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ABSTRACT

The dipole moment is a simple descriptor of the charge distribution and polarity and is important
for understanding and predicting various molecular properties. Semiempirical (SE) methods offer
a cost-effective way to calculate dipole moment that can be used in high-throughput screening
applications although the accuracy of the methods is still in question. Therefore, we have evaluated
AMI1, GFNO-xTB, GFN1-xTB, GFN2-xTB, PM3, PM6, PM7, B97-3¢, HF-3c, and PBEh-3¢ SE
methods, which cover a variety of SE approximations, to directly assess the performance of SE
methods in predicting molecular dipole moments and their directions using 7211 organic
molecules contained in the QM7b database. We find that B97-3c and PBEh-3¢ perform best
against coupled cluster reference values yielding dipole moments with a mean absolute error

(MAE) of 0.10 D and 0.11 D, respectively, which is similar to the MAE of DFT methods (~0.1 D)



reported earlier. Analysis of the atomic composition shows that all SE methods show good
performance for hydrocarbons for which the spread of error was within 1 D of the reference data,
while the worst performances are for sulfur-containing compounds for which only B97-3c and
PBEh-3c show acceptable performance. We also evaluate the effect of SE optimized geometry
instead of the benchmark DFT geometry that shows a dramatic drop in the performance of AM1
and PM3 for which the range of error tripled. Based on our overall findings, we highlight that there
is an optimal compromise between accuracy and computational cost using GFN2-xTB (MAE: 0.25
D) that is three orders of magnitude faster than B97-3¢c and PBEh-3c. Thus, we recommend using
GFN2-xTB for cost-efficient calculation of the dipole moment of organic molecules containing C,

H, O, and N atoms whereas for sulfur containing organic molecules, we suggest PBEh-3c.

1. INTRODUCTION

The dipole moment of molecules is a simple measure of the electron density and polarity and as
such plays an important role in understanding intermolecular and intramolecular interactions
relevant for predicting bulk and molecular properties. For example, strong dipole-dipole
interactions can rationalize strong intermolecular interactions that lead to higher melting and
boiling points.! The dipole moment can also be used as a descriptor for designing solvents.*®
Molecules with large dipole moments readily polarize other molecules and promote dipole-dipole
or dipole-induced dipole interactions that help miscibility and solubility. In addition, the dipole
moment is also critical to understanding photon absorption induced transitions in rotational and
vibrational spectroscopy to name a few applications. Thus, with the wide range of applicability of
the dipole moment, it is imperative to understand how accurately dipole moment can be calculated

with different computational methods.



Wave function theory, specifically coupled cluster (CC) theory, is the gold standard for obtaining
reliable dipole moment data, similar to reaction energies, building on the systematically
improvable nature of the underlying theory. As in energy calculations, calculating dipole moment
using CC theory with an acceptably large basis set is a computationally costly endeavor and limited
only to small molecules. Therefore, wave function theory and CC calculations mainly serve as
benchmarks in calculating the dipole moment of molecules.

Density Functional Theory (DFT) is currently the most popular method for calculating the
electronic structure of molecules because of its favorable cost-to-performance ratio which allows
for reasonably accurate calculations of medium sized (50-200 atoms) molecules. To provide
guidance on which DFs with what basis sets are the most accurate, CC calculations have been
often employed as benchmarks’” however only a few studies used large enough dataset to provide
statistically relevant conclusions. Notably, Hait and Head-Gordon have recently calculated dipole
moments for a set of 152 small molecules at the CCSD(T)!? level of theory and used the results to
test the performance of 88 popular DFs from different rungs on Jacob’s ladder. In their study, they
found that double-hybrid functionals (e.g. ®B97X-2)!! gave the best performance, yielding dipole
moments within 3.6-4.5% regularized root-mean-square (RMS) error compared to the reference
CCSD(T) which was comparable to the approximately 4% regularized RMS error produced by
CCSD at a greater computational cost. Hybrid functionals (e.g ®B97X-V)!? also provided good
performance with regularized root-mean-square errors in the 5-6% range.'* Building on Hait and
Head-Gordon’s work, Zapata and McKemmish evaluated the performance of 38 basis sets of
single- up to triple-zeta quality paired with 9 different DFT methods.'* In their study, they found
that in agreement with Hait and Head-Gordon’s work, hybrid functionals performed best.

However, they also observed that the calculated dipole moment was more sensitive to the basis set



size than the DFT method of choice. For example, the regularized RMS produced by the hybrid
functional ®B97X-V when paired with double-{-quality basis sets varied between a range of about
5% for aug-pc-1'>" and 38% for 6-31G,'® while for triple- {-quality basis sets the regularized
RMS varied between approximately 5% for pVTZ!" and 36% for 6-311+G.?* 2! Because the best
performing double- and triple-C-quality basis sets yielded similar performance, the authors
recommended that the best compromise between accuracy and computational efficiency is
achieved when the augmented double-(-quality basis set aug-cc-pVDZ? is paired with hybrid
functionals (e.g. ®B97X-V). Similar to Zapata and Mckemmish’s work, Hickey and Rowley also
studied the basis set dependence of dipole moment prediction using DFT methods.? In their work,
the performance of 7 DFT methods paired with 5 basis sets of double- and triple-C-quality was
studied for a dataset of 46 molecules containing elements C, Si, N, O, S, F, and Cl in which they
found that hybrid functionals produced the best performance compared to experimental dipole
moment data. Hickey and Rowley showed that hybrid functionals such as B3LYP,?**¢ and PBE(0?*’
when paired with the aug-cc-pVTZ?* 2 basis set yielded comparable predictions to CCSD/aug-cc-
pVTZ compared to experimental dipole moment data with mean absolute errors of 0.09, 0.09, and
0.07 D respectively. Thus, the study further supports the usage of hybrid functionals with
augmented double- and triple-C-quality basis sets for the prediction of molecular dipole moments
although the dataset is too small to provide statistically relevant conclusions.

Semiempirical (SE) methods constitutes the third category whereby the SE methods are still
based on ab initio formalism but neglect terms and make use of parameterization to decrease
computational cost by orders of magnitude while also sacrificing some accuracy at the same
time.? 3 Semiempirical methods based on Hartree-Fock formalism have been used since the

1970s and since then a number of methods have been introduced including AM1,! PM3,32 PM6,*



and PM7.3 In this time, there have been several studies which benchmarked the performance of
SE methods in predicting the dipole moments of specific sets of molecules,*>3° however these
studies focused on a narrow range of molecules for which experimental dipole moment data was
available. For other molecules, these early studies used ab-initio reference data with very small
basis set,* ** due to computational cost reasons, which are now known to be inadequate for
benchmark purposes.*!** For example, Anisimov et al. evaluated the performance of the AM1 and
PM3 SE methods against dipole moment data calculated at the MP2/6-31+Gx (where ’x’ indicates
that the d-orbital exponent was set to 0.2) level of theory for a set of 20 natural amino acids.*’
Thus, the accuracy of SE methods in predicting dipole moments cannot be accurately accessed
based on these studies alone.

Recently, there has been a renewed interest in SE methods to find faster alternatives to accurate
but costly DFT calculations with large basis sets for medium-sized and large (~500 atoms)
molecular systems. This effort has led to the development of the so-called ‘3¢’ composite methods,
such as HF-3c*, PBEh-3¢*, and B97-3c*, which provide relatively accurate results by
introducing three physically motivated atom pair-wise correction terms for dispersion interactions,
basis set superposition error, and short-ranged basis set incompleteness effects.*”*® These methods
have been developed for obtaining accurate and affordable geometries and relative energies, but
accurate description of the charge density is challenging due to their rather compact orbital basis
set expansions. Due to inaccuracies in describing the charge density, there can be errors in
predicting the dipole moment of molecules. To evaluate the performance of the 3¢ methods in
predicting dipole moments, Caldeweyher and Brandenburg compared the performance of HF-3c,
PBEh-3c, and B97-3¢ against experimental dipole moment data for 43 molecules in Hickey and

Rowley’s benchmark.*® The authors showed that PBEh-3¢ and B97-3c perform comparable to



DFT methods studied by Hickey and Rowley yielding mean absolute deviations of 0.11 and 0.09
D, respectively, against methods such as PBE, PBEO, and B3LYP/aug-cc-pVTZ?* which all
yielded mean absolute deviations of 0.09 D while HF-3c performed worse with a mean absolute
deviation of 0.21 D. These results are very promising and suggest composite methods are a good
alternative to DFT for dipole moment calculations, however, as noted previously as well, 43
molecules are not a statistically relevant dataset.

As the ‘3¢’ SE methods are still computational costly for number of problems, for example
conformer search, the GFNn-xTB semiempirical methods were designed as special purpose tools
to provide affordable geometries, vibrational frequencies, and noncovalent interactions for large
systems.?’” Bannwarth et al. compared the performance of the GFN1-xTB,* GFN2-xTB,*° and
PM6 against Hait and Head-Gordons’s CCSD(T) dipole moment benchmark data to estimate the
reliability of these SE methods for dipole moment calculations.>® The authors showed that GFN1-
xTB, GFN2-xTB, and PM6 provide predictions with a mean absolute deviation of 0.69, 0.45, and
0.52 D, respectively. We however note that the small molecules Hait and Head-Gordon introduced
in their benchmark dataset is not representative for the chemical systems SE methods are typically
used for. The dataset contains a significant number of unstable inorganic species that pose a
challenge for most electronic structure methods, while SE methods are generally applied to treat
stable closed shell organic molecules, which can explain their weak performance in this benchmark
study. To illustrate, we note that the mean absolute deviation of GFN1-xTB, and GFN2-xTB is
higher for open shell species (0.74 and 0.49 D) compared to closed shell species (0.67 and 0.44
D). Therefore, there is a need for a comprehensive evaluation of semiempirical methods on closed

shell organic molecules to understand their performance in calculating the dipole moment.



In this work, we present the performance of a set of ten SE methods namely AM1, PM3, PM6,
PM7, GFNO-xTB, GFN1-xTB, GFN2-xTB, HF-3c, B97-3c, and PBEh-3c, which represent a wide
range of SE approximations, against high level CC dipole moment data composed by Yang et al.>!
The dipole moment calculations are performed across the 7211 organic molecules contained in the
QM7b dataset,** which provides a comprehensive library of organic molecules to obtain
statistically relevant data and answer our questions on the reliability of these methods for
calculating dipole moment for practical applications, e.g., organic solvent design. Comparing these
results to results in Bannwarth et al.,’® we highlight that the performance of GFN2-xTB is
significantly better for organic molecules studied here with a mean absolute error of 0.27 D
compared to their 0.45 D and is comparable to the performance of HF-3c. Thus, we suggest GFN2-
xTB as a method of choice from SE methods given its optimal cost/performance ratio to calculate

the dipole moment of organic molecules except for sulfur containing compounds for which PBEh-

3c is suggested.

2. COMPUTATIONAL METHODS

A set of nine SE methods representing a wide range of semiempirical methods have been evaluated
in this study namely; (i) Neglect of Diatomic Differential Overlap (NDDO) methods AMI1,3!
PM3,3? PM6,* and PM7°* which employ the valence-only minimal basis set and are based on the
NDDO approximation where all three, and four center two-electron integrals are completely
neglected; (ii) Grimme’s extended tight-binding methods GFNO-xTB, ** GFN1-xTB,* GFN2-
xTB*® which are derived from a perturbation expansion of the electron density similar to the
density functional tight binding model. And finally (iii) composite methods HF-3¢,* PBEh-3c*,
and B97-3¢,* in which three corrections (hence ‘3¢’ in their names), namely the D3 scheme to

incorporate London dispersion, a geometrical counterpoise correction to handle intra- and



intermolecular basis set superposition error, and a short-range term to correct basis set deficiencies
are applied to the HF,> PBE,* and B97-D°> 3 density functionals and coupled with small
Gaussian atomic orbital basis sets.

The performance of the tested methods is evaluated by comparing results against high-level CC
data. In our analysis, we will use the following metrics and abbreviations: mean absolute error
(MAE), maximum absolute deviation (MAD), standard deviation (SD), mean percent error (mean
%error), full width at half maximum (FWHM), and regularized relative root-mean-square error
(RMSE). We also define all metrics used in our analysis below:

The error between calculated and benchmark dipole moment values is defined as:
H' = Ucesp — 1 (1)
Where pccsp is the reference dipole moment calculated at the CCSD/d-aug-cc-pVDZ level of

theory, and p is the dipole moment calculated with the SE method.

The MAE is defined as:
Zlp
@
The MAD is defined as:
Max(|p']) 3)
The SD is defined as:
T -1 ean)?
S 4)

Where i’ ppeqn is the mean error between the dipole moment calculated by the same SE method

and the reference dipole moment which we define as:

I Zur
WU mean = Tﬂ )

The mean %error is defined as follows:
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The FWHM is defined as:

2355 X o %
where o is the SD.
As in Hait and Head-Gordon’s work,'® the RMSE is defined to be:

_ H7Hcesb  w 100% (8)

max (f¢csp,1D)

where a value of 1D is used for regularization.
The range is defined as:
Hmax = Wmin (9)

where p' 4, and p' iy, are the maximum and minimum dipole moment calculated by the same SE
method, respectively.
To compare each SE method across all metrics, we have defined a condensed metric score. For the
calculations associated with the benchmark DFT optimized geometries, we normalize the errors in
each metric by the maximum value of that metric for GFN1-xTB which provided the highest errors
in every metric for all methods excluding GFNO-xTB. We did not pick GFNO-xTB as base line
because its large errors would have made very accurate methods hardly distinguishable from each
other based on the condensed metric score. Then we average each normalized metric which yields
a single value between 0 and 1 for all methods except GFNO-xTB. To obtain a similar condensed
metric score for calculations using SE optimized geometries, we normalize the errors in each
metric by the GFN1-xTB value of that metric obtained for DFT optimized geometries. Thus,
condensed metric scores obtained for SE optimized geometries can be higher than 1 for all methods
if there was a significant drop in the performance compared to the results obtained with DFT

optimized geometries. In general, a higher condensed metric score indicates worse performance.



We considered the 7211 organic molecules which contain C, H, N, O, S, and CI in the QM7b
database.*!** All molecular geometries for all species were obtained online via Materials Cloud in
the sdf format (accessed on 04/28/2021).>! Table 1 details the number of the organic molecules by
elemental composition in the QM7b dataset. In our analysis, we will consider subcategories formed
based on elemental composition to obtain more detailed information on the performance of the
studied semiempirical methods. Subcategories are defined to include statistically relevant number
of molecules (>300 molecules) to give meaningful information. Thus, the defined subcategories
are based on CH, CHN, CHO, CHON, and S-containing compositions. The S-containing subgroup,
which will be subsequently referred to as ‘S-X’ includes CHNS, CHNOS, CHOS, CHS, CHNSCI,
and CHSCI compositions as shown in Table 1. We highlight that each of our subcategories contains
more molecules than most of the previous dipole moment benchmark studies.

Table 1. Number of organic compounds based on elemental composition in the QM7b dataset.

Composition Molecule count
CHON 2580
CHN 1928
CHO 1867
CH 498
CHNS 134
CHNOS 78
CHOS 73
CHNCI 15
CHS 14
CHNOCI 9
CHNSCI 5
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CHOC1 4
CHSC1 4
CHCI 1
CN 1
Total 7211

Benchmark values were obtained from Yang et al.”!

For high-level couple-cluster, the authors
computed the dipole moments for all 7211 molecules employing LR-CCSD with the doubly
augmented d-aug-cc-pVDZ basis set.’’ In Hickey and Rowley’s and Hait and Head-Gordon’s
works, CCSD/aug-cc-pVDZ has been shown to provide accurate dipole moment predictions with

a mean absolute error of 0.08 D compared to experiment,?

and approximately 4% regularized
RMS error compared to CCSD(T)."® These findings indicated to us that LR-CCSD/d-aug-cc-pVTZ
used in the QM7b dataset can serve as a reliable reference for benchmarking semiempirical
methods given the similar and somewhat larger basis set used in the previous benchmarks and that
we expected the mean absolute error of the SE methods to be an order of magnitude larger
compared to CC results, of which the latter assumption was indeed proved in our study.
Molecular geometries in the sdf format were converted to the xyz format using the OpenBabel
software (Version 2.3.1).°% % All AM1, PM3, PM6, and PM7 single point and geometry
optimization calculations were carried out using the Gaussian software program (Version 16,
Revision C.01) using default settings.®® All GFNO-xTB, GFN1-xTB and GFN2-xTB single point
and geometry optimization calculations were carried out using the xXTB software package and
default settings (Version 6.4).47- ¢! All HF-3¢, B97-3c, and PBEh-3c single point and geometry

optimization calculations were carried out using the Orca software program and default settings

(Version 4.2.1).5%63
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3. RESULTS AND DISCUSSION
We have calculated the dipole moment given by AM1, PM3, PM6, PM7, GFNO-xTB, GFN1-xTB,

GFN2-xTB, HF-3c¢, PBEh-3c, and B97-3¢ SE methods using the benchmark DFT optimized
geometries of the QM7b dataset as well as the SE optimized geometries. The error metrics defined
in the Computational Methods section were used to evaluate the performance of each SE method
in predicting dipole moments for both DFT and SE optimized geometries. For clarity, we will
discuss the results using the benchmark DFT optimized structures first then we will analyze the

results related to the SE optimized structures in a separate section.

3.1. PERFORMANCE OF SE METHODS USING BENCHMARK DFT OPTIMIZED
STRUCTURES

Generally, all SE methods studied herein were able to give reasonable dipole moments based on
the R? value (Figure 1) for each method compared against benchmark CCSD. For the benchmark
DFT optimized geometries, the SE methods studied showed strong prediction ability with R?
values that ranged from 0.93 for the worst performing method GFN1-xTB to 0.99 for the best

performing method PBEh-3c.
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Figure 2a shows a radial plot where all methods evaluated in this study are compared based on
multiple error metrics. The different errors for each SE method are also given in Table S1. From
Figure 2a we can immediately observe that GFN1-xTB gave the worst performance across each
metric with MAE, Mean %error, MAD, SD, and RMSE of 0.70 D, 37%, 2.46 D, 0.49 D, and 38%,
respectively. Next, PM6 and PM7 give nearly identical performance across each metric with MAE,
Mean %error, MAD, SD, and RMSE of 0.46 D, 32%, 2.07 D, 0.36 D, and 31% for PM6 and 0.43
D, 31%, 2.14 D, 0.37 D, and 32% for PM7. However, PM6 and PM7 showed improvement
compared to GFN1-xTB in each metric especially in terms of the MAE where there is more than
a 0.2 D difference. AM1, PM3, GFN2-xTB, and HF-3¢ form the next group with similar levels of
performance across the MAE, Mean %error, and RMSE metrics. AM1 and GFN2-xTB have a
MAE of 0.27 D while PM3 and HF-3¢ show a MAE of 0.25 D. For the Mean %error, AM1 and
GFN2-xTB produced Mean %errors of 16% while PM3 and HF-3c give Mean %errors of 15%
and 16%, respectively. For the SD, GFN2-xTB performed best compared to AM1, PM3, and HF-
3¢ with SD of 0.24, 0.36, 0.29, and 0.29 D, respectively. This indicates that GFN2-xTB has the
smallest spread of error among these four methods. HF-3c¢ significantly outperforms AM1 and
PM3 in terms of MAD, with MADs of 1.12, 1.71, and 1.49 D, respectively, but is still comparable
to the MAD of GFN2-xTB (1.30 D). Compared to the performance of all other methods studied
here, B97-3¢ and PBEh-3c showed superior performances in every metric. B97-3¢ and PBEh-3c
showed similar performance in MAE, RMSE, and SD metrics, with MAE of 0.10 and 0.11 D,
RMSE of 6 and 7%, and SD of 0.13, and 0.12 D, respectively. PBEh-3¢ however significantly
outperforms B97-3c in Mean %error and MAD, with Mean %errors of 2 and 6%, and MADs of

0.67 and 0.95 D, respectively.
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Figure 2. (a) Radial plot showing the performance of each SE method based on different error

metrics and (b) Violin plots for each SE method showing the kernel smooth probability density
distribution of the errors using DFT optimized geometries. The score is a normalized average of
each metric and serves as a proxy for the area under each polygon. See definitions of all metrics

in the Computational Methods section.

Based on our condensed error metric score (Figure 2a), GFN1-xTB was the worst performing
method for the DFT optimized geometries with a score of 1.00. Additionally, we observed that
the older AM1 and PM3 methods with scores 0.54 and 0.47, respectively, outperformed the newer
PM6 and PM7 methods which gave a similar level of performance with scores 0.79 and 0.78,
respectively. This poor performance for organic molecules is not surprising given that PM6 and
PM?7 are parametrized with reference data sets that were expanded to cover more of the periodic
table compared to AM1 and PM3.3* Interestingly, GFN2-xTB and PM3 with scores of 0.45 and
0.47, respectively, performed at a similar level to HF-3¢ which had a score of 0.46 while also being
more computationally costly. B97-3c and PBEh-3c gave the best performance of all methods
studied with scores of 0.23 and 0.18, respectively, which was not surprising given their sounder

theoretical background compared to other semiempirical methods.
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In order to give further insights into the performance of each SE method, we have explored the
probability density distribution of errors of each SE method which gives the probabilities that the
error given by a SE method will fall at a certain value. In order to compare each method, we have
presented the probability density distribution of each method studied here as violin plots in Figure
2b. In Figure 2b, we can again immediately observe the poor performance of GFN1-xTB given
the spread of the errors based on the range of 3.98 D and the presence of two peaks (i.e. a bimodal
probability density distribution) at 0 D and -0.65 D, respectively, which indicated that GFN1-xTB
behaved differently for certain group of molecules. The position of the mean error of GFN1-xTB
(-0.68 D) relative to 0 D also indicated that GFN1-xTB systematically overpredicted the dipole
moment compared to the CCSD reference data. For PM6 and PM7, there is also a wide spread of
errors with ranges of 3.34 and 3.40 D, respectively. The position of the mean errors for PM6 (-
0.40 D) and PM7 (-0.37 D) relative to 0 D also indicated that these methods also systematically
overpredict the dipole moment. Additionally, the presence of two peaks for PM7 at -0.61 and -
0.19 D was attributed to behaving differently for two groups of compounds. For GFN2-xTB and
AMI1, the spread of the error is significantly improved compared to the other the previously
mentioned SE methods with ranges of 1.96 and 2.63 D, respectively, in addition to producing only
single peaks at -0.23 and 0 D, respectively. The position of the mean error of GFN2-xTB (-0.23
D) indicated GFN2-xTB generally overpredicts the dipole moment, while the mean error of AM1
(0.12 D) shows AMI generally underpredicted the dipole moment compared to the CCSD
reference data. For the ‘3¢’ methods, PBEh-3c provided the smallest spread in error with a range
0f 0.99 D followed by B97-3c with a range of 1.46 D, while HF-3¢ had a range of 2.10 D, which
was worse than the range of 1.96 D given by GFN2-xTB. Additionally, B97-3¢ and PBEh-3c

showed only single peaks at 0 and -0.05 D, respectively, while HF-3¢ had two peaks at 0 and -0.24
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D. The ‘3¢’ methods only slightly overpredict the dipole moment with mean errors of -0.06, -0.04,
and -0.08 D for HF-3c, B97-3c, and PBEh-3c, respectively.

3.1.1. PERFORMANCE OF SE METHODS FOR DIFFERENT ATOMIC
COMPOSITIONS

Due to the multiple peaks that appeared in the violin plots, we were interested in understanding
the performance of each SE method for molecules with different atomic composition that formed
five subcategories (see Computational Methods section). Figure 3 shows the probability
distribution of errors for each SE method for each subcategory. For all methods, the most
consistent performance was observed for molecules composed of C and H only (i.e. hydrocarbons),
for which there was low spread of error with ranges of 1.02, 1.14, 0.75, 0.97, 0.72, 0.37, and 0.49
D for AMI1, PM3, GFNI1-xTB, GFN2-xTB, HF-3c, PBEh-3c, and B97-3c, respectively.
Furthermore, for the CH category there was always a single peak except for PM6 and PM7 which
notably overpredict the dipole moment of hydrocarbons with mean errors of -0.24 D and -0.18 D,
respectively, and have a relatively wider spread of error with ranges of 1.73 and 1.41 D,
respectively, in addition to having no well-defined peak. The good performance of most of the SE
methods is not surprising since hydrocarbons are apolar and have very low dipole moments such

that SE methods will have little problem providing accurate absolute dipole moment predictions.
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density distribution of errors for the total dataset is also disclosed.
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In the CHN subcategory, B97-3c, PBEh-3c, and GFN2-xTB gave the best performances and
produced probability density distributions with single peaks at -0.07 D, -0.08 D, and -0.11 D,
respectively, and relatively low spread of error with ranges of 1.04 D, 0.92 D, and 1.50 D,
respectively. AM1, PM3, PM6, PM7 in addition to GFN1-xTB and HF-3¢ however had poorer
performances. GFN1-xTB, PM6, and PM7 systematically overpredict the dipole moment of
molecules in this subcategory with mean errors of -0.49 D, -0.49 D, and -0.61 D, respectively, in
addition to having wide spread of error with ranges of 2.34 D, 2.57 D, and 2.69 D, respectively.
Despite AM1, PM3 and HF-3c¢ having insignificant systematic error given mean errors of 0.04 D,
0.04 D, and -0.07 D, respectively, these methods gave probability density distributions with a
second peak in addition to having wide spreads of error with ranges of 2.38 D, 2.31 D, and 1.82 D
respectively.

In the CHO subcategory, majority of the SE methods performed well with AM1, B97-3c, and
PBEh-3c performing best with essentially no systematic error given their mean errors of 0.08 D,
0.00 D, -0.07 D, respectively, and narrow spread error with ranges of 1.31 D, 1.13 D, and 0.89 D,
respectively. GFN2-xTB, HF-3¢, PM6, and PM7 provided comparable performances in which
these methods systematically overpredicted the dipole moment of molecules in this subcategory
with mean errors of -0.31 D, -0.15 D, -0.39 D, and -0.22 D, respectively, while PM3 slightly
overpredicted the dipole moment with a mean error of 0.19 D. Additionally, GFN2-xTB , HF-3c,
and PM3 yielded similar spread of error with ranges of 1.61 D, 1.55 D, and 1.38 D, respectively,
while PM6 and PM7 had a wider spread of error with ranges of 2.21 D and 1.89 D, respectively.
GFN1-xTB significantly overpredicted the dipole moments with a mean error of -0.86 D while

producing a wide range of error 2.74 D.

19



In the CHON subcategory, B97-3¢ and PBEh-3c again were the best performing SE methods,
providing minimal systematic error given by their mean errors of -0.05 and -0.1 D, respectively,
as well as the relatively narrow ranges of 1.27 D and 0.99 D, respectively. GFN2-xTB and PM3
yielded similar levels of performance with ranges of 1.90 D and 1.87 D, respectively, with GFN2-
xTB overpredicting the dipole moments having a mean error of -0.29 D and PM3 underpredicting
the dipole moments with a mean error of 0.23 D. AM1’s performance was comparable to that of
PM3, with AM1 also underpredicting the dipole moments (mean error of 0.19 D), however AM1
had a significantly larger spread of error with a range of 2.46 D. Similar to its performance in the
CHN subcategory, HF-3c on average had no systematic error, however HF-3c¢ gave a relatively
wide spread of error with its range of 2.10 D and had a probability density distribution with two
peaks. In parallel to the CHN subcategory, PM6 and PM7 had similar performance. Although PM6
and PM7 both overpredicted the dipole moments with mean errors of -0.37 D and -0.33 D,
respectively, and had similar spread of error with ranges of 2.58 D and 2.45 D, respectively, PM7
however showed a probability density distribution with two peaks. GFN1-xTB was the worst
performing SE method, significantly overpredicting the dipole moment with a mean error of -0.83
D and the widest spread of error for the CHO subcategory with a range of 3.32 D.

For the S-X subcategory, only PBEh-3c, B97-3c and to a lesser extent HF-3c performed
acceptably. PBEh-3c, B97-3¢, and HF-3¢ had practically no systematic error with mean errors of
-0.07 D, 0.04 D, and 0.05 D, respectively, however PBEh-3¢ had a much narrower spread of error
with a range of 0.77 D compared to the range of 1.36 D for HF-3c. AM1 and PM3 yielded similar
levels of performance for the S-X subcategory, with comparable ranges of 2.63 D, and 2.70 D,
respectively, while GFN2-xTB yielded a narrower range of 1.65 D. GFN2-xTB slightly

overpredicted the dipole moment with a mean error of -0.34 D, while AM1 and PM3
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underpredicted the dipole moment with mean errors of 0.33 D and 0.14 D, respectively. As we
saw in other subcategories, PM6 and PM7 had nearly matching performances, with both methods
overpredicting the dipole moment of molecules in the S-X subcategory with mean errors -0.44 D
and -0.43 D, respectively, and ranges of 3.34 D and 3.40 D, respectively. GFN1-xTB yielded a
slightly worse performance compared to PM6 and PM7, overpredicting the dipole moment with a

mean error of -0.50 D but produced a comparable spread of error with a range of 3.48 D.
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3.1.2. EFFECT OF ATOMIC COMPOSITION

PERFORMANCE

ON OVERALL SE

METHOD

To investigate further the clustering of errors which resulted in multiple peaks for GFN1-xTB, HF-

3¢, and PM7 in Figure 2b, we present the subcategory data organized by SE method in Figure 4.
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Figure 4. Probability density distribution of subcategory errors for each SE method using

benchmark DFT optimized geometries. The vertical axis of each plot is the probability density of

the error. For visualization purposes, categories are not normalized with its population. For plots

with normalized subcategory data relative to the total dataset see the SI (Figure S17).
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For GFNI-xTB, the performance was particularly poor due to the varied positions of the
probability density distributions of the subcategories reflected in the mean errors of -0.08, 0.,49, -
0.86, -0.83, and -0.50 D for the CH, CHN, CHO, CHON, and S-X subcategories, respectively. In
addition to the varied positions of the probability density distributions, GFN1-xTB considerably
overpredicted the dipole moment of every category except the CH subcategory based on the mean
errors. By comparing Figure 2b and Figure 4 based on the mean errors of each subcategory, the
peak of the probability density distribution in Figure 2b located at 0 D can be attributed to the CH
subcategory, while the second peak located at -0.6 D can be attributed to the CHN, CHO, and
CHON subcategories.

For HF-3¢c and PM7, the CHON subcategory contributed significantly to their poor performance.
For HF-3c, there was a very wide spread of error in the CHON subcategory given by a SD of 0.32
D. In addition to the wide spread of error, two different peaks were present in Figure 5 positioned
at -0.31 D and 0.25 D, respectively. Given that the CHN subcategory had a probability density
distribution positioned at -0.24 D, we ascribed the -0.24 D peak observed in the probability density
distribution for HF-3c in Figure 2b to the CHN and CHON subcategories. Analogously, the second
smaller peak located at 0.00 D in the probability density distribution for HF-3c in Figure 2b was
attributed to the CH (mean error: -0.02 D), CHO (mean error: -0.15 D), S-X (mean error: 0.05 D)
subcategories as well as the second peak of the CHON subcategory which was located at 0.25 D.
Similarly, for PM7, there was a wide spread of error in the CHON subcategory reflected in a SD
of 0.37 D. In addition to the wide spread of error, two different peaks were present positioned at -
0.26 D and -0.56 D, respectively. Also, given that the CHN subcategory had a probability density
distribution positioned at -0.71 D, we ascribed the -0.66 D peak observed in the probability density

distribution for HF-3c in Figure 2b to the CHN and CHON subcategories. While the second peak
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at -0.19 D for the probability density distribution for PM7 in Figure 2b was explained by the CH
(mean error: -0.18 D), CHO (mean error: -0.22 D) subcategories as well as the second peak of the
CHON subcategory which was located at -0.26 D.

Among methods with a single peak in Figure 2b, PBEh-3c is particularly encouraging because
the probability density distributions for all subcategories had similar mean errors (CH: -0.04 D,
CHN: -0.08 D, CHO: -0.07, CHON: -0.1, and S-X: -0.07 D) and spread of error (CH SD: 0.05
D,CHN SD: 0.11 D,CHO SD: 0.10 D, CHON SD: 0.14 D, and S-X SD: 0.14 D) which resulted in
only an overall mean error of -0.08 D and overall SD of 0.12 D. Additionally, all categories had
comparable ranges for PBEh-3¢ which provided the lowest overall range (0.99 D) for all SE
methods suggesting there was no drop in the performance for different compositions of organic
molecules. A similar trend was observed for B97-3¢c where all subcategories had similar mean
errors (CH: -0.07 D, CHN: -0.07 D, CHO: 0 D, CHON: -0.05 D, and S-X: 0.04 D) and spread of
error (CH SD: 0.07 D, CHN SD: 0.12 D, CHO SD: 0.12 D, CHON SD: 0.15 D, and S-X SD: 0.17
D) which resulted in an overall mean error of -0.04 D and SD of 0.13 D. Furthermore, all categories
had comparable ranges for B97-3¢ which provided the second lowest overall range (1.46 D) for
all SE methods implying that there was no drop in the performance for different compositions of
organic molecules.

For GFN2-xTB, we observed spread between the positions of the probability density
distributions of the of the subcategories (CH: -0.06 D, CHN: -0.11 D, CHO: -0.31 D, CHON: -
0.29 D, and S-X: -0.34 D), however, the CHO and CHON subcategories which together accounted
for 62% of the dataset had essentially the same mean error (CHO: -0.31 D, and CHON: -0.29 D)
and similar spread of error (CHO SD: 0.20 D, and CHON SD: 0.25 D. Thus, because of its lower

population relative to the CHO and CHON subcategories, the CHN subcategory which had a
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relatively close mean error of -0.11 D and comparable spread of error (CHN SD: 0.16 D) did not
result in the appearance of a second peak.

Similar to GFN2-xTB, AMI1 also exhibited variation between the mean errors of the
subcategories in which the CHO and CHN subcategories gave mean errors of 0.08 D and 0.04 D,
respectively. The CH and CHON subcategories formed the next group with mean errors of 0.13 D
and 0.19 D, respectively, while the S-X subcategory had a mean error of 0.33 D. However, the
positions of each subcategory distribution were close enough to prevent the appearance of a second
peak.

For PM3, the dipole moment of the CH, CHO, CHON and S-X subcategories were significantly
underpredicted given the mean errors of each subcategory (CH: 0.16 D, CHN: 0.04 D, CHO: 0.19
D, CHON: 0.23 D, and S-X: 0.14 D). In addition, the performance of PM3 was worse for the
CHON (SD: 0.28 D) and S-X (SD: 0.50 D) subcategories compared to the CH (SD: 0.17 D) and
CHO (SD: 0.19 D) subcategories. Furthermore, although the CHN subcategory had an acceptable
mean error, the performance of PM3 in terms of the spread of error was poorer for the CHN
subcategory (SD: 0.34 D) compared to the other subcategories.

For PM6, all subcategories except for the CH and S-X subcategories had relatively similar mean
errors (CH: -0.24 D, CHN: -0.49 D, CHO: -0.39 D, CHON: -0.37 D, and S-X: -0.44 D) and spread
of error (CH: 0.22 D, CHN: 0.37 D, CHO: 0.28 D, CHON: 0.37 D, and S-X: 0.62 D). While there
is a significant drop in performance for the S-X subcategory, the poor performance in the S-X
subcategory is mitigated by the relatively small population of the S-X subcategory and as such its

effect is minimal in the overall spread of error for PM6.
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3.2. PERFORMANCE OF SE METHODS IN PREDICTING THE DIPOLE MOMENT
DIRECTION

Due to the nature of the dipole moment as a vector quantity, we were also interested in evaluating
whether the SE methods studied here could reproduce the direction of the dipole moment and not
just its magnitude. This is important because it is possible for a correct magnitude to be predicted
without preserving the direction of the dipole. Therefore, to quantify the ability of the SE methods
in reproducing the direction of the dipole moment, we collected the components of the dipole
moment for all 7211 molecules and calculated the angle between the dipole moment vector
predicted by the SE method and the CCSD benchmark data provided in the QM7b dataset using

the dot product of these two vectors.
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fitted equation.
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In Figure 5, we compare the average angle between the benchmark dipole moment vector and SE
dipole moment vector to the MAE given by each method. In this figure, we see that B97-3¢c and
PBEh-3c perform the best in terms of reproducing the direction of the dipole moment with average
deviations of 3.6 and 4.5 degrees, respectively. GFN2-xTB, HF-3c, and PM3 form the next group
of methods with average deviations of 6.6, 7.8, and 8.3 degrees respectively. PM6 and PM7 show
nearly identical performance in predicting the dipole moment direction with average deviations of
10.4 and 10.8 degrees, respectively, while GFNO-xTB was the worst performing method with an
average deviation of 17.3 degrees. Despite the accuracy of AM1 in predicting the magnitude of
the dipole moment, it showed a poor performance in reproducing the direction of the dipole
moment with an average deviation of 13.6 degrees. Conversely, GFN1-xTB showed a good ability
to accurately predict the direction of the dipole moment with an average deviation of 9.3 degrees
despite its poor performance in predicting the magnitude of the dipole moment. Overall, the
accuracy of the SE method in predicting the magnitude of the dipole moment generally trended
with its ability to preserve the direction of the dipole moment as shown by the fitted correlation.
3.3. PERFORMANCE OF SE METHODS USING SE OPTIMIZED STRUCTURES
To further evaluate the reliability of the SE methods studied here, we also evaluated the
performance of the SE methods using the SE optimized geometry instead of the DFT geometry
provided with the QM7b dataset. We did this to evaluate the performance of SE methods under
the practical scenario where the DFT optimized structure is not available and SE method is used
to perform the geometry optimization to obtain dipole moment.

Here, we will focus on differences between the performance of each SE method using the
benchmark DFT optimized geometries and the SE optimized geometries. Using SE optimized

geometries, R? values ranged from 0.85 for the worst performing method PM6 to 0.99 for the best
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performing method PBEh-3c. Parity plots as well as the R? values for each SE method using SE
optimized geometries are also given in the Supporting Information. In the section below, we will
give method-wise comparisons of performances using DFT and SE optimized geometries from the
worse performing to the best performing methods (comparing Figures 2 and 6) and also discuss

the effect of the subcategories on the overall performance of the SE methods (Figure 7).
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Figure 6. (a) Radial plot showing the performance of each SE method based on different error

metrics and (b) Violin plots for each SE method showing the kernel smooth probability density
distribution of the errors using SE optimized geometries. The score is a normalized average of
each metric and serves as a proxy for the area under each polygon. See definitions of all metrics
in the Computational Methods section

Unlike for DFT optimized geometries, the performances of PM6 and PM7 are more distinct from
each other as shown in Figure 2a. Using the SE optimized geometries, PM6, performed
significantly worse in every category except the MAE which resulted in PM6 becoming the worst
performing SE method with a condensed metric score of 1.30 (Figure 6a) while PM7 performed
better compared to PM6 with a condensed metric score of 1.18 in contrast to scores of 0.79 and

0.78 for PM6 and PM7, respectively, using DFT optimized geometries. We attributed this drop in
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the performance for both PM6 and PM7 to structural differences between DFT and SE optimized
geometries which we observed for a large number of molecules in the dataset and resulted in
changes in dipole moment of more than 1 D. However, both PM6 and PM7 overpredicted the
dipole moment to a lesser degree using SE optimized geometries given by the mean errors of -0.27
D and -0.23 D, respectively, compared to -0.40 D and -0.37 D using the benchmark DFT
geometries. Despite the improvement in mean error, the spread of error for SE optimized
geometries given by PM6 and PM7 (Figure 6b) were much wider with larger SD (PM6: 0.63 D,
and PM7: 0.50 D) and FWHM (PM6: 1.49 D, and PM7: 1.17 D) compared to the SD (PM6: 0.36
D, and PM7: 0.37 D) and FWHM (PM6: 0.85 D, and PM7: 0.88 D) obtained using DFT optimized
geometries. Additionally in Figure 6b, although PM7 gave a single peak in its probability density
distribution using SE optimized geometries, the range of errors for PM6 and PM?7 increased
significantly (PM6 range: 9.51 D, and PM7 range: 8.94 D) compared to the range of errors given

by PM6 (3.34 D) and PM7 (3.40 D) using DFT optimized geometries.
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optimized geometries. The vertical axis of each plot is the probability density of the error. For
visualization purposes, categories are not normalized with its population. For plots with

normalized subcategory data relative to the total dataset see the SI (Figure S24).

For PM6, the dipole moment for each subcategory was generally more accurate given the lower
mean errors for all subcategories except the CH subcategory using the SE optimized geometries
(CH: -0.25 D, CHN: -0.38 D, CHO: -0.32 D, CHON: -0.12 D, and S-X: -0.57 D) compared to the
DFT optimized geometries (CH: -0.24 D, CHN: -0.49 D, CHO: -0.39 D, CHON: -0.37 D, and S-

X: -0.44 D). However, the spread of error for all subcategories except the CH subcategory was
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significantly wider using SE optimized geometries (CH: 0.22 D, CHN: 0.50 D, CHO: 0.43 D,
CHON: 0.60 D, and S-X: 0.75 D) compared to the much narrower spreads of error obtained using
DFT optimized geometries (CH: 0.22 D, CHN: 0.37 D, CHO: 0.28 D, CHON: 0.37 D, and S-X:
0.62 D).

For PM7, we noted improvements in the dipole moment prediction using SE optimized
geometries for the CHN, CHO, and CHON subcategories characterized by the lower mean errors
of -0.61 D, -0.11 D, and -0.12 D, respectively, compared to -0.61 D, -0.22 D, and -0.33 D,
respectively, obtained using DFT optimized geometries. However, the spread of error for these
subcategories (CHN: 0.47 D, CHO: 0.35 D, CHON: 0.56 D) increased compared to the spread of
error using DFT optimized geometries (CHN: 0.37 D, CHO: 0.24 D, CHON: 0.37 D). For the CH
and S-X subcategories, the performance of PM7 dropped marginally shown in mean errors of -
0.21 D and -0.49 D, respectively, compared to -0.18 D and -0.43 D using DFT optimized
geometries. In addition, the spread of error for the CH (0.18 D) was unchanged while the spread
of error for the S-X subcategory (0.67 D) worsened compared to the spread of error obtained using
DFT optimized geometries (CH: 0.22 D, S-X: 0.54 D).

Interestingly, GFN1-xTB improved slightly in every metric presented in Figure 2a except the
MAD which increased significantly from 2.46 D using DFT optimized geometries to 2.91 D using
SE optimized geometries, and the SD which was unchanged. The most significant improvement
was in the MAE (0.61 D) compared to 0.70 D for benchmark DFT optimized geometries, while
the Mean %error and RMSE only improved by slightly by 4% and 2%, respectively. The
improvements in the MAE, Mean %error, and RMSE however resulted in only a marginal
improvement in the condensed metric score (0.98) compared to the condensed metric score

obtained for the benchmark DFT geometries (1.00). Also, for SE optimized geometries, GFN1-
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xTB overpredicted the dipole moment to a lesser degree compared to benchmark DFT optimized
geometries shown in the improvement of the mean error from -0.68 D to -0.56 D. Furthermore,
based on the probability density distributions for GFN1-xTB in Figure 6b, the range of errors was
markedly wider using SE optimized geometries (4.99 D) compared to the range of errors given
using benchmark DFT optimized geometries (3.98 D). Additionally, there was an improvement in
the dipole moment prediction for every subcategory given the improvement in the mean error using
SE optimized geometries (CH: -0.06 D, CHN: -0.44 D, CHO: -0.69 D, CHON: -0.69 D, S-X: -
0.34 D) compared to DFT optimized geometries (CH: -0.08 D, CHN: -0.49 D, CHO: -0.86 D,
CHON: -0.83 D, S-X: -0.50 D). However, the varied positions of the probability density
distributions of the subcategories still led to the appearance of multiple peaks in Figure 6b.

For AM1, there was a dramatic drop in the performance in every metric given in Figure 2a,
particularly the Mean %error, RMSE, and MAD which increased by 9%, 9% and 4 D, respectively.
The poor performance in every metric resulted in the significant increase in the condensed metric
score using SE optimized geometries (1.04) compared to the condensed metric score obtained
using the benchmark DFT geometries (0.54). Additionally, AM1 more markedly underpredicted
the dipole moment characterized by a mean error of 0.20 D obtained using the SE optimized
structures compared to 0.12 D obtained using the benchmark DFT optimized geometries. The
spread of error associated with AM1 also increased sharply for SE optimized geometries denoted
by the SD (0.49) and FWHM (1.16) compared to the SD (0.36) and FWHM (0.84) obtained for
DFT optimized geometries. Moreover, based on the probability density distributions for AMI in
Figure 6b, the range of errors was dramatically wider using SE optimized geometries (8.87 D)
compared to the range of errors given by the benchmark DFT optimized geometries (2.63 D). To

understand the dramatic drop in the performance for AM1, we manually compared some SE
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optimized geometries to benchmark DFT optimized geometries. Based on visual inspection, we
attributed the poor performance to differences in the SE and DFT optimized geometries. To
illustrate, for molecule 324, 26, 32, and 55 (See Figure 8 and Figures S12, S13, and S14) in the
dataset there was significant conformational change involving the rotation of an amine group
which resulted in a change of 2.90 D, 1.48 D, 1.45 D, and 0.93 D, respectively. In addition to
conformational changes, we also observed less dramatic differences in the SE and DFT optimized
structures such as pyramidization of amine groups (see Figure 8) which led to planar structures
becoming non-planar as well as changes in bond lengths, bond angles, and dihedral angles.
Additionally, the dipole moment for the CH, CHN, and CHON subcategories was underpredicted
to greater extent for SE optimized geometries reflected in the mean errors (CH: 0.14 D, CHN: 0.10
D, CHO: 0.08 D, CHON: 0.36 D, S-X: 0.22 D) compared to mean errors obtained using DFT
optimized geometries (CH: 0.13 D, CHN: 0.04 D, CHO: 0.08 D, CHON: 0.19 D, and S-X: 0.33
D). For the S-X category, we noted an improvement in the dipole moment prediction characterized
by the lower mean of 0.22 D compared to 0.33 D obtained using DFT optimized geometries, while

the mean error for the CHO subcategory (0.08 D) was unchanged.
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Figure 8. Molecule 324 (a and ¢) and 117 (b and d) of the QM7b dataset. (a and ¢) DFT optimized
geometry and (b and d) AM1 optimized geometry. Red circle indicates location of conformation
change after geometry optimization using AM1. Color code: C - cyan, H - gray, N — blue, O - red.

Similar to AM1, PM3 performed worse in every metric given in Figure 2a, particularly the Mean
%error, RMSE, and MAD which increased by 10%, 8%, and 3.8 D, respectively. Due to the poor
performance in each metric, the condensed metric score also rose to 1.00 using SE optimized
geometries compared to 0.47 that was obtained using DFT optimized geometries. Additionally,
for SE optimized geometries, PM3 underpredicted the dipole moment considerably characterized
by a mean error of 0.28 D obtained for the SE optimized compared to 0.16 D for the benchmark
DFT optimized geometries. The spread of error given for PM3 also increased sharply using SE
optimized geometries denoted by the SD (0.47 D) and FWHM (1.11 D) compared to the SD (0.29
D) and FWHM (0.69 D) obtained using DFT optimized geometries. Moreover, based on the
probability density distributions for PM3 in Figure 6b, the range of errors was dramatically wider
using SE optimized geometries (8.38 D) compared to the range of errors given for benchmark DFT

optimized geometries (2.95 D). Much like for AMI, we attributed the dramatic drop in the
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performance of PM3 to structural differences between SE and DFT optimized geometries. For
example, for molecules 26 and 324 (See Figure 9 and Figure S22) in the dataset there was
conformational change involving amine groups, for molecule 12 there was a rotation of a methoxy
group (See Figure S23), and for molecule 250 we observed pyramidization of the amine group

(Figure 9) which resulted in changes in dipole moment of 2.01 D, 1.55 D, 1.33 D, and 1.45 D,

respectively.

u=279D u=078D
(c) (d)
p=4.22D u=277D

Figure 9. Molecule 26 (a and ¢) and 250 (b and d) of the QM7b dataset. (a and c) DFT optimized
geometry and (b and d) PM3 optimized geometry. Red circle indicates location of conformation

change after geometry optimization using PM3. Color code: C - cyan, H - gray, N — blue, O - red.

For PM3, the dipole moment in the CHN, CHO, and CHON subcategories were underpredicted to
a greater degree given the mean errors of each subcategory SE optimized geometries (CHN: 0.14
D, CHO: 0.22 D, CHON: 0.46 D) compared to DFT optimized geometries (CHN: 0.04 D, CHO:
0.19 D, CHON: 0.23 D). For the CH subcategory, the mean error was unchanged while for the S-

X subcategory the mean error (0.15 D) was slightly higher compared to the mean error of 0.14 D
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given using DFT optimized geometries. In addition, the spread of error for the CHN, CHO, CHON,
and S-X subcategories (CH SD: 0.17 D, CHN SD: 0.46, CHO SD: 0.36 D, CHON SD: 0.53 D, S-
X SD: 0.51 D) also worsened compared to the spread of error shown using DFT optimized
geometries (CH SD: 0.17 D, CHN SD: 0.34, CHO SD: 0.19 D, CHON SD: 0.28 D, S-X SD: 0.45

D).

The performance of GFN2-xTB based on metrics in Figure 6a remained relatively unchanged
except for the MAD which increased for SE optimized geometries (2.04 D) compared to 1.30 D
given by GFN2-xTB for the benchmark DFT optimized geometries. The large change in the MAD
was caused due to conformational change in molecule 1256 which involved the rotation of a =CH:

group (See Figure 10) and resulted in a 1.78 D change in the dipole moment.

(a) (lb)

p=045D
Figure 10. Molecule 1256 of the QM7b dataset. (a) DFT optimized geometry and (b) GFN2-xTB

optimized geometry. Red circle indicates location of conformation change after geometry

optimization using GFN2-xTB. Color code: C - cyan, H - gray, N — blue, O - red.

We note that the absence of large changes in the error metrics for GFN2-xTB reflected in the
relatively small change to the condensed metric scores for benchmark DFT (0.42) and SE
optimized geometries (0.54) indicated that GFN2-xTB can provide good dipole moment

predictions regardless of the source of the input geometry. In addition, based on the mean error

36



GFN2-xTB also overpredicted the dipole moment using SE optimized geometries to a lesser
degree with a mean error of -0.15 D than using the benchmark DFT optimized geometries which
had a mean error of -0.23 D. However, GFN2-xTB gave a wider spread of error using the SE
optimized geometries reflected in the SD (0.30) and FWHM (0.72) compared to spread of error
observed using benchmark DFT optimized geometries which had a SD of 0.24 D and FWHM of
0.56. Moreover, based on the probability density distributions for GFN2-xTB in Figure 3, the range
of errors was wider for SE optimized geometries (3.87 D) compared to the range of errors given
for benchmark DFT optimized geometries (1.96 D) which we attributed to structural differences
between SE and DFT optimized geometries which led to larger errors. For the subcategories,
GFN2-xTB gave more accurate dipole moment prediction for the CHN, CHO, CHON, and S-X
subcategories characterized by the smaller mean errors using SE optimized geometries (CHN: -
0.03 D, CHO: -0.22 D, CHON: -0.20 D, S-X: -0.28 D) compared to using DFT optimized
geometries (CHN: -0.11 D, CHO: -0.31 D, CHON: -0.29 D, S-X: -0.34 D). However, GFN2-xTB
provided slightly worse predictions for the S-X subcategory given a mean error of -0.28 D
compared to -0.24 D obtained using DFT optimized geometries while the performance in the CH
subcategory (-0.06 D) was unchanged. Despite the improvements in the mean error, the spread of
error increased for all subcategories except for the CH subcategories which was reflected in the
larger SD using SE optimized geometries (CH: 0.13 D, CHN: 0.25 D, CHO: 0.23 D, CHON: 0.35
D, S-X: 0.45 D) compared to the narrower spread of error using DFT optimized geometries (CH:
0.14 D, CHN: 0.16 D, CHO: 0.20 D, CHON: 0.25 D, S-X: 0.35 D).

For HF-3c the only changes in performance across the metrics presented in Figure 1 were the
Mean %error which increased by 4% and the MAD which increased by 1.1 D, however because

of these the condensed metric score for HF-3¢ rose to 0.60 from the 0.46 obtained using DFT
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optimized geometries. Additionally, HF-3¢c went from overpredicting the dipole moment with a
mean error of -0.06 D for DFT optimized geometries to slightly underpredicting the dipole moment
for SE optimized geometries reflected in a mean error of 0.03 D.

In Figure 6b, we observed the range of error for HF-3c increased to 4.26 D from the 2.10 D
obtained for DFT optimized geometries. We attributed the dramatic drop in the performance of
HF-3c to structural differences between SE and DFT optimized geometries. However, upon
manual inspection unlike AM1 and PM3 there were fewer instances where the difference in the
HF-3c¢ dipole moment using DFT optimized geometries and SE optimized geometries exceeded 1
D. For example, for molecules 26 and 324 (See Figure 11) in the dataset there was conformational
change involving amine groups which resulted in changes in dipole moment of 2.54 D, and 1.71

D, respectively.

IEM r

p=317D pu=063D
(c) a (d)

M=319D g M=148D

Figure 11. Molecule 26 (a and ¢) and 324 (b and d) of the QM7b dataset. (a and ¢) DFT optimized

geometry and (b and d) HF-3c optimized geometry. Red circle indicates location of conformation
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change after geometry optimization using HF-3c. Color code: C - cyan, H - gray, N — blue, O -

red.

In terms of the subcategories, the only notable changes in performance of HF-3¢ were observed in
the CHO and S-X subcategories. For the CHO subcategory, HF-3c still overpredicted the dipole
moment but to a much smaller degree characterized by the much smaller mean error of -0.08 D
compared to the mean error of -0.15 D given using DFT optimized geometries. In contrast to the
improvement in mean error, the spread of error for the CHO subcategories was also markedly
narrower using SE optimized geometries (CHO SD: 0.31 D) compared to the spread of error given
using DFT optimized geometries (CHO SD: 0.24 D). While for the S-X subcategory, HF-3¢c more
significantly underpredicted the dipole moment given by the larger mean error of 0.17 D compared
to 0.05 D provided using DFT optimized geometries.

For B97-3c the only notable drop in the performance based on metrics in Figure 6a was in the
MAD which went from 0.95 D for DFT optimized geometries to 2.10 D for SE optimized
geometries, however this increase in the MAD still resulted in an increase of the condensed metric
score for B97-3¢ which rose from 0.23 to 0.34. Furthermore, there was no significant change in
the spread of error for B97-3¢ based on the SD of 0.13 D using DFT optimized geometries and
0.15 D using SE optimized geometries. Additionally, there was no considerable shift in the mean
error of its probability density distribution in Figure 6b, however the range increased to 3.13 D
compared to 1.46 D range for DFT optimized geometries which was attributed to differences in
the SE optimized and DFT optimized geometries. However, for B97-3c, there were only four
instances where the difference between B97-3c dipole moment using DFT optimized geometries
and SE optimized geometries was greater than 1 D. For the subcategories, there were no notable

changes in the performance of B97-3¢ which further indicates the reliability of this method.
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For PBEh-3c, the only change in performance across the metrics presented in Figure 6a was the
Mean %error which increased by approximately 7% and did not affect the condensed metric score
significantly given a score of 0.21 compared to 0.18 using DFT optimized geometries. However,
the spread of error PBEh-3c was larger for SE optimized geometries reflected in the FWHM of
0.41 D compared to 0.28 D obtained for DFT optimized geometries. Similarly, there was a larger
range of error in the probability density distribution for SE optimized geometries (3.11 D)
compared to DFT optimized geometries (0.99 D) shown in Figure 6b which was attributed to the
overall increase in error as a result of structural changes between DFT and SE optimized
geometries. However, the position of the mean improved marginally from -0.08 D for DFT
optimized geometries to -0.02 D for SE optimized geometries. For the subcategories, there were
no notable changes in the performance of PBEh-3¢ which further indicates the reliability of this
method.

3.4. COMPUTATIONAL COST ANALYSIS

For studies considering a large number of target molecules, computational cost is also a major
consideration before choosing a method. Therefore, to give an estimation of the timings of each
method, we randomly chose 100 molecules from the dataset and ran single point calculations under
comparable circumstances (1 core, 500 MB of memory on the same compute node) for each SE
method using the DFT optimized geometries of the chosen molecules obtained from the QM7b
database. To quantify the relative speeds of the SE methods, we averaged the timings for each
method. In Figure 12, we compare the performance of all ten SE methods evaluated in this work

in terms of approximate timings and error.
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Figure 12. Performance of all studied SE methods in terms of the RMSE% error and computational
cost. Purple bars represent the RMSE% error while red bars represent the computational time on
the log scale. Computational times are estimated based on single point calculations using a single
core. Results were obtained by averaging over 100 randomly chosen molecules from the QM7b
database.

It clear from Figure 12 that the 3c methods were much more time-consuming compared to the
other SE methods given their sounder theoretical form. The NNDO methods form the next group
of SE methods with respect to computational time with AM1, PM3, PM6, and PM7 being two
orders of magnitude faster than the best performing method PBEh-3c. The GFNn-xTB methods
were the fastest methods among SE methods studied here given that they were three orders of
magnitude faster than the best performing method PBEh-3c. Thus, given the good performance of
GFN2-xTB compared to PBEh-3¢, GFN2-xTB represents an acceptable compromise between

accuracy and computational cost for the calculation of the dipole moment of organic molecules
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except for sulfur containing compounds for which only B97-3c and PBEh-3c provided accurate

results.

4. CONCLUSIONS

In this work, we have evaluated the performance of a set of nine SE methods namely AM1, GFNO-
xTB, GFN1-xTB, GFN2-xTB, PM3, PM6, PM7, B97-3¢c, HF-3c, and PBEh-3c, in predicting
dipole moments against high-level couple cluster dipole moment data of 7211 organic molecules
contained in the QM7b dataset*!***. To understand how the composition of molecules in the QM7b
dataset affects the performance of the SE methods, we defined subgroups CH, CHN, CHO, CHON,
and S-X (i.e. sulfur containing molecules such as CHNS, CHNOS, CHOS, CHS, CHNSCI, and
CHSCI) and calculated dipole moments of molecules in each subcategory against reference dipole
moment data. To give insights into the ability of SE methods to predict the direction of the dipole
moment, we also compared the direction predicted by each SE method against reference data. So
as to provide further insights into the capability of SE methods to calculate dipole moment, we
also evaluated the performance of the SE methods upon using SE geometries of the molecules
instead of the DFT optimized benchmark geometry of the QM7b dataset. Finally, we give an
assessment of the relative computational costs of each SE method to help the users in deciding on
a method considering the computational costs as well as accuracy of each method.

Our results showed that B97-3c and PBEh-3c provided the most accurate dipole moment
predictions using the benchmark DFT optimized geometries contained in the QM7b dataset with
mean absolute errors of 0.10 and 0.11 D, respectively. Meanwhile, the performance of HF-3¢ was
comparable to the performance of AM1, PM3, and GFN2-xTB with mean absolute errors of 0.25,
0.27, 0.25, and 0.27 D, respectively. Finally, PM6, PM7, and GFN1-xTB gave the weakest

performances with mean absolute errors of 0.46, 0.43, and 0.70 D, respectively. For all methods,
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the most consistent performance was observed for molecules composed of C and H only (i.e.
hydrocarbons), for which there was low spread of error within 1 D for all methods. For the CHN,
CHO, and CHON subcategories, B97-3c and PBEh-3c were the best performing methods again
with ranges of error of 1 D. GFN2-xTB gave comparably performance to HF-3c in the CHN, CHO,
and CHON subcategories, showing similar range of error of 1.50 (GFN2-xTB) and 1.82 D (HF-
3c¢) for the CHN, 1.61 (GFN2-xTB) and 1.55 D (HF-3c) for the CHO, and 1.90 (GFN2-xTB) and
2.10 D (HF-3c¢) for the CHON subcategories, respectively. For the S-X subcategory, again B97-
3¢ and PBEh-3c¢ provided the best performance given their narrow ranges of error of 0.95 and 0.77
D, respectively, while GFN2-xTB followed closely with a range of 1.69 D. Results using
semiempirical optimized geometries showed that the performance of all semiempirical methods
dropped especially in the performance of AM1 and PM3 for which the range of error rose to 8.87
D and 8.38 D using semiempirical geometries from 2.63 D and 2.95 D, respectively, using DFT
optimized geometries making AM1 and PM3 impractical for dipole moment calculations.

Based on our results, PBEh-3c was the best performing semiempirical method in absolute terms
(MAE: 0.11 D, MAD: 0.67 D), which is comparable to DFT at the B3LYP/d-aug-cc-pVDZ level
of theory (MAE: 0.09 D, MAD: 0.88 D)°!. However, the computational cost of PBEh-3c, which is
similar to DFT using small basis set sets, might make it impractical for large datasets such as
QM?7b. Our results showed however that there is an optimal balance between accuracy and
computational cost by using GFN2-xTB (MAE: 0.25 D, MAD: 1.30 D) which is three of
magnitude faster than PBEh-3c. Thus, we suggest GFN2-xTB as a method of choice among
semiempirical methods because of its optimal cost/performance ratio in calculating the dipole

moment of organic molecules except in the S-X subcategory where PBEh-3c¢ is more preferred.
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1. Summary of full dataset errors for each SE method

Table S1. Errors associated with each SE method using benchmark DFT optimized geometries.

Mean Mean Max
MAE abs SD RMSE | FWHM | Range
SE method error %error
(D) 0 error ( (D) (%) (D) (D)
(D) ) | ‘o
AMI 0.27 0.12 15.75 1.71 0.36 16.35 0.84 2.63
GFNO-xTB 0.88 -0.75 48.57 8.60 1.02 55.89 2.40 11.17
GFENI1-xTB 0.70 -0.68 36.83 2.46 0.49 3791 1.14 3.98
GFN2-xTB 0.27 -0.23 16.16 1.30 0.24 15.34 0.56 1.96
PM3 0.25 0.16 14.55 1.49 0.29 14.98 0.69 2.95
PM6 0.46 -0.40 32.19 2.07 0.36 31.25 0.85 3.34
PM7 0.43 -0.37 30.60 2.14 0.37 31.78 0.88 3.40
B97-3c 0.10 -0.04 6.10 0.95 0.13 6.49 0.32 1.46
HF-3c 0.25 -0.06 15.95 1.12 0.29 16.63 0.69 2.10
PBEh-3c 0.11 -0.08 2.17 0.67 0.12 7.02 0.28 0.99
Table S2. Errors associated with each SE method using SE optimized geometries.
Mean Mean Max
MAE abs SD RMSE | FWHM | Range
SE method error %error
(D) error | (D) (%) (D) (D)
(D) | o
AMI 0.37 0.20 25.42 5.79 0.49 24.49 1.16 8.87
GFNO-xTB 1.13 -0.95 60.91 15.20 1.51 78.03 3.56 18.69
GFNI1-xTB 0.61 -0.56 33.24 2.91 0.49 35.68 1.15 4.99
GFN2-xTB 0.25 -0.15 16.32 2.04 0.30 17.42 0.72 3.87
PM3 0.39 0.28 25.90 5.26 0.47 23.28 1.11 8.38
PM6 0.45 -0.27 39.89 6.11 0.63 37.24 1.49 9.51
PM7 0.41 -0.23 34.99 5.97 0.50 34.52 1.17 8.94
B97-3c 0.11 -0.03 7.31 2.10 0.15 7.51 0.36 3.13
HF-3c 0.27 0.03 20.01 2.20 0.35 17.97 0.82 4.26
PBEh-3c¢ 0.12 -0.02 8.55 1.62 0.17 9.57 0.41 3.11
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Table S3. Performance of each SE method in predicting the dipole moment direction using DFT
optimized geometries.

Average

SE method Deviatiof D)
AMI1 13.6
GFNO-xTB 17.3
GFN1-xTB 9.3
GFN2-xTB 6.6
PM3 8.3
PM6 10.4
PM7 10.8
B97-3¢ 3.6
HF-3c 7.8
PBEh-3¢ 4.5

2. Parity plots showing predictive power of each SE method
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Figure S1. Parity plot comparing dipole moment predicted by AM1 using (a) benchmark DFT
optimized geometries and (b) SE optimized geometries. The red diagonal line is to help the reader
see the ideal correlation.
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Figure S2. Parity plot comparing dipole moment predicted by GFN1-xTB for (a) DFT optimized
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line is to help the reader see the ideal correlation.

A B
a a
=8 ~ 8- .
£ =
[+}] Q
£ £
26 g6 .
2 2 f ﬂl-'
o] ] /
2 a / ¥
a 41 a4/ . R?=0.958
m MAD =1.30( 0 / L & ~ ° MAD =204
|— = o e s .
X XL e
=% N2y
[TH '8 3
O T
0 A T ™ T T T ™ 0 i T T T T
0 2 4 6 8 0 2 4 6 8
Benchmark Dipole moment (D) Benchmark Dipole moment (D)

Figure S3. Parity plot comparing dipole moment predicted by GFN2-xTB for (a) DFT optimized
geometries and (b) SE optimized geometries to benchmark dipole moment data. The red diagonal
line is to help the reader see the ideal correlation.
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Figure S5. Parity plot comparing dipole moment predicted by PM6 for (a) DFT optimized
geometries and (b) SE optimized geometries to benchmark dipole moment data. The red diagonal
line is to help the reader see the ideal correlation.
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Figure S9. Parity plot comparing dipole moment predicted by PBEh-3c for (a) DFT optimized
geometries and (b) SE optimized geometries to benchmark dipole moment data. The red diagonal
line is to help the reader see the ideal correlation.

3. Supplementary discussion: Gaussian normal distributions showing distribution of errors for
each SE method.

Based on the general features observed in Figure 2 and Table S1, we sought to understand the
systematic errors of each method as well as the spread of errors within each method. Figure 2a
shows the error distribution plots for DFT optimized geometries subdivided for the ‘3¢’ methods
(purple lines), and other semiempirical methods GFN1-xTB, GFN2-xTB, AM1, PM3, PM6, and
PM7 (all have different colors). Color choice was done to guide the eye of the reader and to
differentiate the ‘3¢’ methods from the other semiempirical methods. For PBEh-3¢ and B97-3c,
we observed mean errors of -0.08 and -0.04 D which taken together with the low FWHM of 0.28
D and 0.32 D, respectively, indicated that these methods have almost no systematic error in
predicting dipole moments compared to the CCSD reference data. For HF-3c, mean error of -0.06
D and FWHM of 0.69 D were comparable to the error distribution of PM3 and GFN2-xTB which
had FWHM of 0.69 and 0.56 D, and mean errors of 0.16 and -0.23 D, respectively. For other
semiempirical methods, GFN2-xTB, PM3, and to a slightly lesser extent AM1 performed best,
having mean errors of -0.23, 0.16, and 0.12 D, respectively. Moreover, GFN2-xTB, PM3, and
AM1 yielded a lower spread in error characterized by FWHM of 0.56, 0.69, and 0.84 D,
respectively, compared to GFN1-xTB, PM6, and PM7. Meanwhile, GFN1-xTB, PM6, and PM7

(a) (b)

DFT GEOMETRY SE GEOMETRY !

— AM1 — AM1 i
GFN1-xTB GFN1-xTB

—— GFN2-xTB —— GFN2-xTB

—PM3

25 20 15 10 05 00 05 10 15 25 20 -15 -1.0
Error (D) Error (D)

were the worst performing methods reflected in mean errors of -0.68, -0.40, and -0.37 D, and
FWHM of 1.14, 0.85, and 0.88 D, respectively.

Figure S10. Gaussian normal distribution plots for each SE method showing the spread of error
using (a) benchmark DFT optimized geometries and (b) SE optimized geometries.
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4. Supplementary discussion: Performance of GFNO-xTB in dipole moment prediction

We have calculated the dipole moment given by GFNO-xTB using the benchmark DFT optimized
geometries of the QM7b dataset as well as the GFNO-xTB optimized geometries. The error metrics
defined in the Computational Methods section were used to evaluate the performance of GFNO-
xTB in predicting dipole moments for both DFT and GFNO-xTB optimized geometries. We will
discuss the results for GFNO-xTB using the benchmark DFT optimized structures first then we
analyze the results related to the SE optimized structures.

4.1. Performance of GFNO-xTB using benchmark DFT optimized geometries

Figure SX shows parity plots comparing the predictive power of GFNO-xTB and the second worst
method, GFNI1-xTB, compared to benchmark CCSD data. Overall, GFNO-xTB provides poor
dipole moment predictions indicated by the R? value of 0.78 and MAD of 8.60 D compared to the
next worst method GFN1-xTB which had a R? value of 0.93 and a MAD of 2.46 D.
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Figure S11. Parity plots comparing dipole moment predicted by (a) GFN1-xTB and (b) GFNO-
xTB using DFT optimized geometries to benchmark dipole moment data. The red diagonal line is
to help the reader see the ideal correlation. The blue circle and black arrow point to the molecule
with the largest deviation from its CCSD dipole moment.
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Figure S12a shows a radial plot where all GFNO-xTB is compared to the nine other methods
evaluated in this study based on multiple error metrics. From Figure S12a we immediately observe
that GFNO-xTB gave the worst performance across each metric with MAE, Mean %error, MAD,
SD, and RMSE of 0.88 D, 49%, 8.60 D, 1.02 D, and 56%, respectively. Based on our condensed
error metric score (Figure S12a), GFNO-xTB was almost two times worse overall (1.93) than the
second worst GFN1-xTB. This poor performance of GFNO-xTB is not surprising given GFNO-
xTB solves the electron density in a non-self-consistent manner. !
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Figure S12. (a) Radial plot showing performance of GFNO-xTB compared to the nine other
methods based on different error metrics. (b) Violin plots showing performance of GFNO-xTB
relative to the nine other SE methods using DFT optimized geometries.

Figure S12b shows the probability density distribution of GFNO-xTB compared to all other
methods evaluated in this study. Again, we see the poor performance of GFNO-xTB given the very
wide spread of error based on the range of 11.17 D and having no well-defined peak. Additionally,
based on the position of the distribution relative to 0 D, GFNO-xTB generally overpredicts the
dipole moment of the organic molecules in the QM7b dataset.

4.2. Performance of GFNO-xTB for different atomic compositions using benchmark DFT
optimized geometries

In order to understand the performance of GFNO-xTB for the different atomic compositions that
formed five subcategories (see Computational Methods section), we present probability density
distributions of error for GFNO-xTB for each subcategory (See Table S4-S8 for raw numbers).

In the CH subcategory, the performance of GFNO-xTB closely mirrored the performance of PM6,
which gave the poorest performance for the CH subcategory among the other nine methods, in that
GFNO-xTB notably overpredicts the dipole moment of hydrocarbons with a mean error of -0.28 D
(PM6 mean error: -0.24 D) and an even wider range of error of 2.55 D (PM6 range: 1.73 D).

For the CHN subcategory, GFNO-xTB shows significantly worse performance compared to PM7
which was the worst performing method among the other nine methods for the CHN subcategory.
GFNO-xTB considerably underpredicts the dipole moment of molecules in this subcategory with
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a mean error of -1.18 D compared to PM7’s -0.61 D, in addition to having more than double the
range of error of PM7 (2.69 D) with a range of 5.55 D.

In the CHO subcategory, GFNO-xTB showed its best performance in terms of the mean error,
showing almost no systematic error with a mean error of -0.09 D which was comparable to AM1
(mean error: 0.08 D). Despite the low mean error however, GFNO-xTB gave a very large range of
error with a range of 7.38 D which is almost three times the range of the next worst SE method
GFN1-xTB (range: 2.74 D).
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Figure S13. Kernel smooth probability density distribution of errors for GFNO-xTB using
benchmark DFT optimized geometries for the CH, CHO, CHN, CHON, and S-X compositional
subcategories. The vertical axis of each plot is the probability density of the error value. For
comparison, the probability density distribution of errors for the total dataset is also disclosed.

In the CHON subcategory, GFNO-xTB underpredicted the dipole moment molecules with a mean
error of -0.93 D which was similar to GFN1-xTB with a mean error of -0.83 D. However, GFNO-
xTB showed a very wide range of error with a range of 11.17 D which was more than three times
the range of the next worst SE method in the CHON subcategory GFN1-xTB (3.32 D).

For the S-X subcategory, GFNO-xTB again shows very poor performance given its mean error of
-1.38 D indicating GFNO-xTB considerably underpredicted the dipole moment of molecules in
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this subcategory with the next worst SE method GFN1-xTB having a mean error of -0.47 D. As

we saw for other subcategories, GFNO-xTB had a very large spread of error shown in the range of
8.84 D.

4.3. Performance of GFNO-xTB using GFNO-xTB optimized geometries

We also evaluated the performance of GFNO-xTB using the GFNO-xTB optimized geometry
instead of the DFT optimized geometry contained in the QM7b dataset. As previously discussed,
we did this to evaluate the performance of GFNO-xTB under the practical scenario where DFT
optimized geometries are unavailable and GFNO-xTB must be used to carry out a geometry
optimization to obtain the dipole moment. Here, we will focus on the differences in performance
using DFT optimized, and GFNO-xTB optimized geometries.

Figure S14 shows parity plots comparing the predictive power of GFNO-xTB and the second worst
method, PM6, compared to benchmark CCSD data. Overall, GFNO-xTB provides very poor dipole
moment predictions using GFNO-xTB optimized geometries indicated by the R? value of 0.63 and
MAD of 15.20 D compared to R? value and MAD of PM6 (0.85, 6.11 D).
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Figure S14. Parity plot comparing dipole moment predicted by (a) PM6 and (b) GFNO-xTB using
SE optimized geometries to benchmark dipole moment data. The red diagonal line is to help the

reader see the ideal correlation. The blue circle and black arrow point to the molecule with the
largest deviation from its CCSD dipole moment.

Figure S15a shows a radial plot where all GFNO-xTB is compared to the nine other methods
evaluated in this study based on multiple error metrics.
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Figure S15. (a) Radial plot showing performance of GFNO-xTB compared to the nine other
methods based on different error metrics. (b) Violin plots showing performance of GFNO-xTB
relative to the nine other SE methods using DFT optimized geometries.

Again, we see GFNO-xTB’s poor performance across each metric which resulted in the condensed
metric score dramatically rising to 2.92 using GFNO-xTB optimized geometries compared to 1.93
that was obtained using DFT optimized geometries. Figure S15b shows the probability density
distribution of GFNO-xTB compared to all other methods evaluated in this study. Using GFNO-
xTB optimized geometries, the performance of GFNO-xTB decreased significantly indicated by
the much larger range of 18.87 D. On the positive side, the probability density distribution has a
well-defined peak.

4.4. Performance of GFNO-xTB for different atomic compositions using SE optimized
geometries

For completeness, we also evaluated the performance of GFNO-xTB in the different subcategories
using GFNO-xTB optimized geometries. Figure S16 shows the probability distribution of errors
for each SE method for each subcategory. See Tables S3 to S4 for raw numbers.

In the CH subcategory, we saw some marginal improvements in the performance of GFNO-xTB
shown in the mean error which decreased marginally to -0.26 D from -0.28 D obtained using DFT
optimized geometries. Additionally, the range slightly decreased from 2.55 D using DFT
optimized geometries to 2.41 D using GFNO-xTB optimized geometries.

For the CHN subcategory, GFNO-xTB shows significantly worse performance using GFNO-xTB
optimized geometries. GFNO-xTB underpredicts the dipole moment of molecules in this
subcategory more significantly with a mean error of -1.29 D compared to -1.18 D using DFT
optimized geometries. In addition, the range of error is almost doubled using SE optimized
geometries (9.18 D) compared to the range obtained using benchmark DFT geometries (5.55 D).
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Figure S16. Kernel smooth probability density distribution of errors for GFNO-xTB using SE
optimized geometries for the CH, CHO, CHN, CHON, and S-X compositional subcategories. The
vertical axis of each plot is the probability density of the error value. For comparison, the
probability density distribution of errors for the total dataset is also disclosed.
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Similarly, in the CHO subcategory the performance of GFNO-xTB was somewhat worse using
GFNO-xTB optimized geometries as the mean error increased slightly to -0.14 D compared to -
0.09 D using benchmark DFT optimized geometries. Additionally, GFNO-xTB gave a very large
range of error with a range of 10.18 D compared to the range of 7.38 D obtained using DFT
optimized geometries.

In the CHON subcategory, GFNO-xTB more significantly underpredicted the dipole moment
molecules with a mean error of -1.29 D compared to the mean error of -0.93 D obtained using DFT
optimized geometries while there was again a dramatic increase in the range of error which rose
to 18.69 D from 11.17 D.

Following the same trend for the other subcategories, the performance of GFNO-xTB dropped
significantly in the S-X subcategory using GFNO-xTB optimized geometries compared to DFT
optimized geometries. For this subcategory, GFNO-xTB considerably underpredicted the dipole
moment shown in the mean error of -1.78 D compared to -1.38 D obtained using DFT optimized
geometries while the range of error also increased to 11.65 D compared to 8.84 D obtained using
DFT optimized geometries.

5. Probability density distribution of subcategory errors for each SE method normalized by
population using DFT optimized geometries.
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Figure S17. Kernel smooth probability density distribution of subcategory errors for each SE
method using benchmark DFT optimized geometries. The vertical axis of each plot is the
probability of obtaining a certain error value. Each subcategory has been normalized by its
population.

6. Supplementary discussion: Performance of SE methods for different atomic compositions
using SE optimized geometries

For completeness, we also evaluated the performance of the SE methods in the different
subcategories using SE optimized geometries. Figure S18 shows the probability distribution of
errors for each SE method for each subcategory. See Tables S3 to S4 for raw numbers.
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Figure S18. Kernel smooth probability density distribution of errors for each SE method using SE
optimized geometries for the CH, CHO, CHN, CHON, and S-X compositional subcategories. The
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vertical axis of each plot is the probability of obtaining a certain error value. For comparison, the
probability density distribution of errors for the total dataset is also disclosed.

For the CH subcategory, there was no considerable change in the performance of the SE methods
shown in the comparable mean errors (AM1: 0.14 D, GFN1-xTB: -0.06 D, GFN2-xTB: -0.06 D,
PM3: 0.16 D, PM6: -0.25 D, PM7: -0.21 D, B97-3c: -0.07 D, HF-3c: 0.00 D, and PBEh-3C: -0.03
D) and ranges (AM1: 0.98 D, GFN1-xTB: 0.68 D, GFN2-xTB: 0.93 D, PM3: 1.12 D, PM6: 1.56
D, PM7: 1.23 D, B97-3c: 0.57 D, HF-3c: 0.89 D, and PBEh-3c: 0.88 D) using SE optimized
geometries and the mean errors (AM1: 0.13 D, GFN1-xTB: -0.08 D, GFN2-xTB: -0.06 D, PM3:
0.16 D, PM6: -0.24 D, PM7: -0.18 D, B97-3c: -0.07 D, HF-3c¢: -0.02 D, and PBEh-3c: -0.04 D and
ranges (AM1: 1.02 D, GFN1-xTB: 0.75 D, GFN2-xTB: 0.97 D, PM3: 1.14 D, PM6: 1.73 D, PM7:
1.41 D, B97-3c: 0.49 D, HF-3c: 0.72 D, and PBEh-3c: 0.37 D) using DFT optimized geometries.
Consequently, just as we saw using DFT optimize geometries, the most consistent performance
for all methods was shown in the CH subcategory.

In the CHN subcategory, there were improvements in the mean errors for GFN1-xTB, GFN2-xTB,
PM6 and PM?7 characterized by their smaller mean errors of -0.44 D, -0.03 D,-0.38 D, and -0.46
D, respectively, given using SE optimized geometries compared to -0.49 D, -0.11 D, -0.49 D, and
-0.61 D, respectively, obtained using DFT optimized geometries. However for these methods, the
spread of error increased dramatically shown in the ranges of 3.45 D, 3.27 D, 6.91 D, and 7.03 D,
respectively, compared to much smaller ranges of 2.34 D, 1.50 D, 2.57 D, and 2.69 D, respectively,
shown using DFT optimized geometries. For B97-3c, HF-3¢, PBEh-3¢, and PM3 there were no
considerable changes in the mean errors using SE optimized geometries (B97-3c: -0.07 D, HF-3c:
0.00 D, PBEh-3c: -0.03 D, and PM3: 0.16 D) compared to using DFT optimized geometries (B97-
3c: -0.07 D, HF-3c: -0.02 D, PBEh-3c: -0.04 D, and PM3: 0.16 D). However, we observed
significant increase in the spread of error shown in the ranges of 2.18 D, 3.69 D, 1.87 D, and 5.67
D compared to 0.49 D, 1.82 D, 0.92 D, and 2.31 D, respectively, provided using DFT optimized
geometries.

In the CHO subcategory, there were notable improvements in the mean errors for GFN1-xTB,
GFN2-xTB, and PM7. This is characterized by their smaller mean errors of -0.69 D, -0.22 D, and
-0.11 D, respectively, given using SE optimized geometries compared to -0.86 D, -0.31 D, and -
0.22 D, respectively, obtained using DFT optimized geometries. However, for these methods, the
spread of error increased dramatically shown in the ranges of 4.61 D, 2.27 D, and 5.39 D,
respectively, compared to much smaller ranges of 2.74 D, 1.61 D, and 1.89 D, respectively, shown
using DFT optimized geometries. In contrast, HF-3¢ overpredicted the dipole moment for
molecules in the CHO subcategory to a greater extent given the increase in the mean error from -
0.08 D to -0.15 D. In addition, there was also an increase in the spread of error for HF-3c shown
as the range increased from 1.55 D using DFT optimized geometries to 2.76 D using SE optimized
geometries, respectively. Meanwhile, for AM1, B97-3c, PBEh-3c, PM3, and PM6, the only
changes in performance were an increased spread of error for these methods shown in the range
(AM1: 5.14 D, B97-3c: 1.48 D, PBEh-3c: 2.39 D, PM3: 5.55 D, and PM6: 5.97 D) compared to
those given using DFT optimized geometries (AM1: 1.31 D, B97-3c: 1.13 D, PBEh-3c: 0.89 D,
PM3: 1.38 D, and PM6: 2.21 D).

For the CHON subcategory, GFN1-xTB, GFN2-xTB, PM6, and PM7 provided lower systematic
error reflected in their lower mean errors using SE optimized geometries (GFN1-xTB: -0.55 D,
GFN2-xTB: -0.20 D, PM6: -0.12 D, and PM7: -0.12 D) compared to their performance using DFT
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optimized geometries (GFN1-xTB: -0.83 D, GFN2-xTB: -0.29 D, PM6: -0.37 D, and PM7: -0.33
D). Despite the improvement in the mean error, there were considerable increases in the spread of
error (GFN1-xTB: 4.87 D, GFN2-xTB: 3.77 D, PM6: 8.91 D, and PM7: 8.72 D) compared to the
narrower spread of error shown using DFT optimized geometries (GFN1-xTB: 3.32 D, GFN2-
xTB: 1.90 D, PM6: 2.58 D, and PM7: 2.45 D). In contrast, AM1 and PM3 showed larger systematic
error characterized by lower mean errors obtained using SE optimized geometries (AM1: 0.36 D,
PM3: 0.46 D) compared to DFT optimized geometries (AM1: 0.19 D, PM3: 0.23 D). Additionally,
there was a significant increase in the spread of error given by AM1 and PM3 using SE optimized
geometries shown in their much wider ranges of 7.76 D and 8.18 D, respectively, compared to
2.46 D and 1.87 D, respectively, provided using DFT optimized geometries. We consequently
attributed this drastic drop in performance to structural differences between the SE and DFT
optimized geometries. Meanwhile, for the ‘3¢’ methods, the only notable changes were in the
spread of error which increased for each method using SE optimized geometries (B97-3c: 3.13 D,
HF-3c: 3.73 D, PBEh-3c: 3.02 D) relative to the spread of error shown using DFT optimized
geometries (B97-3c: 1.27 D, HF-3c: 2.10 D, PBEh-3c: 0.99 D).

In the S-X subcategory, we observed small improvements in the range of error for PM7 (3.34 D)
using SE optimized geometries compared to DFT optimized geometries (3.40 D) while PM3, and
PM6 produced wider ranges of error using SE optimized geometries (PM3: 3.02 D, PM6: 4.27 D)
compared to DFT optimized geometries (PM3: 2.70 D, PM6: 3.40 D). However, the mean error
was essentially unchanged for PM3 (0.15 D) using SE optimized geometries while PM6 (-0.57 D)
and PM7 (-0.49 D) overpredicted the dipole moment to a slightly greater degree using SE
optimized geometries compared to DFT optimized geometries (PM3: 0.14 D, PM6: -0.26, and
PM7:-0.43 D). For AMI1 and GFN1-xTB, the mean error (AM1: 0.22 D, and GFN1-xTB: -0.34
D) also improved using SE optimized geometries compared to DFT optimized geometries (AM1:
0.33 D, and GFN1-xTB: 0.50 D). However, we observed an increase in the range of error given
by GFNI1-xTB (4.12 D) using SE optimized geometries compared to DFT optimized geometries
(3.48 D) which we again attributed to structural differences between SE optimized geometries and
DFT optimized geometries. For the ‘3¢’ methods and GFN2-xTB however, there were no notable
changes in performance.

7. Summary of subcategory errors for each SE method

Table S4. Errors associated with each SE method for the CH subcategory using DFT and SE

optimized geometries.

SE Mean error (D) SD (D) FWHM (D) Range (D)
method DFT SE DFT SE DFT SE DFT SE
geometry | geometry | geometry | geometry | geometry | geometry | geometry | geometry
AMI 0.13 0.14 0.15 0.15 0.35 0.35 1.02 0.98
O | 028 | w026 | 028 | 027 | 066 | 063 | 255 | 241
GENI- - 08 | 006 | o.11 000 | 027 | 025 | 075 | 068
xTB
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G;I;I};— -0.06 -0.06 0.14 0.13 0.32 0.31 0.97 0.93
PM3 0.16 0.16 0.17 0.17 0.40 0.40 1.14 1.12
PM6 -0.24 -0.25 0.22 0.22 0.51 0.52 1.73 1.56
PM7 -0.18 -0.21 0.18 0.18 0.42 0.43 1.41 1.23

B97-3¢ -0.07 -0.07 0.07 0.07 0.17 0.17 0.49 0.57
HF-3c -0.02 0.00 0.09 0.10 0.22 0.23 0.72 0.89
PBEh-

3c -0.04 -0.03 0.05 0.06 0.13 0.14 0.37 0.88

Table S5. Errors associated with each SE method for the CHN subcategory using DFT and SE

optimized geometries.

SE Mean error (D) SD (D) FWHM (D) Range (D)
method | DFT SE DFT SE DFT SE DFT SE
geometry | geometry | geometry | geometry | geometry | geometry | geometry | geometry
AMI | 0.04 0.10 0.45 0.55 1.07 131 238 716
GFNO- | 118 | 129 0.88 1.24 2.06 2.92 5.55 9.18
xTB
Gf%\IBl' 049 | -0.44 0.31 0.35 0.74 0.84 2.34 3.45
Gf%\IBz' 0.11 20.03 0.16 0.25 0.38 0.58 1.50 307
PM3 0.04 0.14 034 0.46 0.80 1.08 231 5.67
PM6 | 049 | -038 0.37 0.50 0.87 119 257 6.91
PM7 | 061 | -0.46 0.37 0.47 0.88 1.10 2.69 7.03
B973c | 0.07 | -0.06 0.12 0.13 027 0.30 1.04 2.18
HF3c | -0.07 0.06 031 0.30 0.74 0.71 1.82 3.69
PBih' 008 | -0.03 0.11 0.14 0.27 0.34 0.92 1.88

Table S6. Errors associated with each SE method for the CHO subcategory using DFT and SE

optimized

geometries.

Mean error (D)

SD (D)

FWHM (D)

Range (D)
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SE DFT SE DFT SE DFT SE DFT SE

method | geometry | geometry | geometry | geometry | geometry | geometry | geometry | geometry
AML | 0.08 0.08 0.19 031 0.45 0.72 131 5.14

GENO- | 09 | -0.14 0.62 0.90 1.46 2.11 738 10.18
xTB

GENI- 1 586 | -0.69 0.39 0.41 0.92 0.96 2.74 4.61
xTB

GfTNé' 031 | 022 0.20 0.23 0.46 0.54 1.61 207
PM3 | 0.19 022 0.19 0.36 0.45 0.84 138 5.55
PM6 | 039 | -032 028 0.43 0.66 1.01 221 5.97
PM7 | 022 | -0.11 024 035 0.57 0.83 1.89 5.39

B97-3¢ | 0.00 0.02 0.12 0.14 0.29 0.32 .13 1.47
HF3c | -0.15 | -0.08 0.24 031 0.56 0.74 1.55 276

PBEh-

3¢ 0,07 0.01 0.10 0.14 0.23 0.34 0.89 2.39

Table S7. Errors associated with each SE method for the CHON subcategory using DFT and SE

optimized geometries.

SE Mean error (D) SD (D) FWHM (D) Range (D)
method | DFT | SE | DFT | SE | DFT | SE | DFT SE
geometry | geometry | geometry | geometry | geometry | geometry | geometry | geometry
AMI | 019 | 036 | 036 | 052 | 085 | 123 | 246 | 776
GFNO- 1 093 | <120 | 108 | 182 | 255 | 428 | 1117 | 18.69
xTB
GFNI- 1 083 | 069 | 053 | o055 | 124 | 130 | 332 | 487
xTB
O] 020 | 020 | 025 | 035 | o060 | 08 | 190 | 377
PM3 | 023 | 046 | 028 | 055 | 065 | 124 | 187 | 818
PM6 | -037 | -012 | 037 | 060 | 088 | 141 | 258 | 891
PM7 | 033 | -012 | 037 | 056 | 086 | 131 | 245 | 872
B97-3c | -005 | 003 | 015 | 017 | 035 | o041 | 127 | 3.3
HF3c | 000 | 009 | 032 | 039 | 076 | 091 | 210 | 373
PBE-
3 | 010 | 002 | 014 | o022 | % ] O ] 990 | 300

71




Table S8. Errors associated with each SE method for the S-X subcategory using DFT and SE
optimized geometries.

SE Mean error (D) SD (D) FWHM (D) Range (D)
method DFT SE DFT SE DFT SE DFT SE
geometry | geometry | geometry | geometry | geometry | geometry | geometry | geometry
AMI 0.33 0.22 0.49 0.67 1.15 1.59 2.63 4.25
GFNO- -1.38 -1.78 1.50 2.01 3.54 4.75 8.84 11.65
xTB
GFNI- -0.50 -0.34 0.61 0.67 1.44 1.58 3.48 4.12
xTB
Gf]I}IISZ- -0.34 -0.28 0.35 0.45 0.82 1.06 1.69 2.66
PM3 0.14 0.15 0.45 0.51 1.06 1.20 2.70 3.02
PM6 -0.44 -0.57 0.62 0.75 1.47 1.76 3.34 4.27
PM7 -0.43 -0.49 0.54 0.67 1.26 1.59 3.40 3.33
B97-3c 0.04 0.03 0.17 0.17 0.41 0.39 0.95 1.16
HF-3c 0.05 0.17 0.24 0.47 0.58 1.12 1.36 2.82
PBEh-
3c -0.07 -0.05 0.14 0.18 0.34 0.42 0.77 1.88

8. Examples of SE optimized geometries compared to DFT optimized geometries

T

p=3.18D

H=1.70D
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Figure S19. Molecule 26 of the QM7b dataset. (a) DFT optimized geometry and (b) AMI
optimized geometry. Red circle indicates location of conformation change after geometry
optimization using AM1. Color code: C - cyan, H - gray, N — blue.

poefes

p=282D p=137D

Figure S20. Molecule 32 of the QM7b dataset. (a) DFT optimized geometry and (b) AMI
optimized geometry. Red and blue circles indicate locations of conformation changes after
geometry optimization using AM1. Color code: C - cyan, H - gray, N — blue, O —red, S — dark

oot Jood

p=1.59D p=252D

yellow.

Figure S21. Molecule 55 of the QM7b dataset. (a) DFT optimized geometry and (b) AMI
optimized geometry. Red circle indicates location of conformation change after geometry
optimization using AM1. Color code: C - cyan, H - gray, N — blue.
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(a) (b)
S u=283D E u=1.28D i

Figure S22. Molecule 324 of the QM7b dataset. (a) DFT optimized geometry and (b) PM3
optimized geometry. Red circle indicates location of conformation change after geometry
optimization using PM3. Color code: C - cyan, H - gray, N — blue.

ia}! ii t [H

p=3.60D p=227D

Figure S23. Molecule 12 for the QM7b dataset. (a) DFT optimized geometry and (b) PM3
optimized geometry. Red circle indicates location of conformation change after geometry
optimization using PM3. Color code: C - cyan, H - gray, N — blue, O - red.
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9. Probability density distribution of subcategory errors for each SE method normalized by
population using SE optimized geometries

HF-3c
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Figure S24. Kernel smooth probability density distribution of subcategory errors for each SE
method using SE optimized geometries. The vertical axis of each plot is the probability of
obtaining a certain error value. Each subcategory has been normalized by its population.
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