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ABSTRACT

Today’s scientific high-performance computing applications and
advanced instruments are producing vast volumes of data across
a wide range of domains, which impose a serious burden on data
transfer and storage. Error-bounded lossy compression has been
developed and widely used in the scientific community because
it not only can significantly reduce the data volumes but also can
strictly control the data distortion based on the user-specified error
bound. Existing lossy compressors, however, cannot offer ultra-
fast compression speed, which is highly demanded by numerous
applications or use cases (such as in-memory compression and
online instrument data compression). In this paper we propose a
novel ultrafast error-bounded lossy compressor that can obtain
fairly high compression performance on both CPUs and GPUs and
with reasonably high compression ratios. The key contributions are
threefold. (1) We propose a generic error-bounded lossy compres-
sion framework—called SZx—that achieves ultrafast performance
through its novel design comprising only lightweight operations
such as bitwise and addition/subtraction operations, while still
keeping a high compression ratio. (2) We implement SZx on both
CPUs and GPUs and optimize the performance according to their
architectures. (3) We perform a comprehensive evaluation with
six real-world production-level scientific datasets on both CPUs
and GPUs. Experiments show that SZx is 2~16X faster than the
second-fastest existing error-bounded lossy compressor (either SZ
or ZFP) on CPUs and GPUs, with respect to both compression and
decompression.
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1 INTRODUCTION

Background. With the ever-increasing complexity of modern sci-
entific research, today’s high-performance computing applications
and advanced instruments are producing extremely large volumes
of data in their simulations or experiments. The Hardware/Hybrid
Accelerated Cosmology Code (HACC) [15], for example, can pro-
duce 20 TB of simulation data in only one run with hundreds of
simulation iterations and trillions of particles involved.
Limitation of state-of-art approaches. During the past five
years, several excellent error-bounded lossy compressors have been
developed to resolve the big data issue. Nevertheless, the compres-
sion/decompression throughput is still far lower than the target
performance demanded by many use cases, such as instrument data
compression and in-memory compression. The Linear Coherent
Light Source (LCLS-II) [27] could generate instrument data at a rate
of 250 GB/s [8], and these data need to be stored and transferred to
a parallel file system (PFS) in a timely manner for post hoc analy-
sis. By comparison, the single-core CPU performance of existing
lossy compressors is generally only 200~400 MB/s [21, 29], and the
GPU performance is only 10~66 GB/s [10, 31], which has also been
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verified in our experiments. Another typical example is exascale par-
allel quantum computing (QC) simulation, which requires a fairly
large memory capacity (e.g., 2°® ~256 PB when simulating 50 qubits
each with double precision) for each run in practice [35]. To reduce
memory requirement significantly, QC simulation researchers [35]
have developed a method to store the lossy-compressed data in
memory and decompress the data whenever needed in the course
of the simulation. The method suffers, however, from considerable
overhead in simulation time (up to ~20X in the worst case), which
is undesired by users.

Research motivation and challenges. In this paper we focus
on how to significantly accelerate both compression and decom-
pression performance for error-bounded lossy compression while
keeping a high compression ratio. This work involves address-
ing two grand challenges. (1) To pursue ultrahigh lossy compres-
sion/decompression performance, we have to restrict the whole
design to use only fairly lightweight operations including addi-
tion/subtraction and bitwise operations. But doing so raises a seri-
ous challenge to maintaining a good compression ratio. Specifically,
the relatively expensive operations such as multiplication and divi-
sion should be suppressed because of their significantly higher
cost. All of the existing efficient error-bounded lossy compres-
sors, however, depend on such expensive operations. For instance,
SZ 2.1 [21] relies on linear regression prediction, which involves
masses of multiplications to compute the coefficients. Moreover,
SZ 2.1 relies on a linear-scale quantization to control the user-spec-
ified error bound, which involves a division operation (quantiza-

% + %] [13]) on each data point. ZFP [22]

is another state-of-the-art error-bounded lossy compressor, which
is designed based on the data transform; it also involves masses of
matrix-multiplication operations. (2) Parallelizing the whole design
on parallel architectures, especially the massively parallel GPU
devices, is challenging. The dependencies are exposed during the
parallelization, and some of these are extremely difficult to break.
Therefore, a sophisticated design and optimization are desired in
order to enable the parallelization and achieve optimal performance.

Key contributions. We propose a novel, ultrafast, error-bounded
lossy compression framework—SZx—for both CPUs and GPUs. The
key contributions are summarized as follows.

tion_bin=|

e We develop SZx, which composes only lightweight opera-
tions such as bitwise operations, additions, and subtractions.
SZx also supports strict control of the compression errors
within user-specified error bounds, thanks to our careful
design of the error-control mechanism.

e We optimize the SZx algorithm using inexpensive bitwise
right shifting to improve the performance; we also investi-
gate the compression quality improvement by exploring the
best block size.

o We implement SZx on both CPUs and GPUs with sophisti-
cated and novel designs and optimize the performance with
respect to their architectures.

o We comprehensively evaluate SZx by running it with six real-
world scientific datasets on heterogeneous compute nodes
offered by different supercomputers, including Summit at
Oak Ridge National Laboratory (ORNL) and ThetaGPU at
Argonne National Laboratory (ANL). We rigorously compare

SZx with two state-of-the-art lossy compressors, SZ and ZFP,
as well as their GPU versions cuSZ and cuZFP, respectively.

Experimental results and artifact availability. Experiments
show that SZx is 2~7x faster than the second-best existing error-
bounded lossy compressor on CPUs and 2~16X faster than the
second-best compressor on GPUs, with respect to both compression
and decompression. At such high performance, SZx can still get
a good compression ratio—3~12 for the overall compression ratio
of each application and up to 124 for the compression ratio of the
specific fields—with good reconstructed data quality.

Paper structure. The rest of the paper is organized as follows.
In Section 2 we discuss related work. In Section 4 we present a
design overview of our ultrafast error-bounded lossy compression
framework. In Section 5 we propose algorithmic optimizations
for improving both the performance and the compression quality.
In Section 6 we describe the SZx implementations on both CPUs
and GPUs. In Section 7 we present and discuss the performance
evaluation results. In Section 8 we conclude the paper with a vision
of future work.

2 RELATED WORK

High-speed scientific data compression can be split into two basic
categories—lossless compression and lossy compression. Each of
these will be discussed in the following text, especially with regard
to performance/speed.

High-speed lossless compressors have been developed because of
the strong demand on compression performance in many use cases.
Facebook Zstd [9], for example, was developed for the sake of high
performance, with very similar compression ratios compared with
other state-of-the-art lossless compressors such as Zlib [44] and
Gzip [11]. In general, Zstd can be 5~6X faster than Zlib, as shown
in [9], and hence it has been widely integrated and used in 80+
production-level software codes, libraries, and platforms. Unfortu-
nately, Zstd supports only lossless compression, which would mean
very low compression ratios (1.2~2 in most cases) when compress-
ing scientific datasets that are composed mainly of floating-point
values (to be shown later).

High-speed lossy compression has also gained significant at-
tention by compressor developers and scientific applications re-
searchers. SZ [12, 21, 29] is a fast error-bounded lossy compressor,
which can reach 200~300 MB/s in compression and decompression
speed [12, 21, 29]. However, it is still not as fast as expected by
quantum computing simulations [35], so a faster lossy compression
method called QCZ was customized with comparable compression
ratios (especially for high-precision compression with a relative
error bound of 1E-4 or 1E-5). ZFP [22] is another fast error-bounded
lossy compressor, which is well known for its relatively high com-
pression ratios and fairly high compression speed on both CPUs
and GPUs. Based on our experiments (to be shown later), ZFP and
QCZ have comparable compression speed, and they are generally
1.5~2x as fast as SZ. We emphasize that, in fact, SZ already has
higher performance than many other compressors, as demonstrated
in literature: it has a comparable performance with FPZIP [23] and
SZauto [43] and about one to two orders of magnitude higher per-
formance than ISABELA [19], MGARD [6], and TTHRESH [7].



Over the past decade, GPUs have become prevalent because of
their massive parallelism and computational power [25]. Various
applications have been successfully accelerated on GPU-based plat-
forms [36, 37, 39-42]. Because of the high demand for ultrafast
error-bounded lossy compressors, a few specific error-controlled
lossy compression algorithms have been developed for GPU accel-
erators; cuSZ [31] and cuZFP [10] are two leading ones. The cuSZ
algorithm is the only GPU-based lossy compressor supporting ab-
solute error bounds for scientific data compression. It was designed
based on the classic prediction-based compression model SZ and
optimized for GPU performance by leveraging a dual-quantization
strategy [31] to deal with the Lorenzo prediction. The cuZFP com-
pressor, on the other hand, leverages the high-performance CUDA
library to reach a very high throughput; it can do so because ZFP’s
core stage is performing a customized orthogonal data transform
that can be executed in the form of matrix-multiplication. CuZFP,
however, does not support error-bounded compression but only
fixed-rate compression, which suffers from very low compression
ratios, as verified in [33].

In comparison with all these related works, our proposed SZx
is about 2~7X as fast as the second-fastest lossy compressor ZFP
on CPUs and 2~16X as fast as the second-fastest (cuSZ) on GPUs,
also with relatively high compression ratios (3~12 depending on
the user’s error bound).

3 PROBLEM FORMULATION

In this section we formulate the research problem we focus on
in this paper: optimization of the error-bounded lossy compres-
sion/decompression performance with compression ratios as high
as possible. Specifically, given a scientific dataset (denoted by D)
composed of N data values each denoted by d;, where i=1,2,3, - - N,
the objective of our work is to develop an error-bounded lossy
compressor with a fairly high performance in both compression
and decompression for both CPUs and GPUs, while also strictly
respecting the user-required error bound, which can be represented
as the following formula:

max(CT) and max(DT)
st |di—di| <e 1)
CR is relatively high,

where CT and DT represent the compression throughput and de-
compression throughput, respectively; d; and d] denote the original
data value and decompressed data value in the dataset, respectively;
e is the user-specified absolute error bound; and CR is the compres-
sion ratio, which is defined as the ratio of the original data size to
the lossy compressed data size. In order to obtain as high perfor-
mance as possible, CR would definitely be not optimal. However,
we still hope to get a relatively high CR (expected to be over 5 or 10).
Here, “relatively high" refers to much higher CR than that of loss-
less compressors (typically 1.2~2 for scientific data), as we prove by
experiment data in Section 7. This objective is meaningful to those
users who can tolerate errors but cannot afford high compression
overhead and high decompression overhead.

The compression throughput and decompression throughput
are defined in Formula (2) and Formula (3), respectively:

CT = (N-b)/T @)

(c) QMCi’ack (‘sliceéoo) ‘ ((i) Hurr‘icane (I‘J:slice(:('))

Figure 1: Demonstrating High Smoothness of Scientific Datasets
DT = (N -b)/T, ®)

where N is the number of data points in the dataset D; b represents
the number of bytes per value in D (e.g., b = 4 when the original data
precision is single-precision floating point); and T and T’ denote the
time cost when compressing the dataset D and the time cost when
decompressing the corresponding compressed data, respectively.

In addition to the maximum compression error (i.e., error bound
as shown in Formula (1)), we evaluate the reconstructed data quality
by popular data distortion metrics such as peak signal to noise ratio
(PSNR) [30] and structural similarity index measure (SSIM) [34],
which have been commonly used by the lossy compression and
visualization community. In general, the higher the PSNR or the
higher the SSIM, the better the reconstructed data quality.

4 ULTRAFAST ERROR-BOUNDED LOSSY
COMPRESSION FRAMEWORK - §ZX

In this section we present the design overview of our ultrafast error-
bounded lossy compression framework SZx. Detailed performance
optimization strategies for CPUs and GPUs will be discussed in the
next section.

Our design is based on the fact that most of the scientific datasets
are fairly smooth in space, such that all the values in a small block
(e.g., 16 or 32 consecutive data points) are likely to be close to one
another. Thus the mean of the minimal value and maximal value
in the block can be used to represent the whole block based on a
certain error bound. Figure 1 shows a visualization of four typical
fields from four different real-world simulation datasets—Miranda
large-eddy simulation [3], Nyx cosmology simulation [4], QMC-
Pack quantum chemistry [18], and a hurricane climate simulation
[1])—clearly demonstrating the high smoothness of the data in local



Table 1: Key Notations Involved in The SZx Algorithm
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Figure 2: Cumulative Distribution Function (CDF) of Block’s Value
Range
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Figure 3: Design architecture/workflow of SZx

spatial regions. Furthermore, Figure 2 shows the cumulative distri-
bution function of the block’s relative value range.! It verifies that
the four scientific datasets all exhibit fairly high smoothness of the
local data without loss of generality. Specifically, for the Miranda
dataset and QMCPack dataset, 80+% of the blocks have very small
relative value ranges (<0.01), when the block size is 8.

We design our compressor SZx in terms of the local smoothing
feature, as illustrated in Figure 3. The fundamental idea is organiz-
ing the whole dataset as many small 1D blocks (or segments) and
checking whether the mean of the min and max (denoted by p) in
each block can be used to represent all values in this block with
deviations respecting the user-specified error bound. If yes, we call
this block a “constant” block, and we just need to store y for this
block of data; otherwise, we compress all the data points in this
block by analyzing their IEEE 754 representations in terms of the
user-required error bound.

We present the pseudocode of the skeleton design in Algorithm
1 to further describe details. Table 1 summarizes the key notation
to assist in understanding the algorithm.

1A block’s relative value range is defined as the ratio of the block’s value range to the
dataset’s global value range. The reason we check the block’s relative value range is
that the error-bounded lossy compression is often performed via a value-range based
relative error bound [30], where the absolute error bound is calculated based on the
dataset’s global value range.

Notation | Description
D dataset given for compression
e user-specified error bound
d; data points in the original raw dataset D
By kth block in the dataset
Ui mean of min and max in Block k
ke variation radius of Block k
Ry required bits calculated via e and yy. for By
v; normalized values based on py. in each block By
L; identical leading bits of v; compared with v;_;

We describe Algorithm 1 as follows. As mentioned previously,
the whole dataset is split into many small fixed-size 1D blocks, and
the compression will be executed block by block (line 2). Because of
the high smoothness of data in locality, quite a few data blocks may
have values that already respect the error bound based on the mean
of the min and max (denoted by p) (lines 4~6); these “constant”
blocks will be compressed by simply storing the corresponding
p value. The types of blocks need to be kept in a separate array
called type_array, which will be used to decide block type during
the decompression stage.

Algorithm 1 SKELETON DESIGN OF SZx

Input: dataset D, user-specified error bound e, block size (denoted b)
Output: compressed data stream in form of bytes

1: i < 0, k < 0;/*Set 0 to all counters*/

2: for each block By with block size b do

3: Compute pi for By ; /*Compute mean of min and max*/

4 if (Vd; €Bg: |di — px| < e) then
5 type_array<—0;/*0 indicates ‘constant block™/
6: pi_array « fi; /*Collect p1 for ‘constant’ blocks*/
7 else
8 type_array«1;/*1 indicates ‘nonconstant block™*/
9: Compute required number of bits (denoted as Rg);
10: for each normalized value v; in By do
11: Compute identical leading bytes for v; and v;_q;
12: Encode identical_leading_bytes into xor_leadingzero_array;
13: mb_array < Ry — L;; /*Commit required bits excluding L*/
14: end for
15:  endif
16:  Aggregate output: y_array, xor_leadingzero_array, mb_array;
17: end for

For each of the nonconstant blocks, we first normalize the data
by subtracting the mean of min and max in the block (i.e., ) and
then compress each such normalized value by IEEE 754 binary
representation analysis according to the following three steps.

e Line 9: We compute the required number of significant bits

(denoted as Ry) based on user-specified error bound, by the
following formula:

0, p(ri) —ple) <0
Ri={ fullbits(type), p(ri) — p(e) > fullbits(type) )
p(ri) —ple), otherwise,

where p(x) denotes getting the exponent of the number x
, 't denotes the variation radius of data in the block k, and
fullbits(type) refers to the data type’s size (e.g., 32 bits for
single-precision floating-point type). The idea is to normalize
the data values by subtracting the mean of the min and max
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Figure 4: Compressing nonconstant float32 block by binary repre-
sentation analysis: suppose three adjacent normalized values in a
nonconstant block are 0.1234, 0.1235, and 0.1211, respectively. (The
required significant bits are determined by Formula (4).)

such that the maximum exponent of each normalized value
is foreseeable and thus the required bits are estimable by
combining the exponent of the error bound e.

e Line 11: We compute identical leading bytes by an XOR
operation between the normalized data value v; and its pre-
ceding data value v;_1. The number of leading zeros after
the XOR operation indicates the number of identical leading
bytes between the two data points.

o Line 12: We encode the number of identical leading bytes for
each data point by a 2-bit code: 00, 01, 10, and 11 correspond
to 0, 1, 2, and 3 identical leading bytes, respectively. We use a
2-bit-per-value array (called xor_leadingzero_array) to carry
these 2-bit codes, as illustrated in Figure 4.

e Line 13: We commit the necessary significant bits, that is,
the required bits (denoted as Ry) excluding identical leading
bytes (denoted by L;), to a particular mid-bits array (denoted
as mb_array), as shown in Figure 4.

5 ALGORITHMIC OPTIMIZATIONS

In this section we describe our specific optimization strategies at
the algorithm level. These optimizations aim to improve both the
performance and the compression ratio.

5.1 Performance Optimization by Bitwise Right
Shifting

Here we describe how to accelerate SZx by an efficient bitwise right-
shifting operation, which mainly involves lines 9~14 in Algorithm
1. This is a fundamental optimization strategy that can also be
applied in other devices/accelerators such as GPUs. In what follows,
we first describe a potential performance issue in the SZx design,
followed by our optimization solution.

As illustrated in Figure 5, the mantissa bits that need to be stored
for the normalized value v; should exclude the identical bytes L; and
the insignificant bits that are calculated based on the user-specified
error bound and variation radius of the corresponding block. The
number of such necessary mantissa bits is generally not a multiple
of 8 (to be verified later), so that committing/storing these bits in
the compressed data requires specific bitwise operation strategies.

Storing a short bit-array with an arbitrary number of bits is a
common operation in lossy compression. The most straightforward
solution (Solution A as shown in Figure 5) is treating the given bit-
array as a particular integer and populating the target bit-stream
pool (i.e., mb-array in the figure) by applying a couple of bitwise

Required bits R¢

Identical bytes L; a bytes Insignificant bits

——
B bits

-‘E _— Solution A: mb-array € a bytes and § bits

ESD a-array € a bytes

o o ; .

b g y | Solution B: { B-array < B bits

@ @ E . @ Right shift by s bits to eliminate residual part

@ g & | Solution C: I )

=23 (our sol.) @ Compute identical bytes L;

© = ” @ Commit/store necessary bytes

Figure 5: Three ways to store necessary mantissa bits (Solution C is
our performance optimization strategy)

operations (such as bit shift, bit and, and bit or) on the integer
number. Many lossy compressors, such as Pastri [14], store the
arbitrary bits in this way. An alternative solution (Solution B as
shown in Figure 5) is splitting the necessary bits into two parts—a
number of necessary bytes (a bytes) plus a few residual bits (f
bits); this approach was adopted by SZ [12, 13]. In this solution the
residual bits with varied number of bits still need to be gathered in
a target array by a set of bitwise operations.

By comparison, we develop an ultrafast method (Solution C
as shown in Figure 5) to deal with the necessary bits efficiently.
The basic idea is bitwise right shifting the normalized value by s
bits, where s is given in Formula (5), such that the number of the
necessary bits to be stored is always a multiple of 8. The necessary
mantissa bits then can be represented by an integer number of
bytes, with eliminated residual bits. In this situation we just need
to use a memory copy operation to commit the necessary bits to
one byte array, which would be fairly fast:

R %8 =0

R %8 # 0 )

s= 0,
T 8- Ri%S,

5.2 Investigation of Space Overhead for Bitwise
Right Shifting

The bitwise right-shifting operation may increase the total number
of required bits to store, thus reducing the compression ratios in
turn. In the following text, we will show that the increased number
of bits per value because of the bitwise right-shifting operation
is very limited compared with the compressed data size, thanks
to the design of identical leading bytes. Such a space overhead is
negligible in most cases. In fact, although the bitwise right-shifting
operation may increase the required number of bits, this operation
may also potentially increase the number of identical leading bytes,
such that some necessary bits could be “recorded” by the identical
leading array instead. In other words, after the bitwise right-shifting
operation, the necessary bits tend to increase on the right end but
tend to decrease on its left end, thus forming a counteraction to a
certain extent.

We use Figure 6 (based on two real-world simulation datasets
with different value-range-based error bounds [30]) to show the
specific space overhead of our solution designed with the bitwise
right-shifting operation, as compared with the compressed data
size. The space overhead is defined as the ratio of the increased
storage space introduced by the bitwise right-shifting method to
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Figure 6: Space overhead of bitwise right shifting used in SZx. The

figure shows the min, 2nd-min, avg, 2nd-max, and max overhead for
two application datasets each with multiple fields.

the compressed data size, as presented in Formula (6):

2 (Re+s-L) - 2 (Re—Li)
Overhead = ueb oieh 6)
Dsize /CR ’
where CR is the compression ratio, Dz, refers to the original data

size (thus Dsjze/CR means compressed data size), ZD (R +s - L)
v €
refers to the total amount of necessary bytes to store under the
Solution C (our solution), and Y, (Ry — L;) refers to the total
v; €D
amount of necessary bytes to store by Solution A or B.

In Figure 6, which involves a total of about 100 different fields
across these two applications, one can clearly observe that the space
overhead is always lower than 12% for all the fields and that the
average overhead for each case (with a specific block size) is always
around or lower than 5% compared with the compressed data size.
We give an example to further explain how small the overhead
is. Specifically, for the field “density” in the Miranda simulation
dataset, the original data size is 256x384x384xbytes = 144 MB, and
the compression ratio of SZx is 9.923, so the compressed data size
is about 15.2 MB. Our characterization shows that Solution B and
Solution C lead to 81,340,334 necessary bits (i.e., 10,167,542 bytes)
and 83,054,120 necessary bits (i.e., 10,381,765 bytes), respectively,
which means the overhead is only Wﬂ#% for this
field.
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Figure 7: Constant block’s pros and cons when block size is small

5.3 Optimization of Compression Quality by
Exploring Best Block Size

Different block sizes may affect the compressed data sizes (i.e., com-
pression ratios) significantly. Thus we must investigate the most
appropriate setting of the block size for SZx. As described previ-
ously, the design comprises two types of blocks, called “constant”
blocks (lines 4~5 in Algorithm 1) and “nonconstant” blocks (lines
6~12 in Algorithm 1), respectively. Before exploring the optimal
block size, we need to understand how the two types of blocks
contribute to the compressed data size (or compression ratios). To
this end, we analyze three impact factors.

o Analysis of constant blocks Constant blocks refer to blocks
each of which can be approximated by using one data value
Ui (i.e., mean of min and max): the smaller the block size,
the more data points to be included in the constant blocks,
because of the finer-grained blockwise processing, as illus-
trated in Figure 7 (a). As shown in the figure, the first set
of 8 data points can form a constant block because of the
relatively small block size. In this sense, the compression
ratio tends to increase with decreasing block size because all
the values within the constant block can be approximated by
one value (i.e., ), which is called impact factor €) in the
following text. However, since each constant block needs to
store a constant value y. in the compressed data, the smaller
the block size, the larger number of y; need to be stored,
which may also decrease the compression ratio in turn, as
illustrated in Figure 7 (b). We call this phenomenon impact
factor @. Specifically, for the relatively smooth regions in
the dataset, the algorithm still needs to store multiple ys
even though a large number of adjacent data points could be
approximated by only one uniform value instead. This may
introduce significant overhead because of extra unnecessary
Ui to store, thus leading to lower compression ratios.

o Analysis of nonconstant blocks On the one hand, the impact
factor @ also applies on nonconstant blocks since they also
need to store y for data denormalization during the decom-
pression. On the other hand, a smaller block size may tend
to get a higher compression ratio because of the following
reason: the smaller the block size, the smaller the variation
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in the block (i.e., smaller yi), and thus the fewer necessary
bits to store. We call this impact factor @. Specifically,
as shown in Figure 7 (a), the first 8-point block has much
smaller data variation than does the other one, so that the
corresponding required exponent would be smaller, leading
to fewer required mantissa bits (according to Formula (4)).

Based on this analysis, different block sizes may have distinct
pros and cons with regard to compression quality of the two types of
blocks. It is not obvious what block size can get the best compression
quality. In what follows, we explore the best block size setting by
characterizing the compression ratios and PSNR with different block
sizes, as presented in Figure 8. PSNR is a critical lossy compression
data quality assessment metric and has been widely used in the lossy
compression and visualization community [12, 22, 29, 30, 38, 43].
PSNR is defined in Formula (7):

psnr = 20log;, —(dmax _ dmm), (7)
MSE
where dpin and dp,qx are the min value and max value in the dataset
D and MSE refers to the mean squared error between the original
dataset D and reconstructed dataset D’. The higher the PSNR, the
higher the precision of the reconstructed data.

In the exploration we checked many different error bounds from
1E-3 through 1E-6. Because of space limits, we present in Figure 8
only the results about the value-range-based error bound of 1E-3
and 1E-4, which compress seven fields of the Miranda simulation
dataset by SZx. Other error bounds and datasets exhibit similar
results.

From Figure 8 we can observe that the compression ratio in-
creases with block size in most cases, while the PSNR always stays
at a similar level across different block size settings. We empirically
find that the best block size is 128. Figures 8 (a) and (b) show that
the CR will converge after the block size becomes larger than 128,
while block size 128 and 224 exhibit more or less the same PSNR
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Figure 9: Flowchart of SZx’s parallel compression

in Figures 8 (c) and (d). With the same accuracy, smaller block size
can lead to better GPU performance. This characterization also
indicates that impact factor @) dominates the overall compres-
sion ratios, because this is the only factor that may enhance the
compression ratio with increasing block size.

6 IMPLEMENTATIONS ON CPUS AND GPUS

In this section we elaborate on the parallel design details of the SZx
compressor and decompressor on both CPUs and GPUs. For the
GPU implementation we describe the data dependencies and our
efficient designs that can overcome them.

6.1 CPU-Based Design and Parallelization

Compressor: Figure 9 shows the workflow of SZx’s parallel com-
pression. In this figure the flows consist of white boxes and black
arrows, describing the baseline sequential implementation. The
yellow box indicates CPU parallelization (discussed later in this
subsection), while the green boxes indicate the designs for GPU
parallelization (detailed in next subsection). The original data is
divided into equal-sized data blocks as the input for the compressor.
With the baseline implementation, the data blocks are processed
iteratively (Loop I). For each block, the compressor first computes
the p (i.e., mean of min and max) and radius. if the radius is smaller
than the error bound, then the constant block path is taken, and
p will be recorded. Otherwise, the data block will go through the
non-constant block path. In this path, all data points of the block
are compressed in sequence (Loop 2). The compression of a data
point consists of four steps. (1) Right shift the current data point
as described in Section 5.1. (2) Compare the current and previous
data point in bytewise fashion. (3) Store the current data point as
the previous data point for the next iteration. (4) Count the leading
identical bytes as the leading number, and record the remainders
as mid-bytes.

Decompressor: Figure 10 depicts the SZx’s parallel decompres-
sion workflow. Similar to Figure 9, the white boxes indicate the
baseline implementation. The input data is decompressed block
by block (Loop 1). The constant blocks are retrieved by using the
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corresponding u value, while the nonconstant blocks would be re-
constructed point by point (Loop 2). The reconstruction of each data
point in a nonconstant block has five steps. (1) Read the leading
number n of the current data point. (2) Retrieve the leading bytes by
copying the first n bytes of the previous data point. (3) Retrieve the
remaining bytes by reading the corresponding mid-bytes. (4) Com-
bine the retrieved bytes to form the current data point, and use it
to overwrite the previous data point for the next iteration. (5) Left
shift the current data point to get the decompressed value.

Parallelization: We use OpenMP to parallelize SZx on a multi-
core CPU. Our blockwise design simplifies the parallelization since
each data block is compressed and decompressed independently.
Accordingly, we break the Loop Is in Figures 9 and 10 and assign
the processing of different data blocks to different CPU threads, as
indicated by the yellow boxes. The only issue is that, during the
decompression, the offsets of the data blocks in the compressed
bytes are unknown to the CPU threads, because the data blocks
have distinct compressed data lengths. This dependency makes
the CPU threads unable to read the compressed blocks from the
correct addresses. To solve this problem, we use a 16-bit integer
array (called zsize_array) to record the compressed data size for
each block. Specifically, each element (with unsigned char data type)
in the array is used to record the number of bytes after compression
per data block. This zsize_array needs to be stored together with
the compressed data because it is needed to determine the starting
location in the compressed data stream for different threads during
the decompression. To implement this design, the decompressor
uses a prefix-sum step to compute the starting location of each
block for all threads and then performs the decompression of all
the blocks in parallel.

6.2 Design and Optimization for GPUs

In this subsection we describe our design and implementation for
cuSZx—the CUDA GPU version of SZx. The green boxes in Fig-
ures 9 and 10 illustrate the modifications we made on the CPU
implementation workflow to accommodate GPU architecture.

6.2.1 Design Overview and General Optimization. Our cuSZx de-
sign assigns different data blocks to different CUDA thread-blocks
(i-e., unrolling Loop 1) and uses different CUDA threads to process

different data points in a data block (i.e., unrolling Loop 2). Thanks
to the independence between data blocks, this design completely
avoids expensive grid-level synchronization and communication. In
order to optimize the performance, the data block size is chosen as a
multiple of the GPU warp size, and the threads in each thread-block
are organized in two dimensions with the x-dimension length equal
to the warp size.

During the compression, each thread block performs parallel min
and max with the help of CUDA warp-level operations to compute
the p and radius of the assigned data block. If the assigned data block
is identified as a constant block, the thread block will record the p
and immediately go forward to process the next data block. Since
the number of data blocks is considerably larger than the number
of thread blocks, this scheduling fashion can significantly mitigate
the workload imbalance. The nonconstant block will be further
processed in the thread block with the approach that one CUDA
thread compresses one data point following the four steps depicted
in Figure 9. This design, however, exposes some data dependencies
and hence requires algorithmic adjustments to make the thread-
level parallelization smooth. They will be discussed in Section 6.2.2.

In the decompression, since the states of data blocks are known
and the constant block retrievals just need to get y, we decompress
only the nonconstant blocks in the GPU. Similar to the compres-
sion parallelization, each thread block processes one data block
at a time, and each of its CUDA threads decompresses one data
point following Steps 1-5 in Figure 10. The thread-level parallel
decompression also exposes dependencies, and we will discuss the
solutions in Section 6.2.2 as well.

We design several general optimizations to benefit the overall
performance of both the compression and decompression. (1) In-
stead of letting each thread read one char data from a char array
(e.g., mid-byte array), we use one warp to read the array as char4
data type and then share the read data with other warps through
shared memory. With this design we can maximize the bandwidth
usage and reduce the global memory accesses. (2) We store the cur-
rent data block into shared memory after the first time it is read by
its thread block, to accelerate its reuse. This design also enables the
optimal bytewise manipulation of floating-point values on the GPU
since the GPU registers do not support the union data structure.

6.2.2 Challenges and Solutions. The thread-level parallelization of
point-by-point compression and decompression for nonconstant
blocks exposes two types of dependencies: address dependency and
data value dependency. The two raise separate challenges and need
different strategies in order to be overcome.

Challenge 1: In Figure 9 the number of mid-bytes of every data
point is unknown before Step 2. Therefore, an iterator is required
in the sequential implementation to indicate the offset in mb_array
serving as the starting address for writing the current data point’s
mid-bytes. In GPUs, however, since all data points in the data block
are processed simultaneously, the starting address for every data
point (except the first one) will remain undetermined at Step 4 until
the threads communicate their number of mid-bytes. The same
dependency exists at Step 3 in Figure 10, when the threads in the
decompressor want to read the mid-bytes.

Solution 1: We add a prefix-scan step before Step 4 in Figure 9
and Step 3 in Figure 10. The prefix-scan can be parallelized on GPUs
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Figure 11: Schematic graph showing the index propagation for par-
allel leading-byte retrievals

by using two-level in-warp shuffles [24]. With this step, all threads
can sync and communicate to efficiently find their own starting
address.

Challenge 2: Step 2 in both Figures 9 and 10 depend on the value
of the previous data point. The two data dependencies have different
depths. In compression, the previous data point’s value is known
to the current thread since it can be directly read from the input
original data. Hence the depth is 1. In decompression, however, the
previous data point’s value remains unknown to the current thread
since it is simultaneously being retrieved by the neighbor thread.
A direct read of the previous data value by the current thread will
cause the read-after-write (RAW) hazard. Accordingly, the data
dependencies in the decompression yield dependence chains. A
chain starts at the mid-byte right before a leading byte and keeps
extending until reaching the next mid-byte.

We provide a leading byte retrieval example as shown in the first
row of Figure 11 to further explain the RAW hazard and dependence
chain. In this example, the data block contains eight floating-point
data points. The mid-bytes of each data point are highlighted in
blue. Since the fourth byte (B4) of every data point is mid-byte,
it will not affect the data dependency. We consider the retrievals
of the third byte of the second (B32), third (B33), and fourth (B34)
data points. In sequential implementation, B33 can be retrieved by
reading the mid-byte B32, and B34 then can be retrieved by reading
B33. Consequently, we get the correct values B34=B33=B32.In the
parallel context, however, retrieving B34 by reading B33 will get
an undefined value since B33 is also a leading byte and will cause
the RAW hazard. B32, B33, and B34 form a dependence chain, since
B34 also needs to get the correct value from B32. The same issue
will occur when simultaneously retrieving B27 and B28.

Solution 2: Simply letting each CUDA thread read both the
current data point and the adjacent preceding data point from
the input original data can break the data dependency during the
compression, since the dependency depth is only 1.

The essential factor in breaking the data dependency in the
decompression is to identify the dependence chains. Then each
leading byte knows where to read for retrieving the value. For
example, B34 and B33 know they should retrieve their value from
B32 after the B32-B33-B34 chain is identified. To efficiently identify
the chains in parallel fashion, we propose an index-propagation
approach. It assigns each byte an initial index as shown in Figure
11 (note that they are not byte values). All leading bytes will get

an initial index 1, while the mid-bytes will get their actual index
(e.g., 2 for B32). We ignore the B4s since they are all mid-bytes.
Then a parallel propagation is performed in recursive doubling
style to propagate the indices. In the running example, during
the first round, each thread propagates its bytes’ indices to its
adjacent thread (stride=1) using warp-level shuffles. For each byte
in a thread, its own index will be overwritten if the corresponding
received index is greater. For instance, B33’s initial index is 1, and
it will be overwritten by B32’s index, which is 2 after the first
round propagation. In the second round, the indices are propagated
with stride=2 and follow the same overwriting rule. After the third
round with stride=4, the index propagation of the running example
finishes. Notice that we do not display the last round in Figure 11
because it does not change the final indices.

In the final indices result, the bytes of consecutive data points
that have the same indices indicate a dependence chain. For exam-
ple, in the last row of Figure 11, B32, B33, and B34 are the bytes
of three consecutive data points, and they all have an index 2, so
they form a dependence chain. We can observe that our index-
propagation successfully identifies all dependence chains in the
running example. Then each leading byte can retrieve its value
according to its final value (e.g., 2 in B34 indicates its value should
be read from B32).

The index-propagation approach is inexpensive. It requires only
the lightweight shuffle operations. Furthermore, with the recursive
doubling, the parallel propagation complexity is reduced from O(n)
to O(log n) (e.g., three propagations can propagate eight data points
in the running example).

7 PERFORMANCE EVALUATION

In this section we analyze the evaluation results, which are per-
formed by using six real-world scientific datasets on heterogeneous
devices on two different supercomputers.

7.1 Experimental Setup

Table 2 describes all the application datasets used in our experi-
ments. The datasets are downloaded from the well-known Scientific
Data Reduction Benchmark website [5].

We perform our GPU experiments on both an A100 GPU (offered
by ANL ThetaGPU [20]) and V100 GPU (offered by ORNL Summit
[28]). NVIDIA’s Ampere microarchitecture is the successor of the
Volta microarchitecture. V100 has 80 streaming multiprocessors
(SMs) with 64 CUDA cores per SM (total of 5,120 cores device-
wide), while A100 has 108 SMs and 6912 CUDA cores in total. We
compare our developed ultrafast compressor SZx with two lossy
compressors—SZ [12, 29] and ZFP [22]; these are arguably the
fastest existing error-bounded compressors based on prior studies
[12, 43], and they both have GPU versions that can be compared
with our solution SZx in the experiments.

7.2 Evaluation Results

First, we check the data reconstruction quality under our SZx for all
the simulation datasets involved in our experiments. We conclude
that the overall visual quality looks great when the value-range-
based error bound (denoted by REL) is set to 1E-2~1E-4 for SZx.
Because of space limits, we demonstrate the visual quality, PSNR,



Table 2: Applications (all datasets here are originally stored in single-precision floating point)

Application # of fields Size per field Description
CESM-ATM (CE.) [17] 77 1800%3600 Atmosphere simulation of Community Earth System Model
Hurricane (Hu.) [1] 13 100x500x500 simulation of Hurricane ISABEL
Miranda (Mi.) [3] 7 256X384x384 large-eddy simulation of multi-component flows with turbulent mixing
Nyx (Ny.) [4] 6 512x512Xx512 adaptive mesh, massively parallel cosmological simulation
QMCPack (QM.) [18] 2 288/816Xx115%69%69 | simulation for electronic structure of atoms, molecules and solids
SCALE-LetKF (SL.) [2] 12 98%x1200%x1200 SCALE-RM weather simulation based on LETKEF filter

.

——
(d) e=1E-2,PSNR=54.6,SSIM=0.865

Figure 12: Visual quality of SZx on Hurricane-ISABEL simulation
(the compression ratios are 14.6, 18, 20.64, respectively)

and SSIM using only the Hurricane-ISABEL simulation dataset
(CLOUD({48), as shown in Figure 12 (compression ratios are 14.6,
18, and 20.64, respectively). We can observe that the reconstructed
data’s visual quality is high, even zooming in the top-left corner by
50%, although a few artifacts can be seen in the dark blue area of
Figure 12 (d). How to further mitigate or remove artifacts will be
our future work.

Figure 13 presents the distribution of compression errors for
different application datasets with the absolute error bounds of
1E-4 and 1E-6. Because of space limits, we present only a couple of
fields for each application. All other fields of the same application
exhibit similar results, based on our observation. We validate that
SZx can always respect user-specified error bounds for all the data
fields across different applications in our experiments, even with a
very small error bound (e.g., 1E-6), as shown in Figure 13 (b).

We present compression ratios of our SZx as well as those of
SZ and ZFP in Table 3, by showing the minimum, overall (i.e.,
harmonic mean), and maximum CR, respectively, for all the fields
in each application. The table shows that SZx can get very high
compression ratios (e.g., 124 for CESM) when REL=1E-2. Its overall
compression ratio is 3~12 in all cases, which is 0.5~3x lower than
that of ZFP and 3~30x lower than that of SZ. These results are
reasonable because SZ and ZFP adopt advanced multidimensional
data analysis and sophisticated encoding methods, which can get
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Figure 13: Distribution of compression errors under SZx
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fairly high compression ratios; however, the compressors may suffer
lower execution performance on both CPUs and GPUs in turn (to
be shown later). As a comparison, the overall compression ratio of
the lossless compressor Zstd is only 1.12~1.49, which is lower than
that of SZx by about 200~400%. Therefore, SZx could be the favorite
of end users who desire higher CR than the lossless compression
provides but are sensitive to the compression time.

To demonstrate the algorithmic efficiency of SZx, we first present
the single-core CPU-based compression and decompression through-
puts of the three compressors in Table 4 and Table 5, respectively.
The numbers shown in the tables are the overall performance con-
sidering all the fields for each application. Through the tables, we
can observe that our SZx significantly outperforms the other two
error-bounded lossy compressors in terms of both compression
and decompression speeds. Specifically, for compression, SZx is
~2.5~5% faster than ZFP and ~5~7X faster than SZ, while for de-
compression, SZx is about 2~4x as fast as both ZFP and SZ. As we
elaborated in the algorithm design and optimization sections, SZx
achieves such a high performance thanks to the lightweight skele-
ton design described in Algorithm 1 and the bitwise right-shifting
strategy proposed in Section 5.1.

We next compare the performance of the OpenMP-based mul-
ticore CPU implementation for SZx, ZFP, and SZ. Tables 6 and 7
display the compression and decompression throughput, respec-
tively. We set the number of threads to 64 since we empirically
find it is the optimal setting for all three compressors. Some data
are not available because (1) the OpenMP version of SZ (omp-SZ)
does not support 2D data (i.e., CESM) and (2) the OpenMP version
of ZFP (omp-ZFP) has no decompressor implementation. We ob-
serve from the tables that, although the speedup varies according
to dataset, our OpenMP version of SZx (omp-SZx) always shows
the best performance. Specifically, our omp-SZx compressor can
achieve 3.4~6.8% and 2.4~4.8x speedup compared with that of the
omp-ZFP and omp-SZ counterparts, and our omp-SZx decompres-
sor achieves 2.3~4.6X speedup compared with that of the omp-SZ
decompressor.



Table 3: Compression Ratios (Original Data Size / Compressed Data Size)

CESM Hurricane Miranda

Nyx QMCPack Scale-LetKF

REL || min | avg | max | min | avg | max | min | avg

max | min | avg | max | min | avg | max | min | avg | max

1E-2 4 9.1 124 4 6.6 21.1 8.2 | 11.8

16.2 | 4.8 | 11.34 | 124 9.2 9.4 9.7 7.6 | 10.6 | 25.2

SZx | 1E-3 || 2.84 | 461 | 193 | 29 4 17.6 4.5 7.2

12.5 | 3.2 5.9 119 | 43 4.4 44 | 3.65 | 4.7 7.8

1E-4 || 2.14 | 3.3 17 2.1 3 16.2 2.7 4.5

9.5 2.4 3.7 75 2.9 2.9 2.9 27 | 314 | 56

1E-2 8 13.6 46 6.4 | 11.3 | 25.8 | 30.5 | 46.6

74.6 | 225 | 38.8 | 1.1k | 39.1 | 39.2 | 39.4 | 94 | 145 | 23.8

ZFP | 1E-3 43 7.9 30 4.3 6.7 13.2 | 20.6 | 25.6

38.5 8.2 13.1 150 21 211 | 212 | 64 7.8 13.4

1E-4 3 5.1 188 | 29 | 432 | 104 11 14.5

229 | 41 6.2 74 10.3 | 103 | 104 | 3.9 4.6 7.7

1E-2 || 344 | 151 3k 20.4 | 49.8 339 92.8 | 126

234 | 263 507 21k | 201 | 213 | 227 | 263 84 746

Sz 1E-3 || 15.6 | 151 | 840 | 9.24 | 17.5 | 58.8 | 49.6 | 59.5

75.2 | 36.7 79 3.6k | 52 | 54.3 | 56.8 | 18.9 | 26.5 | 140

1E-4 6.4 | 38.3 | 104 5.6 9.8 31 25.1 | 29.6

35 103 | 18.2 621 | 189 | 19.2 | 19.6 10 139 | 231

[zstd [ - [[1.03[144] 171 [1.08 [ 149 [ 1956 | 1.6 [ 1.21 [ 486 [ 1.08 [ 112 [ 1.14 [ 118 [ 1.19 [ 1.2 [ 1.08 [ 1.37 | 2.95 ]

Table 4: Compression Throughput on Single-Core CPU (MB/s)

REL || CE. | Hu. | Mi. | Ny. | QM. | SL.
1E-2 || 1034 | 796 | 959 | 1087 | 969 | 1032
SZx | 1E-3 || 822 | 750 | 833 | 877 | 902 | 703
1E-4 || 752 | 662 | 807 | 722 | 813 | 663

1E-2 392 256 | 249 | 418 323 258
ZFP | 1E-3 288 213 | 211 284 275 208
1E-4 234 181 | 280 | 226 208 174
1E-2 236 193 | 186 | 258 205 217

SZ 1E-3 170 153 | 161 229 216 156
1E-4 143 130 | 139 | 164 147 124

Table 5: Decompression Throughput on Single-Core CPU (MB/s)

REL || CE. | Hu. | Mi. | Ny. | OM. | SL.
1E-2 1221 | 1085 | 1950 | 1450 | 1292 | 1408
SZx | 1E-3 1022 | 1006 | 1546 | 1218 | 1083 975
1E-4 || 925 | 864 | 1319 | 956 | 928 | 886

1E-2 485 476 498 732 685 360
ZFP | 1E-3 327 371 401 455 524 395
1E-4 246 297 327 333 376 299
1E-2 559 451 549 635 588 519

SZ 1E-3 381 291 444 534 462 334
1E-4 269 229 392 359 282 236

Table 6: Compression Throughput on a Multicore CPU (GB/s)

REL || CE. | Hu. | Mi. | Ny. | OM. | SL.
1E-2 || 438 | 6.89 | 9.13 | 7.25 | 9.69 | 8.57
SZx | 1E-3 3.77 | 6.32 | 8.53 | 6.55 8.11 7.51
1E-4 || 3.74 | 6.06 | 854 | 6.68 | 7.77 | 7.34

1E-2 || 0.74 | 1.52 | 2.70 | 1.49 | 2.23 | 1.83
ZFP | 1E-3 || 0.61 | 1.31 | 242 | 1.36 | 1.87 | 1.58
1E-4 || 0.55 | 1.09 | 1.87 | 1.23 | 1.46 | 1.32

1E-2 n/a | 1.80 | 1.99 | 2.12 | 3.60 | 2.90
SZ 1E-3 n/a | 149 | 1.82 | 2.12 | 3.49 | 2.85
1E-4 n/a | 1.67 | 1.78 | 1.95 | 3.23 | 2.54

Subsequently, we evaluated the GPU performances of cuSZx,
cuZFP, and cuSZ on two cutting-edge supercomputers—ANL ThetaGPU
(A100) and ORNL Summit (V100), respectively. We note that both
cuZFP and cuSZ have also been deeply optimized with respect to
the GPU architecture by their developers [10, 31, 32]. The com-
pression and decompression performance results regarding all the

Table 7: Decompression Throughput on a Multicore CPU (GB/s)
(ZFP’s results are all n/a because it does not support multithread
decompression)

REL || CE. | Hu. | Mi. | Ny. | QM. | SL.

1E-2 || 1.93 | 3.89 | 532 | 11.34 | 16.01 | 11.36
SZx [ 1E-3 || 151 | 3.98 | 591 | 11.84 | 15.08 | 10.78
1E-4 || 1.31 | 3.91 | 541 | 1152 | 14.53 | 11.39

1E-2 n/a | n/a | n/a n/a n/a n/a
ZFP | 1E-3 n/a | n/a | n/a n/a n/a n/a
1E-4 || n/a | n/a | n/a n/a n/a n/a

1E-2 n/a | 1.73 | 2.11 | 2.84 4.90 3.01
SZ 1E-3 n/a | 1.67 | 2.09 | 2.87 4.32 2.92
1E-4 n/a | 1.48 | 1.98 | 3.08 3.92 2.48

fields of each application are presented in Figure 14 and Figure 15,
respectively.

According to Figure 14, the peak compression performance of
SZx can reach up to 264 GB/s (see Hurricane ISABEL’s result in Fig-
ure 14 (a)). The overall compression performance of SZx is 150~216
GB/s on ThetaGPU and 140~188 GB/s on Summit. As a compari-
son, both cuSZ and cuZFP suffer from very low GPU performance
(9.8~86GB/s on ThetaGPU and 12~52GB/s on Summit). Moreover,
based on Figure 15, we can observe that the peak decompression
performance of SZx can reach up to 446 GB/s (see Miranda’s result
in Figure 15 (a)). The overall decompression performance of SZx
is 150~291 GB/s on ThetaGPU and 120~243 GB/s on Summit. As a
comparison, both cuSZ and cuZFP suffer from much lower decom-
pression performance (9.7~67GB/s on ThetaGPU and 13.7~48 GB/s
on Summit).

We can observe that our cuSZx achieves higher speedups than
does the single-core CPU SZx (16X vs. 7X), compared with their
respective counterparts. The reason is that some complex steps in
SZ and ZFP, for example, Huffman decoding [26], are extremely
irregular and unfriendly to the GPU execution model. On the other
hand, the simplified design of our SZx significantly reduces the
parallelization complexity and is friendlier to GPUs. Consequently,
with the optimizations described in Section 6.2, our cuSZx signifi-
cantly outperforms the highly optimized cuSZ and cuZFP. We also
emphasize that our cuSZx preserves the same compression ratio as
SZx does, since it makes no change to Algorithm 1.

We now evaluate the overall data dumping/loading performance
on ANL ThetaGPU nodes with different execution scales. Specif-
ically, for the data dumping experiment, we use an MPI code to
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launch 64~1024 ranks/cores, each performing lossy compression
using the Nyx dataset and writing compressed data onto the parallel
file system. For the data-loading experiment, each MPI rank reads
the compressed data from PFS and then performs decompression.
We present the performance breakdown in Figure 16 in terms of
different value-range-based error bounds.

In the figure, we can clearly observe that SZx obtains the highest
overall performance in both data dumping and data loading on
ThetaGPU. In particular, the solution with SZx takes only —~—
time to dump or load data compared with other solutions in most
cases. That is, the I/O performance is improved by 100%~200% under
SZx. The key reason is that ThetaGPU has a relatively high I/O
bandwidth, so that the overhead at the compression/decompression
stage turns out to be the key bottleneck at the execution scales of
our experiments.

8 CONCLUSION AND FUTURE WORK

In this paper we propose an ultrafast error-bounded lossy com-
pression framework SZx. It is designed for scenarios where the
long compression time of current lossy compressors is not accept-
able and a higher compression ratio than provided by the lossless
compressors is still demanded. We rigorously confine the design
of SZx to use only super-lightweight calculations such as addition,
subtraction, and bitwise operations. We perform comprehensive
evaluations of both the CPU- and GPU-based implementations us-
ing six real-world datasets and two cutting-edge supercomputers.
The key insights are summarized as follows.

e With the same error bound, SZx has reasonably lower com-
pression ratios than ZFP and SZ do (0.3~3% lower than ZFP
and 3~30X lower than SZ) because it has no sophisticated
data prediction/transform step and no expensive encoding
algorithms such as Huffman encoding.
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Figure 16: Data dumping/loading performance on ThetaGPU (Nyx

dataset)

e On a single-core CPU with the same error bound, SZx is
2.5~5X faster than ZFP and 5~7X faster than SZ in compres-
sion; SZx is 2~4X as fast as both SZ and ZFP in decompres-
sion.

e On a multicore CPU with the same error bound, SZx is
3.4~6.8% and 2.4~4.8X faster than ZFP and SZ in compres-
sion, while it can achieve 2.3~4.6x speedup compared with
SZ in decompression.

e On a GPU with the same error bound, SZx’s peak perfor-
mance in compression and decompression on single GPU
can reach up to 264 GB/s and 446 GB/s, respectively. These
results are 2~16X as fast as SZ and ZFP on GPUs.

e When compressing&writing compressed data to PFS or read-

ing&decompressing compressed data from PFS on ANL ThetaGPU

with 64~1024 cores, the overall data dumping/loading per-
formance under SZx is higher than that with SZ or ZFP by
100%~200%, because of SZx’s fairly high performance.

In future work, we plan to explore how to further improve compres-
sion ratios of SZx. We also plan to quantitatively characterize the
trade-off between the compression ratio and the performance [16]
of our SZx.
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