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ABSTRACT

Due to its longevity and enormous information density, DNA
is an attractive medium for archival data storage. Natural
DNA more than 700.000 years old has been recovered, and
about 5 grams of DNA can in principle hold a Zetabyte of
digital information, orders of magnitude more than what is
achieved on conventional storage media. Thanks to rapid
technological advances, DNA storage is becoming practically
feasible, as demonstrated by a number of experimental stor-
age systems, making it a promising solution for our society’s
increasing need of data storage.

While in living things, DNA molecules can consist of millions
of nucleotides, due to technological constraints, in practice,
data is stored on many short DNA molecules, which are pre-
served in a DNA pool and cannot be spatially ordered. More-
over, imperfections in sequencing, synthesis, and handling,
as well as DNA decay during storage, introduce random
noise into the system, making the task of reliably storing
and retrieving information in DNA challenging.

This unique setup raises a natural information-theoretic
question: how much information can be reliably stored on
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and reconstructed from millions of short noisy sequences?
The goal of this monograph is to address this question by
discussing the fundamental limits of storing information on
DNA. Motivated by current technological constraints on
DNA synthesis and sequencing, we propose a probabilistic
channel model that captures three key distinctive aspects
of the DNA storage systems: (1) the data is written onto
many short DNA molecules that are stored in an unordered
fashion; (2) the molecules are corrupted by noise and (3) the
data is read by randomly sampling from the DNA pool. Our
goal is to investigate the impact of each of these key aspects
on the capacity of the DNA storage system. Rather than
focusing on coding-theoretic considerations and computa-
tionally efficient encoding and decoding, we aim to build an
information-theoretic foundation for the analysis of these
channels, developing tools for achievability and converse
arguments.
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Introduction

In recent years, the number of applications that require or are enabled
by digital data storage and the amount of data generated by a variety
of technologies have increased dramatically. This has spurred significant
interest in new storage technologies beyond hard drives, magnetic tapes,
and memory chips. In this context, DNA—the molecule that carries the
genetic instructions of all living organisms—emerged as a promising
storage medium. DNA has two key advantages over conventional digital
storage technologies: extreme longevity and information density. This
makes DNA an interesting storage medium, particularly for archival
storage.

Data on DNA can last very long, if stored appropriately, as nature
itself proves. As demonstrated by recently sequenced DNA extracted
from a mammoth tooth found in the Siberian permafrost [113], the
information in a DNA molecule can be preserved for more than a million
years. In contrast, information on memory chips lasts no more than a few
years, and data on hard drives and magnetic tapes lasts no more than
a few decades. While conventional storage media could be redesigned
to preserve data longer, the longevity of DNA is currently unmatched,
as illustrated in Figure 1.1(a).
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Figure 1.1: (a) Longevity of different data storage media. Archimedes Palimpsest
containing “The Methods of Mechanical Theorems” survived more than 1000 years.
Recently, 700,000 year old DNA from ancient horse bones has been successfully
sequenced [91]. (b) Information density of different storage media. The proof-of-
concept DNA-based storage system of [39] achieved an information density that is
over one order of magnitude higher that of magnetic tape.

The information density of DNA is also extremely large. Just 5 grams
of DNA contain about 4 - 10! nucleotides, which in principle could hold
8 - 102! bits, or one zettabyte. In a practical system, the redundancy
required for error-correction coding required to build a reliable system
reduces these numbers, but we can achieve information densities orders
of magnitude larger than the highest information densities achieved on
hard drives and tapes, as shown in Figure 1.1(b).

1.1 A brief history of DNA data storage

Computer scientists and engineers have dreamed of harnessing DNA’s
storage capabilities already in the 60s [9], [79], and in recent years
DNA data storage, or more broadly, molecular information storage,
developed into an active field of research. In 2012 and 2013 groups lead
by Church [27] and Goldman [38] independently stored about a megabyte
of data in DNA. Later, Grass, Heckel, Puddu, et al. [39] demonstrated
that millennia-long storage times are possible by protecting the data
both physically and information-theoretically, and designing a robust
DNA data storage scheme using error-correcting codes. Yazdi, Yuan,
Ma, et al. [119] showed how to selectively access files, and Erlich and
Zielinski [33] demonstrated that a DNA storage system can achieve very
high information densities, close to the absolute maximum of two bits
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per nucleotide. In 2018, Organick, Ang, Chen, et al. [80] scaled up these
techniques and stored about 200 megabytes of data. Together, these
and other works demonstrated that writing, storing, and retrieving
data using DNA as a medium is possible with today’s technology, and
achieves information densities and information lifetimes that are far
beyond what state-of-the-art tapes and discs achieve.

DNA is a long molecule made up of four nucleotides (Adenine,
Cytosine, Guanine, and Thymine) and, for storage purposes, can be
viewed as a string over a four-letter alphabet. However, there are hard
technological constraints for writing on DNA and for reading DNA,
which need to be considered in the design of a practical DNA-based
storage system. While in a living cell a DNA molecule may consist of
millions of bases (the human chromosome 1, for example, is 250 million
bases long), due to practical technological constraints, it is difficult and
inefficient to synthesize long strands of DNA. For that reason, all recent
works that have demonstrated working DNA storage systems stored
information on molecules of no longer than 100-200 nucleotides [27],
[33], [38], [39], [80], [119].

The process of determining the order of nucleotides in a DNA
molecule, or DNA sequencing, suffers from similar length constraints.
State-of-the-art sequencing platforms such as Illumina cannot sequence
DNA segments longer than a few hundred nucleotides. While recently
developed, so-called third-generation technologies such as Pacific Bio-
sciences and Oxford Nanopore can provide reads that are several thou-
sand bases long, their error rates and reading costs are significantly
higher [30], [117].

Due to those constraints in the length of the DNA molecules that can
be synthesized, stored and sequenced, a practical DNA-based storage
system consists of many short DNA molecules stored in an unordered
fashion in a solution.

Another technological limitation to DNA-based storage comes from
the fact that state-of-the-art sequencing technologies rely on the shotgun
sequencing paradigm. This corresponds to (randomly) sampling and
reading sequences from the DNA pool. Furthermore, sequencing is
usually preceded by several cycles of Polymerase Chain Reaction (PCR)
amplification. In each cycle, the amount of each DNA molecule is
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Table 1.1: Parameters of a few DNA storage systems using array-based synthesis,
listed chronologically.

length  number data stored error

of segs.  of seqs (in MB) correction
Church, Gao, and Kosuri [27] 115 54,898 0.65 None
Goldman, Bertone, Chen, et al. [38] 117 153,335 0.75 Repetition
Grass, Heckel, Puddu, et al. [39] 117 4,991 0.08 RS
Blawat, Gaedke, Hiitter, et al. [12] 190 900,000 22 RS
Bornholt, Lopez, Carmean, et al. [14] 120 45,652 0.15 RS
Erlich and Zielinski [33] 152 72,000 2.14 Fountain
Organick, Ang, Chen, et al. [80] 150 13.4-10° 200.2 RS
Chandak, Tatwawadi, Lau, et al. [17] 150 13,716 0.192 LDPC
Heckel and Grass [46] 105 3.88 - 107 63.1 RS
Antkowiak, Lietard, Darestani, et al. [7] 60 16,383 0.1 RS

amplified by a factor between 1.6 and 1.8, and this factor can be
sequence-dependent, thus leading to very different concentration of
distinct DNA molecules. Last but not least, the DNA molecules in
a DNA-based storage system are subject to errors such as insertions,
deletions, and substitutions of nucleotides at the time of synthesis,
during the storage period, and during sequencing.

1.2 Overview of existing DNA storage systems

In the last decade, several research groups have shown that using today’s
technologies, it is possible to store on the order of megabytes of data
reliably. All systems that stored megabytes of data and demonstrated
correct recovery relied on array-based synthesis, where data is stored
on a set of many short sequences. In Table 1.1, we list several of these
implementations with some of their key parameters in chronological
order. All systems listed in the table stored a unique index on each
sequence to deal with the shuffling character of the channel at decoding,
and starting from Grass, Heckel, Puddu, et al. [39], all systems used
outer error-correcting codes to deal with the loss of individual sequences.

There are alternatives to DNA data storage based on array-based
synthesis. For example, Yazdi, Yuan, Ma, et al. [119] used column-
based synthesis, where individual sequences are generated one-by-one.
With this approach, the authors successfully stored 0.017 MB on 32
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sequences of length 1000 each. Another example is the implementation
by Lee, Kalhor, Goela, et al. [63], which stored 18 bytes using enzymatic
synthesis. Tabatabaei, Wang, Athreya, et al. [109] avoided synthesis
altogether, and stored data in form of nicks at certain positions on the
backbone of existing DNA. Yet another example is the work by Yim,
McBee, Song, et al. [121], which stored data (about 72 bits) in living cells
via CRISPR arrays. All these approaches are conceptually interesting
alternatives to array-based synthesis, but scaling them to store more
than a few bytes of data currently looks challenging.

Array-based synthesis generates many copies of each sequence, by
building up each sequence on a different spot of the array. It is also
possible to modify array-based synthesis to grow sequences at one spot
of the array so that a predefined fraction of the sequences contain, say,
nucleotide A but others contain, say, nucleotide G at a given position.
Anavy, Vaknin, Atar, et al. [5] explored this idea and proposed the
notion of composite DNA letters to reduce the number of synthesis cycles.
However, the use of composite letters comes at a higher sequencing cost
to guarantee that composite letters can be identified from the sequenced
DNA molecules, and also comes at a higher decoding complexity.

While the proof-of-concept implementations listed in Table 1.1
demonstrate that DNA storage can be practical, their overall cost is still
an obstacle for them to become practically viable. For example, using
the architecture proposed in Erlich and Zielinski [33], the estimated
cost of synthesizing 1GB of data was $3.27 million [33, Supplementary
Material], and the current cost of storing a Megabyte of DNA is around
$500 [7]. However, until DNA storage becomes viable for commercial
archival storage applications, there are already applications of DNA
storage that are not possible with other storage media. For example,
Koch, Gantenbein, Masania, et al. [54] demonstrated that data stored
in DNA can be embedded into any product made of plastic, providing
information about the product inside the product.

1.3 Information Theory and DNA storage

DNA-based storage is a fundamentally new way of storing data, due
to the way DNA is written, stored, and read. The technology is still
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under development, and details such as error profiles, the exact length
of synthesized DNA molecules, and the sequencing throughput are likely
to change. An information-theoretic perspective and an understanding
of the fundamental limits of DNA storage will enable a system design
based on key conceptual insights and tradeoffs.

Joint design of physical system and coding schemes: Conceptual ad-
vances in terms of how to optimally code for this new storage paradigm
can inform biochemists in their development of new synthesis and se-
quencing technologies for building DNA storage systems. For example,
is it worth developing very expensive technologies to allow long DNA
molecules to be synthesized? Or is it possible to store data at high den-
sities with very short molecules? An information-theoretic perspective
may provide the foundations to answering these questions, enabling the
design of an efficient “physical layer” for DNA storage systems.

Emerging technologies beyond DNA: There are many other interest-
ing media for future storage. For example, synthetic polymers are also
a potential substrate for data storage [83], in which case tandem mass
spectrometry could be used instead of sequencing for data retrieval [62].
Futhermore, the idea of storing data in quartz glass [6] also promises to
achieve incredibly high information densities.

As new technologies are proposed and compared, it is important to
obtain a basic understanding of their capabilities. In this context, an
information-theoretic perspective may allow these emerging approaches
to be compared at a more fundamental level, rather than based on
specific prototypes. Moreover, design principles may be transferable
between them, and different technologies may be more suitable to specific
applications depending on basic tradeoffs between cost, computational
complexity, and reading and writing speeds. In Section 7.4 we briefly
discuss additional storage capacity problems that are motivated by
recent technological advances.

Connections with classical information theory problems: The growing
interest on DNA data storage has sparked renewed interest in classical
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problems in information theory. As several DNA sequencing technologies
suffer from insertion and deletion errors, new attention has been given
to the capacity of insertion/deletion channels and “sticky” channels
[25]. Moreover, many of the topics explored in this monograph will be
connected with permutation channels [3], [10] and, in Section 7.3, we
discuss a connection between DNA storage in the short-molecule regime
and discrete-time Poisson channels [60].

1.4 Organization of this monograph

In Section 2, we formalize and discuss a general class of channels to
model DNA storage systems. This general model, called the noisy
shuffling-sampling channel, will be the main object of our information-
theoretic analysis of DN A-based data storage. In Section 3, we start
the exploration of the capacity of DNA storage systems by studying a
simple noiseless shuffling-sampling channel, where the input sequences
are shuffled and sampled before being observed at the channel output.
The capacity expression provides a precise understanding of the storage
rate costs that the shuffling and sampling operations incur, and provide
intuition on how to develop optimal codes for such channels. In the
same section, we also consider channels that break the sequences at
random points and shuflle the resulting pieces.

In Section 4, we study the impact of adding noise to the shuffling-
sampling channels. Specifically we will study the capacity of channels
where the sequences are not only shuffled and randomly sampled, but
also contain errors, and we will discuss the impact of different noisy
channel models on the overall capacity.

In Section 5, we study the multi-draw nature of DNA storage chan-
nels. Since multiple copies of each sequence are typically stored in DNA
storage systems, they can be sequenced with potentially different noise
patterns, which can help in error correction. This is captured in our
information-theoretic framework by considering multi-draw channels,
where each sequence in the DNA library may yield multiple copies with
independent noise patterns at the output. In this setting, a natural
approach is to first cluster the sequences and then solve several trace
reconstruction problems. We will study whether such clustering-based
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schemes are optimal, and we will provide results on the fundamental
limits of DNA storage channels with multi-draws.

DNA storage is a relatively new field and many important questions
remain unanswered. In Section 7, we end the monograph with a collection
of important open problems and a discussion of connections to existing
channel models and classical results in information theory.
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Channel Model

As a consequence of the unique way in which data is stored in DNA and
retrieved from DNA, studying the fundamental limits of DNA-based
data storage requires the development of new channel models.

Figure 2.1 illustrates the key features of a DNA-based storage
system. The data to be stored, described by a sequence of bits, is
first encoded into a set of short strings over the alphabet {A, C, G, T}.
The strings have length of typically less than 200 nucleotides, because
existing sequencing technologies can only synthesize short sequences.
These strings are synthesized as actual DNA molecules, via a noisy
synthesis process. The synthesis process typically generates multiple
noisy copies of each DNA molecule, as it is currently not possible to
synthesize individual molecules efficiently. The resulting pool of DNA
molecules is either stored directly or first amplified with Polymerase
Chain Reaction (PCR) and then stored. Prior to being stored, the DNA
molecules are often protected in some way, for example they can be
encapsulated in silica [39] (see Organick, Nguyen, McAmis, et al. [81]
for an empirical comparison of a few preservation options). In this form,
the DNA molecules suffer relatively small amounts of deterioration over
long periods of time under appropriate environmental conditions.

11
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Figure 2.1: Tllustration of a DNA-based storage system. In the writing phase, a
sequence of bits is encoded into a multi-set of short sequences over the alphabet
{A,C,G, T}, which are then synthesized into actual DNA molecules and stored. In
the reading phase, PCR is often used to replicate the DNA molecules, followed by
sequencing, which randomly samples molecules from the DNA library and reads
them. The decoder is applied to the resulting multi-set of sequences in order to
recover the original sequence of bits.

At the time of reading, the DNA is usually first amplified with
PCR, effectively replicating each of the molecules a large number of
times, and then sequenced. Sequencing can be thought of as randomly
sampling from the mixture. Since multiple copies of each molecule are
present due to the amplification step (possibly corrupted by different
noise patterns), the same molecule can be observed multiple times at
the output (or not at all). The decoder operates on the set of sequenced
strings with the goal of recovering the original bit string that encodes
the data.

2.1 The noisy shuffling-sampling channel model

In order to study the fundamental limits of DNA-based data storage,
we propose a general channel model, which we call the noisy shuffling-
sampling channel. This channel model, illustrated in Figure 2.2, captures
three key elements of DNA storage:

e Sampling: Since the reading of a DNA library is done via sequenc-
ing, strings are randomly sampled from the pool. Moreover, since
synthesis technologies generate multiple copies of each sequence
and PCR replicates the molecules in the pool, the same input
sequence can be observed multiple times at the output.
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Figure 2.2: The general noisy sampling-shuffling channel. The input are M

sequences of length L. The ith input sequence is sampled a number N; of times,
where each NV; is distributed according to a distribution ). The resulting N sequences
are shuffled out of order and each one passed through a noisy channel p(y|z).

e Shuffling: The ordering of the DNA molecules is lost during
storage, effectively causing them to be shuffled.

e Noise: DNA molecules are corrupted by noise at the synthesis,
storage and sequencing steps. The type of error (substitutions,
insertions, deletions) varies according to the technologies used.

Our general channel model for DNA storage is obtained by concatenating
a sampling channel (which creates a random number of copies of each
string), a shuffling channel (which shuffles a set of sequences uniformly)
and a noisy channel (which corrupts each of the strings).

We formalize the noisy shuffling-sampling channel as follows. The
input to the channel is a list [zF, ..
over an alphabet Y. The channel performs three operations:

.,2%,] of M sequences of length L

£ is sampled a number N; ~ Q of
.), where ¢, = Pr(N; =

L
i
The sampling of different strings is assumed to be independent.
We let N = Zij\il N; be the total number of resulting strings, and
we define A := E[N]/M = E[N;] to be the sequencing coverage

depth [59], [77].

e Sampling: Each sequence x
times, for some distribution @ = (qo, ¢1, - -

n) is the probability that n copies of the sequence x;* are drawn.

e Shuffling: The N strings are shuffled uniformly at random.

e Noise: Each of the N strings is independently passed through a
discrete memoryless channel p(y|z), producing a list of N output
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sequences [y{:, . ,yk]. Equivalently, the output of the channel
can be taken to be the (unordered) multi-set {y¥, ..., yk}.

Different specifications of the sampling distribution ) and the noisy
channel p(y|z) lead to a rich class of information-theoretic channels
whose capacity is in general unknown and nontrivial. As described
throughout this monograph, several important questions related to the
joint encoding of information across multiple strings arise in the context
of this general channel model.

We point out that, since synthesis, storage and sequencing are all
error-prone procedures, an even more general channel model would have
another noisy channel prior to the sampling step. For simplicity, we will
focus on the case with a single, final, noisy channel as this is already a
good modeling assumption.

2.2 Motivation for the channel model and error sources

The channel model in Section 2.1 is motivated by the technologies used
to synthesize, process, store, handle, and sequence DNA, and errors
arise in all those steps. In this section, we discuss the technologies and
sources of errors at these stages. We refer to Heckel, Mikutis, and Grass
[47] and references therein for a more detailed descriptions of the error
mechanisms.

Synthesis. Three different array-based synthesis methods are currently
used for DNA data storage. Array-based synthesis methods grow several
strands simultaneously on an array. One end of the DNA molecule is
attached to the array, and the nucleotides are added one by one through
the following mechanisms. The first method is a material deposition or
printing-based technology commercialized by the companies Agilent and
Twist Biosciences. This method was used for DNA storage by Erlich
and Zielinski [33] and Organick, Ang, Chen, et al. [80]. The second is
electro-chemical, commercialized by CustomArray, and was used for
DNA storage by Grass, Heckel, Puddu, et al. [39]. The third is based
on light-directed placement of nucleotides [103] and was used for DNA
storage by Antkowiak, Lietard, Darestani, et al. [7].
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Each of these technologies produces thousands to millions of copies
of each sequence. The printing based and electrochemical synthesis
technologies produce relatively few errors within the sequences, but
the light-directed technology produces many insertion, deletion, and
substitution errors within the sequences. In summary, DNA synthesis
produces a pool of DNA sequences, which contain many noisy copies of
each sequence.

Processing and storage. The DNA pool is either stored as it is,
or we may only select a small part of the synthesized DNA pool for
storage and dilute it so that the physical redundancy is relatively
small. As mentioned previously, the DNA might be protected through
encapsulation or by other means. Either way, during the processing and
storage of the DNA, the DNA sequences are prone to chemical decay,
which causes substitution errors and occasionally results in the full loss
of sequences.

Finally, PCR cycles are often used in a DNA storage system to
amplify the DNA. In each PCR cycle, a given sequence is amplified on
average by a factor slightly less than two, and through multiple cycles
this can lead to a significant imbalance in the sequences in the pool.

Sequencing. The currently most utilized sequencing technology is
commercialized by Illumina. This technology induces relatively few
substitution errors within the sequences and even fewer insertion and
deletion errors. Heckel, Mikutis, and Grass [47] estimated the reading
error probabilities based on the two-sided reads to be between 0.15%
and 0.4% and those errors are almost exclusively substitution errors.
Schirmer, D’ Amore, Ijaz, et al. [94] estimated a per-base error probability
of 0.2% for Illumina reads, a very similar number.

Another popular sequencing technology is nanopore sequencing.
Nanopore sequencing has significantly higher error probabilities, and
introduces substitution, deletion, and insertion errors. The per-pase
error of the Oxford Nanopore Technologies (ONT) MinlON sequencer
is about 10%, albeit the exact number depends on the operating mode.
The relative amount of deletions, substitutions, and insertions is similar
for this technology.
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2.3 Channel statistics

As described in Section 2.1, the channel parameters that need to be
specified are the sampling distribution @ and the noisy channel p(y|z).
The sampling and noise distributions depend on the error sources
discussed in Section 2.2 and are determined by the technologies that
are used. Here, we discuss the sampling and noise statistics for a few
real-world DNA storage systems.

Sampling distribution. The sampling distribution is determined by
several different factors. The first one is the number of physical copies of
each sequence initially stored in the DNA pool, known as the physical
redundancy (PR). For example, if the physical redundancy is 100,
then the DNA pool consists of 100M DNA molecules, where M is the
original number of synthesized sequences. The second is the number of
PCR cycles (PCRC) used. Each PCR cycle on average multiplies each
sequence by a factor slightly less than two. Furthermore, the sequencing
read coverage (i.e., the number of sequencing reads divided by M) can
be adjusted.

Figure 2.3 depicts the empirical sampling distribution from Heckel,
Mikutis, and Grass [47] for four different DNA storage experiments from
the literature. The read coverage of all four experiments is relatively
similar (about 300-500). However, they have vastly different physical
redundancies (PR), i.e., number of physical sequences in the stored pool
per original sequence. DNA libraries with smaller physical redundancy
typically require more PCR cycles prior to sequencing. However, each
PCR cycle increases the imbalance of the sequences in the dataset,
because they may lead to some sequences being amplified more than
others. This leads to a loss of sequences and increases the tail of the dis-
tribution. Figure 2.3 illustrates that the lower the physical redundancy,
the more long-tailed is the distribution, and more of the sequences are
never seen at the output. More details on the quantification of the
sampling distribution can be found in Chen, Takahashi, Organick, et
al. [21] and Heckel, Mikutis, and Grass [47].
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Figure 2.3: The empirical distributions (Figure 5 in Heckel, Mikutis, and Grass
[47]) of the number of reads of four different datasets from Erlich and Zielinski [33],
Goldman, Bertone, Chen, et al. [38], and Grass, Heckel, Puddu, et al. [39] per each
given sequence that has been synthesized, along with the physical redundancy (PR)
and PCR cycles (PCRC). The data in (a) and (b) is approximately negative binomial
distributed, whereas the data in (c) and (d) have a long tail and a peak at zero. The
percentages in the figure are the fraction of sequences that are never seen at the
output. The read coverage (number of reads per original sequence) of all datasets is
comparable. Likely, the difference in distribution of (a) and (b) to (c¢) and (d) is due
to the significantly more cycles of PCR in (a) and (b), while the difference of (a)
and (b) is due to low physical redundancy and dilution.

Errors within sequences. Errors within sequences are due to synthesis,
sequencing, and decay of the DNA. Table 2.1 contains the estimated
error probabilities from four DNA storage experiments in the literature.
The probabilities indicate the error probability per nucleotide, e.g., a
0.56% substitution error probability means that roughly one out of
200 nucleotides contains a substitution error. In all experiments, the
data was stored and read without any artificial aging [39]. Also, in
all experiments low-error Illumina sequencing technology was used.
Therefore, the errors within sequences in those experiments are to a
large extent due to the errors in synthesis. It can be seen that for the
established printing-based and electrochemical synthesis technologies,
the errors within sequences are relatively small, while the errors for
light-directed synthesis are very large.
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Table 2.1: Error probabilities within sequences in four data storage experiments.

Experiment Subst.  Del. Insert. Length  Synthesis
Grass, Heckel, Puddu, et al. [39] 0.56% 0.99% 0.09% 117 CustomArr.
Erlich and Zielinski [33] 0.36% 0.16% 0.18% 152 Twist
Goldman, Bertone, Chen, et al. [38] 0.08% 0.54% 0.02% 117 Agilent
Antkowiak, Lietard, Darestani, et al. [7] 2.6% 6.2% 5.7% 60 light-dir.

Note that in the first three datasets, the majority of sequences that
contain insertion and deletion errors can be identified easily by their
length being longer or shorter than the original sequence, and have been
removed in the respective experiments. This results in a set of DNA
sequences which are almost free of deletion and insertion errors. For the
dataset in Antkowiak, Lietard, Darestani, et al. [7] this wouldn’t make
sense, as most sequences contain insertion or deletion errors, and too
many sequences would be removed.

For more error statistics, see the papers by Erlich and Zielinski [33],
Heckel, Mikutis, and Grass [47], and Sabary, Orlev, Shafir, et al. [88].

2.4 Definitions and notation

In Section 2.1, we formally defined the noisy shuffling-channel, which
will be the main object of study of this monograph. In this section we
provide additional definitions and notation required to formally analyze
the capacity of this channel.

A code C for a noisy shuffling-sampling channel is a set of codewords,
each of which is a list [z}, ..., 2] of M strings of length L, together with
a decoding procedure. The alphabet 3 of practical interest is typically
{A,C, G, T}, corresponding to the four nucleotides that compose DNA.
However, to simplify the exposition we will often focus on the binary
case X = {0, 1}. Most of the results can be extended to a quaternary
alphabet in a straightforward way, as we briefly discuss in Section 7.1.

In practice, a codeword [z¥,... 2%,] € C, which is a set of M
sequences each of length L, is stored as a physical mixture of M synthe-
sized DNA molecules. Hence, we use the words molecule and sequence
interchangeably.
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Our main parameter of interest is the storage rate
log [C|

ML’
i.e., the number of bits stored per DNA base synthesized. To formally

define the storage capacity, we consider an asymptotic regime where
M — oco. We let the sequences have length

R =

(2.1)

L= BlogM (2.2)

for a fixed parameter 8 > 0. This is motivated by the practical constraint
that the synthesized molecules should be short. As we will see in the
next section, if L grows slower than log M, no positive rate is achievable.
Moreover, as our results show, L = O(log M) is the asymptotic regime
of interest for this problem.

We say that storage rate R is achievable if there exists a sequence
of DNA storage codes {Cys}, each with rate R, such that the decoding
error probability tends to 0 as M — oo. The storage capacity is the
supremum over all achievable storage rates.

Additional notation. Throughout this monograph, log(-) is the log-
arithm base 2 and In(+) is the natural logarithm. For a real number
z, we let (z)* = max(z,0). We let Z be the set of non-negative in-
tegers, and for a positive integer N, we let [1 : N] = {1,...,N}. For

a vector x = (x1,...,2q), we let [|x[, = /2%, 22 be its 5 norm,
x|, = 34, |2 its 1 norm, and ||x||, = max; |z;| its £ norm.

We say that a random variable X has the Bernoulli(p) distribution
if Pr(X =1) =p and Pr(X =0) =1 — p. We say that a non-negative
integer-valued random variable X has the Poisson()\) distribution if
Pr(X = k) = <2°, for k > 0.
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Shuffling Channels

As discussed in Section 2, a distinguishing aspect of DNA-based storage
is the fact that the data stored in the DNA library is read out of order,
in a shuffled manner. In this section, we focus on the coding and capacity
problems that arise in settings where ordering information is lost.

To build intuition, we first briefly discuss a simple shuffling channel
which just shuffles the set of input sequences. We then consider the
(noise-free) shuffling-sampling channel, where all reads are noise-free;
i.e., the discrete memoryless channel p(y|x) in Figure 2.2 is just the
identity channel. This will enable us to identify the costs and challenges
that arise from the unordered nature of DNA-based storage. Finally, we
consider a generalization of the shuffling channel that allows variable-
length pieces. This generalization is motivated by the fact that the
stored DNA molecules may also be subject to random breaks.

3.1 The shuffling channel

To begin our information-theoretic analysis of DNA-based data storage,
we first put aside the noise that corrupts each of the individual DNA
molecules and assume that the writing and reading processes are perfect;
i.e., every single molecule is synthesized and sequenced correctly. With

20
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these assumptions, the DNA storage channel is described by a shuffling
channel, which corresponds to the dashed rectangle in Figure 2.2. The
input to a shuffling channel is a list of M strings of length L and the
output is an unordered, or shuffled, version of these strings.

The capacity of this noise-free shuffling channel can be shown to be

) log M\ ™" 1\ "
Jim (log |5 =52 ) " = (1og 12— 5) (3.1)

as we argue below. This expression supports the intuition that, when the

length L of the DNA molecules is large, the impact of shuffling is small,
and we achieve close to the 2 bits/nucleotide that can be achieved for
|X| = 4 if there is no shuffling and no noise. Furthermore, equation (3.1)
shows that when L scales logarithmically in M, the capacity of the
shuffling channel is nontrivial.

The capacity expression in equation (3.1) can be proved with a
simple counting argument. Notice that if we view the input and output
of the channel as multi-sets of M strings of length L, then the channel
does not affect the input at all. Hence, the capacity is simply the
logarithm of the number of distinct multi-sets of M strings of length L,
divided by the number of nucleotides stored M L.

The operation of counting the number of distinct multi-sets of a
given size will be used often throughout this monograph. Notice that
multi-sets can be equivalently represented by a histogram, which records
how many times each element, out of a list of possible elements, appears.
If the number of possible distinct elements is a, a multi-set with b
elements can be represented by a vector t € Z$ with ||t||; = b.

Lemma 3.1. The number of distinct vectors t € Z% with ||t||; = b is

Tla,b] = <a+2_1> < (e(cH_bb_l)>b.

Proof. Notice that vectors t € Z% with ||t|; = b are in one-to-one
correspondence with binary strings containing (a — 1) zeros and b ones.
For t = (t1,...,t,), the corresponding string is

1...101...10...01...1. (3.2)
t t t
1 2 a
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Such a string has (a — 1) zeros and b ones, and distinct strings with
(a — 1) zeros and b ones correspond to distinct vectors t. The number
of distinct strings of this form is

(a—1+0)! f(a+b-1
(a—1)b b )
Finally, the upper bound in the statement of the lemma is a standard

bound for binomial coefficients. O

Since the input to the shuffling channel is a multi-set of M strings
of length L = Blog M, the capacity of the shuffling channel is given by

. 1 L
A}ll)noo ML log T{|X[%, M].

Using Lemma 3.1 and the bounds klog(n/k) < log () < klog(en/k),
it follows that the capacity is given by

= lim (log|2|—

M—o0
= (log|x| —1/8), (3-3)

as we wanted to show. In particular, if g < the capacity is zero.

_1
log [%]
Notice that this was not obvious a priori since, even for 3 < ﬁ\zl’

still has a large number M of length-L strings with L — oo as M — oo,

one

and it might have been possible to encode data on them at a positive
rate.

3.2 Capacity of the shuffling-sampling channel

The simple analysis in Section 3.1 shows that the shuffling aspect of
DNA storage effectively causes the capacity to be reduced by 1/4. In
this section we analyze the impact of also bringing sampling into the
picture. The main result of this section generalizes the simple capacity
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log M

——

000 10110 ::? ?:g:: 000 10110

001 11101 001

010 o101 FH—Hon 010 01011

011 11001 sampling and 010 01011 sort 011 11001

M — L » 000 10110 — »

100 00100 shuffling channel 100 00100 :g‘l’ 00100

101 10110 000—16110

110 o101 110 o1011
o011 11001

111 110m 1 110n

(B —1)log M

Figure 3.1: Index-based scheme for the shuffling-sampling channel. All M input
sequences are prefixed with a unique index of length log M. At the output of the
channel, the decoder uses the indices to remove duplicates and sort the molecules.
Notice that the missing indices (001 and 101) can be thought of as block erasures.
Hence, this scheme effectively creates a block-erasure channel, where blocks of size L
are erased with probability go.

expression in (3.1) and settles the capacity of the noise-free shuffling-
sampling channel, for a general sampling distribution ). As described
in Section 2, the input to the channel are M sequences of length
L = flog M. The channel samples the ith sequence N; ~ ) times, and
shuffles all sampled sequences. Notice that ¢q is the probability that zero
copies of mZL are drawn; i.e., qg is the expected fraction of input sequences
never seen at the output. We focus on the case ¥ = {0, 1} for simplicity
of exposition, but the extension to general X is straightforward, as
discussed in Section 7.1.

Theorem 3.2. The capacity of the shuffling-sampling channel is

C=(1-q)(1-1/8). (3.4)
In particular, if 8 < 1, no positive rate is achievable.

The capacity expression in equation (3.4) can be intuitively un-
derstood through the achievability argument. A storage rate of R =
(1 —qo) (1 —1/p) can be easily achieved by prefixing all the molecules
with a distinct tag or index, which effectively converts the channel to a
block-erasure channel, as illustrated in Figure 3.1.

More precisely, we use the first log M bits of each molecule to encode
a distinct index. Then we have L —log M = (5 — 1) log M symbols left
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per molecule to encode data. The decoder can use the indices to remove
duplicates and sort the molecules that are sampled. This effectively
creates an erasure channel, where molecule 7 is erased if it is not drawn
(i.e., N; = 0) which occurs with probability go. Since the expected
number of erasures is

| M
E[M;]I{Niz()}] = qo,

we achieve storage rate
(1 —qo)M(L —1log M)
ML

The surprising aspect of Theorem 3.2 is that this simple index-based
scheme is optimal. It is also worth noting that the capacity expression

= (1 =q0)(1-1/5). (3.5)

only depends on the sampling distribution @) through the parameter ¢,
i.e., the fraction of sequences that is not seen at the output.

In order to gain intuition on a practical implication of this theorem,
suppose that each sequence is drawn according to a Poisson distribution
with mean A, so that in expectation E[N] = AM sequences in total are
drawn and A can be thought of as the sequencing coverage depth. The
probability that a sequence is never drawn is e~ and the capacity is

C=(1-eM1-1/8). (3.6)

This suggests that practical systems should not operate at a very high
coverage depth A, as high coverage depth significantly increases the time
and cost of reading, but only provides little storage gains, according to
the capacity expression. Notice that, in order to guarantee that all M
sequences are observed at least once, we need N = Q(M log M) [59],
[77]. When M is large, it is wasteful to operate in this regime, as this
only gives a marginally larger storage capacity, but the sequencing costs
can be exorbitant.

The result in Theorem 3.2 is flexible to allow different sampling
models. In particular, one can consider separating the PCR amplification
performed on each synthesized molecule from the sequencing step.
Since one cannot control the PCR amplification factor precisely, it is
reasonable to assume that a molecule z” is first randomly amplified and
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a total of A > 0 copies are stored. If we consider a Poisson sampling
model for the sequencing step, the effective coverage depth is A/E [A]
(since we are actually sampling from ME [A] molecules). In this case,
the probability that none of the copies of 2% is sampled at the output
is E [(e‘A/E[A])A} =E {(e(_’\/E[A])A}. This can be recognized as the
moment-generating function of A evaluated at —\/E[A]. In particular,
when PCR is also modeled as a Poisson random variable with mean
E[A]=a, E [69/4} = ea(egfl), and the capacity of the resulting noise-
free shuffling-sampling channel is

C=(1-e0=) 1 -1/p). (3.7)

The capacity can be similarly computed based on other sampling dis-
tributions (such as the Negative Binomial distribution observed in
Section 2.3).

3.2.1 Motivation for converse

One can attempt to prove a converse by following the approach in
Section 3.1. Notice that one can view the noise-free shuffling-sampling
channel as a channel where the encoder chooses a histogram over the 2%
sequences of length L and the decoder observes a noisy version of this
histogram where the frequencies are perturbed according to (). From
this angle, the question becomes “how many histograms t € Z?f with
It|[1 = M can be reliably decoded?”

Following the counting argument in Section 3.1, the total number
of distinct histograms t € Z%_L with |[t||; = M is T[2%, M]. Since this
is the total number of histograms that can be used as an input, (3.3)
implies that a bound to the shuffling-sampling channel capacity is

C<1-1/B. (3.8)

Therefore, if we had a shuffling-sampling channel where the decoder
observed exactly the M stored molecules (i.e., go = 0 and ¢; = 1), the
index-based approach would be optimal from a rate standpoint.

A simple outer bound that involves ¢g can be obtained by considering
a genie that provides the decoder with the “true” index of each sampled

molecule. In other words, [z7,... ,xﬁ/[] are the stored molecules, and
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the decoder observes [yt = ,y%] and the mapping o: {1,...,N} —
{1,..., M} so that y] =l o(j)- This converts the channel into an erasure
channel with block-erasure probability qg, which yields

C<1-qo. (3.9)

It is intuitive that the bound (3.9) should not be achievable, as the
decoder in general cannot sort the molecules and create an effective
erasure channel. However, it is not clear a priori whether prefixing every
molecule with an index is optimal.

Combining (3.8) and (3.9) implies that C' < min(1 — go,1 — 1/5),
but there is still a gap to the achievable rate in (3.5). The converse
presented in the next section utilizes a more careful genie that does
not give us the permutation o (but something weaker) to show that
C < (1-gqo)(1—1/p), implying the optimality of index-based coding
approaches.

3.2.2 Converse

Let [z, ..., 2];] be the M length-L molecules written into the channel
and [yf,... ,yN] be the length-L molecules observed by the decoder.
Notice that, whenever the channel output is such that y* = L for
i # j, the decoder cannot determine whether both yZ and yj Were
sampled from the same molecule asz or from two different molecules
that obey xé: = xﬁ, ¢ # k. In order to derive the converse, we consider
a genie-aided channel that removes this ambiguity. As illustrated in
Figure 3.2, before sampling the N molecules, the genie- aided channel
appends a unique index of length log M to each molecule x¥, which
results in the set of tagged molecules {(zF,2)}M,. We emphasize that
the indices z; are all unique, and are chosen randomly and independently
of the input sequences {x}},. Notice that, in contrast to the naive
genie discussed in Section 3.2.1, this genie does not reveal the index i of
the molecule zF from which yeL was sampled. Therefore, the channel is
not reduced to an erasure channel, and intuitively the indices are only
useful for the decoder to determine whether two equal samples yEL = y,f
came from the same molecule or from distinct molecules.

The output of the genie-aided channel, denoted by {(yF, z Zo(i)) N, is
then obtained by sampling from the set of tagged molecules {(x¥, z;)},,
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Figure 3.2: Genie-aided channel for converse for the shuffling-sampling channel.
The genie appends a random (but unique) index to each of the input sequences
z¥, ..., 2%, This allows the decoder to identify which outputs sequences originated
from the same input sequences, and remove them.

in the same way as the original channel samples the original molecules.
The mapping o: [1 : N] — [1 : M] is such that y* was sampled from
xg(i). Notice that the actual mapping ¢ is not revealed to the decoder.

It is clear that any storage rate achievable in the original channel
can be achieved on the genie-aided channel, as the decoder can simply
discard the indices, or stated differently, the output of the original
channel can be obtained from the output of the genie-aided channel.

Notice that {(y* ,zo(i))}fil is in general a multi-set. We will let
set({(yF, zo(1)) }iL1) be the set obtained from {(yF, z,(;))}i-, by remov-
ing any duplicates. Then set({(y;, za(i))}f\il) is a sufficient statistic for
{xF1M_ since all tagged molecules are distinct objects, and sampling the
same tagged molecule (zF, 2;) does not yield additional information on
{zE}M,. More formally, conditioned on set({(y¥, z,(;)) }iey), {aF 3L, is
independent of the genie’s channel output {(yF, z,(;)) }L;.

Next, we define the frequency vector f € Z%! ’ (note that |X1] =
2floe M — ©fBY) that is obtained from set({ (Y, zo()) 1) as follows.
The entry of f corresponding to the molecule y~ € 27 is given by

L. L L N y.,.L__ L
£ly"] = { 0] 200)) € set{(vF z0) ) wf = 9"}
The frequency vector f is essentially a histogram that counts the number
of occurrences of y* in the set of tagged molecules {(yF, zg(i))}f\il. Notice
that the entries of f can take values greater than one, because at the
input we can choose to use the same molecule for multiple mf
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Since set({(yF, zo1)) }i-1) is a sufficient statistic for {zf}2M,

the tags added by the genie were chosen at random and independently
FHLy
Hence, we can view the (random) frequency vector f as the output of
the channel without any loss. Notice that |set({(yF, Zo(i)) Nl =1,
and we have ||f||; < M and E[||f||;/M] =1 — go. The following lemma

asserts that ||f||; does not exceed its expectation by much.

and

of {zF}M,, it follows that f is also a sufficient statistic for {x

Lemma 3.3. For any § > 0, the frequency vector f at the output of the
genie-aided channel satisfies

f
Pr(H]\’j>1—qo+5)—>O, as M — oo.

Proof. Note that the number of distinct fragments drawn is

€l _ 1 5
— =—> 1{N; :
M M4“ {0}
i=1
Since 1 {N; > 0} are independent random variables with expectation
1 — qo, Hoeffding’s inequality yields

f
pr(lihs g +s) <,

which concludes the proof. ]

We remark that an analogue of Lemma 3.3 can be proved for
the sampling-with-replacement model, as described in Shomorony and
Heckel [98].

We now append the coordinate fy = (1 —go + )M — ||f||; to the
beginning of f to construct ' = (fo,f). Notice that when [f|; <
(1 —qo + 9)M (which by Lemma 3.3 happens with high probability),
we have ||[f’||; = (1 — go + 0)M. This construction of £’ will allow us to
utilize Lemma 3.1 below. Fix § > 0, and define the event

€ =Alflr> 1 —qo+ )M} (3.10)

with indicator function 1g. By Lemma 3.3, Pr(£) — 0 as M — oc.
Consider a sequence of codes {Cps} with rate R and vanishing error
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probability. Let W be the message to be encoded, chosen uniformly at
random from {1,...,2MER} From Fano’s inequality we have

MLRs=H(W)=IW;f)+ HW|f')
<H(f')+1+ P.MLR;, (3.11)
where P, is the probability of a decoding error, which by assumption
goes to zero as M — oo. We can then upper bound the achievable
storage rate R as
MLR(1—-P.)<H(f')+1
<H (f/, ]lg) +1
<Pr(E)H (£|€)+Pr () H(|E)+ H(le) +1,
(3.12)
Note that the vector f’ above has dimension M? +1 and, given the event
& occurs, ||f'l; = (1 — qo + 6)M, and we have H(f'|€) < log T[M” +

1,(1 — go + 0)M], where T|a,b] is the number of vectors x € Z% with
|z||1 = b. From Lemma 3.1,

log T[M? +1,(1 — qo + 6)M]

eMP—1
<(1l—-g+6)Mlog|le+ ———
<(I—q+9) g( (1_q0+5)>

< (1—qo+9d)Mlog (aMB_l)

< (1—qo+6)M[(B—1)log M +logal,
where « is a positive constant. Moreover, we notice that f’ is a function of
f, which is a vector in Zﬂ‘_ﬁ with ||f||; < M. Next, we define f” = ( fo, f),

where fo = M — ||f||1 so that [|f”||; = M and we can apply Lemma 3.1.
We note that

H(f'|€) = H(f"|E) < log T[M"® + 1, M]

M + MP
< g (0220)

< M((8—1)log M +log '),
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where o/ is another positive constant. Dividing (3.12) by ML and
applying the bounds above yields

R(1 — P,) < Pr(e) M8 = D1og M + log o

ML
+(1—qo+5)M[(5—1)logM+loga]+ 2
ML ML
-1 log o/
<P ("5 + )

1 log 2
(-t d) (“5*5@]\4) =

Finally, letting M — oo yields
R<(1—q+0)(1-1/5),

since Pr(£) — 0 by Lemma 3.3. Since § > 0 can be chosen arbitrarily
small, this concludes the converse proof.

3.3 Storage-sequencing tradeoff

Most studies on DNA-based storage emphasize the storage rate (or
storage density) as the main figure of merit, while sequencing costs
are often disregarded. This is due to the fact that current costs of
sequencing technologies are orders of magnitude lower than synthesis
costs. However, it is still important to understand, for a given storage
rate, how much sequencing is required for reliable decoding, as this
determines the time and cost required for retrieving the data.

From this perspective, it makes sense to analyze the tradeoff between
storage rates and the amount of sequencing required for reliable recovery.
To do this, we can consider, in addition to the storage rate, the recovery
rate, defined as the number of bits recovered per DNA base sequenced,

_ log|C]

R, = . 3.13

In a practical setting, one can control the amount of sequencing per-
formed, typically specified in terms of the coverage depth N/M. If we
consider the error-free shuffling-sampling channel from Section 3.2, in
the case where @) is a Poisson distribution with mean A, then A = N/M
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Figure 3.3: (R, R,) feasibility region for 8 = 5.

is the coverage depth, and one would like to choose a value of A that
achieves a good trade-off between storage rate and recovery rate.

If we let Rs be the storage rate (previously just R, see (2.1)), from
Theorem 3.2 and the fact that Ry = AR,, the (R, R,) feasibility region
can be fully characterized.

Corollary 1. For the error-free shuffling-sampling channel with Q ~
Poisson(\), rates (Rs, R,) are achievable if and only if, for some A > 0,

Ry <(1—e™)(1-1/p),

RTsl_e_A(l—l/B)-

This region is illustrated in Figure 3.3. This tradeoff suggests that a
good operating point is achieved by not trying to maximize the storage
rate (which technically requires A — 00). Instead, by using some modest
coverage depth A = 1,2, 3, most of the storage rate (63%,86%, 95%,
respectively) can be achieved. This is in contrast to what has been done
in practical DNA storage systems that have been developed thus far,
where the decoding phase utilizes very deep sequencing.

To be concrete, suppose we are interested in minimizing the overall
cost of storing data on DNA. Synthesis costs can be several orders
of magnitude higher than sequencing costs. Suppose that per-base
synthesis costs are « times larger than per-base sequencing costs. Then,
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if our goal is to minimize the cost for synthesizing and sequencing a
given number of bits, the overall cost is proportional to

g 1 q+A

Ry R, (1—-eM1-1/8)
This quantity can be minimized over A, yielding the optimal cost per
bit. For example, if ¢ = 100, A = 4.7 and if ¢ = 10000, A = 9.2.

This suggests that it is possible to achieve reliable DNA storage that

minimizes overall costs using only moderate coverage depths. We point
out that, in practice, one may be interested in optimizing other quantities
such as reading time or considering a scenario where the data is read
more than once.

3.4 DNA breaks and variable-length pieces

During synthesis, storage, and sequencing, the DNA molecules in a DNA
storage system are subject to random breaks. While a careful handling
of the DNA library can minimize the occurrence of such breaks, from
a system design point of view, it is interesting to study the impact
that such breaks may have on the overall system capacity. Such an
understanding can enable system designs that combat DNA degradation
through coding, and that therefore do not require a tight control of the
temperature of the DNA library. Furthermore, in current implementa-
tions of DNA storage systems, the data is read via high-throughput
sequencing, which is typically preceded by physical fragmentation of the
DNA with techniques like sonication, which utilizes sound vibrations to
fragment the DNA in random locations [84].

A basic initial model to study breaks in DNA molecules is the torn-
paper channel, proposed by Shomorony and Vahid [99] and illustrated
in Figure 3.4. In this setting, the channel input is a length-n binary
sequence z'* that is torn into pieces by the channel. A tearing point
between any two consecutive symbols in x" is assumed to occur with a
fixed probability p, € (0,1) and independently from all other possible
tearing locations. As a result, the lengths N1, No,... of each of the
fragments produced by the channel has a Geometric(p,,) distribution.
The channel output is a shuffled list of these pieces or, equivalently, an
unordered set containing these pieces.
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Figure 3.4: In the torn-paper channel, a single (binary) sequence of length n is sent
through the channel. The channel tears the input sequence into pieces of random
sizes. If tearing points occur according to an i.i.d. Bernoulli process, as considered
in Shomorony and Vahid [99], then the fragment sizes will follow a Geometric(py,)
distribution.

As it turns out, characterizing the capacity of this channel is non-
trivial even in this noise-free setting. To build some intuition, notice that
the expected fragment length is E[N;] = 1/p,,. Suppose that, instead of
random-length fragments, we have fragments of a deterministic length
1/pp. In this case, the channel breaks the length-n sequence z™ into
np, pieces of equal length. Notice that since, in this case, the tearing
locations are known a priori, the channel is identical to the error-free
shuffling channel discussed in Section 3.2, with every piece being sampled
exactly once. In the notation from Section 3.2, the capacity of an error-
free shuffling channel where each piece is drawn exactly once is 1 — 1/,
where [ is the ratio between the logarithm of the number of pieces and
the piece length. This implies that, for the torn-paper channel with
pieces of a deterministic size 1/p,,, the capacity is

1 n
lim 1 1280

Jim Upn Jim 1 —pylogn — pplogpn.

We see that the regime of interest (where the capacity is non-trivial) is
when p,, scales as 1/logn, in which case the capacity reduces to

C’deternrlinistic length = (1 - 7113'1010 Pn 10g ’I’L)+. (314)
Mimicking the notation from previous sections, it is reasonable to let

B tim P gy L
n—oo log(np,) n—o p,logn
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where the last equality assumes the regime p,, ~ 1/logn. The quantity
B plays the same role of a “normalized fragment length” (normalized
by the logarithm of the number of pieces) as it did in previous sections.
From (3.14), we now have that the capacity for the case of deterministic

(1- ;)+ , (3.15)

analogous to the noise-free shuffling channel considered in Section 2.1.

It is not clear a priori whether the capacity of the torn-paper channel
with random fragment lengths should be higher or lower than (1—1/3)7.
The fact that the tearing points are not known to the encoder makes it
challenging to place a unique index in each fragment, suggesting that

fragment lengths becomes

the torn-paper channel is “harder” and should have a lower capacity.
However, this intuition is incorrect and the capacity of the torn-paper
channel with Geometric(p,)-length fragments is in fact higher than
(1 —1/B)". More precisely, we have the following result.

Theorem 3.4. The capacity of the torn-paper channel is
Crpc =e /7, (3.16)

where 5 = lim,,_,so 1m+0g71'

The comparison between Crpc and (3.14) is shown in Figure 3.5.
Intuitively, this boost in capacity comes from the tail of the geometric
distribution, which guarantees that a fraction of the fragments will
be significantly larger than the mean E[N;] = 1/p,. This allows the
capacity to be positive even for § < 1, in which case the capacity of the
deterministic-tearing case in (3.14) becomes 0. We refer to Shomorony
and Vahid [99] for the proof of Theorem 3.4.

General torn-paper channel capacity. The capacity expression of the
torn-paper channel can be generalized to the case of arbitrary fragment
length distribution. Moreover, it can be generalized to allow some of
the fragments to be lost and not be observed at the output.

Consider a torn-paper channel that breaks the length-n sequence x™
into pieces of lengths Ny, No, ..., following a common distribution. In
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Figure 3.5: Comparison between the capacity of the torn-paper channel C' = e~ VP
and the capacity of the shuffling channel with fragments of fixed length 1/p,.

addition, pieces of length ¢ are deleted according to a length-dependent
deletion probability d(¢). As shown by Ravi, Vahid, and Shomorony
[86], the capacity of this channel is described by the informal expression

Clgeneral TPC = coverage — reordering-cost. (3.17)

Here, “coverage” refers to the fraction of " that is covered by pieces
of length at least logn that are observed at the channel output, and
“reordering cost” refers to the fraction of bits that would need to be
dedicated to indices in order to “unshuffle” the pieces longer than logn.
In the case of the error-free shuffling channel where each piece is
observed exactly once, as long as the pieces have length at least logn,
the coverage is 1, and the reordering cost is the fraction of bits needed
for adding log(np,) indexing bits to each of the np, fragments; i.e.,

i "Pn log(npy,)

. 1
n—00 n :nh—{gopnlogn_ 38

3
yielding the capacity formula (1 —1/8)7. In the case of piece lengths
distributed as Geometric(p,,), using the Exponential approximation to
a Geometric random variable, the coverage by pieces of length at least
logn can be shown to be (1 +1/8)e~'/#, and the reordering cost can
be shown to be f71e 1/8 yielding the capacity expression e 1/5.
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The recipe in (3.17) can be used to derive other closed-form capacity
expressions for different piece-length distributions and deletion prob-
ability functions d(¢). As shown in Ravi, Vahid, and Shomorony [86],
the capacity depends on d(¢) through the asymptotic behavior of d(¢),
which is captured by

d(§) = lim_d(¢logn) logn.

Table 3.1 shows several examples of capacity expressions for torn-paper
channel with specific choices of fragment length distribution and deletion
probability d(§).

Table 3.1: Capacity for different torn-paper channels

N; d(e) Capacity
Geometric(py,) 0 e /P
Geometric(py,) € (1—e)e /8
Geometric(py,) e 6 | e /P (1 — %)

Unif[0 : vlogn], v > 1| 0 (y=1)/7)?
fixed £, £, > logn 0 1-1/p)*
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Noisy Shuffling Channels

In Section 3, we studied the impact of two key aspects of DNA storage
systems: the natural shuffling that occurs due to the fact that molecules
are stored in an unordered fashion, and the output sampling that occurs
due to the sequencing operation. In this section, we study the additional
effect of errors within the stored sequences.

In order to focus on the impact of noise, we consider a simpler
sampling distribution @ than the general one considered in Section 3.2.
Specifically, we focus on a “single-draw” setting, where each sequence is
drawn either once or not at all (but never multiple times). The main
result in this section characterizes the capacity of the noisy shuffling-
sampling channel in Figure 2.2 when @ is a Bernoulli(1 — ¢) distribution
and the noisy channel is a binary symmetric channel with crossover
probability p. We then discuss extensions to the binary erasure channel
and to more general channels. In all these cases, the capacity expression,
at least in some parameter regime, is shown to be

(1 - Q)(Cnoisy - 1/6)+7 (41)

where Choisy is the capacity of the noisy channel p(y|x) in Figure 2.2,
leading to the conjecture that (4.1) holds for general discrete memoryless
channels (see Section 7.1).

37
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4.1 Noisy shuffling-sampling channel with single draws

In this section we study the capacity of the noisy shuffling-sampling
channel where the sampling distribution is Bernoulli(1 — ¢) for a fixed
parameter g. Hence we have Pr(N; = 0) = ¢ and Pr(N; =1) =1 — g,
for ¢ = 1,...,M, and the number of output sequences N satisfies
E[N] = (1 — ¢)M. Moreover, we will assume that the molecules are
each corrupted by a BSC with crossover probability p. We refer to this
channel as the BSC shuffling-sampling channel.

As in the error-free shuffling-sampling channel considered in Sec-
tion 3.2, we consider an index-based coding scheme. As we will show,
for a large set of parameters p and 3, this scheme is capacity-optimal.
More precisely, we describe a scheme based on an outer and an inner
code and argue that it achieves a rate arbitrary close to

Rindex = (1 - Q)(CBSC - 1/5)? (4'2)

where Cpsc = 1 — H(p) is the capacity of a BSC with crossover
probability p. This scheme is depicted in Figure 4.1. As the outer
code, we take an erasure-correcting code with block length M and
rate (1 — ¢), where each symbol is itself a binary string of length
L(1-H(p)—1/8—¢€) ~ LCggc —log M, for some small € > 0. As inner
code, we take a code designed for a BSC with codewords of length L
and rate Rpsc = 1 — H(p) — € & Cpgc. We first encode the data using
the outer code, which yields M symbols given as binary strings of length

L(1—H(p) —1/B —€) = LRpsc — log M.

We take each symbol, add a unique binary index of length log M
and encode the resulting sequence using the BSC code, which yields
M length-L sequences. With this scheme, we encode a total of (1 —
q)M (LRpsc — log M) data bits, with a data rate of

(1 —¢)M (LRpsc — log M)
ML

Since € > 0 can be chosen arbitrarily small, this scheme achieves a rate

= (1 —q)(Resc —1/8).  (43)

arbitrarily close to the rate given in (4.2), as claimed. For simplicity,
in this short argument we did not take into account that the inner
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Figure 4.1: Index-based encoding for the BSC shuffling-sampling channel. First,
ML - Rindex data bits are encoded using an erasure outer with rate 1 — g, where each
codeword comprises M symbols from an alphabet ¥’ with log |¥'| = LCrsc — log M
(or equivalently, each symbol is a binary string of length LCgsc — log M). A unique
log M-bit index is added to each symbol, and a capacity-achieving BSC code is
applied to each length-LCpsc binary string, producing M length-L binary strings.

codeword is decoded in error with a vanishing probability; we refer to
Shomorony and Heckel [98] for a more formal achievability argument
taking this into account.

On the other hand, the result from Section 3.2, with @ ~ Ber(1 —q)
implies that C' < (1—¢q)(1—1/p), since the error-free shuffling-sampling
channel cannot be worse than the noisy shuffling-sampling channel.
Furthermore, a simple genie-aided argument where the decoder observes
the shuffling map can be used to establish that C' < (1 — q)Cgsc, where
Cpsc = 1 — H(p) is the capacity of a BSC with crossover probability p.
Hence, a capacity upper bound is given by

C'<(1-q)min[l - H(p),1 - 1/4]. (4.4)
Our main result improves on the upper bound in (4.4), and establishes

that for parameters (p, ) in a certain regime, the lower bound in
equation (4.2) is the capacity.
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Figure 4.2: Parameter regions for which the capacity is characterized. The capacity
in the blue region is given by C = (1 — ¢)(1 — H(p) — 1/8), and the capacity in the
red region (i.e., for < 1) is 0. In the gray region, it is still unknown.

Theorem 4.1. For the BSC shuffling-sampling channel,

C = (1—q)(1 - H(p) - 1/8). (4.5)

as long as p < 1/4 and 1 — H(2p) — 2/ > 0. Moreover, if 5 < 1, the
capacity is C' = 0.

The set of parameters (p, §) such that 1 — H(2p) — 2/ > 0 and
p < 1/4 is the blue region in Figure 4.2. In particular, (4.5) holds if
p<0.1and 8> 64, orif p <0.01 and 8 > 2.35.

4.1.1 Converse

To derive the converse, we view the input to the channel as a binary
string of length M L, denoted by

XME = [XE xE, L Xy e {0, 1pME

or, equivalently, M strings of length L concatenated to form a single
string of length M L. Similarly, the output of the channel is

yNE= [V v v e {0,
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where N = 3, N;. It is useful to define a vector SV € {1,..., M}V
indicating the input string from which each output string was sampled.
Furthermore, we let ZNl = [ZlL, e ,Zlﬂ be the random binary error
pattern created by the BSC on the N non-deleted strings. We can now
define the input-output relationship

Vi =X © Zf, fork=1,...,N, (4.6)

where @ indicates elementwise modulo 2 addition. Note that the N;’s
are fully determined by the vector SV since N; = |{i: S(k) = 4}|. Also
note that, since Q ~ Ber(1 — ¢q), N < M with probability 1.

Consider a sequence of codes for the BSC shuffling-sampling channel

with rate R and vanishing error probability. Let XM = {X Lo X f/[}

2MLR

be the input to the channel when we choose one of the codewords

from one such code uniformly at random, and YN = {YlL, ce ,Y]\]ﬂ
be the corresponding output. From Fano’s inequality we have that
H(XMEYMLY <1+ P, \yML < MLey, where P, p is the decoding
error probability (of the code indexed by M) and {eps} is a sequence
such that ej; — 0 as M — oo. Thus,

MLR=H (XML) <T (XML; YNL) + MLey,
where epy — 0 as M — oo. Then,
ML(R — ex) = H (YNE) = H (YNE|xME)
—H (YNL) _H (SN,ZNL,YNL|XML)
+H (SN7 ZNL|XML7yNL)
— (YNL) _H (SN7ZNL,YNL|XML)
+ H (SN xXME yNE) (4.7)

The last equality follows by noticing that, given (SV, XML YNL) one
can compute ZkL = YkL @ Xé(k) for 1 < k < N, and thus we have

H (ZNL\XML,YNL,SN> = 0. Since N is a function of SV, and SV

ZNL

and are independent of XM% the second term in (4.7) can be

expanded as
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H (SszNLayNL’XML)
— (SN|XML) +H (ZNL|SN,XML) +H (YNL|XML’SN,ZNL>
(l) (SN ) T H (ZNL’SN’N) +H (YNL|XML7SN72NL)

Y HN)+H (SN|N) +H (ZVHN)

@ o)+ Z Pr(N {log (MM_'n), + nLH(p)]

s
M=

Pr(N =n) (nlog M +nLH(p)) + o(ML)

Il
—

n

I
=

N]M (log M + LH(p)) + o(ML)
1 —q)[Mlog M + MLH(p)] + o(ML). (4.8)

—~

In (i), we used the facts that S* is independent of XM¥ N is a function
of SN, and ZN! is independent of XM~ given SV. Notice that XV is
only dependent on S™ through N (which is a random variable). For (i)
we used that H (YNL\XML,SN, ZNL) = 0 since YNL is determined

by XME SN ZNL and (iii) follows from the fact that, given N = n,
SN is chosen uniformly at random from all vectors in {1,..., M}"
with distinct elements. For (iv), we used the fact that, from Stirling’s
approximation,

log = MlogM — (M —n)log(M —n) 4+ o(ML)

(M —n)!
= MlogM — (M —n)log M

M
M —n)l ML
+ (M —n)log -—— + o(ML)
— nlog M + (M — n)log —"— 4 o(ML)
=nlog n OgM—n 0 ,

and, by Jensen’s inequality,

0< > Pr(N =n)(M —n)log
n>0

< (M — E[N]) log

M —n

M
(M —E[N])
=(1—-q)Mlogl/q=o(ML).
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In order to finish the converse, we need to jointly bound the first and
third terms in equation (4.7). This is summarized in a lemma.

Lemma 4.2. If § and p < 1/4 satisfy
1— H(2p) —2/8 >0, (4.9)
then it holds that
H (YY) 4 H (SN|XME Y NE) < (1 - q)ML + o(ML),

The parameter regime (p, 5) for which (4.9) holds is the regime in
which our capacity expression holds, illustrated in Figure 4.2. Combining
(4.7), (4.8) and Lemma 4.2, we have

ML(R - ey) < (1= q) (ML — MLH(p) — Mlog M) + o(ML).

Dividing by M L and letting M — oo yields the converse.

4.1.2 Intuition for Lemma 4.2

Rather than providing a full proof of Lemma 4.2, here we discuss the
intuition behind it, and refer to Shomorony and Heckel [98] for the
complete proof. To discuss the intuition for Lemma 4.2, let us focus
on the case ¢ = 0; i.e., none of the molecules are lost at the output.
In this case, N = M, and S is chosen uniformly at random from all
permutations of [1,..., M]. If we naively bound each term separately,
we obtain

H (YME) + H (SN XME Y ME) < ML+ Mlog M.

However, intuitively, the bound H (SM]XML, YML> < M log M is too
loose because, as we argue below, if the entropy term H (YM L) is large

then we expect H (SM|XML, YNL) to be small and vice versa.

To see this, first note that given XML = oML and YML = yML ope
can estimate the permutation S that maps each output string to the
corresponding input string, S, by finding, for each yF, the .Z‘JL that is
closest to it and setting S(i) = j. This is a good estimate if no other x£

is close to xf There are two regimes, illustrated in Figure 4.3, one where
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{0,1}*

(b)

Figure 4.3: Two opposite scenarios for estimating S~ from (XML, YNL).

SN can be estimated well and one where it cannot. In the first regime,
the strings le, .. ,a:IM are all sufficiently distant from each other (in
the Hamming sense). Hence, the maximum likelihood estimate of S™V
given XML = oML and YN = yML i5 “close” to the truth and we

expect H (SN\XML = ML yNL — yML) to be small. In the second

regime, illustrated in Figure 4.3(b), many of the sequences z¥, ... ,azﬁ

are close to each other. So we have less information about S%, and
H (SN]XML = ML yNL — yML> may be large.

On the other hand, the term H (YN L) is maximized if the sequences
{XI1} are independent and if their values are uniformly distributed in
{0,1}~. Hence, in order for H (YN) to be large, we expect to be in the
regime in Figure 4.3(a) instead of the regime of Figure 4.3(b). This leads

to a tradeoff of the terms H (YNL) and H (SN|XML, YNL>, which we
exploit to prove Lemma 4.2.

4.2 Different noise models

Given that the capacity expression for the noisy shuffling-sampling
channel given in Theorem 4.1 is (1 — q)(Cpsc — 1/8), where Cgsc =
1 — H(p) is the capacity of a BSC, it is natural to ask whether for a
different noisy channel with capacity Chpoisy, the corresponding noisy
shuffling-sampling channel has capacity (1 — ¢)(Choisy — 1/3). Notice
that, when the sampling distribution @ is Bernoulli(1 — ¢), the index-
based achievability scheme described in Section 4.1 can be extended in
a straightforward way to achieve any rate below (1 — ¢)(Choisy — 1/0).
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Based on this, it is natural to conjecture that the capacity of a noisy
shuffling-sampling channel with sampling distribution Bernoulli(1 — ¢)
and noisy channel with capacity Choisy is given by

(1 - Q)(Cnoisy - 1/6)+ (410)

In Section 7, we present an even more general conjecture than this one.
Since achieving the rate in (4.10) is straightforward, the challenging
technical question is whether the converse argument in Section 4.1.1
can be generalized. Next we discuss specific noisy channel cases where
this conjecture can be proved.

4.2.1 BEC Shuffling-Sampling Channel

Consider the setting studied in Section 4.1 except that, instead of a BSC,
we have a binary erasure channel (BEC) with erasure probability p.
While erasures are not observed in sequencing data in practice, they can
be practically motivated by the fact that sequencing technologies often
provide a quality score for each base [13]. Such score can in principle
be thresholded to identify reliable base calls and unreliable ones, which
could then be treated as erasures.

As shown in Shin, Heckel, and Shomorony [96], ideas similar to
those used in the converse in the BSC case in Section 4.1.1 can be
used in the BEC case as well. While the result in Shin, Heckel, and
Shomorony [96] is stated for the case of perfect sampling (¢; = 1), it
can be generalized to the case of Bernoulli(1 — ¢) sampling using the
ideas from Section 4.1.1, yielding the following result.

Theorem 4.3. The capacity of the BEC shuffling-sampling channel is

C=010-q-p-1/p), (4.11)
as long as 1 —2p —2/8 > 0. If g < 1, then the capacity is C = 0.

Notice that, similar to the BSC case, the theorem only holds for a
specific regime of p and 8. However, the simplicity of the the erasure
setting allows us to establish the converse for a larger set of parameters.
In particular, while Theorem 4.1 holds for p < 1/4 and 1 — H(2p) —
1/p > 0, Theorem 4.3 holds for the strictly larger regime p < 1/2 and
1-2p—1/5>0.
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4.2.2 General Noisy Channels

Given that (4.10) holds (for some parameter regime) for both the BSC
and the BEC, it is natural to attempt to generalize the result to more
general discrete memoryless channels. To understand the challenges of
this general setting, consider the simpler case of ideal sampling, i.e.,
N; = 1 with probability 1 for ¢ = 1, ..., M. Suppose we have an arbitrary,
not necessarily memoryless, channel p(y”|z*) that maps length-L input
strings to length-L output strings (which may not be memoryless) and
capacity Choisy (Which requires the channel to be defined for L — 00).
Consider the corresponding noisy shuffling channel. The index-based
scheme achieves any rate R < Chisy —1/3. However, extending the proof
in Section 4.1.1 to establish Cpoisy — 1/ as the capacity is challenging.
Following similar steps to those in (4.7),

ML(R = ex) = I (XME;yME)

— (YNL> _H (SM’YML’XML> +H (SM‘XML’YML)

= H (YNE) = 7 (YMEXME M) — H(SM) 4 H ($M]XME v ME)
= 1 (xME SMyME) (M) 4 | (SMxME Y M)

Since H(SM) = MlogM +o(ML) = ML/ + o(ML), an outer bound
to the noisy shuffling channel capacity in this general case is

I (XML7 M. YML) H (SM|XML7 YML)

< i ~1/8.
O o ML " ML /B

(4.12)

The main challenge in establishing a general converse is the optimiza-
tion over distributions of the channel input X ™% Intuitively, for “well-
behaved” channels, choosing the input distribution p(z™%) that max-
imizes the first term, [ (XML,SM;YML), causes the output strings

YiL, i=1,..., M, to be spread out in the output space, making the
second term, H (SM\XML, YML), small. In Section 4.1.1, we explained
how the tension between these two terms can be exploited to jointly
bound them. The same idea is used in Shin, Heckel, and Shomorony

[96] in the case of the BEC. In both cases, this joint bounding allows
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us to show that (4.12) is optimized by choosing p(z™¥) to be ML
i.i.d. Bernoulli(1/2) random variables.

Notice that, if we know that the optimal distribution in (4.12)
satisfies p(xM1) = p(z¥) x --- x p(z’) (i.e., independently encoding
each of the input strings with the same p(z”)), then the first term in
the optimization becomes

I (XML7 SM; YML) H (YML) . (YML|XML7 SM)
ML - ML
S (VE) - (vEx)
B ML
I(XEvh)
7 )

and by choosing the distribution p(x”) that achieves the capacity of the
noisy channel p(y’|z’), this term becomes Choisy. However, establishing
that this is the optimal input distribution for general channels remains
an open question. We refer to Section 5.1.4 for additional discussion on
extensions to general discrete memoryless channels, but in the multi-
draw setting.

4.3 Index-based coding and independent decoding

All achievability schemes discussed in Sections 3 and 4 are based on
the same approach, which is illustrated in Figure 4.1. In particular, we
highlight two key elements of the achievability schemes:

1. Index-based coding: Distinct indices are placed in each stored
sequence (prior to the encoding with an error-correcting code).
At the decoder, the indices are used to order the input sequences
and to identify missing ones.

2. Independent decoding: Each of the stored sequences is a codeword
from an error-correcting code, and is independently decoded at
the output (possibly followed by the decoding of an outer code).
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Notice that both index-based coding and independent decoding are
highly desirable from a computational standpoint. However, from a
capacity standpoint it is surprising that optimal codes exhibit these
desirable features.

Is index-based coding always optimal? A key question that naturally
arises from the results in Sections 3 and 4 is whether index-based
coding is always optimal. In the parameter regime in the gray region of
Figure 3.5, the capacity remains unknown and it is possible to achieve
rates higher than the (1 —¢)(1 — H(p) — 1/p) that is achieved by index-
based schemes. Notice that, this region corresponds to a high-noise
short-molecule regime, where rates are expected to be low. In a short-
molecule regime, it may be reasonable that dedicating a significant
fraction of each molecule for an index is wasteful from a data rate
standpoint. Furthermore, in the high-noise regime, a significant amount
of redundancy needs to be added to guarantee that the indices are
decoded error-free. Hence, it may be possible to devise a scheme that
uses less redundancy for indices, but the decoder only decodes the
indices approximately, which may be enough to order the sequences
once all indices are considered jointly. Furthermore, as we will show
in the next section, once we move away from the single-draw setting,
and allow multiple copies of each input sequence to be observed at the
output with independent noise patterns, index-based schemes are no
longer optimal, and “global” decoding schemes are needed to achieve
the noisy shuffling-sampling channel capacity.

A similar question can be posed regarding the optimality of inde-
pendent decoding. Such a question was in fact studied in detail in the
context of the bee identification problem [111].

4.3.1 Independent decoding and the bee identification problem

The bee-identification problem is motivated by the task where one
observes a noisy picture of a massive number of bees, uniquely labeled
with barcodes, and wishes to simultaneously identify all bees. This can
be modeled as a problem in which a single list of M strings of length
L, [z%,...,xL/], is passed through a noisy shuffling channel (Tandon,
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Figure 4.4: In the bee identification problem, we observe a set of output sequences
{ylL7 ey y{@} and want to find a mapping o such that ayg(i) was the input sequence

that resulted in y” after the noisy shuffling channel.

Tan, and Varshney [111] consider the BSC shuffling channel described
in Section 4.1). The goal is to find the correct matching o between the
output sequences [ylL, e y]%/[] and the input sequences; i.e., finding the
shuffling induced by the channel on the set of strings, as illustrated in
Figure 4.4.

A key contribution of Tandon, Tan, and Varshney [111] is to find
upper and lower bounds for the error exponent of the bee identification
problem under two decoding approaches: independent decoding and
joint decoding. In independent decoding, only the ith output sequence
y¥ is used to determine (i), while in joint decoding, the entire set
of output sequences {ylL ) oo yﬁl} is used to determine o. They show
that the error exponent for joint decoding is strictly larger than the
error exponent for independent decoding. They also compare the error
exponents of random code ensembles and typical random codes and
show that typical random codes provide a significant improvement. Since
then, follow-up works have refined these error exponents, considered
different scenarios in terms of what constitutes an error when recovering
o and whether all bees are observed at the output [110], [112], and have
proposed efficient ways to perform the joint decoding [53].

In the context of DNA-based storage, the goal is not to recover the
permutation o, but rather to decode the message encoded by the shuffled
set of sequences. However, all capacity-achieving schemes discussed in
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Sections 3 and 4 place unique indices on every sequence, with the goal
of allowing the decoder to recover the correct permutation o (which
will then allow the message to be recovered). Hence, the results from
Tandon, Tan, and Varshney [111] suggest that, also in the context
of DNA storage, joint decoding can improve the error exponent with
respect to independent decoding.

Nevertheless, it is shown in Tandon, Tan, and Varshney [112] that, in
the setting with absentee bees (i.e., when some bees are not observed at
the output), the advantage of joint decoding with respect to independent
decoding disappears, and the error exponents achieved are the same.
This suggests that the advantage of joint decoding may depend on the
unrealistic assumption that all sequences are observed at the output.
As discussed throughout this monograph, this is not realistic based on
current DNA data storage prototypes, suggesting that the potential
gains of joint decoding may be minor, particularly given the significant
computational costs of joint decoding.

4.4 Designing practical codes for DNA data storage

In this section, we investigated the fundamental limits of noisy shuffling
channels. While we considered standard noisy channels such as the BSC
and the BEC, the design of practical codes for DNA storage systems
must be tailored to the technologies being employed. Several recent
works have focused on designing error-correcting codes for the specific
types of errors that may arise during writing, storing and reading data
on DNA. Some important aspects addressed in the recent literature
include DNA synthesis constraints such as sequence composition [33],
[51], [56], [119], the asymmetric nature of the DNA sequencing error
channel [34], the need for codes that correct insertions and deletions
[19], [26], [52], [57], [92], the need for codes that avoid homopolymers
(consecutive repeated nucleotides) as they are conducive to sequencing
errors [33], [51], [56], and the need for codes with balanced GC-content
(i.e., roughly the same number of G/C as A/T) [20]. An LDPC-based
joint design for the inner and outer codes needed for DNA data storage
was proposed in Chandak, Tatwawadi, Lau, et al. [17].
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The shuffling aspect of DNA storage systems has also been addressed
from a coding-theoretic perspective. In particular, the problem of coding
over sets (or multi-sets) has been studied [58], [67], [L00]-[102], [104],
[105], [115], with the goal of characterizing basic properties such as
minimum distance and maximum size of codes in the space of multi-sets,
and with the goal of providing bounds on code parameters. We point
out that the shuffling channel is also connected with a permutation
channel that permutes the symbols in a message [3], [10], which recently
received renewed attention due to the emergence of DNA-based data
storage [73].

The problem of designing indices that allow efficient retrieval of
data stored on DNA has also been investigated [67]. In particular, Lenz,
Siegel, Wachter-Zeh, et al. [66] explores the idea of adding “anchor
sequences” to the indices, with the goal of reducing the total amount of
redundancy needed for the indices. Furthermore, the careful design of
indices that allow random access via DNA hybridization has also been
explored [20], [80], [119], [120].
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Multi-draw Channels: Clustering Output
Sequences

In Section 4, we studied noisy shuffling-sampling channels with single
draws. More precisely, each sequence in the DNA library can either
be drawn once or not at all. However, as shown in Figure 2.2, a more
complete model for DNA-based storage systems should incorporate
the fact that each DNA sequence can be sequenced multiple times.
This multi-draw setting arises because synthesis technologies generate
multiple copies in the first place, and PCR used at the time of sequenc-
ing multiplies the number of copies further, which results in a large
number of copies of each DNA molecule at the output. As illustrated in
Figure 5.1, at the output of the DNA storage channel, one may thus
observe several different noisy copies of each of the input sequences,
and a “clustering problem” arises from the need to identify which of
these sequences correspond to the same input sequence.

In the multi-draw setting, establishing the capacity of noisy shuffling-
sampling channels is significantly more challenging. Intuitively, the
presence of multiple noisy copies of the same string should increase
the capacity. More precisely, if we are able to correctly cluster the
output sequences, it is possible to combine the sequences in each cluster
and perform error correction, effectively reducing the error rate of the

52
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Figure 5.1: When the sampling distribution @ (see Figure 2.2) allows more than
one copy of each input sequence to be created (e.g., @ is Poisson())), the output
sequences can intuitively be clustered according to the input sequence of origin.

system. The following questions arise. Is it still optimal to utilize an
index-based scheme? Is it information-theoretically optimal to first
cluster the output sequences and then attempt to decode the message?

We begin our discussion on this problem by focusing on the setting
where each sequence is passed through a Binary Erasure Channel (BEC),
in Section 5.1. It turns out that erasures are easier to treat than
subsitutions or insertions and deletions, and this simplicity enables us
to gain basic insights into the nature of the clustering problem that arises
in the multi-draw context. In addition, we discuss connections with
the trace reconstruction problem in Section 5.2, and coding-theoretic
considerations in Section 5.3.

5.1 Noisy shuffling-sampling channel with multi-draws

As a first step to studying the capacity of a noisy shuffling-sampling
channel with multi-draws, we consider a noise model described by a bi-
nary erasure channel (BEC), studied by Levick, Heckel, and Shomorony
[70]. As it turns out, the simplicity of the BEC (relative to the binary
symmetric channel (BSC)) allows us to utilize a linear coding scheme to
achieve the capacity of the system. Moreover, the achievability proofs
are intuitive and based on simple equation-counting arguments.

We consider the general DNA storage channel illustrated in Fig-
ure 2.2, where the sampling distribution @ is arbitrary, and the memory-
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less channel p(y|x) is a BEC, i.e., each symbol is erased with probability
p (leading to an erasure symbol ¢). Recall that the capacity of the BEC
is 1 — p and, as discussed in Section 4.2.1, the capacity of the BEC
shuffling-sampling channel with single draws (with a probability ¢ of
not seeing a sequence) is given by

CBEC, single-draw = (1 - Q)(l ey 2 1/ﬁ) (5'1)

Now consider instead an arbitrary sampling distribution @Q, with
qn = Pr(N; = n). Notice that, in expectation, a fraction ¢y of the input
sequences is not sampled, and thus we expect a total of (1 — qo)M
output clusters.

Let us first suppose we have a genie-aided channel that provides
us with the correct clustering of the output strings. In this case, it
is intuitive that the optimal decoding scheme starts by combining all
the sequences in each cluster into a single “consensus” sequence. The
consensus sequence (of length L) is obtained by taking, for the ith
position, the ith symbol of any sequence in the cluster that is not erased.
For an output cluster with n sequences, the resulting effective erasure
rate is p". Therefore, after the consensus step, in expectation we have
(1 — go) M output sequences and, for n = 1,2, ..., we expect that g, M
of them have an erasure rate of p".

Notice that the resulting effective channel after the consensus step is
similar to the BEC shuffling-sampling channel discussed in Section 4.2.1
but, instead of a single erasure probability p across all sequences drawn
at the output, the (1 — go)M output strings experience an average
erasure probability of

0 () oo 70
Peft == E[pN1|N1 > 1] — Zn:l qnp — Zn:l qnp (52)

Since the capacity of this genie-aided channel (which has (1 — go)M

output sequences) is larger than the capacity of the BEC shuffling-
sampling channel, we can use the converse approach from Section 4.1.1
(see also Shin, Heckel, and Shomorony [96]) to show that the capacity
of the BEC shuffling-sampling channel satisfies

CBEC, multi-draw < (1 —qo) (1 — pesr — 1/0) , (5.3)
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as long as p and 3 satisfy 1 — 2p — 2/ > 0. We point out that, when
the converse approach from Section 4.1.1 is applied in this multi-draw
context, the condition 1 —2p —2/8 > 0 depends on p, and not peg, but
a more careful analysis may be able to relax this condition.

The main result in this section shows that, for 8 large enough, this
upper bound can be achieved.

Theorem 5.1. The capacity of the BEC shuffling-sampling channel is

CBEC, multi-draw = (1 - q0) (1 — Deff — 1//8) ; (54)
as long as 1 —2p —2/5 > 0.

5.1.1 Achievability via linear schemes

Unlike in Sections 3 and 4, to achieve the capacity in this multi-draw
setting, we do not utilize an index-based scheme. Instead, we take
advantage of the fact that random linear codes are known to achieve
the capacity of the BEC [32], and show that linear schemes also achieve
the capacity of the BEC shuffling-sampling channel.

We construct our linear coding scheme with rate R as follows. For
a parameter B to be determined, we first generate a random binary
ML x B matrix G with i.i.d. Bernoulli(1/2) entries. We then generate
2MLE random binary vectors t; of size B (also with i.i.d. Bernoulli(1/2)
entries). For i = 1,...,2MLB the ith codeword is generated by comput-
ing G t; (over Fy), and then breaking the resulting length-M L vector
into M binary strings of length L (which serve as channel input). We
point out that this is technically not a linear code as the set of codewords
is not the entire range of G (only the vectors Gt; for ty,...,tomrr)
and hence the code is not a linear subspace of {0, 1}M7.
A key property of G that we need is the following.

Lemma 5.2. Let G be an ML x B matrix with i.i.d. Bernoulli(1/2)
entries. Fix any § € (0,1) and a submatrix G’ formed by an arbitrary
set of (1 —§)B rows of G. Then G’ is full rank (over the finite field Fy)
with probability tending to 1 as B — oo.

While a version of this lemma for a random matrix over the reals is
relatively straightforward, for the case of Fy it requires some work to
prove. We present the proof of Lemma 5.2 in Section 5.4.
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Figure 5.2: In the setting where each sequence is observed exactly once at the
output, there are M! potential systems of equations, each with M L(1 — p) non-erased
equations. Choosing our rate to be approximately 1 — p — 1/ guarantees that, with
high probability, only one of these systems of equations will have a solution that
corresponds to a codeword.

Single-draw case

To illustrate this linear non-index-based scheme, let us first consider
the case where each sequence is sampled exactly once (i.e., ¢ = 1). At
the output, we observe M sequences, which we would like to use for
recovering the vector t;, or simply for recovering the message index 1.
Suppose we knew the correct ordering of the M output strings. Then
we could concatenate them into a single string y with length M L, and
then try to solve the system Gt = y. Since a fraction p of the entries
of y would be erased, we would be able to solve this system (with high
probability) as long as the number of remaining equations, which is
roughly (1 — p)M L, is greater than or equal to the number of variables
B. We would then be able to set B = (1 —p — €)M L for any € > 0.
We would also be able to choose all 28 binary strings in {0,1}? to be
ti,...,ty5, instead of choosing them randomly, which results in a code
with rate of R =1 — p — ¢, which is the capacity of a standard BEC.
However, since in actuality we do not know the ordering of the M
output strings, we instead consider all M! possible orderings of the
output strings. Each such ordering gives us a distinct concatenated
vector y with a p fraction of erasures and a corresponding set of useless
rows in the matrix G, as illustrated in Figure 5.2. To guarantee that the
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matrix G with erased rows is still invertible, we set B = M L(1 —p —¢)
for some small € > 0, and Lemma 5.2 guarantees that the true system
has a unique solution t. Moreover, to guarantee correct decoding, we
must ensure that only one of the M! systems (the true one) admits a
solution t that is one of the original vectors t; for i = 1,...,2MLE,

Assume without loss of generality that message 1 is sent (i.e., the
codeword defined by G tq). Since all other vectors t;, i # 1, are chosen
uniformly at random from {0, 1}?, by the union bound, the probability
that one of the M! — 1 incorrect systems has a solution t that coincides
with some t;, i = 2,...,2MEE {5 at most

(M‘ o 1)2MLR27B < 2M10gM+MLR*B — 2ML[R*(1*])*E*1/5)].

By choosing e arbitrarily small, we conclude that any rate R < 1—p—1/4
can be achieved with a vanishingly small error probability.

While this result simply recovers what the index-based approach in
Section 4 already achieved, it can be extended to the case of a general
sampling distribution () as we see next.

Multi-draw case

Let us now consider the case of a general sampling distribution Q. At
the output of the channel, we expect to see roughly F[N1]M sequences,
which we would like to partition into roughly (1 — go)M clusters. A
major advantage of the BEC setting is that it easier to reason about the
clustering task than for the BSC setting, for example. Notice that all
output strings originated from the same input string are consistent with
each other; i.e., they agree on any non-erased positions. Hence, given

N output strings x¥, . .. ,x%, one can in principle build a graph with
b xk as vertices, where strings :cf and a:f are connected by an edge

if they are consistent. We refer to this graph as the consistency graph.
A valid clustering of the output strings corresponds to any partition
of {zf, ..., x%} such that each group corresponds to a cligue in the
consistency graph.

Since each input string has a probability gg of not producing an
output cluster, in expectation we have (1 — go)M clusters. Moreover,
an application of Hoeffding’s inequality implies that the probability
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that there are more than (1 — go + €)M or less than (1 — go — €)M true
clusters at the output is bounded as

Pr (|# true output clusters — (1 — qo) M| > eM) < 2¢~2Me

which tends to 0 as M — oo for any € > 0. Therefore, our decoder looks
for ways cluster the output strings into at least (1 — go — €)M clusters
and at most (1—go+e€)M clusters, for some fixed small e. More precisely,
our decoder considers all valid clusterings of the N output strings into
at most (1 — qop + €)M and at least (1 — qo — €)M clusters. For each
such clustering, a consensus step is performed, effectively converting the
clusters into roughly (1 — go)M strings with a smaller overall erasure
rate. After this point, the decoder proceeds similarly to the case of single
draws. First, each cluster is assigned a distinct index from {1,..., M},
which can be used to order the consensus strings into a vector y of length
roughly (1—qo)M L. All possible index assignments are considered. Each
index assignment produces a vector y and a corresponding system of
equations, which may yield a solution t (provided that the system has
a solution). This clustering-based decoding is illustrated in Figure 5.3.

Notice that we need to choose B large enough to guarantee that the
true system, obtained from the correct clustering and index assignment,
has a unique solution, and R small enough so that only one of the
systems (the true one) yields a solution that coincides with one of
the vectors t; used to construct the codebook. This allows the correct
decoding of the message index.

In order to guarantee that the correct t; can be recovered, we need
to make sure that the true system has enough equations after the
erasures have been discarded. Once the consensus step is performed on
the true clustering, we end up with at least M (1 — go — €) sequences.
Moreover, the expected erasure rate is given by peg in (5.2), and standard
concentration inequalities can be used to show that it cannot deviate
significantly from that. Hence, the true system of equations has at least
ML(1 — qo — €)(1 — pegr — €) equations with high probability, and if we
set B= ML(1—qp—€)(1 — per — €)(1 — €), by Lemma 5.2, the true
system of equations has a unique solution with probability tending to 1
as M — oo, which yields the correct solution t.
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Figure 5.3: The decoder first builds a consistency graph between all received
sequences, and considers all possible partitions of the graph into cliques, where
the total number of cliques is between (1 — qo — €)M and (1 — go + €¢)M. For each
such valid clustering, the decoder considers all possible assignments of the indices
{1,..., M} to the clusters and uses those indices to order the consensus sequences of
each cluster to form the vector y. After removing erased entries and the rows of G
corresponding to erased/missing rows in y, the system Gt =y can be solved.

In order to find the maximum rate R for which this scheme succeeds
with vanishing error probability, we need to bound the number of valid
clusterings of the output strings. To that end, we first analyze the total
number of edges in the consistency graph. Notice that, each true cluster
of size n produces (g) < n?/2 “correct” edges in the graph. Hence, the
expected number of correct edges is at most

Z qu 7E[N1] (5.5)

where E[N?] is the second moment of the sampling distribution Q. Let
Z be the total number of incorrect edges in the consistency graph, and

v = —Blog (1- 3(1-p)?),
which is positive for any p € (0,1).
Lemma 5.3. The number of incorrect edges Z satisfies
Pr(Z>M*7) 50 (5.6)
as M — oo, for any € > 0.

Lemma 5.3 (whose proof is presented in Section 5.4) establishes
that, as long as v > 1, the number of incorrect edges grows slower than
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Figure 5.4: In the multi-draw setting, there are 20 M (1 =90)M potential systems of
equations, obtained by considering all valid ways to cluster the output strings into
(1 — qo)M clusters, and then assigning each cluster to an index. The true system
(corresponding to the correct clustering and ordering) has ML(1 — qo)(1 — pes)
non-erased equations in expectation.

M and, hence, will be vanishingly small compared to the number of
correct edges in (5.5). Next, we bound the number of valid ways to
cluster the output strings given the number of edges in a consistency
graph. As it turns out, a coarse bound suffices.

Lemma 5.4. Suppose the consistency graph has a total of U edges.
Then there are at most 2V valid ways to cluster the output sequences.

Proof. Each valid clustering corresponds to a partition of the output
sequences such that each group corresponds to a clique in the consistency
graph. Notice that a partition of the consistency graph into cliques is
uniquely described by the set of edges that are part of each of the cliques.
Hence, each partition corresponds to a distinct subset of the U edges
in the graph. Since there are at most 2V such subsets, it follows that
there are at most 2V valid ways to cluster the output sequences. O

Now from equation (5.5) and Lemma 5.3, we know that for v > 1,
the number of edges U in the consistency graph satisfies U < aM for
some « > 0, with high probability. Lemma 5.4 thus implies that the
number of valid ways to cluster the output strings is at most 2°M.

The achievability proof is concluded by following the steps from the
single-draw case. We need to guarantee that no system of equations
other than the true one yields t;, for some i = 2, ..., 2MELE a5 a solution.



The version of record is available at: http://dx.doi.org/10.1561/0100000117

5.1. Noisy shuffling-sampling channel with multi-draws 61

The total number of systems of equations that the decoder will attempt
to solve is upper-bounded by

2(1]\4’]\4(1—(104‘6)]\47 (57)

because we first need to cluster all the output strings into at most
(1 — go + €)M clusters in a valid way and then assign each of them an
index in {1,..., M} for the ordering. This is illustrated in Figure 5.4.
Therefore, if we assume that message 1 is selected, the probability that
any of the incorrect systems yields a solution t that coincides with some
t;, for i = 2,...,2MELR i upper-bounded by
201MM(17(]0+E)M2MLR27B — 2&M+(1*Q0+6)M10g M+MLR—-B
— 9ML(a/L+(1~qo+e)/B+R-B/ML) (5.8)
This upper bound goes to zero as M — oo as long as
« 1—qo+e
flog M p
Since a/log M — 0 and e can be chosen arbitrarily small, any rate
R <(1—-qo)(1 —pest —1/8)

is achievable. This is formally stated next.

R+ < 0.

—(1—qgo—€)(1—per —€)(1 —€) +

Theorem 5.5. The capacity of the BEC shuffling-sampling channel with
multi-draws satisfies

CBEC, multi-draw = (1 - QO) (1 — Deff — 1//8) ; (59)

as long as v = —flog (1 — %(1 —p)Q) > 1. Here, peg is the effective
erasure probability defined in equation (5.2).

In Figure 5.5, we compare the parameter regime in which the lower
bound in Theorem 5.5 holds with the regime in which the upper bound
(5.3) holds. We see that the lower bound constraint is strictly weaker
than the upper bound constraint, which implies Theorem 5.1.

We conclude by noticing that, for natural choices of the sampling
distribution @, the effective erasure probability p.g can be computed
in closed-form. For example, if @ is Poisson(\), then

Y1 dnp” _ E[p"] =g _ Ele"™P] —gqo _ P — e

Peft = 1—q  1—q 1—q l—eX
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leading to the capacity expression

e M=p) _emA g ) *

) — (1 —e - - =
CBEC, Poisson(\) (1 e ) (1 1 — e B

1—e )"
= (1 _ e AM-p) _ ;) , (5.10)

which holds in the blue region of Figure 5.5, and which provides an
achievable region (and possibly the capacity) in the green region.
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Figure 5.5: The outer bound from (5.3) holds in the blue region, which corresponds
to 8> 1/(1/2 — p). The inner bound from Theorem 5.5 holds above the green line,
which corresponds to 8 > —1/log(1 — 3(1 — p)?). This characterizes the capacity of
the BEC shuffling channel in the blue region as (1 — qo)(1 — peg — 1/8). The capacity
in the red region (i.e., for 8 < 1) is 0 and it is unknown in the gray region.

5.1.2 Is performing clustering and decoding separately optimal?

From a computational efficiency standpoint, it is natural to separate
the clustering and decoding tasks. Under this approach, one could use
standard clustering algorithms to determine which output sequences
originate from the same input sequence. This could then be followed
by a consensus step (i.e., a cluster-based error correction), and finally
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a decoding of the sequences back to the original message. However, it
may be suboptimal to perform the clustering and consensus tasks in a
“code-oblivious” way; i.e., without taking advantage of the underlying
codebook.

Notice that, while the coding scheme presented in Section 5.1.1
performs the clustering, consensus, and decoding tasks in sequence, the
clustering task is not oblivious to the code. This is because the scheme
considers all valid clustering partitions and, for each one, attempts to
decode the message. Therefore, in an indirect way, the code is helping
with clustering. In particular, we point out that in the green regime in
Figure 5.5, where our achievability scheme holds, the number of valid
clustering partitions was upper bounded by 2™ for some a > 0. Hence,
with the aid of the codebook, the decoder is able to identify the correct
clustering out of an exponentially large number of valid possibilities.

While this suggests that there may be scenarios where performing
clustering and decoding separately is suboptimal, it does not provide
any formal evidence. In particular, our upper bound on the number of
ways to cluster is clearly loose (but sufficient to establish capacity).

Moreover, it may be possible to cluster a large fraction of the strings
correctly in a code-oblivious way, and this may be sufficient for correct
decoding of the message. In fact, as we discuss next, Lenz, Siegel,
Wachter-Zeh, et al. [68] proved that the capacity of the BSC shuffling-
sampling channel with multi-draws can be achieved in a regime with a
scheme that performs clustering and decoding separately.

5.1.3 The BSC case

Notice that, using the definition of peg in (5.2), the capacity expression
in Theorem 5.1 for the BEC multi-draw channel can be rewritten as

(1—qo) (B[t —pVIN = 1] - 1/8), (5.11)

and the term E[1 — p"V|N > 1] can be understood as the expected
capacity of a “multi-draw binary erasure channel,” where the decoder
observes multiple passes of the input string through a BEC, and the
number of passes is given by the conditional distribution of the random
variable N given N > 1.
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Given this, it is natural to conjecture that, for different choices of
the noisy channel p(y|z), the capacity of the multi-draw noisy shuffling-
sampling channel is given by

(1 —qo) (E[CN|IN > 1] —1/8), (5.12)
or equivalently by
- 1—qo
nZ::lq 3 (5.13)

While both expressions are equivalent, (5.12) is a more natural general-
ization of the capacity expressions from Sections 3 and 4, since in the
case of Bernoulli(g) sampling, E[Cny|N > 1] = C} is just the capacity
of the noisy channel p(y|x).

The capacity expression in (5.12) and (5.13) in fact holds, in addition
to the BEC setting, for the BSC(p) case with Poisson sampling. More
precisely, in Lenz, Siegel, Wachter-Zeh, et al. [65] and Lenz, Siegel,
Wachter-Zeh, et al. [68], assuming ¢, = e *\"/n! for n. > 0, the following
result is proven.

Theorem 5.6. Provided that p < % and 1 — H(4p) — 2/ > 0, the
capacity of the BSC shuffling-sampling channel is

C(BSC, Poisson(\) — (1 - QO) (E[CP,N|N 2 1] - 1/6)

o0 1 _
=3 4uCpp— — L, (5.14)
n=1 6

where C), ,, is the capacity of a BSC with n draws, given by

" (n 1
Co=1+5 ( )pk(l —p)" Flog — —.  (5.15)
= \k 14 p =2k (1 = p)?*

The formula (5.15) for the capacity of a BSC with n draws had been
previously characterized by Mitzenmacher [76]. In addition to providing
evidence that (5.12) and (5.13) may hold for more general channels, the
result in Lenz, Siegel, Wachter-Zeh, et al. [68] requires the introduction

of several new techniques, particularly for the achievability.
Notice that the achievability based on linear codes introduced in
Section 5.1.1 does not generalize in a straightforward manner beyond
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the erasure setting, since it requires the notion of consistency between
output strings in order to build the consistency graph and identify valid
clustering partitions. The approach in Lenz, Siegel, Wachter-Zeh, et
al. [68] instead focuses on a (p,3) parameter regime where a greedy
clustering algorithm can be shown to recover most of the clusters
correctly with high probability. Notice that this is different from the
achievability presented in Section 5.1.1 for the BEC case, which does
not formally require a code-oblivious clustering algorithm to recover
most of the clusters correctly.

In addition, rather than dealing with solving a linear system of
equations as done in Section 5.1.1 for the BEC case, in order to achieve
the capacity in Theorem 5.6, Lenz, Siegel, Wachter-Zeh, et al. [68]
introduce a new notion of typicality between a set of n output strings
and an input string.

Notice that, as in the BEC case discussed in Section 4.2.1, the
achievability for the BSC case requires a more sophisticated scheme
that goes beyond simple index-based coding. Intuitively, if one were
to use an index-based scheme, each cluster would need to be decoded
independently so that the indices corresponding to each cluster could
be obtained. However, the number of sequences per cluster varies from
cluster to cluster. Hence, it is unclear what level of error correction
needs to be used for each string, since large clusters are easier to decode
than small clusters. We derive the rate that is achievable by index-based
coding in multi-draw settings in (7.4) in Section 7.1.

5.1.4 General Discrete Memoryless Channels

The capacity of multi-draw DNA storage channels where the noisy
channel p(y|z) is an arbitrary discrete memoryless channel recently
received a careful treatment by Weinberger and Merhav [116]. The
paper provides a new lower bound for general multi-draw DNA storage
channels that is based on a random coding argument and holds for all
values of § > 1, unlike the achievability arguments for Theorems 5.5 and
5.6, which only cover specific discrete memoryless channels. The paper
also provides a new capacity upper bound in terms of a single-letter
expression that holds for all values of 5. The upper bound follows the
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general approach outlined in Section 4.1.2 and elaborated by Lenz,
Siegel, Wachter-Zeh, et al. [65], but is based on a more careful notion
of distance between the sequences.

Weinberger and Merhav [116] also show that there exists a (¢, such
that, for § > B, the upper and lower bounds coincide, establishing
the capacity of the multi-draw DNA storage channel for this regime.
This is similar to the parameter regimes in Theorems 5.1 and 5.6
(which can be equivalently expressed as 8 > [ (p)). In particular,
the paper considers the case of modulo-additive channels with input
alphabet X = {1,...,|X|} and output alphabet } = X, and input-
output relationship given by

Y =X 4+ Z mod |X]|,

where Z follows some distribution over {1,...,|X|}. The capacity of
the modulo-additive multi-draw DNA storage channel is shown to be

oo
C’mod,Q = Z an Cp — - QO, (5.16)
= p
as long as 3 > fer, where ¢, can be explicitly computed [116], and C),
is the capacity of the modulo-additive channel with n draws. For the
special case X = {0,1}, the modulo-additive channel reduces to the
BSC, and the result in Theorem 5.6 is recovered, but with a weaker
requirement on p and 5. We point out that the capacity formula in
(5.16) can be rewritten as

(1—q0) (E[CNIN 2 1] =1/8),

which is the general formula for all capacity expressions discussed in
this monograph, providing additional evidence for the conjecture in
Section 7.1.

5.2 Connections with the trace reconstruction problem

If one considers the multi-draw channel studied in this section but with a
single input sequence (M = 1), we obtain the problem of reconstructing
an original “seed” string from several noisy versions of it. This problem
was originally proposed by Levenshtein [69]. The special case where we
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observe the output of passing the seed string multiple times through
a deletion channel was studied in Batu, Kannan, Khanna, et al. [§]
under the name of trace reconstruction problem. This problem received
considerable attention in the last few years [1], [29], [44], [49], [72], [74],
[78], [90], [106], [107], partially due to the fact that DNA sequencing
technologies and especially nanopore sequencing technologies suffer from
deletion errors [74]. In addition, the trace reconstruction problem has
applications in immunogenomics, where one seeks to reconstruct the set
of germline genes of an individual by analyzing antibody repertoires.
In this setting, each antibody can be viewed as a trace generated by
recombining elements from the germline genes [11].

Most of the work on the trace reconstruction problem has fo-
cused on characterizing the minimum number of traces (i.e., output
sequences) needed for reconstructing the seed string correctly. For ex-
ample, for a random binary seed string of length n, it is known that
exp(O(log'/3 n)) traces are sufficient [44], while for a worst-case binary
string, exp(O(n'/?)) traces are sufficient [18].

The trace reconstruction problem has a very direct connection with
the problem of retrieving data stored on DNA. As discussed in this
section, under most proposed DNA storage prototypes, we observe a
random number of copies of each stored DNA molecule. Hence, provided
that one can correctly cluster the observed strings based on string of
origin, the problem of reconstructing the sequences can be seen as
several instances of the trace reconstruction problem. Notice, however,
that treating each of these instances as independent trace reconstruction
problems may be suboptimal from an information-theoretic standpoint,
as discussed in Section 5.1.2. Hence, the DNA storage setting can be
more appropriately cast as a “trace reconstruction with multiple seeds,”
as proposed and studied in Bhardwaj, Pevzner, Rashtchian, et al. [11].

A second and arguably more important distinction between the
general trace reconstruction problem (with multiple seeds) and the
DNA storage setting is the fact that the trace reconstruction problem is
typically concerned with the reconstruction of an arbitrary seed string
(or one drawn according to a probability distribution). On the other
hand, DNA molecules in a storage system are chosen as codewords from
a codebook. As such, they can be designed to facilitate the solution
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of the trace reconstruction problem that the decoder faces. This key
observation led to the proposal of the coded trace reconstruction problem
by Cheraghchi, Gabrys, Milenkovic, et al. [24]. For the coded trace
reconstruction with a single seed of length n, the authors propose
marker-based code constructions, which rely on the placing of long runs
of zeros throughout the seed string. These markers can be identified
by the decoder and effectively allow the problem to be converted into
many small coded trace reconstruction problems. Based on this idea, it
is shown that one can build codes with asymptotic rate 1 for which the
number of traces needed for correct decoding is exp (O((log logn)?/ 3))

This is in stark contrast to the exp(O(n!/?)) traces needed in the case
of an arbitrary seed string [18].

We point out that while establishing the exact scaling of the number
of traces needed for perfect reconstruction as a function of the seed
length n is an important problem, it is less relevant in the short-
molecule setting that is the focus of this monograph. Moreover, from
a capacity standpoint, the coded trace reconstruction problem can
be seen as a generalization of the standard deletion channel (where
one observes the output multiple independent times instead of one).
See the paper by Haeupler and Mitzenmacher [41] for results on the
capacity of a channel where multiple copies of a sequence are passed
through a deletion channel. As the capacity of the deletion channel
is a long-standing open problem [23], characterizing the capacity of
coded trace reconstruction with a constant number of traces should be
just as difficult. In Section 7.2 we discuss additional open problems in
the context of the deletion channel and trace reconstruction that are
motivated by DNA storage.

5.3 Code constructions for multi-draw channels

In addition to the work on the coded trace reconstruction problem
discussed in Section 5.2, several works have proposed code constructions
for the multi-draw settings that arise in the context of DNA storage
systems. Most of these focus on coding-theoretic questions, including
the derivation of bounds on the size of codes with specific distance
properties, and the development of explicit codes with efficient encoding
and decoding.
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The notion of clustering-correcting codes was proposed by Shinkar,
Yaakobi, Lenz, et al. [97]. These codes are designed so that each of
the input sequences has a data field and an index field, designed to
facilitate the clustering of the output sequences in the presence of noise.
Clustering is initially performed based on the index fields, but it is shown
that the data fields can also be used to improve the clustering quality
(and reduce the amount of redundancy needed). Additionally, Lenz,
Siegel, Wachter-Zeh, et al. [67] studied the multi-draw DNA storage
channel from a coding-theoretic perspective. In particular, versions
of the Gilbert-Varshamov bound and the sphere-packing bound were
derived, providing insight into fundamental limits for explicit code
constructions.

5.4 Proof of Lemmas

Lemma 5.2. Let G be an ML x B matriz with i.i.d. Bernoulli(1/2)
entries. Fix any ¢ € (0,1) and a submatriz G’ formed by an arbitrary
set of (1 —0)B rows of G. Then G’ is full rank (over the finite field
Fy) with probability tending to 1 as B — oo.

Proof. We follow the approach in the lecture notes by Sayir [93]. In
order for G’ to be full rank, the (n+1)th row must be chosen as a vector
that is not in the span of rows 1,...,n. Note that the space spanned by
n linearly independent vectors in Fy has exactly 2" distinct elements.
If we assume that the first n rows are linearly independent, then the
probability that the (n + 1)th row (which is a B-dimensional vector)
is not in the span of the first n rows is 1 — 2"~ 5. By induction we see
that the probability that all (1 — ) B rows are linearly independent is

(1-6)B B
[[ (1-2)= 1] (1-27)
j=1 i=5B+1
IR (=27
= H?fl (1_271,). (5.17)
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As B — 00, both the product in the numerator and in the denominator
can be verified (e.g., using numerical software) to converge to

o0

[T (1—277) = 0.28879...

i=1
which implies that (5.17) tends to 1 as B — oo, proving the lemma.
Notice that, if § = 0, the probability does not tend to 1 and instead
tends to 0.28879, which is in contrast to the case of a real-valued matrix
with random entries from a continuous distribution, where all square
submatrices will be full-rank with high probability. O

Lemma 5.3. The number of incorrect edges Z satisfies
Pr(Z > M*) 50 (5.18)
as M — oo, for any e > 0.

Proof. Consider two output strings ylL and ij that are generated from
distinct input strings mZL and a;]L We show that yiL and ij are consistent
with probability M ™7.

Let xF[¢] and a:jL [], for £ = 1,..., L be the individual symbols in
the sequences. Notice that z¥ and a:jL are generated by choosing t;
and t; uniformly at random from {0, 1}B , and computing G’ t; and
G”t;, where G’ and G” are each obtained by taking the L rows from
G corresponding to the ith and jth input sequences (note that Gt; has
length ML).

First we claim that the 2L random variables z[¢], xf [0,¢=1,...,L,
are mutually independent Bernoulli(1/2). Treating all vectors as column

le G/ 0 ti
-1 el 629
w1

t

vectors, we can write

The block diagonal matrix H above has dimension 2L x 2B, where
B=ML(1—qy—€)(1 —pesr —€)(1 —€). For M large enough, we have
B > L, and H is full row-rank, with a null space of dimension 2B — 2L.
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Hence, for any ¢ € F%, the number of solutions t to ¢ = Ht is 22572L

and, if t is drawn uniformly at random from F35,

L
This implies that the column vector lmZL] is chosen uniformly at random
€XT-
J
from F3F. This in turn implies that the entries of x! and CL‘jL are all
mutually independent i.i.d. Bernoulli(1/2) random variables.
Given this fact, the event that yiL and yJL are consistent is the
intersection of L independent events

{zF[0) = a:]L[é] or zF[f] =€ or x]L[E] = e},

for £ = 1,...,L. Each of these events happens with probability 1 —
%(1 — p)?, implying that 2% and x]L are consistent with probability

(1= L(1 = p)2)F = 277108 — 3y,

Finally, we notice that the expected number of output sequences is
M E[Ni], and the expected number of pairs of output strings is at most
M?E[N1]?. Hence, the expected number of incorrect edges satisfies

E[Z] < M?E[N\]?M~ = E[N{>M?*7.
Finally, using Markov’s inequality, we have that

. E[Z] _ E[NM*
2—v+e
Pr(Zz > M) < oo < S

= E[N{]?M ™,

which tends to 0 as M — oo for any € > 0. ]
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Coding and Computational Aspects

The results on the noisy shuffling-sampling channel in Sections 3, 4 and
5 provide insights into optimal ways to encode data for DNA based
storage (for example, the fact that an index-based scheme is optimal
in the single-draw setting). However, when designing coding schemes
for real DNA storage systems, several additional factors need to be
taken into consideration. These include the specific noise profiles of
the technologies being used and the computational complexity of the
algorithms employed in encoding and decoding. In this section, we
discuss practical coding schemes for DNA data storage, as well as their
limitations and computational aspects.

The first two demonstrations of DNA storage systems [27], [38]
are based on indexing individual sequences. Both systems did not use
modern error correcting codes to protect the information: the scheme by
Church, Gao, and Kosuri [27] partitions the data to be stored into parts,
adds an index to each part, and maps the parts to DNA sequences.
The scheme by Goldman, Bertone, Chen, et al. [38] also first partitions
the information into parts, but ensures that neighboring parts overlap,
which introduces redundancy. Next, the scheme by Goldman, Bertone,
Chen, et al. [38] adds an index to each part, and finally maps the parts

72
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into DNA sequences. Since no principled error-correction mechanisms
are used, both systems cannot efficiently deal with errors and thus the
two demonstrations of DNA storage systems relied on accurate synthesis
and on sequencing with large coverage. Both systems could recover the
majority of the encoded information through an accurate experimental
setup, but could not recover every single bit correctly.

Starting with Grass, Heckel, Puddu, et al. [39], all subsequent designs
of DNA data storage systems used a combination of outer and inner
error-correcting codes to protect the information against noise (for
example, Blawat, Gaedke, Hiitter, et al. [12], Bornholt, Lopez, Carmean,
et al. [14], Chandak, Tatwawadi, Lau, et al. [17], Erlich and Zielinski
[33], and Organick, Ang, Chen, et al. [80], and others). This approach,
discussed in Section 6.1, works well if the errors within the sequences
are relatively few and mostly substitution errors.

If the error probabilities within sequences are large and dominated by
deletions and insertions, then it is necessary to combine the information
of many noisy copies of each DNA sequence to recover the information.
A natural approach to do this is to first cluster the sequences, second to
reconstruct a sequence close to an original sequence from each cluster,
and third to perform subsequent error correcting steps; we discuss this
approach along with the associated computational costs in Section 6.2.

6.1 Inner-outer coding scheme

In Section 4.1 we presented an index-based coding scheme based on
combining an inner code and an outer code (see Figure 4.1). While that
scheme enabled us to establish an achievable rate (and the capacity) for
the BSC shuffling-sampling channel, it relied on unspecified capacity-
achieving codes for the BSC and capacity-achieving codes for an erasure
channel over an alphabet of arbitrary size. Here, we describe an inner-
outer coding scheme that uses existing practical codes, and that works
well if individual sequences have few errors. The encoding and decoding
steps, illustrated in Figure 6.1, are explained next.

Encoding: The data to be stored is given as a sequence of bits. We first
map the data to B information blocks, denoted by My, b =1,..., B,
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Figure 6.1: The inner-outer coding scheme breaks information into blocks M,
encodes each row of the blocks with an outer code that can correct erasures and
substitution errors, adds a unique index to each column, and finally encodes each
column with an inner code. The inner code enables correcting errors within the
sequences, and the outer code recovers sequences that are not sequenced, and correct
errors made by the inner decoding step.

each comnsisting of m X ko symbols in a finite field. The size of the finite
field depends on the code used as explained below, and the parameter m
depends on the desired final length of the sequences. The original data
is a file stored in bits, and mapping the data to information blocks with
elements in a finite-field simply corresponds to converting a number
from one base to another.

Each row of each information block is encoded with a code we call
outer code. This yields the outer-encoded block of codewords Cy, each
consisting of m X np symbols, where no is the length of the outer
code. The outer code needs to be able to correct substitution errors
and erasures; an example of such a code is a Reed-Solomon code. We
discuss choices for the outer code below.

Each of the np columns of the information block will correspond to
a DNA sequence. Since the DNA sequences are unordered, we add a
unique index to each of the columns of each of the information blocks.
For example, the ith column in the bth information block receives the
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index no - b+ ¢. Note that the outer code can correct damaged or lost
DNA sequences, as explained below.

Next, each column of an information block along with the index,
denoted by my1,...,my,,,, is viewed as a vector of length k; with
symbols in an appropriate finite field, but not necessarily the same
field as that used for the outer code. Each of the indexed vectors is
encoded with an inner code yielding the codewords ¢y 1, ..., Cpp,, €ach
consisting of ny > kj symbols.

Finally, each inner codeword c; ; is mapped to a string with symbols
in {A,C, G, T}, corresponding to the four nucleotides. Those strings are
then synthesized in DNA.

Decoding: In the decoding stage, we start with N DNA sequences,
obtained from sequencing. Those sequences are mapped to the received
inner codewords €1, €2,...,Cx, Where each codeword ¢; consists of n;
symbols.

Those inner codewords are then decoded independently one by one
which yields the information vectors my, ms, ..., my. This step corrects
errors within each of the sequences. We then sort the vectors m; by their
index, and construct the received outer codewords Cj, which consists of
m X no symbols. Note that for each column of the outer codeword C
there might be several candidates m;. Out of those candidates we select
the one which has the smallest number of errors, if this information is
available to us from the inner decoder. If there are several candidates
with the same number of decoding errors, we choose the one which
occurs most frequently. If there are several that occur equally frequently,
we simply choose one of the candidates at random.

Columns of Cy, for which we do not have a candidate m; are marked
as erasures. Columns of Cp can be erasures, if the respective sequence
has not been sequenced, and substitutions, if the candidate obtained
in the previous inner-decoding step contains errors. Finally, the rows
of Cp are decoded individually with the outer decoder to obtain the
received information blocks M, consisting of m x no many symbols.
The received information blocks are then mapped back to a sequence of
bits, corresponding to the recovered information.
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Choices for the outer code

The outer code needs to be able to correct substitution errors as well as
erasures. Erasures arise from sequences that are lost, and substitution
errors occur from errors within sequences that are not corrected by the
inner code.

Grass, Heckel, Puddu, et al. [39] proposed to use Reed-Solomon
codes as an outer code, and Organick, Ang, Chen, et al. [80] also
used Reed-Solomon codes as an outer code. Reed-Solomon codes are
algebraic codes that can correct e erasures and s substitutions provided
that e + 2s < n — k, where n is the number of symbols of the codeword,
and k is the number of information symbols of the codeword. Reed-
Solomon codes are optimal in that they achieve the maximal obtainable
minimum distance between two codewords and thus the maximal number
of erasures and substitutions that can be corrected. Therefore, Reed-
Solomon codes are a natural choice for the outer code in DNA storage.
However, Reed-Solomon codes of large block length (i.e., large n) are
computationally expensive to decode, and in DNA data storage large
block length are desirable.

Chandak, Tatwawadi, Lau, et al. [17] proposed to use LDPC codes
as an outer code to correct both erasures (lost sequences) as well
as substitution errors in sequences. Contrary to Reed-Solomon codes,
LDPC codes of long blocklength can be decoded very efficiently. Thus,
designs based on LDPC can be an excellent choice for DNA storage
system.

Erlich and Zielinski [33] proposed to use Fountain codes (see MacKay
[71] for a brief introduction to Fountain codes) as an outer code. Foun-
tain codes are codes for channels with erasures, designed for a setup
where a file is transmitted in multiple small packets, and each of those
packets is either received without error or is not received. In MacKay’s
words, Fountain codes “spray” packets at the decoder without requiring
knowledge of whether the packets are received. Once sufficiently many
packets are received (specifically, if slightly more than ko packets are
received where ko is the number of original information packets), the
data can be recovered.
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The key feature of Fountain codes is its ratelessness: the transmitter
does not require knowledge of how many packets have been received.
DNA storage is not a natural setup for rateless codes, because we have
to decide at storage time how much redundancy we need to add and
generate the number of sequences to be stored accordingly. In addition,
Fountain codes require ko + O(v/ko log?(ko/d)) symbols to recover a
message with ko symbols with probability 1 — §.

While Foutain codes use slightly more symbols than an optimal
erasure code (such as a Reed-Solomon code which only requires ko
symbols for recovering a message of length ko), the extra cost is negli-
gible once the codeword becomes long (i.e., becomes negligible in ko).
However, properly designed Fountain codes are computationally efficient
to decode. For example, Luby-transform codes are an efficient choice
for Fountain codes, and are decodable at cost O(ko log(ko)) with the
Luby-Transform. The main shortcoming of Fountain codes for DNA
storage is that they cannot correct substitution errors in an obvious way,
which makes them a sub-optimal choice for a DNA storage setup, as
in a DNA storage channel it is difficult to guarantee that all sequences
passed to the outer decoder are error free.

Choices for the inner code

Ideally, the inner code would be able to correct substitution, deletion,
and insertion errors, as all those errors occur during storage. However,
currently there are no short codes (say, of length 50-200) that can
correct all types of errors simultaneously with little redundancy.

Erlich and Zielinski [33], Grass, Heckel, Puddu, et al. [39], and
Organick, Ang, Chen, et al. [80] used Reed-Solomon codes as an inner
code. The sequences in those setups are are relatively short (60-200 base
pairs long), and since short Reed-Solomon codes are computationally
efficient for short codelengths they are a good choice for setups where
substitution errors dominate.

Reed-Solomon codes and other standard codes (like Reed-Muller
codes) are originally not designed to correct deletions or insertions,
albeit linear codes (including Reed-Solomon codes) of large length can
correct some deletion and insertion errors [28]. Being able to correct
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deletions and insertions would be desirable as those errors can occur
during synthesis, storage, and sequencing.

Channels that introduce deletions and insertions as well as corre-
sponding coding schemes are much less understood than erasure and
substitution channels and codes. The following is known about dele-
tions and insertions: Mitzenmacher and Drinea [75] established that
the capacity of a deletion channel, i.e., a channel that deletes each bit
with probability p, is lower-bounded by (1 — p)/9 for all p. For p — 0,
the capacity behaves like 1 — O(plog(p)) as established by Kanoria and
Montanari [50]. This establishes that at least in the asymptotic regime,
the capacity of a deletion channel is no more than nine times lower
than that of an erasure channel which erases each bit with probability
p, and for small p, the capacity is similar to that of a binary symmetric
channel. The exact capacity of the deletion channel is still not known to
date. For adversarial deletions and insertions, Haeupler and Shahrasbi
[42] gave efficient insertion-deletion correcting codes for large alphabets,
and Cheng, Guruswami, Haeupler, et al. [22] built on this work by
building insertion-deletions correction codes that work with smaller
alphabets. See Hacupler and Shahrasbi [43] for a recent overview on
codes for deletions and insertions. To give a few examples, the papers
by Brakensiek, Guruswami, and Zbarsky [15], Gabrys and Sala [36],
Guruswami and Hastad [40], and Sima and Bruck [100] provide codes
for correcting a constant number of deletions.

6.2 Coding for noisy setups

The inner-outer encoding-decoding scheme does not exploit the fact
that we typically have multiple noisy copies of each sequence. If the
sequences are relatively error-free or only contain few substitution errors,
exploiting multiple copies is not necessary. However, if the sequences
contain many substitution, insertion, and deletion errors, then the inner-
outer encoding-decoding scheme does not work simply because no codes
exist that enable correcting sufficiently many deletion, insertion, and
substitution errors in short codewords for correctly decoding sufficiently
many of the sequences.
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In this section, we discuss a relatively straightforward decoding
approach for very noisy sequences, which first clusters the sequences and
second performs multiple alignment on the clusters in order to extract
a single candidate sequence from each cluster. This candidate sequence
has significantly fewer or no errors and can be passed through the
previously discussed inner-outer encoding-decoding scheme to recover
the information.

The idea of clustering reads before decoding and an efficient clus-
tering scheme has been proposed by Rashtchian, Makarychev, Racz, et
al. [85]. Antkowiak, Lietard, Darestani, et al. [7] built a DNA storage
system with low-cost photolithographic synthesis which introduces large
error rates in the sequences, with the clustering-multiple-alignment
scheme described next.

Introducing randomization: Clustering millions of DNA sequences and
recovering candidate sequences from the clusters is in general (i.e., for
arbitrary sequences) intractable. The problem of recovering a sequence
from multiple noisy copies of that sequences, each perturbed by random
insertions and deletions, previously discussed in Section 5.2, is known
as trace reconstruction.

Clustering and trace reconstruction become computationally and
theoretically feasible if the fragments are random. Holden, Pemantle, and
Peres [48] shows that for random sequences, the trace reconstruction
problem can be solved based on only O(log/? L) traces/fragments,
where L is the length of the sequences.

In DNA storage, it is possible to design the sequences so that
they are pseudorandom for efficient computational clustering and trace-
reconstruction. Specifically, we can simply multiply the information in
the sequences with a pseudorandom sequence, so that all fragments
appear random. That guarantees that distinct molecules are far from
each other, and that individual sequences look like a pseudorandom
sequence. This randomization step converts a difficult clustering problem
instance to an “easy” instance, since now the true cluster centers are
almost orthogonal to each other, and it also converts a potentially
difficult trace reconstruction problem into an easy one.
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Clustering reads: The goal of the clustering step is to efficiently cluster
millions of short reads. Clustering algorithms are based on a notion
of distance between DNA sequences or strings. The natural measure
of distance between two sequences—given that the perturbations are
deletions, insertions, and substitutions—is the edit distance. The edit
distance between two sequences is the minimal number of deletions,
insertions, and substitutions required to transform one sequence into
the other. The edit distance between two sequences is expensive to
compute.

We next describe an efficient method for clustering the noisy reads.
The clustering method is based on locality sensitive hashing (LSH), and
is inspired by an algorithm proposed for clustering web documents [45].
LSH relies on a cheaper-to-compute proxy for the edit distance, com-
puted using the so-called Min-Hashing (MH) method.

To compute a proxy for the edit distance, we first split each sequence
into overlapping subsequences of length k, called k-mers (also called
shingles of length k or g-grams). For example, for £ = 2, the sequence
ACGT becomes the set {AC, CG, GT}. Now, each sequence is represented
by a set of k-mers and similarity between the two sets can be measured
by the Jaccard similarity of two sets (the Jaccard similarity is defined
as the size of the intersection divided by the size of the union of the
sample sets). The clustering method we propose does not compute the
Jaccard distance for all pairs of sequences, since this is computationally
infeasible. Instead, we use locality sensitive hashing to find similar
sequences. Locality sensitive hashing first generates a signature for each
sequence, with the Min-Hashing method. Those sequences are likely
to be equal if two sequences are similar or the same. Specifically, we
perform the following steps:

1. Extract pairs of similar sequences: We first generate sets of pairs
of sequences by finding all pairs of sequences that have the same
signature.

2. Filter pairs: As a next step, we go through all the pairs and after
performing a local pairwise alignment on each pair, we drop a
pair from the set if the number of matched characters falls below

a threshold.
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3. Generate clusters from similar pairs: Finally, we generate clusters
from the pairs based on sorting the pairs.

Organick, Ang, Chen, et al. [80] used a similar clustering-based approach
as described above to recover data from nanopore reads, which have large
insertion and deletion and error rates. Antkowiak, Lietard, Darestani,
et al. [7] used the scheme described above to recover data in a system
that uses noisy synthesis.

Reconstructing a single sequence from a set of noisy copies: After
we produced clusters consisting of noisy copies of an original sequence,
our goal is to reconstruct the original sequence. This is known as a trace
reconstruction problem.

One approach to reconstruct a sequence is to first align the sequences
within a cluster and second perform majority voting to extract a single
sequence from the cluster. For aligning the clusters, a number of off-the-
shelf algorithms such as the MUSCLE algorithm [31] are available.

Recent works have proposed efficient codes trace reconstruction, i.e.,
reconstruction of a sequence from multiple noisy copies. Specifically,
Cheraghchi, Gabrys, Milenkovic, et al. [24] proposed marker-based code
constructions with logarithmic complexity in the number of traces,
and Srinivasavaradhan, Gopi, Pfister, et al. [108] proposed an efficient
reconstruction algorithm with complexity that is linear in the number
of traces. Lenz, Maarouf, Welter, et al. [64] proposed a concatenated
coding scheme, and Chrisnata, Kiah, and Yaakobi [26] and Gabrys
and Yaakobi [37] provide codes for correcting deletions from muliple
noisy copies. Finally, Sabary, Yaakobi, and Yucovich [89] studies the
correction of two insertions and deletions again from multiple reads.

Alternative approaches: Antkowiak, Lietard, Darestani, et al. [7] used
the clustering algorithm described above and trace reconstruction by
alignment followed by majority voting to store data reliably in a very
noisy setup where the synthesis introduces large insertion and deletion
error rates. While intuitive, it is unlikely that the clustering approach is
information-theoretically close to optimal, as discussed in Section 5.1.2.
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Extensions and Open Problems

In this monograph we took steps towards understanding the fundamen-
tal limits of DNA-based storage systems. Our main focus were noisy
shuffling-sampling channels, which are a rich class of models for DNA
storage systems that capture the fact that molecules are stored in an
unordered fashion, are usually short, and are corrupted by individual
base errors. By considering special cases of noisy shuffling-sampling
channels, we built an increasingly more realistic sequence of models
and characterized their capacity. We presented and discussed several re-
cently proposed techniques, both in terms of achievability and converse,
that enabled us to characterize the information-theoretic limits of noisy
shuffling-sampling channels and gain insights for the design of practical
systems that perform close to what is fundamentally possible.

7.1 Generalizing capacity results

Several generalizations of the capacity expressions in this monograph
are possible. Note that the expression

(1—q0) (E[ONIN 2 1] —1/8)" (7.1)

82
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discussed in Section 5.1.3, recovers the capacity expressions of all
shuffling-sampling channels we studied as special cases. Here, Cy is the
capacity of the respective noisy channel p(y|x) with N draws. For the
BSC shuffling-sampling channel studied in Section 4.1, for example, this
follows from the fact that, for Bernoulli(¢q) sampling, E[Cn|N > 1] = C4
is simply the capacity of the BSC that corrupts each individual sequence.
Therefore, Theorems 3.2, 4.1, 4.3, 5.1, and 5.6 and the generalization
by Weinberger and Merhav [116] discussed in Section 5.1.4 can all be
stated using the capacity expression in (7.1).

Different alphabet sizes: While a quaternary alphabet ¥ = {A,C,G, T}
is the relevant one for DNA-based storage systems, all results in this
monograph were stated for binary alphabets for convenience. Here we
discuss their generalization to an arbitrary alphabet .

It is straightforward to see that the index-based scheme that achieves
capacity in the error-free setting of Section 3 can be extended to a general
alphabet X. In that case, log)y; M symbols from each length-L sequence
are needed for a unique index and we can store

log |X| (L ~ logyy, M) = L(log 2| — 1/8)

data bits per sequence. Using those bits for an outer code that handles
the go fraction of missing sequences (as done in Section 3.2), we achieve
a rate of (1 — qo)(log |X]| —1/0).

In the case of noisy shuffling-sampling channels, the index-based ap-
proach can be similarly generalized. Specifically, if Cyqisy is the capacity
of a channel p(y|z) with ¥ as input alphabet, then the rate

(1 - QO)(Cnoisy - 1//8)+ (72)

is achievable in the case of Bernoulli(1 — ¢p) sampling. Notice that |¥|
does not appear in (7.2) as it is captured by Cheisy, which can now be
larger than 1. Also notice that, in this case the capacity can be positive
even for values of 8 < 1.

For natural extensions of the BEC and BSC to larger alphabets,
the converse argument described in Section 4.1.1 can be extended in
a natural way, establishing (7.2) as the capacity, at least for a certain
regime of channel parameters.
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A unified capacity expression: Since (7.1) also holds for general
alphabet sizes, it is natural to state the following conjecture.

Conjecture 1. The capacity of a noisy shuffling-sampling channel (illus-
trated in Figure 2.2) with sampling distribution N ~ (qo, q1,...) and
discrete memoryless noisy channel p(y|z) is given by

(1-qo) (E[CNIN >1] = 1/8)",
where C), is the capacity of the noisy channel p(y|z) with n draws.

We point out that, even in the special cases of the noisy shuffling-
sampling channel where the capacity expression in Conjecture 1 holds,
the result was only shown in specific parameter regimes. Hence, even in
the case of the BEC and BSC, the conjecture has not been fully verified.

Optimality of index-based coding and independent decoding: As we
discussed in Section 4.3, for single-draw channels where each sequence
is either observed at the output once (with probability 1 — ¢) or not
observed at all (with probability ¢), an index-based coding scheme (that
adds a unique index to each sequence) achieves rate

(1 - QO)(Cnoisy - 1/6) (7.3)

The decoding is straightforward: each output sequence is independently
decoded, and the indices are then used to order the sequences and
recover the message. The rate above is then achieved by adding an
outer code on top of the index-based coding to handle missing output
sequences and the vanishingly small fraction of output sequences that
are decoded in error, as discussed in Shomorony and Heckel [98].

In the multi-draw setting, however, a naive use of index-based coding
is suboptimal. The reason for this is that, since the number of sequences
in each cluster is random, the indices must be encoded with enough
redundancy to be decodable even in clusters of size one. Therefore, only
the data bits take advantage of the multi-draw setting. More concretely,
in each length-L sequence, we need (log M)/C bits for the index, where
(' is the capacity of the noisy channel (with one draw). We are left with
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M (L — (log M)/Ch) bits for data. The data bits can take advantage of
the multi-draw nature of the channel, and can be encoded with rate

E[CN] = (1 = q)E[CNIN > 1]+ g0 -0 = (1 — qo) E[Cn|N > 1],

leading to an achievable rate of

M(L — (log M) /C1) (1 — go) E[CNIN > 1]
ML

— (1= a) (BIOWIN = 1) - ;) , (7.4)

where v = E[Cn|N > 1]/Cy. Since C; > C} for ¢ > 1 for any reasonable
channel, v > 1, showing that the index-based scheme is suboptimal.

Whenever 5 > «, simple index-based schemes perform close to optimal.

Despite its suboptimality in the multi-draw setting, index-based
coding schemes are still interesting in practice for their simplicity.
Moreover, based on the results of this monograph, we conjecture that
they are still optimal in the single-draw setting.

Conjecture 2. For noisy shuffling-channels with Bernoulli(1 — ¢) sam-
pling, index-based coding is capacity-optimal.

Notice that, if Conjecture 1 holds, the fact that index-based schemes
achieve the rate in (7.3) would imply that Conjecture 2 holds as well.

7.2 Insertions, deletions, and trace reconstruction

In all settings studied in this monograph, the noisy channel p(y|z) is
assumed to be a discrete memoryless channel. Single-base substitutions
are the prevalent error source of most current DNA storage systems [47],
which rely on low-error synthesis and sequencing technologies that are
relatively expensive and limited in speed. A key idea towards developing
the next-generation of DNA storage systems is to employ high-error, but
cheaper and faster synthesis and sequencing technologies such as light-
directed maskless synthesis and nanopore sequencing. Such systems
induce a significant amount of insertion and deletion errors. Thus, an
important area of further investigation is to understand the capacity of
channels that introduce deletions and insertions as well.
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From the point of view of characterizing the capacity, this poses
significant challenges, since the capacity of (non-memoryless) channels
with insertions and deletions is a long-standing open problem [25].
Nevertheless, it may be possible to establish the impact of adding
shuffling and sampling on the capacity, without characterizing the
capacity of the noisy channel. Given the results in Section 4, it is
reasonable to conjecture the following.

Conjecture 3. Consider a noisy shuffling channel where the input
sequences are shuffled and independently passed through a insertion-
deletion channel. The capacity of this channel is

(Cindel - 1/6)+7
where Cipgel is the (unknown) capacity of the insertion-deletion channel.

Notice that, as discussed in Section 7.1, index-based schemes achieve
the rate in Conjecture 3, and the challenge is in proving a matching
outer bound. We point out that, in deriving the outer bounds in the
BEC and BSC cases, it was important to know the capacity of Cpgc
and Cpsc explicitly (see Section 4.2.2 for a discussion). Therefore, it
is unlikely that the tools presented in this monograph can be used to
establish Conjecture 3.

Another set of interesting open questions arises from studying the
trace reconstruction problem from a capacity standpoint. Most of the
work on trace reconstruction focuses on characterizing the number of
traces needed for perfect reconstruction, as discussed in Section 5.2.
The recent work on coded trace reconstruction [24] also studies the
question of the amount of redundancy that needs to be added to the
sequences in order to allow perfect reconstruction. However, the focus
of this work is on the regime where the number of traces is growing,
which makes the channel capacity be 1.

From a capacity standpoint, it would be interesting to study the
regime where the number of traces T is constant. Since the case T'=1
reduces to a standard deletion channel, whose capacity is unknown, it
is unlikely that the case T' > 1 is any easier. However, it may still be
possible to understand the impact of 7" on the capacity. For example,
in the case of a BEC(p) with T" “traces”, it is straightforward to see
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that the capacity is 1 — pT, as one can generate a consensus sequence
with effective erasure rate p’. In order to understand the impact of
the number of traces in the capacity of the deletion channel, one could
generalize existing bounds for the case of general T'. Since several known
bounds on the capacity of the deletion channel have the form o — 8 p
for constants «, 8 > 0, it is reasonable to conjecture that bounds of the
form o — BpT can be derived for the T-trace setting.

7.3 Storing data on very short molecules

One of the challenges in making DNA storage practically viable is that
the cost of synthesizing relatively long DNA molecules with few errors is
very expensive. For example, using the architecture proposed in Erlich
and Zielinski [33], where the length of the synthesized molecules is
around 150 nucleotides, the estimated cost of synthesizing 1GB of data
was $3.27 million [33, Supplementary Material].

Synthesis costs are significantly lower if one focuses on short molecules
and admits higher error rates [16], [55]. Hence, it is of interest to
study the fundamental limits of DNA-based storage systems (and noisy
shuffling-sampling channels) in the “very short” sequence regime. When
the synthesized molecules are very short, placing a unique index may
use up a significant fraction of the synthesized DNA. Moreover, in this
regime it may make sense for the multi-set of stored DNA molecules
to contain multiple copies of the same sequence and, in principle, one
can utilize the frequencies of different molecules in the pool as a way to
encode information.

Histograms as codewords and the Poisson channel: Consider once

again the error-free sampling-shuffling channel discussed in Section 3.2.
L
i

in a given codeword [z}, ..., 2%/] does not matter, and each codeword
can be equivalently represented as a histogram of size 2%, as illustrated

in Figure 7.1. The effect of the sampling-shuffling channel can then be

Due to the shuffling nature of the channel, the order of the sequences x

seen as simply changing the frequency of each of the molecules in the
multiset; i.e., corrupting each entry in the histogram independently.
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Figure 7.1: When several copies of each molecule are present in the multi-set of
input sequences, it is reasonable to view the end-to-end channel as operating on
histograms of size 2F. The sampling-shuffling channel modifies each entry of the
histogram according to the sampling distribution Q.

To formalize this representation, we can redefine the input to the
channel to be a vector [z[t] : t € {0,1}¥] with entries in Z, indexed by
binary strings of length L (i.e., an input histogram, as illustrated in
Figure 7.1). If we assume that the sampling distribution @ is Poisson(\),
then the channel can be described as

xz[t| € Zy+ —  y[t] ~ Poisson(Azlt]), (7.5)

for t € {0,1}. Since we are only allowed to write M molecules, we
have the constraint

S o] <M e 2 Y i< M2b=220/5-0 (76)

te{0,1} & te{0,1} &

This channel can be seen as a discrete-time Poisson channel, previously
studied in the context of optical communications [60], [61], [95], [114].
However, unlike previously studied Poisson channels, the input is con-
strained to be integer-valued. Moreover, the average power constraint in
(7.6) changes with the block length 2©. This channel provides us with a
good model to study the shuffling channel in the “very short” molecule
regime, as we discuss next.

Encoding information in concentrations: Notice that, for all settings
considered, when § < 1, the capacity is zero. Intuitively, this is because
there are only 2 = M? < M distinct binary strings of length L. Hence,
in this regime, one is forced to use the same string many times in
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the input, and the capacity is zero. However, motivated by the fact
that replicating DNA via PCR is a relatively common and inexpensive
biotechnology technique [4], [82], [118], it is interesting to ask whether
it is possible to encode information in the frequencies, or concentrations,
of very short molecules.

To gain insight into how to optimally encode information in frequen-
cies one can draw from the literature on the Poisson channel. Lapidoth
and Moser [60] provide the following asymptotic characterization of the
capacity of a Poisson channel.

Theorem 7.1. Consider the discrete-time Poisson channel
z[t] >0 —  y[t] ~ Poisson(x[t]),

with average power constraint E [z[t]] < P. The capacity C'(P) satisfies

1
li P)——logP ) =0.
Notice that the average power power constraint in (7.6) is P =

2L(/6-1) When 8 < 1, we have P — oo, and the approximation
C(P) ~ 3 log(P) suggested by Theorem 7.1 should hold. Since for (7.5)
we have 2% channel uses, Theorem 7.1 suggests that the maximum
achievable rate in bits per nucleotide should be roughly

2l 1 MPL(1-8) 1-p

2 log(P) = = MPL

T3 8) OMLJ 23
This approximation suggests that in the short-molecule regime g < 1,
the number of bits per nucleotide that can be reliably stored scales
as MP~1. While this storage rate goes to zero, it suggests that the
number of data bits stored can grow as M? L, motivating the following

conjecture.

Conjecture 4. Consider an error-free shuffling-sampling channel with
B € (0,1). If {Cpr} with M — oo is a sequence of codes with vanishing
error probabilities, then

1 1-—
lim sup 08 [Cu| < B

msup =5 S o5 (7.7)

Moreover, there exist codes {Cys} that satisfy (7.7) with equality.



The version of record is available at: http://dx.doi.org/10.1561/0100000117

90 Extensions and Open Problems

Formally establishing this result will require understanding the non-
standard Poisson channel in (7.5), where the input is constrained to be
integer-valued and the average power constraint changes with the block
length.

Once this error-free setting is established, one can seek general-
izations to noisy cases, similar to what was done in Section 4, but in
the short-molecule regime. Notice that the noise, say of a BSC, causes
sequences from one entry of the histogram to jump to a different entry
of the histogram, and the channel is no longer memoryless, further
complicating the setting.

7.4 New technologies and paradigms

DNA-based storage is an emerging idea and the system-level details
depend on the current state of the art in terms of DNA synthesis,
storage, and sequencing. As these technologies evolve, one may need to
extend or adapt the theoretical framework proposed in this monograph
to different settings.

Storing data on different macromolecules: In addition to DNA, syn-
thetic polymers have been considered as a medium for data storage
[35], [83]. In this setting, one can encode binary data using polyphos-
phodiesters in such a way that the two bits 0 and 1 are represented
by molecules of different masses that are stitched together into a long
string. The data retrieval is performed using tandem mass spectrometry.
At a high level, many copies of the long polymer are broken down to
pieces of random sizes, and the tandem mass spectrometer provides
estimates of the masses of the fragments. Assuming that the masses of
the 0 and 1 molecules are not multiples of each other, from the mass of
each fragment one can obtain its composition; i.e., the number of zeros
and ones in it.

Based on this setting, Acharya, Das, Milenkovic, et al. [2] intro-
duced the problem of binary string reconstruction from its substring
composition multiset. For example, the substring composition multiset
of the string 1001 is {1,0,0,1,1'0',02, 10,1102, 110%}. Follow-up work
considered the case where the composition multiset may be subject to
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errors and the case where one observes only prefixes and suffixes of the
string [35], [83].

From the shuffling-sampling channel standpoint taken in this mono-
graph, an interesting research direction would be to consider a setting
where the mass spectrometer randomly picks IV substrings from the
input string and reports their sequence composition. Unlike in the exist-
ing literature, the goal would be to study the capacity of the resulting
channel (as a function of the sampling distribution and potential noisy
channel).

New synthesis technique: New DNA synthesis and sequencing tech-
niques also lead to new questions on the fundamental limits of the
respective systems. A concrete example is DNA-based storage via com-
binatorial assembly commercialized by the startup CATALOG and
described in Roquet, Bhatia, Flickinger, et al. [87].

Most existing storage systems rely on array-based synthesis where
DNA sequences are synthesized in parallel nucleotide-by-nucleotide.
Roquet, Bhatia, Flickinger, et al. [87] proposed a combinatorial as-
sembly approach, which generates DNA sequences by assembling pre-
synthesized shorter sequences called components. A sequence consists
of assembling T' components. Each component is a DNA sequence,
consisting of a beginning, center, and end part. For each of the T
positions of the sequence, () candidate sequences exists. For exam-
ple, say a sequence consists of 7' = 3 components, and for each posi-
tion, there are () = 2 candidate components, yielding the components
T1,as T1,b, £2,a» T2,h, 3,4, and 3. The beginning and ends of the com-
ponents are chosen to be complementary such that when, for example,
the three components x1 4, 25, ¥3,, are mixed together, they form the
sequence [Z1,q, T2 p, L3,q)-

This approach has the advantage that many sequences can be gen-
erated relatively fast, but at the cost of generating a pool of long
sequences where each sequence only contains little information. For
example, Roquet, Bhatia, Flickinger, et al. [87] stored 26 kB with this
technology on 97920 sequences, which means each sequence only con-
tains about 2 bits. In contrast, the aforementioned systems based on
array-based synthesis store more than 100 bits per sequence, which
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means that, to read the same amount of information, we have to read
50 times less sequences with the traditional array-based storage systems.
However, characterizing the capacity of combinatorial assembly and
other new technologies is an interesting problem with the potential of
improving DNA storage systems based on them.
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