𝑇) ≥ |𝜆| > 𝑟𝐹(𝑇). This implies that
Ker𝐹(𝜆𝐼 − 𝑇) ≔ {𝑢 ∈ 𝐹 ∶ (𝜆𝐼 − 𝑇)𝑢 = 0} = {0}, i.e., Ker𝐸(𝜆𝐼 − 𝑇) ∩ 𝐹 = {0}. Since 𝐹 is
a dense subset of 𝐸, this implies that Ker𝐸(𝜆𝐼 − 𝑇) ⊂ ̄𝐹⟂ = 𝐸⟂ = {0}. This contradicts
with the fact that 𝜆 is an eigenvalue of𝑇 on𝐸 and completes the proof of the lemma. □

5.2. Krein-Rutman theorem and the leading eigenvalue. In this section, we re-
call the famous Krein-Rutman theorem [31] on the leading eigenvalue and eigenfunc-
tion of positive operators on ordered Banach spaces. To this end, let us first recall some
terminologies on ordered Banach spaces. Given a Banach space𝐸, a closed convex sub-
set 𝐾 ⊂ 𝐸 is called a cone on 𝐸 if 𝛼𝐾 ⊂ 𝐾 for every 𝛼 > 0 and 𝐾 ∩ {−𝐾} = {0}. A cone
𝐾 induces a natural partial ordering ≤ on the Banach space 𝐸: 𝑥 ≤ 𝑦 if and only if
𝑦 − 𝑥 ∈ 𝐾. Therefore a Banach space 𝐸 with a cone 𝐾 is called an ordered Banach
space, denoted by (𝐸, 𝐾). If the cone 𝐾 satisfies that 𝐾 − 𝐾 = 𝐸, then the cone 𝐾 is
called a total cone. We define ̇𝐾 = 𝐾 ⧵ {0} and denote by 𝐾∘ the interior of 𝐾. If 𝐾 has
nonempty interior 𝐾∘, then 𝐾 is called a solid cone. It is not hard to see that a solid
cone is total.

Example 5.1. Consider the Banach space 𝐶(Ω) of continuous functions on a bounded
domain Ω ⊂ ℝ𝑑. The space 𝐶(Ω) is an ordered Banach space with cone 𝐶+(Ω) con-
sisting of nonnegative functions in 𝐶(Ω). This cone is solid since any strictly positive
function is an interior point.

Consider two ordered Banach spaces 𝐸 and 𝐹, with cones 𝑃 and 𝑄 respectively. A
linear operator𝑇 ∶ 𝐸 → 𝐹 is called positive if𝑇(𝑃) ⊂ 𝑄, and strictly positive if𝑇( ̇𝑃) ⊂ 𝑄̇.
If in addition 𝑄 is solid, then 𝑇 is called strongly positive if 𝑇( ̇𝑃) ⊂ 𝑄∘.

Theorem 5.2 (Krein-Rutman). Let 𝐸 be an ordered Banach space with a total cone 𝐾 ⊂
𝐸. Let 𝑇 ∶ 𝐸 → 𝐸 be a linear compact positive operator with spectral radius 𝑟(𝑇) > 0.
Then 𝑟(𝑇) is an eigenvalue of 𝑇 and of the dual 𝑇∗ with corresponding eigenvectors 𝑢 ∈
𝐾 ⧵ {0} and 𝑢∗ ∈ 𝐾∗ ⧵ {0}.
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As an important consequence of the Krein-Rutman theorem, Theorem 5.3 estab-
lishes the simplicity of the leading eigenvalue of a strongly positive compact operator
on an ordered Banach space.

Theorem 5.3 ([1, Theorem 3.2]). Let 𝐸 be an ordered Banach space with a solid cone
𝐾. Let 𝑇 ∶ 𝐸 → 𝐸 be a strongly positive compact operator. Then
(i) The spectral radius 𝑟(𝑇) > 0;
(ii) 𝑟(𝑇) is a simple eigenvalue with an eigenvector 𝑢 ∈ 𝐾∘ and there is no other eigen-

value with a positive eigenvector.

5.3. Regularity of ground state. Consider the Schrödinger operatorℋ = −Δ + 𝑉 .
Since inf𝑥 𝑉(𝑥) ≥ 𝑉min > 0, the standard Sobolev estimate on Lipschitz domains (see
e.g. [21, Chapter 4]) implies that the inverse ofℋ (with respect to theNeumann bound-
ary condition), denoted by 𝒮 ≔ ℋ−1, is bounded from 𝐿2(Ω) to𝐻2(Ω) and hence com-
pact on 𝐿2(Ω). Moreover, 𝒮 has countable many eigenvalues {𝜇𝑗}∞𝑗=0 with 𝜇𝑗 ↓ 0 as
𝑗 → ∞ and with 𝑟(𝒮) = 𝜇0 = 1

𝜆0
.

Recall the spectral Barron space ℬ𝑠(Ω) defined in (2.4). We also recall from [33]
the next important lemma which shows that the operator 𝒮 ∶ ℬ𝑠(Ω) → ℬ𝑠+2(Ω) is
bounded.

Lemma 5.4 ([33, Theorem 5]). Assume that 𝑉 ∈ ℬ𝑠(Ω) with 𝑠 ≥ 0 and inf𝑥∈Ω ≥
𝑉min > 0. Then the operator 𝒮 ∶ ℬ𝑠(Ω) → ℬ𝑠+2(Ω) is bounded.

The estimates in Barron spaces of Lemma 5.4 are different from the standard proofs
for the well-posedness and the regularity estimates in Sobolev spaces. In fact, the lack
ofHilbert structure of the spectral Barron space prevents us using the Lax-Milgram the-
ory to obtain the existence and uniqueness. Instead, we rewrite the stationary
Schrödinger equation with a source term as an equivalent Fredholm integral equa-
tion of the second kind for the cosine coefficients of the solution in the weighted space
ℓ1𝑊𝑠(ℕ

𝑑
0). Thanks to the celebrated theorem of Fredholm alternative, the existence and

stability estimate of the solution then follow from uniqueness where the latter holds as
a result of the standard energy estimate. A detailed proof of Lemma 5.4 can be found
in [33, Appendix D.2].
Notice that the inclusion ℐ ∶ ℬ𝑠+2(Ω) ↪ ℬ𝑠(Ω) is compact. In fact, by definition

the spaceℬ𝑠(Ω) can be viewed as aweighted ℓ1 space ℓ1𝑊𝑠(ℕ
𝑑
0) of the cosine coefficients

defined on the lattice ℕ𝑑
0 with the weight𝑊𝑠(𝑘) = (1+𝜋𝑠|𝑘|𝑠1). Therefore the inclusion

satisfies that

‖ℐ𝑢‖ℬ𝑠(Ω) = ∑
𝑘∈ℕ𝑑0

𝑊𝑠(𝑘)|𝑢̂(𝑘)| = ∑
𝑘∈ℕ𝑑0

𝑊𝑠(𝑘)
𝑊𝑠+2(𝑘)

𝑊𝑠+2(𝑘)|𝑢̂(𝑘)|.

Since 𝑊𝑠(𝑘)
𝑊𝑠+2(𝑘)

→ 0 as |𝑘| → ∞, by a similar argument as used in the proof of [33,
Lemma 7.2], one can conclude that ℐ is compact from ℓ1𝑊𝑠+2(ℕ

𝑑
0) to ℓ1𝑊𝑠(ℕ

𝑑
0) and hence

from ℬ𝑠+2(Ω) to ℬ𝑠(Ω). Corollary 5.5 is then a direct consequence of Lemma 5.4 and
compactness of the inclusion ℐ from ℬ𝑠+2(Ω) to ℬ𝑠(Ω).

Corollary 5.5. Under the same assumption of Lemma 5.4, the operator 𝒮 ∶ ℬ𝑠(Ω) →
ℬ𝑠(Ω) is compact.
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Note that by definition, we have ℬ𝑠(Ω) ↪ 𝐶(Ω). Let us define the cone ℬ𝑠
+(Ω) of

ℬ𝑠(Ω) by setting
ℬ𝑠
+(Ω) ≔ {𝑓 ∈ ℬ𝑠(Ω) ∶ 𝑓 ≥ 0}.

Lemma 5.6. The operator 𝒮 ∶ ℬ𝑠(Ω) → ℬ𝑠(Ω) is strongly positive, i.e. for any non-zero
𝑓 ∈ ℬ𝑠

+(Ω), we have that 𝒮𝑓(𝑥) > 0 for all 𝑥 ∈ Ω.

Proof. Let 𝑓 ∈ ℬ𝑠
+(Ω) ⊂ 𝐶(Ω). For any fixed 𝑡 > 0 and 𝑥 ∈ Ω, it follows by the

Lie-Trotter splitting that

𝑒−𝑡ℋ𝑓(𝑥) = lim
𝑛→∞

[𝑒−
𝑡
𝑛𝑉 𝑒

𝑡
𝑛∆]𝑛𝑓(𝑥).

Since 0 < 𝑉min ≤ 𝑉 ≤ 𝑉max < ∞, we have 𝑒−𝑠𝑉max𝑔 ≤ 𝑒−𝑠𝑉𝑔 ≤ 𝑒−𝑠𝑉min𝑔 for any
non-negative 𝑔 ∈ 𝐿∞(Ω). Thanks to the fact that the heat semigroup 𝑒𝑡∆ is positivity-
preserving, this implies that
(5.1) 𝑒−𝑡𝑉max𝑒𝑡∆𝑓(𝑥) ≤ 𝑒−𝑡ℋ𝑓(𝑥) ≤ 𝑒−𝑡𝑉min𝑒𝑡∆𝑓(𝑥).
Moreover, as a result of the semigroup property, the solution operator 𝒮 can be written
as

𝒮𝑓(𝑥) = ∫
∞

0
𝑒−𝑡ℋ𝑓(𝑥)𝑑𝑡.

Note that owing to the upper bound of (5.1) the integral is finite. It follows from the
last identity and the lower bound of (5.1) that

𝒮𝑓(𝑥) ≥ ∫
∞

0
𝑒−𝑡𝑉max𝑒𝑡∆𝑓(𝑥)𝑑𝑡 ≥ ∫

2

1
𝑒−𝑡𝑉max𝑒𝑡∆𝑓(𝑥)𝑑𝑡.

Now since 𝑓 is non-negative, continuous and non-zero on Ω, there exists a set 𝐴 ⊂ Ω
with Leb(𝐴) > 0 and a constant 𝑐 > 0 such that 𝑓 ≥ 𝑐 > 0. Thanks to the Gaussian
lower bound of the Neumann heat kernel estimate (see e.g. [6, Theorem 3.4]), there
exist positive constants 𝑐1 and 𝑐2 such that

𝑒𝑡∆𝑓(𝑥) = ∫
Ω
𝑝𝑡(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦

≥ ∫
Ω

𝑐1
𝑡
𝑑
2
𝑒−

|𝑥−𝑦|2
𝑐2𝑡 𝑓(𝑦)𝑑𝑦

≥ 𝑐 𝑐1
𝑡
𝑑
2
𝑒−

diam(Ω)
𝑐2𝑡 Leb(𝐴) > 0.

Multiplying above with 𝑒−𝑡𝑉max and then integrating on [1, 2] with respect to 𝑡 yields
that

𝒮𝑓(𝑥) ≥ 𝑐 𝑐1Leb(𝐴)∫
2

1

1
𝑡
𝑑
2
𝑒−

diam(Ω)
𝑐2𝑡 𝑑𝑡 > 0. □

Now with the above preparations we are ready to present the proof of Theorem 2.5.

Proof of Theorem 2.5. It is clear that the ground state 𝑢∗ ofℋ is identical to the eigen-
function that corresponds to the spectral radius 𝑟(𝒮) = 1/𝜆∗ of the inverse operator
𝒮 = ℋ−1. In order to show that 𝑢∗ ∈ ℬ𝑠+2(Ω), it suffices to show that 𝑢∗ ∈ ℬ𝑠(Ω). In
fact, since (𝑢∗, 𝜆∗) solves the Neumann eigenvalue problem

ℋ𝑢∗ = −Δ𝑢∗ + 𝑉𝑢∗ = 𝜆∗𝑢∗,
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we have 𝑢∗ = 𝜆∗𝒮𝑢∗. An application of Lemma 5.4 implies that 𝑢∗ ∈ ℬ𝑠+2(Ω) if and
only if 𝑢∗ ∈ ℬ𝑠(Ω). To show the latter, let us consider the operator 𝒮 defined on the or-
dered Banach spaceℬ𝑠(Ω)with the solid coneℬ𝑠

+(Ω). Observe that 𝒮 ∶ 𝐿2(Ω) → 𝐿2(Ω)
is compact and that by Corollary 5.5 𝒮 ∶ ℬ𝑠(Ω) → ℬ𝑠(Ω) is also compact. Therefore
by Lemma 5.1 the spectral radii of 𝒮 are identical when viewed as operators on ℬ𝑠(Ω)
and 𝐿2(Ω) respectively. It follows from Theorem 5.3 and the strongly positivity of 𝒮
established in Lemma 5.6 that there exists a unique (up to a multiplicative constant)
eigenfunction 𝑢∗ ∈ ℬ𝑠(Ω) corresponding to the spectral radius 𝑟(𝒮) = 1/𝜆∗. Moreover,
𝑢∗ is strictly positive on Ω. This completes the proof. □
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