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Abstract. For each integer partition q with d parts, we denote by ∆(1,q) the lattice simplex

obtained as the convex hull in Rd of the standard basis vectors along with the vector −q. For q
with two distinct parts such that ∆(1,q) is reflexive and has the integer decomposition property, we
establish a characterization of the lattice points contained in ∆(1,q). We then construct a Gröbner
basis with a squarefree initial ideal of the toric ideal defined by these simplices. This establishes the
existence of a regular unimodular triangulation for reflexive 2-supported ∆(1,q) having the integer
decomposition property. As a corollary, we obtain a new proof that these simplices have unimodal
Ehrhart h∗-vectors.

1. Introduction & Background

Consider an integer partition q ∈ Zd≥1 where q1 ≤ · · · ≤ qd.

Definition 1.1. The lattice simplex associated with q is

∆(1,q) := conv

{
e1, . . . , ed,−

d∑
i=1

qiei

}
⊂ Rd,

where ei denotes the i-th standard basis vector in Rd. Set N(q) := 1 +
∑

i qi.

It is straightforward to prove [13, Proposition 4.4] that N(q) is the normalized volume of ∆(1,q).
Let Q denote the set of all lattice simplices of the form ∆(1,q). The simplices in Q correspond to
a subset of the simplices defining weighted projective spaces [9]; the vector (1,q) gives the weights
of the associated weighted projective space. Simplices in Q have been the subject of active recent
study [1, 5, 6, 7, 12, 14]. Given a vector of distinct positive integers r = (r1, . . . , rt), we write

(rx11 , r
x2
2 , . . . , r

xt
t ) := (r1, r1, . . . , r1︸ ︷︷ ︸

x1 times

, r2, r2, . . . , r2︸ ︷︷ ︸
x2 times

, . . . , rt, rt, . . . , rt︸ ︷︷ ︸
xt times

) .

There is a natural stratification of Q based on the distinct entries in the vector q, leading to the
following definition.

Definition 1.2. If q = (q1, . . . , qd) = (rx11 , r
x2
2 , . . . , r

xt
t ), we say that both q and ∆(1,q) are supported

by the vector r = (r1, . . . , rt) with multiplicity x = (x1, . . . , xt). We write q = (r,x) in this case,
and say that q is t-supported.

Because ∆(1,q) contains the origin, the geometric dual ∆∗(1,q) is a rational polytope, where

∆∗(1,q) := {y ∈ Rd | 〈a,y〉 ≤ 1 for all a ∈ ∆(1,q)} .
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A lattice polytope P is reflexive if the dual of P is also a lattice polytope. It is known [9] that
∆(1,q) is reflexive if and only if

qi divides 1 +
d∑
j=1

qj for all 1 ≤ i ≤ d . (1)

Thus, when (1) holds, we refer to both q and ∆(1,q) as reflexive.
We say a lattice polytope P has the integer decomposition property, or is IDP, if for every

M ∈ Z≥1 and p ∈ (M · P ) ∩ Zd, there exist p1, . . . , pM ∈ P ∩ Zd such that p = p1 + · · · + pM .
A detailed study of reflexive IDP ∆(1,q) was initiated in [6], motivated by several open problems
regarding unimodality in Ehrhart theory (see [4, Conjectures 1 and 2]). Braun, Davis, and Solus [6,
Theorem 4.1] classified the 2-supported reflexive IDP ∆(1,q), proving that every such q is of the
form (rx11 , r

x2
2 ) where either

r1 > 1 with r2 = 1 + r1x1 and x2 = r1 − 1, or

r1 = 1 with r2 = 1 + x1 and x2 arbitrary.

They further established that every ∆(1,q) has a unimodal Ehrhart h∗-vector.
It is well known that if a lattice polytope P admits a unimodular triangulation, then P is IDP.

Further, Bruns and Römer proved the following theorem.

Theorem 1.3 (Bruns and Römer [8]). If P is reflexive and admits a regular unimodular triangu-
lation, then P has a unimodal Ehrhart h∗-vector.

Thus, it is of interest to determine whether or not reflexive IDP lattice polytopes admit regular
unimodular triangulations. In particular, while we know that reflexive IDP 2-supported ∆(1,q)’s
are h∗-unimodal, producing regular unimodular triangulations of these simplices demonstrates that
this unimodality is a consequence of the more general Theorem 1.3.

It has been shown [6] that each 2-supported reflexive IDP ∆(1,q) with q = (1x1 , (1 + x1)
x2)

arises as an affine free sum of ∆(1,1x1 ) and ∆(1,1x2 ). Thus, every ∆(1,q) of this form admits a
regular unimodular triangulation, for example the triangulation arising as the join of the bound-
ary of ∆(1,1x1 ) × (0x2) with the unique unimodular triangulation of (0x1) ×

(
∆(1,1x2 ) − ex1+1

)
in

Rx1+x2 . (Note that this latter simplex has two triangulations, one being the entire simplex and
the other being the cone of the interior point with the boundary complex, and only one of these is
unimodular.)

In this paper, we study regular unimodular triangulations for the other 2-supported case. Thus,
for the remainder of this paper, we assume that q = (rx11 , (1+r1x1)

r1−1) with r1 > 1. Observe that
dim ∆(1,q) = d = x1 + x2 = r1 + x1 − 1. Define A′(q) := {a′1, . . . , a′r1+3,b

′
1, . . . ,b

′
d} ⊂ Zd, where:

a′r1+1 = ((−1)x1 , (−x1)r1−1)
a′r1+2 = (0x1 , (−1)r1−1)

a′r1+3 = (0x1 , 0r1−1)

a′i = (r1 − i+ 1)a′r1+1 + a′r1+2 for 1 ≤ i ≤ r1
b′j = ed−j+1 for 1 ≤ j ≤ d

Observe that a′1 = −q, so all vertices of ∆(1,q) are contained in A′(q). Note that later in this
work we will use the notation A(q) to denote the set of these vectors where each vector has a 1
appended. Thus, we use A′(q) for the vectors defined above.

Example 1.4. Let r1 = 6 and x1 = 4, so q = (64, 255) ∈ Z9. The elements of A′(q) are given by
the columns of the matrix in Figure 1.

In this paper, we prove the following theorems.
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a′1 a′2 a′3 a′4 a′5 a′6 a′7 a′8 a′9 b′1 b′2 b′3 b′4 b′5 b′6 b′7 b′8 b′9



−6 −5 −4 −3 −2 −1 −1 0 0 0 0 0 0 0 0 0 0 1
−6 −5 −4 −3 −2 −1 −1 0 0 0 0 0 0 0 0 0 1 0
−6 −5 −4 −3 −2 −1 −1 0 0 0 0 0 0 0 0 1 0 0
−6 −5 −4 −3 −2 −1 −1 0 0 0 0 0 0 0 1 0 0 0
−25 −21 −17 −13 −9 −5 −4 −1 0 0 0 0 0 1 0 0 0 0
−25 −21 −17 −13 −9 −5 −4 −1 0 0 0 0 1 0 0 0 0 0
−25 −21 −17 −13 −9 −5 −4 −1 0 0 0 1 0 0 0 0 0 0
−25 −21 −17 −13 −9 −5 −4 −1 0 0 1 0 0 0 0 0 0 0
−25 −21 −17 −13 −9 −5 −4 −1 0 1 0 0 0 0 0 0 0 0

Figure 1. A′(q) for q = (64, 255).

Theorem 1.5. For q = (rx11 , (1 + r1x1)
r1−1) with r1 > 1, the lattice points of the IDP simplex

∆(1,q) are given by A′(q).

Theorem 1.6. For q = (rx11 , (1 + r1x1)
r1−1) with r1 > 1, there exists a lexicographic squarefree

initial ideal of the toric ideal associated with ∆(1,q).

Corollary 1.7. Every 2-supported IDP reflexive simplex ∆(1,q) admits a regular unimodular trian-

gulation. When q = (rx11 , (1+r1x1)
r1−1) with r1 > 1, this triangulation is induced by a lexicographic

term order <lex.

The remainder of this paper is structured as follows. In Section 2 we prove Theorem 1.5. In
Section 3 we introduce needed algebraic machinery and prove Theorem 1.6. In Section 4 we describe
the facets of the resulting triangulation and discuss connections to the Ehrhart h∗-vector of ∆(1,q).

2. Proof of Theorem 1.5

Our strategy is to determine the number of lattice points in ∆(1,q), show that this value equals
the number of columns of A′(q), and then show that all of the columns of A′(q) are contained in
∆(1,q).

Proposition 2.1. For q as given in Theorem 1.5, we have
∣∣∆(1,q) ∩ Zd

∣∣ = r1 + d+ 3.

Proof. Using [6, Theorem 2.2], we know the Ehrhart h∗-polynomial of ∆(1,q), denoted h∗(∆(1,q); z) :=

h∗0 + h∗1z + · · ·+ h∗dz
d, is given by

h∗(∆(1,q); z) =

r1(x1r1+1)−1∑
b=0

zw(q,b),

where

w(q, b) := b− x1
⌊

b

1 + x1r1

⌋
− (r1 − 1)

⌊
b

r1

⌋
.

It is well known (see, e.g., [2]) that the coefficient h∗1 is given by the formula

h∗1 =
∣∣∣∆(1,q) ∩ Zd

∣∣∣− (dim ∆(1,q) + 1) . (2)

To compute h∗1, we must determine all b for which w(q, b) = 1. Since 0 ≤ b ≤ r1(x1r1+1)−1, the
division algorithm allows us to write b = α(1 + x1r1) + β, where 0 ≤ α < r1 and 0 ≤ β < 1 + x1r1.



4 BENJAMIN BRAUN AND DEREK HANELY

Hence,

w(q, b) = w(q, α(1 + x1r1) + β)

= α(1 + x1r1) + β − x1
⌊
α(1 + x1r1) + β

1 + x1r1

⌋
− (r1 − 1)

⌊
α(1 + x1r1) + β

r1

⌋
= α(1 + x1r1) + β − αx1 − (r1 − 1)

(
αx1 +

⌊
α+ β

r1

⌋)
= α+ β − (r1 − 1)

⌊
α+ β

r1

⌋
.

Therefore, the equation w(q, b) = 1 becomes

α+ β − (r1 − 1)

⌊
α+ β

r1

⌋
= 1 ⇐⇒ α+ β = 1 + (r1 − 1)

⌊
α+ β

r1

⌋
.

Now, let ` =
⌊
α+β
r1

⌋
. By the previous equation, α+ β = 1 + (r1 − 1)`. Substituting this equivalent

expression for α+ β into both sides of the previous equation, it follows that solving w(q, b) = 1 is
equivalent to finding all pairs (α, β) such that

1 + (r1 − 1)` = 1 + (r1 − 1)

⌊
1 + (r1 − 1)`

r1

⌋
= 1 + (r1 − 1)

(
`+

⌊
1− `
r1

⌋)
.

Rearranging this equation yields

(r1 − 1)

⌊
1− `
r1

⌋
= 0.

Therefore, since r1 > 1, this implies⌊
1− `
r1

⌋
= 0 =⇒ ` =

{
0

1
=⇒ α+ β =

{
1

r1
.

If α + β = 1, then (α, β) = (1, 0) or (α, β) = (0, 1). Otherwise, in the case that α + β = r1, there
are r1 possible pairs (α, β) where α ∈ {0, . . . , r1 − 1} and β = r1 − α. Thus,

h∗1 = |{b : w(q, b) = 1}| = r1 + 2.

Consequently, (2) implies ∣∣∣∆(1,q) ∩ Zd
∣∣∣ = r1 + d+ 3,

as desired. �

Proposition 2.2. For t = (t1, . . . , td) ∈ Rd, define

λk(t) :=



d∑
j=1
j 6=k

tj − x1r1tk, if 1 ≤ k ≤ x1

d∑
j=1
j 6=k

tj − (r1 − 1)tk, if x1 + 1 ≤ k ≤ d

d∑
j=1

tj , if k = d+ 1 .
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An irredundant H-description of ∆(1,q) is given by λk(t) ≤ 1 for all 1 ≤ k ≤ d+ 1.

Proof. Observe that for all 1 ≤ j ≤ d, ej satisfies all of the given inequalities tightly except when
k = j (i.e., λk(ej) = 1 for all k 6= j and λj(ej) < 1). Moreover, −q satisfies the first d inequalities
tightly (i.e., λk(−q) = 1 for all 1 ≤ k ≤ d), but not

∑
j tj ≤ 1. Thus, as each vertex of the

simplex ∆(1,q) satisfies exactly d of the given inequalities with equality, the inequalities necessarily
constitute an H-description of ∆(1,q). �

Proof of Theorem 1.5. To begin, observe that |A′(q)| = r1 + d + 3 =
∣∣∆(1,q) ∩ Zd

∣∣. Therefore, as
each element in A′(q) is an integer vector, it suffices to show that each point satisfies the inequalities
in Proposition 2.2. To this end, let λk be defined as in Proposition 2.2; we evaluate each vector in
A′(q) on λk. For each 1 ≤ i ≤ r1, note that

a′i = (r1 − i+ 1)a′r1+1 + a′r1+2 =
(
(−(r1 − i+ 1))x1 , ((−(1 + (r1 − i+ 1)x1))

r1−1) .
Therefore, we have that

λk(a
′
1) = 1 if 1 ≤ k ≤ d and λd+1(a

′
1) < 1,

and for each i ∈ {2, . . . , r1} ∪ {r1 + 2},

λk(a
′
i) = 1 if x1 + 1 ≤ k ≤ d and λk(a

′
i) < 1 otherwise.

Also,

λk(a
′
r1+1) = 1 if 1 ≤ k ≤ x1 and λk(a

′
r1+1) < 1 otherwise,

and

λk(a
′
r1+3) < 1 for all 1 ≤ k ≤ d+ 1.

Lastly, for all 1 ≤ j ≤ d,

λk(b
′
j) = 1 if k 6= d− j + 1 and λk(b

′
j) < 1 if k = d− j + 1.

Thus, A′(q) ⊆ ∆(1,q) ∩ Zd, and the result follows. �

3. Proof of Theorem 1.6

We next seek to prove the existence of a regular unimodular triangulation of the convex hull of
these points. Given a field K, there are natural parallels between properties of lattice polytopes and
algebraic objects such as semigroup algebras, toric varieties, and monomial ideals. The following
one-to-one correspondence between lattice points and Laurent monomials plays a central role:

a′ = (a1, . . . , ad) ∈ Zd ←→ ta
′

:= ta11 · · · t
ad
d ∈ K[t±11 , . . . , t±1d ].

For details regarding the significance of this correspondence, see [16, Chapter 8]. Furthermore, for
all notation related to combinatorial commutative algebra, we refer the reader to [10].

Let K be a field, and define A(q) = (a1, . . . , ar1+3,b1, . . . ,bd) ⊂ Z(d+1)×(r1+d+3) to be the
homogenization of A′(q) where ai = (a′i, 1) and bj = (b′j , 1); that is, A(q) is the matrix associated

with the point configuration consisting of all vectors in A′(q) lifted to height 1. (Note that we
can view the columns of A(q) as the intersection of Zd+1 with the degree 1 slice of the polyhedral
cone over ∆(1,q).) Let K[A(q)] := K[z1, . . . , zr1+3, y1, . . . , yd] be the polynomial ring associated
with the columns of A(q) in r1 + d + 3 variables over K. Moreover, let M(K[A(q)]) denote the
set of monomials contained in K[A(q)], and let RK [A(q)] be the K-subalgebra of the Laurent
polynomial ring K[t±1] := K[t±11 , . . . , t±1d+1] generated by all monomials ta with a ∈ A(q), where
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ta = ta11 · · · t
ad+1

d+1 if a = (a1, . . . , ad+1). The toric ideal IA(q) is the kernel of the surjective ring
homomorphism π : K[A(q)]→ RK [A(q)] defined by

π(zi) = tai , for 1 ≤ i ≤ r1 + 3

π(yj) = tbj , for 1 ≤ j ≤ d.

A generating set for IA(q) is given by the set of all homogeneous binomials f − g with π(f) = π(g)
and f, g ∈M(K[A(q)]), see [16, Lemma 4.1]. We fix the lexicographic term order <lex on K[A(q)]
induced by the ordering of the variables

z1 > z2 > · · · > zr1+3 > y1 > y2 > · · · > yd.

Moreover, for f = zγ11 · · · z
γr1+3

r1+3 y
δ1
1 · · · y

δd
d ∈M(K[A(q)]), we introduce the notation

suppz (f) := {i ∈ {1, . . . , r1 + 3} : γi > 0} .

Given this setup, we restate Theorem 1.6. Note that Corollary 1.7 follows immediately from
Theorem 3.1 as it indicates the existence of a squarefree initial ideal of the toric ideal IA(q) [16,
Corollary 8.9].

Theorem 3.1 (Restatement of Theorem 1.6). Let B be the set of all (i, j) ∈ N2 satisfying the
following conditions:

(i) j − i ≥ 2
(ii) 1 ≤ i ≤ r1

(iii) j ≤ r1 + 3
(iv) j 6= r1 + 1
(v) (i, j) 6= (r1, r1 + 2)

Given (i, j) ∈ B, define (k, `) as follows:

k =

⌊
i+ j

2

⌋
, ` =

⌈
i+ j

2

⌉
if j < r1 + 1

k =

⌊
i+ j − 1

2

⌋
, ` =

⌈
i+ j − 1

2

⌉
if j = r1 + 2

k = i+ 1, ` = r1 + 1 if j = r1 + 3, i 6= r1

k = r1 + 1, ` = r1 + 2 if j = r1 + 3, i = r1.

If x1 ≥ r1 − 2, then the set of binomials G given by

zizj − zkz`, (i, j) ∈ B (3)

zk+1

r1−1∏
`=1

y` − zr1−kr1+1z
k
r1+3, 0 ≤ k ≤ r1 − 1 (4)

zr1−k

d∏
`=r1

y` − zkr1z
x1+1−k
r1+2 , 0 ≤ k ≤ r1 − 1 (5)

zr1+2

r1−1∏
`=1

y` − zr1r1+3, (6)

zr1+1

d∏
`=r1

y` − zx1r1+2zr1+3 (7)
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is a Gröbner basis of IA(q) with respect to the lexicographic term order <lex as specified above. In
the case that x1 < r1 − 2, replace (5) above with

zr1−k

d∏
`=r1

y` − zkr1z
x1+1−k
r1+2 , 0 ≤ k ≤ x1 + 1

zr1−k

d∏
`=r1

y` − zk−x1−1r1−1 z2x1+2−k
r1 , x1 + 2 ≤ k ≤ r1 − 1.

(5*)

Note that regardless of case (either x1 ≥ r1 − 2 or x1 < r1 − 2), the initial terms of the k-th
binomial in (5) and (5*) are identical. Therefore, whenever we are considering only leading terms
of these polynomials, we can ignore any relationship between x1 and r1 − 2.

Remark 3.2. The intuition for most of these binomial relations is that they are encoding the
additive structure on the columns of A(q). Specifically, in the definition of A′(q), we see that
a′i = (r1 − i + 1)a′r1+1 + a′r1+2 for 1 ≤ i ≤ r1, and there are natural syzygies that result from this
structure. We require the replacement of (5) with (5*) in the case that x1 < r1−2 since otherwise,
the exponent of zr1+2, namely x1 + 1− k, would fail to be positive when x1 + 2 ≤ k ≤ r1 − 1.

To prove Theorem 3.1, we employ the following well-known lemma, e.g. [11, (0.1)], for proving a
finite subset of the toric ideal IA(q) is a Gröbner basis of IA(q). For a finite set of polynomials G in
a polynomial ring with a term order <, let in<(G) denote the ideal generated by the set of initial
terms of elements of G.

Lemma 3.3 ([11]). A finite set G of IA(q) is a Gröbner basis of IA(q) with respect to the term order
< if and only if {π(f) : f ∈M(K[A(q)]), f /∈ in<(G)} is linearly independent over K; i.e., if and
only if π(f) 6= π(g) for all f /∈ in<(G) and g /∈ in<(G) with f 6= g.

We will also require the following fact which provides an upper bound on the supported z-
variables for any monomial outside the initial ideal generated by the binomials in Theorem 3.1
with respect to <lex.

Lemma 3.4. Let G be the set of binomials given in Theorem 3.1. Suppose

f = zγ11 · · · z
γr1+3

r1+3 y
δ1
1 · · · y

δd
d ∈M(K[A(q)])

with f /∈ in<lex
(G) and |suppz (f)| ≥ 1. Let m denote the minimal index such that zm divides f .

Then, |suppz (f)| ≤ 3 and we are restricted to the following possibilities:

(1) if 1 ≤ m ≤ r1 − 1, then γm+1, γr1+1 ≥ 0 and γi = 0 for all i ∈ {1, . . . , r1 + 3} \ {m,m +
1, r1 + 1}.

(2) if m = r1, then γr1+1, γr1+2 ≥ 0 and γi = 0 for all i ∈ {1, . . . , r1 − 1} ∪ {r1 + 3}.
(3) if m ∈ {r1 + 1, r1 + 2, r1 + 3}, then γi = 0 for all i < m and γi ≥ 0 for all i > m.

Proof. Suppose 1 ≤ m ≤ r1 − 1. Since zmzm+1 /∈ in<lex
(G) and zmzr1+1 /∈ in<lex

(G), zm+1 and
zr1+1 possibly divide f . However, given the structure of B as defined in Theorem 3.1, it follows
that zmzr1+2, zmzr1+3, zmzn ∈ in<lex

(G) for all n with n > m+ 1, n 6= r1 + 1. Therefore, since m is
minimal, |suppz (f)| ≤ 3 and we precisely satisfy the conditions of Lemma 3.4(1).

Now, suppose m = r1. By the minimality of m, we need only consider indices greater than r1.
Observe that zr1zr1+1 /∈ in<lex

(G), zr1zr1+2 /∈ in<lex
(G), and zr1zr1+3 ∈ in<lex

(G). Thus, we have
that |suppz (f)| ≤ 3 and we end up in Lemma 3.4(2).

Finally, for m ∈ {r1 + 1, r1 + 2, r1 + 3}, minimality of m immediately implies |suppz (f)| ≤ 3. To
see that this case yields Lemma 3.4(3), observe that zmzn /∈ in<lex

(G) for m,n ∈ {r1+1, r1+2, r1+3}
with m 6= n. �
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Proof of Theorem 3.1. One easily checks that each binomial h = m1−m2 ∈ G is contained in IA(q)
by showing π(m1) = π(m2). To show G is a Gröbner basis of IA(q), we employ Lemma 3.3. Suppose
f, g ∈M(K[A(q)]) with f 6= g, f /∈ in<lex

(G), and g /∈ in<lex
(G). Write

f = zα1
1 · · · z

αr1+3

r1+3 y
β1
1 · · · y

βd
d and g = z

α′1
1 · · · z

α′r1+3

r1+3 y
β′1
1 · · · y

β′d
d ,

where αi, α
′
i, βj , β

′
j ≥ 0. We may assume f and g are relatively prime (since otherwise, we could

simply factor out the common variables and consider the images of the reduced monomials). Further
assume to the contrary that π(f) = π(g), and without loss of generality, assume |suppz (f)| ≥
|suppz (g)|. For convenience, let fπ,gπ ∈ Zd+1 denote the exponent vectors associated with π(f)
and π(g), respectively, and let fπ[k] (resp. gπ[k]) denote the k-th entry of fπ (resp. gπ). With this
notation, observe that π(f) = π(g) if and only if fπ[k] = gπ[k] for all 1 ≤ k ≤ d+ 1.

The general structure for the rest of the proof is to consider cases based on the size of the z-
support for monomials g and f . Throughout, we identify the minimal indices of the z-variables
dividing both g and f , and we repeatedly apply Lemma 3.4 to deduce a contradiction in each of
the resulting cases.

Case 1: |suppz (g)| = 0. By definition, it follows that α′i = 0 for all 1 ≤ i ≤ r1 + 3. Therefore,
we know that

gπ =
(
β′d, . . . , β

′
1,
∑

j β
′
j

)
.

Subcase 1.1: |suppz (f)| = 0. Thus,

fπ =
(
βd, . . . , β1,

∑
j βj
)
.

Since π(f) = π(g), this implies βj = β′j for all 1 ≤ j ≤ d, and consequently, f = g, a
contradiction.

Subcase 1.2: |suppz (f)| ≥ 1. Let m denote the minimal index such that zm divides f (i.e.,
αm > 0 and αi = 0 for all i < m).

(a) Suppose 1 ≤ m ≤ r1 +1. Since zmyr1 · · · yd ∈ in<lex
(G) (by (5) and (7)) and f /∈ in<lex

(G),
there exists an index ` ∈ {r1, . . . , d} such that β` = 0. Hence,

fπ[d− `+ 1] =

r1+3∑
i=1

αiA(q)d−`+1,i︸ ︷︷ ︸
< 0

+
d∑
j=1

βjA(q)d−`+1,r1+3+j︸ ︷︷ ︸
=0

< 0.

However, gπ[d− `+ 1] = β′` ≥ 0, a contradiction.
(b) Suppose m = r1 + 2. Since zr1+2y1 · · · yr1−1 ∈ in<lex

(G) (by (6)) and f /∈ in<lex
(G),

there exists an index k ∈ {1, . . . , r1 − 1} such that βk = 0. Since k < r1, it follows that
d− k + 1 > x1. Therefore, A(q)d−k+1,r1+2 = −1. Hence,

fπ[d− k + 1] =

r1+3∑
i=1

αiA(q)d−k+1,i︸ ︷︷ ︸
=−αr1+2< 0

+

d∑
j=1

βjA(q)d−k+1,r1+3+j︸ ︷︷ ︸
=0

< 0.

However, gπ[d− k + 1] = β′k ≥ 0, a contradiction.
(c) Suppose m = r1 + 3. Since m is minimal, we know αi = 0 for all 1 ≤ i ≤ r1 + 2.

Since A(q) is homogenized, we also know
∑

i αi +
∑

j βj =
∑

i α
′
i +

∑
j β
′
j (this can be

seen directly from fπ[d + 1] = gπ[d + 1]). Hence, in this case, the equation simplifies to
αr1+3 +

∑
j βj =

∑
j β
′
j , and moreover,

fπ = (βd, . . . , β1, αr1+3 +
∑

j βj).
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Since π(f) = π(g), βj = β′j for all 1 ≤ j ≤ d. Therefore, substituting into the above
equation,

αr1+3 +
∑

j βj =
∑

j β
′
j =

∑
j βj ,

but αr1+3 > 0, a contradiction.

Case 2: |suppz (g)| ≥ 1. Let n denote the minimal index such that zn divides g (i.e., α′n > 0 and
α′i = 0 for all i < n). Since |suppz (f)| ≥ |suppz (g)| and |suppz (g)| ≥ 1, we know suppz (f) 6= ∅.
Hence, let m denote the minimal index such that zm divides f . Via Lemma 3.4, this case naturally
lends itself to the following subcases of consideration.
Subcase 2.1: n ∈ {1, . . . , r1 − 1}. By Lemma 3.4, we know α′n > 0, α′n+1, α

′
r1+1 ≥ 0, and

α′i = 0 for all i ∈ {1, . . . , r1 + 3} \ {n, n + 1, r1 + 1}. Since zny1 · · · yr1−1 ∈ in<lex
(G) (by (4)),

znyr1 · · · yd ∈ in<lex
(G) (by (5)), and g /∈ in<lex

(G), there exist indices k1 ∈ {1, . . . , r1 − 1} and
`1 ∈ {r1, . . . , d} such that β′k1 = β′`1 = 0. Then,

fπ[d− k1 + 1] =

r1+3∑
i=1

αiA(q)d−k1+1,i + βk1 (8)

gπ[d− k1 + 1] = −(1 + (r1 − n+ 1)x1)α
′
n − (1 + (r1 − n)x1)α

′
n+1 − x1α′r1+1 (9)

fπ[d− `1 + 1] =

r1+3∑
i=1

αiA(q)d−`1+1,i + β`1 (10)

gπ[d− `1 + 1] = −(r1 − n+ 1)α′n − (r1 − n)α′n+1 − α′r1+1. (11)

Note that π(f) = π(g) implies (8) = (9) and (10) = (11). Now, we claim m ∈ {1, . . . , r1 + 1}.
Indeed, assume otherwise, that is, suppz (f) ⊆ {r1 + 2, r1 + 3}. Then, fπ[d− `+ 1] = β` ≥ 0 for
all ` ∈ {r1, . . . , d}, but from (11), gπ[d − `1 + 1] < 0 since α′n > 0 and α′n+1, α

′
r1+1 ≥ 0. This

contradicts π(f) = π(g). Hence, given the structure of Lemma 3.4, we consider the following
subsubcases.

(a) m ∈ {1, . . . , r1 − 1}. Since zmy1 · · · yr1−1 (by (4)), zmyr1 · · · yd ∈ in<lex
(G) (by (5)), and

f /∈ in<lex
(G), there exist indices k2 ∈ {1, . . . , r1 − 1} and `2 ∈ {r1, . . . , d} such that

βk2 = β`2 = 0. Then, we have that

fπ[d− k2 + 1] =

r1+3∑
i=1

αiA(q)d−k2+1,i (12)

gπ[d− k2 + 1] = −(1 + (r1 − n+ 1)x1)α
′
n − (1 + (r1 − n)x1)α

′
n+1

− x1α′r1+1 + β′k2
(13)

fπ[d− `2 + 1] =

r1+3∑
i=1

αiA(q)d−`2+1,i (14)

gπ[d− `2 + 1] = −(r1 − n+ 1)α′n − (r1 − n)α′n+1 − α′r1+1 + β′`2 , (15)

where (12) = (13) and (14) = (15) as π(f) = π(g). Since 1 ≤ ki ≤ r1 − 1 for i ∈ {1, 2},
subtracting the equation (12) = (13) from (8) = (9) implies βk1 = −β′k2 . Similarly,
since r1 ≤ `i ≤ d for i ∈ {1, 2}, subtracting equation (14) = (15) from (10) = (11)
implies β`1 = −β′`2 . Since βj , β

′
j ≥ 0 for all 1 ≤ j ≤ d, this implies βk1 = β′k2 = β`1 =

β′`2 = 0. Also, by Lemma 3.4, we know αm > 0, αm+1, αr1+1 ≥ 0, and αi = 0 for all
i ∈ {1, . . . , r1 + 3} \ {m,m+ 1, r1 + 1}. Consequently, equations (8) and (10) simplify to

fπ[d− k1 + 1] = −(1 + (r1 −m+ 1)x1)αm − (1 + (r1 −m)x1)αm+1 − x1αr1+1 (16)

fπ[d− `1 + 1] = −(r1 −m+ 1)αm − (r1 −m)αm+1 − αr1+1. (17)
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Since π(f) = π(g), (16) = (9) and (17) = (11), thereby implying x1(11) − (9) = x1(17) −
(16). Observe that x1(11)− (9) = x1(17)− (16) is the following

αm + αm+1 = α′n + α′n+1. (18)

Now, consider the equation (17) = (11):

−(r1 −m+ 1)αm − (r1 −m)αm+1 − αr1+1 = −(r1 − n+ 1)α′n − (r1 − n)α′n+1 − α′r1+1.

Adding (18) to this equation r1 times yields

(m− 1)αm +mαm+1 − αr1+1 = (n− 1)α′n + nα′n+1 − α′r1+1.

Either m < n or m > n (note that m 6= n since f and g are relatively prime). First,
suppose m < n. Subtracting (18) from our previous equation m− 1 times gives

αm+1 − αr1+1 = (n−m)α′n + (n−m+ 1)α′n+1 − α′r1+1 (19)

As m < n, we have that

αm+1 − αr1+1 = (n−m)︸ ︷︷ ︸
> 0

α′n︸︷︷︸
> 0

+ (n−m+ 1)︸ ︷︷ ︸
> 0

α′n+1︸ ︷︷ ︸
≥ 0

−α′r1+1

> α′n + α′n+1 − α′r1+1

(18)
= αm + αm+1 − α′r1+1,

which implies

α′r1+1 > αm︸︷︷︸
> 0

+αr1+1 =⇒ α′r1+1 > 0.

Since f and g are relatively prime, this forces αr1+1 = 0. Thus, suppz (f) ⊆ {m,m + 1}.
Moreover, α′n+1 = 0 since |suppz (f)| ≥ |suppz (g)| and we have found α′n, α

′
r1+1 > 0.

Consequently, (18) reduces to α′n = αm + αm+1 and (19) reduces to

α′r1+1 = (n−m)αm + (n−m− 1)αm+1. (20)

Now, fπ[d+ 1] = gπ[d+ 1] gives that

αm + αm+1 +
∑
j

βj = α′n + α′r1+1 +
∑
j

β′j .

Since α′n = αm + αm+1 and α′r1+1 > 0, this implies
∑

j βj >
∑

j β
′
j . For each r1 ≤ j ≤ d,

−fπ[d− j + 1] = −gπ[d− j + 1] is given by

(r1 −m+ 1)αm + (r1 −m)αm+1 − βj = (r1 − n+ 1)α′n + α′r1+1 − β′j .

Solving for α′r1+1 and substituting α′n = αm + αm+1 yields

α′r1+1 = (n−m)αm + (n−m− 1)αm+1 + β′j − βj .
Adding these equations for each r1 ≤ j ≤ d gives

(d− r1 + 1)α′r1+1 = (d− r1 + 1) [(n−m)αm + (n−m− 1)αm+1]

+
∑

r1≤j≤d
(β′j − βj). (21)

Similarly, for each 1 ≤ j ≤ r1 − 1, −fπ[d− j + 1] = −gπ[d− j + 1] is given by

(1 + (r1 −m+ 1)x1)αm + (1 + (r1 −m)x1)αm+1 − βj = (1 + (r1 − n+ 1)x1)α
′
n + x1α

′
r1+1 − β′j .

Solving for x1α
′
r1+1 and making the appropriate substitutions yields

x1α
′
r1+1 = (n−m)x1αm + (n−m− 1)x1αm+1 + β′j − βj .
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Adding these equations for each 1 ≤ j ≤ r1 − 1 gives

(r1 − 1)x1α
′
r1+1 = (r1 − 1) [(n−m)x1αm + (n−m− 1)x1αm+1]

+
∑

1≤j≤r1−1
(β′j − βj). (22)

Combining (21) and (22) gives

r1x1α
′
r1+1 = r1x1 [(n−m)αm + (n−m− 1)αm+1]︸ ︷︷ ︸

=α′r1+1 by (20)

+

d∑
j=1

(β′j − βj)︸ ︷︷ ︸
< 0

,

a contradiction. Now, suppose m > n. In this case, rather than subtracting m− 1 copies
of (18), we instead subtract n− 1 copies of (18) yielding

(m− n)αm + (m− n+ 1)αm+1 − αr1+1 = α′n+1 − α′r1+1.

Then, since m − n > 0, the same argument from the m < n case will follow through by
appropriately replacing each occurrence of α′n with αm, αm with α′n, α′n+1 with αm+1,
αm+1 with α′n+1, α

′
r1+1 with αr1+1, and αr1+1 with α′r1+1.

(b) m = r1. Since zr1y1 · · · yr1−1 (by (4)), zr1yr1 · · · yd ∈ in<lex
(G) (by (5)), and f /∈ in<lex

(G),
there exist indices k2 ∈ {1, . . . , r1−1} and `2 ∈ {r1, . . . , d} such that βk2 = β`2 = 0. Then,
we have that

fπ[d− k2 + 1] =

r1+3∑
i=1

αiA(q)d−k2+1,i (23)

gπ[d− k2 + 1] = −(1 + (r1 − n+ 1)x1)α
′
n − (1 + (r1 − n)x1)α

′
n+1

− x1α′r1+1 + β′k2
(24)

fπ[d− `2 + 1] =

r1+3∑
i=1

αiA(q)d−`2+1,i (25)

gπ[d− `2 + 1] = −(r1 − n+ 1)α′n − (r1 − n)α′n+1 − α′r1+1 + β′`2 , (26)

where (23) = (24) and (25) = (26) as π(f) = π(g). Subtracting the equation (23) = (24)
from (8) = (9) implies βk1 = −β′k2 . Similarly, subtracting equation (25) = (26) from

(10) = (11) implies β`1 = −β′`2 . Since βj , β
′
j ≥ 0 for all 1 ≤ j ≤ d, this implies βk1 = β′k2 =

β`1 = β′`2 = 0. Also, by Lemma 3.4, we know αr1 > 0, αr1+1, αr1+2 ≥ 0, and αi = 0 for all
i ∈ {1, . . . , r1 − 1} ∪ {r1 + 3}. Consequently, equations (8) and (10) simplify to

fπ[d− k1 + 1] = −(1 + x1)αr1 − x1αr1+1 − αr1+2 (27)

fπ[d− `1 + 1] = −αr1 − αr1+1. (28)

Since π(f) = π(g), (27) = (9) and (28) = (11), thereby implying x1(11) − (9) = x1(28) −
(27). Observe that x1(11)− (9) = x1(28)− (27) is the following

αr1 + αr1+2 = α′n + α′n+1. (29)

Now, consider the equation −(28) = −(11):

αr1 + αr1+1 = (r1 − n+ 1)α′n + (r1 − n)α′n+1 + α′r1+1.

Substituting (29) into this equation yields

α′n + α′n+1 − αr1+2 + αr1+1 = (r1 − n+ 1)α′n + (r1 − n)α′n+1 + α′r1+1.
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Rearranging by subtracting α′n + α′n+1 on both sides yields

αr1+1 − αr1+2 = (r1 − n)α′n︸ ︷︷ ︸
> 0

+ (r1 − n− 1)α′n+1︸ ︷︷ ︸
≥ 0

+α′r1+1. (30)

Observe that (30) implies αr1+1 > 0, so since f and g are relatively prime, this forces
α′r1+1 = 0. Therefore, subtracting r1 − n copies of (29) from (30) gives

αr1+1 − (r1 − n)αr1 − (r1 − n+ 1)αr1+2 = −α′n+1,

which implies

α′n+1 = (r1 − n)αr1 + (r1 − n+ 1)αr1+2 − αr1+1. (31)

Now, fπ[d+ 1] = gπ[d+ 1] gives that

αr1 + αr1+1 + αr1+2 +
∑
j

βj = α′n + α′n+1 +
∑
j

β′j .

Since α′n = αr1 + αr1+2 − α′n+1 by (29) and αr1+1 > 0, this implies
∑

j βj <
∑

j β
′
j . For

each r1 ≤ j ≤ d, −fπ[d− j + 1] = −gπ[d− j + 1] is given by

αr1 + αr1+1 − βj = (r1 − n+ 1)α′n + (r1 − n)α′n+1 − β′j .
Solving for α′n+1 and substituting α′n = αr1 + αr1+2 − α′n+1 yields

α′n+1 = (r1 − n)αr1 + (r1 − n+ 1)αr1+2 − αr1+1 + βj − β′j .
Adding these equations for each r1 ≤ j ≤ d gives

(d− r1 + 1)α′n+1 = (d− r1 + 1) [(r1 − n)αr1 + (r1 − n+ 1)αr1+2 − αr1+1]

+
∑

r1≤j≤d
(βj − β′j). (32)

Similarly, for each 1 ≤ j ≤ r1 − 1, −fπ[d− j + 1] = −gπ[d− j + 1] is given by

(1 + x1)αr1 + x1αr1+1 + αr1+2 − βj = (1 + (r1 − n+ 1)x1)α
′
n + (1 + (r1 − n)x1)α

′
n+1 − β′j .

Solving for x1α
′
n+1 and making the appropriate substitutions yields

x1α
′
n+1 = (r1 − n)x1αr1 + (r1 − n+ 1)x1αr1+2 − x1αr1+1 + βj − β′j .

Adding these equations for each 1 ≤ j ≤ r1 − 1 gives

(r1 − 1)x1α
′
n+1 = (r1 − 1) [(r1 − n)x1αr1 + (r1 − n+ 1)x1αr1+2 − x1αr1+1]

+
∑

1≤j≤r1−1
(βj − β′j). (33)

Combining (32) and (33) gives

r1x1α
′
n+1 = r1x1 [(r1 − n)αr1 + (r1 − n+ 1)αr1+2 − αr1+1]︸ ︷︷ ︸

=α′n+1 by (31)

+

d∑
j=1

(βj − β′j)︸ ︷︷ ︸
< 0

,

a contradiction.
(c) m = r1 + 1. Since zr1+1yr1 · · · yd ∈ in<lex

(G) (by (7)) and f /∈ in<lex
(G), there exists an

index `2 ∈ {r1, . . . , d} such that β`2 = 0. Then, we have that

fπ[d− `2 + 1] =

r1+3∑
i=1

αiA(q)d−`2+1,i (34)

gπ[d− `2 + 1] = −(r1 − n+ 1)α′n − (r1 − n)α′n+1 − α′r1+1 + β′`2 , (35)
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where (34) = (35) as π(f) = π(g). Subtracting the equation (34) = (35) from (10) = (11)
implies β`1 = −β′`2 . Since βj , β

′
j ≥ 0 for all 1 ≤ j ≤ d, this implies β`1 = β′`2 = 0. Also,

by Lemma 3.4, we know αr1+1 > 0, αr1+2, αr1+3 ≥ 0, and αi = 0 for all i ∈ {1, . . . , r1}.
Consequently, since β`1 = 0, equations (8) and (10) simplify to

fπ[d− k1 + 1] = −x1αr1+1 − αr1+2 + βk1 (36)

fπ[d− `1 + 1] = −αr1+1. (37)

Furthermore, since f and g are relatively prime, αr1+1 > 0 implies α′r1+1 = 0, so equa-
tions (9) and (11) simplify to

gπ[d− k1 + 1] = −(1 + (r1 − n+ 1)x1)α
′
n − (1 + (r1 − n)x1)α

′
n+1 (38)

gπ[d− `1 + 1] = −(r1 − n+ 1)α′n − (r1 − n)α′n+1. (39)

Since π(f) = π(g), (36) = (38) and (37) = (39). Therefore, we have that −(36) = −(38)
and −(37) = −(39), that is,

x1αr1+1 + αr1+2 − βk1 = (1 + (r1 − n+ 1)x1)α
′
n + (1 + (r1 − n)x1)α

′
n+1 (40)

and

αr1+1 = (r1 − n+ 1)α′n + (r1 − n)α′n+1. (41)

Now, fπ[d+ 1] = gπ[d+ 1] gives that

αr1+1 + αr1+2 + αr1+3 +
∑
j

βj = α′n + α′n+1 +
∑
j

β′j .

Substituting (41) and since (r1 − n)α′n > 0, we obtain∑
j

βj <
∑
j

β′j . (42)

For each r1 ≤ j ≤ d, −fπ[d− j + 1] = −gπ[d− j + 1] is given by

αr1+1 − βj = (r1 − n+ 1)α′n + (r1 − n)α′n+1 − β′j ,

which readily implies

αr1+1 = (r1 − n+ 1)α′n + (r1 − n)α′n+1 + βj − β′j .

Adding these equations for each r1 ≤ j ≤ d gives

(d− r1 + 1)αr1+1 = (d− r1 + 1)
[
(r1 − n+ 1)α′n + (r1 − n)α′n+1

]
+

∑
r1≤j≤d

(βj − β′j).

Using (41), this simplifies to

0 =
∑

r1≤j≤d
(βj − β′j) . (43)

Similarly, for each 1 ≤ j ≤ r1 − 1, −fπ[d− j + 1] = −gπ[d− j + 1] is given by

x1αr1+1 + αr1+2 − βj = (1 + (r1 − n+ 1)x1)α
′
n + (1 + (r1 − n)x1)α

′
n+1 − β′j ,

which implies

x1αr1+1 = (1 + (r1 − n+ 1)x1)α
′
n + (1 + (r1 − n)x1)α

′
n+1 − αr1+2 + βj − β′j .
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Adding these equations for each 1 ≤ j ≤ r1 − 1 gives

(r1 − 1)x1αr1+1 = (r1 − 1)
[
(1 + (r1 − n+ 1)x1)α

′
n + (1 + (r1 − n)x1)α

′
n+1

− αr1+2

]
+

∑
1≤j≤r1−1

(βj − β′j) .

Using (40), this simplifies to

0 = −(r1 − 1)βk1 +
∑

1≤j≤r1−1
(βj − β′j). (44)

Combining (43) and (44), and observing (42), gives

0 = −(r1 − 1)βk1 +

d∑
j=1

(βj − β′j)︸ ︷︷ ︸
< 0

,

which implies (r1 − 1)βk1 < 0, a contradiction.

Subcase 2.2: n = r1. By Lemma 3.4, we know α′r1 > 0, α′r1+1, α
′
r1+2 ≥ 0, and α′i = 0 for all

i ∈ {1, . . . , r1 − 1} ∪ {r1 + 3}. Since zr1y1 · · · yr1−1 ∈ in<lex
(G) (by (4)), zr1yr1 · · · yd ∈ in<lex

(G)
(by (5)), and g /∈ in<lex

(G), there exist indices k1 ∈ {1, . . . , r1 − 1} and `1 ∈ {r1, . . . , d} such
that β′k1 = β′`1 = 0. Then,

fπ[d− k1 + 1] =

r1+3∑
i=1

αiA(q)d−k1+1,i + βk1 (45)

gπ[d− k1 + 1] = −(1 + x1)α
′
r1 − x1α

′
r1+1 − α′r1+2 (46)

fπ[d− `1 + 1] =

r1+3∑
i=1

αiA(q)d−`1+1,i + β`1 (47)

gπ[d− `1 + 1] = −α′r1 − α
′
r1+1. (48)

Note that π(f) = π(g) implies (45) = (46) and (47) = (48). Now, we claim m ∈ {1, . . . , r1−1}∪
{r1+1} (we need not consider m = r1 since f and g are relatively prime and n = r1 in this case).
Indeed, assume otherwise, that is, suppz (f) ⊆ {r1 + 2, r1 + 3}. Then, fπ[d − ` + 1] = β` ≥ 0
for all ` ∈ {r1, . . . , d}, but from (48), gπ[d − `1 + 1] < 0 since α′r1 > 0 and α′r1+1 ≥ 0. This
contradicts π(f) = π(g). Hence, given the structure of Lemma 3.4 and since m cannot be r1,
we consider the following subsubcases.

(a) m ∈ {1, . . . , r1 − 1}. Since zmy1 · · · yr1−1 (by (4)), zmyr1 · · · yd ∈ in<lex
(G) (by (5)), and

f /∈ in<lex
(G), there exist indices k2 ∈ {1, . . . , r1 − 1} and `2 ∈ {r1, . . . , d} such that

βk2 = β`2 = 0. Then, we have that

fπ[d− k2 + 1] =

r1+3∑
i=1

αiA(q)d−k2+1,i (49)

gπ[d− k2 + 1] = −(1 + x1)α
′
r1 − x1α

′
r1+1 − α′r1+2 + β′k2 (50)

fπ[d− `2 + 1] =

r1+3∑
i=1

αiA(q)d−`2+1,i (51)

gπ[d− `2 + 1] = −α′r1 − α
′
r1+1 + β′`2 , (52)

where (49) = (50) and (51) = (52) as π(f) = π(g). Subtracting the equation (49) = (50)
from (45) = (46) implies βk1 = −β′k2 . Similarly, subtracting equation (51) = (52) from

(47) = (48) implies β`1 = −β′`2 . Since βj , β
′
j ≥ 0 for all 1 ≤ j ≤ d, this implies βk1 = β′k2 =
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β`1 = β′`2 = 0. Also, by Lemma 3.4, we know αm > 0, αm+1, αr1+1 ≥ 0, and αi = 0 for all
i ∈ {1, . . . , r1 + 3} \ {m,m+ 1, r1 + 1}. Consequently, equations (45) and (47) simplify to

fπ[d− k1 + 1] = −(1 + (r1 −m+ 1)x1)αm − (1 + (r1 −m)x1)αm+1 − x1αr1+1 (53)

fπ[d− `1 + 1] = −(r1 −m+ 1)αm − (r1 −m)αm+1 − αr1+1. (54)

Since π(f) = π(g), (53) = (46) and (54) = (48), thereby implying x1(48) − (46) =
x1(54)− (53). Observe that x1(48)− (46) = x1(54)− (53) is the following

αm + αm+1 = α′r1 + α′r1+2. (55)

Now, consider the equation −(54) = −(48):

(r1 −m+ 1)αm + (r1 −m)αm+1 + αr1+1 = α′r1 + α′r1+1.

Substituting (55) into this equation and solving for α′r1+1 yields

α′r1+1 = (r1 −m)αm + (r1 −m− 1)αm+1 + αr1+1 + α′r1+2. (56)

Observe that (56) implies α′r1+1 > 0, so since f and g are relatively prime, this forces
αr1+1 = 0. Thus, suppz (f) ⊆ {m,m + 1}. Moreover, since |suppz (f)| ≥ |suppz (g)|,
αr1+1 = 0, and we have α′r1 , α

′
r1+1 > 0, it follows that αm+1 > 0 and α′r1+2 = 0. Conse-

quently, (55) reduces to α′r1 = αm + αm+1 and (56) reduces to

α′r1+1 = (r1 −m)αm + (r1 −m− 1)αm+1.

Summing these reduced equations yields

α′r1 + α′r1+1 = (r1 −m+ 1)αm + (r1 −m)αm+1. (57)

Now, fπ[d+ 1] = gπ[d+ 1] gives that

αm + αm+1 +
∑
j

βj = α′r1 + α′r1+1 +
∑
j

β′j .

Since α′r1 = αm + αm+1 and α′r1+1 > 0, this implies∑
j

βj >
∑
j

β′j . (58)

For each r1 ≤ j ≤ d, −fπ[d− j + 1] = −gπ[d− j + 1] is given by

(r1 −m+ 1)αm + (r1 −m)αm+1 − βj = α′r1 + α′r1+1 − β′j ,

which, via (57), implies βj = β′j . Similarly, for each 1 ≤ j ≤ r1 − 1, −fπ[d − j + 1] =

−gπ[d− j + 1] is given by

(1 + (r1 −m+ 1)x1)αm + (1 + (r1 −m)x1)αm+1 − βj = (1 + x1)α
′
r1 + x1α

′
r1+1 − β′j ,

which, via (57), implies βj = β′j . Thus, we have that βj = β′j for all 1 ≤ j ≤ d, but we had

in (58) that
∑

j βj >
∑

j β
′
j , a contradiction.

(b) m = r1 + 1. Since zr1+1yr1 · · · yd ∈ in<lex
(G) (by (7)) and f /∈ in<lex

(G), there exists an
index `2 ∈ {r1, . . . , d} such that β`2 = 0. Then, we have that

fπ[d− `2 + 1] =

r1+3∑
i=1

αiA(q)d−`2+1,i (59)

gπ[d− `2 + 1] = −α′r1 − α
′
r1+1 + β′`2 , (60)

where (59) = (60) as π(f) = π(g). Subtracting the equation (59) = (60) from (47) = (48)
implies β`1 = −β′`2 . Since βj , β

′
j ≥ 0 for all 1 ≤ j ≤ d, this implies β`1 = β′`2 = 0. Also,
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by Lemma 3.4, we know αr1+1 > 0, αr1+2, αr1+3 ≥ 0, and αi = 0 for all i ∈ {1, . . . , r1}.
Consequently, since β`1 = 0, equations (45) and (47) simplify to

fπ[d− k1 + 1] = −x1αr1+1 − αr1+2 + βk1 (61)

fπ[d− `1 + 1] = −αr1+1. (62)

Furthermore, since f and g are relatively prime, αr1+1 > 0 implies α′r1+1 = 0, so equa-
tions (46) and (48) simplify to

gπ[d− k1 + 1] = −(1 + x1)α
′
r1 − α

′
r1+2 (63)

gπ[d− `1 + 1] = −α′r1 . (64)

Since π(f) = π(g), (61) = (63) and (62) = (64). Therefore, we have that −(61) = −(63)
and −(62) = −(64), that is,

(1 + x1)α
′
r1 + α′r1+2 = x1αr1+1 + αr1+2 − βk1 (65)

and

α′r1 = αr1+1. (66)

Plugging (66) into (65) and solving for βk1 gives

βk1 = αr1+2 − αr1+1 − α′r1+2. (67)

Note that if α′r1+2 > 0, the relatively prime condition would force αr1+2 = 0, thereby
implying βk1 < 0, a contradiction. Hence, we may assume α′r1+2 = 0, and since βk1 ≥ 0, it
must be that αr1+2 > 0. Now, fπ[d+ 1] = gπ[d+ 1] gives that

αr1+1 + αr1+2 + αr1+3 +
∑
j

βj = α′r1 +
∑
j

β′j .

Substituting (66) and since αr1+2 > 0, this implies∑
j

βj <
∑
j

β′j . (68)

For each r1 ≤ j ≤ d, −fπ[d− j + 1] = −gπ[d− j + 1] is given by

αr1+1 − βj = α′r1 − β
′
j ,

which, via (66), implies βj = β′j . Similarly, for each 1 ≤ j ≤ r1 − 1, −fπ[d − j + 1] =

−gπ[d− j + 1] is given by

x1αr1+1 + αr1+2 − βj = (1 + x1)α
′
r1 − β

′
j ,

which, via (65), implies βk1 = βj − β′j . Therefore,

0 <

d∑
j=1

(β′j − βj) =

r1−1∑
j=1

(β′j − βj) +

d∑
j=r1

(β′j − βj) = −(r1 − 1)βk1 ≤ 0 ,

a contradiction.

Subcase 2.3: n = r1 + 1. By Lemma 3.4, we know α′r1+1 > 0, α′r1+2, α
′
r1+3 ≥ 0, and α′i = 0 for

all i ∈ {1, . . . , r1}. Since zr1+1yr1 · · · yd ∈ in<lex
(G) (by (7)) and g /∈ in<lex

(G), there exists an
index `1 ∈ {r1, . . . , d} such that β′`1 = 0. Then,

fπ[d− `1 + 1] =

r1+3∑
i=1

αiA(q)d−`1+1,i + β`1 (69)

gπ[d− `1 + 1] = −α′r1+1, (70)
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where (69) = (70) as π(f) = π(g). Now, we claim m ∈ {1, . . . , r1} (we need not consider
m = r1 + 1 since f and g are relatively prime and n = r1 + 1 in this case). Indeed, assume
otherwise, that is, suppz (f) ⊆ {r1+2, r1+3}. Then, fπ[d−`+1] = β` ≥ 0 for all ` ∈ {r1, . . . , d},
but from (70), gπ[d− `1 + 1] < 0 since α′r1+1 > 0. This contradicts π(f) = π(g). Hence, given
the structure of Lemma 3.4 and since m cannot be r1+1, we consider the following subsubcases.

(a) m ∈ {1, . . . , r1 − 1}. Since zmy1 · · · yr1−1 ∈ in<lex
(G) (by (4)), zmyr1 · · · yd ∈ in<lex

(G) (by
(5)), and f /∈ in<lex

(G), there exist indices k2 ∈ {1, . . . , r1 − 1} and `2 ∈ {r1, . . . , d} such
that βk2 = β`2 = 0. Then, we have that

fπ[d− k2 + 1] =

r1+3∑
i=1

αiA(q)d−k2+1,i (71)

gπ[d− k2 + 1] = −x1α′r1+1 − α′r1+2 + β′k2 (72)

fπ[d− `2 + 1] =

r1+3∑
i=1

αiA(q)d−`2+1,i (73)

gπ[d− `2 + 1] = −α′r1+1 + β′`2 , (74)

where (71) = (72) and (73) = (74) since π(f) = π(g). Subtracting the equation (73) = (74)
from (69) = (70) implies β`1 = −β′`2 . Since βj , β

′
j ≥ 0 for all 1 ≤ j ≤ d, this implies

β`1 = β′`2 = 0. Also, by Lemma 3.4 and since n = r1 + 1, we know αm > 0, αm+1 ≥ 0,
αr1+1 = 0, and αi = 0 for all i ∈ {1, . . . , r1 + 3} \ {m,m+ 1}. Consequently, since β`1 = 0,
the equation (69) = (70) simplifies to

−(r1 −m+ 1)αm − (r1 −m)αm+1 = −α′r1+1,

which implies

α′r1+1 = (r1 −m+ 1)αm + (r1 −m)αm+1. (75)

Furthermore, the equation −(71) = −(72) simplifies to

(1 + (r1 −m+ 1)x1)αm + (1 + (r1 −m)x1)αm+1 = x1α
′
r1+1 + α′r1+2 − β′k2 .

Via (75), this equation is equivalent to

αm + αm+1 + x1α
′
r1+1 = x1α

′
r1+1 + α′r1+2 − β′k2 ,

which implies

β′k2 = α′r1+2 − αm − αm+1. (76)

Note that if α′r1+2 = 0, β′k2 < 0 by (76), a contradiction. Hence, we may assume α′r1+2 > 0.

Also, since |suppz (f)| ≥ |suppz (g)| and αr1+1 = 0, it follows that αm+1 > 0 and α′r1+3 = 0.
Now, fπ[d+ 1] = gπ[d+ 1] gives that

αm + αm+1 +
∑
j

βj = α′r1+1 + α′r1+2 +
∑
j

β′j .

Substituting (75), this implies ∑
j

βj >
∑
j

β′j . (77)

For each r1 ≤ j ≤ d, −fπ[d− j + 1] = −gπ[d− j + 1] is given by

(r1 −m+ 1)αm + (r1 −m)αm+1 − βj = α′r1+1 − β′j ,
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which, via (75), implies βj = β′j . Similarly, for each 1 ≤ j ≤ r1 − 1, −fπ[d − j + 1] =

−gπ[d− j + 1] is given by

(1 + (r1 −m+ 1)x1)αm + (1 + (r1 −m)x1)αm+1 − βj = x1α
′
r1+1 + α′r1+2 − β′j ,

which, via (75) and (76), implies

β′k2 = β′j − βj . (78)

Therefore, by (77) and (78),

0 <
d∑
j=1

(βj − β′j) =

r1−1∑
j=1

(βj − β′j) +
d∑

j=r1

(βj − β′j) =

r1−1∑
j=1

(βj − β′j) = −(r1 − 1)β′k2 ≤ 0,

a contradiction.
(b) m = r1. Since zr1y1 · · · yr1−1 ∈ in<lex

(G) (by (4)), zr1yr1 · · · yd ∈ in<lex
(G) (by (5)), and

f /∈ in<lex
(G), there exist indices k2 ∈ {1, . . . , r1 − 1} and `2 ∈ {r1, . . . , d} such that

βk2 = β`2 = 0. Then, we have that

fπ[d− k2 + 1] =

r1+3∑
i=1

αiA(q)d−k2+1,i (79)

gπ[d− k2 + 1] = −x1α′r1+1 − α′r1+2 + β′k2 (80)

fπ[d− `2 + 1] =

r1+3∑
i=1

αiA(q)d−`2+1,i (81)

gπ[d− `2 + 1] = −α′r1+1 + β′`2 , (82)

where (79) = (80) and (81) = (82) since π(f) = π(g). Subtracting the equation (81) = (82)
from (69) = (70) implies β`1 = −β′`2 . Since βj , β

′
j ≥ 0 for all 1 ≤ j ≤ d, this implies

β`1 = β′`2 = 0. We know αr1+1 = 0 since α′r1+1 > 0. Also, by Lemma 3.4, we know
αr1 > 0 and αr1+2 ≥ 0, so it follows that αi = 0 for all i ∈ {1, . . . , r1 + 3} \ {r1, r1 + 2}.
Consequently, since β`1 = 0, the equation (69) = (70) simplifies to

αr1 = α′r1+1. (83)

Furthermore, the equation −(79) = −(80) simplifies to

(1 + x1)αr1 + αr1+2 = x1α
′
r1+1 + α′r1+2 − β′k2 .

Via (83), this equation is equivalent to

(1 + x1)α
′
r1+1 + αr1+2 = x1α

′
r1+1 + α′r1+2 − β′k2 ,

which implies

β′k2 = α′r1+2 − α′r1+1 − αr1+2. (84)

Note that if α′r1+2 = 0, β′k2 < 0 by (84), a contradiction. Hence, it must be that α′r1+2 > 0.
However, by the relatively prime condition, this implies αr1+2 = 0. As a consequence,
since αr1+1 = αr1+2 = 0 and α′r1+1, α

′
r1+2 > 0, we have that

|suppz (f)| = 1 < 2 ≤ |suppz (g)| ,
contradicting our assumption that |suppz (f)| ≥ |suppz (g)|.

Subcase 2.4: n ∈ {r1 + 2, r1 + 3}. In this case, suppz (g) ⊆ {r1 + 2, r1 + 3}. Consequently, for
1 ≤ j ≤ d, we have that

gπ[d− j + 1] =

{
−α′r1+2 + β′j , for 1 ≤ j ≤ r1 − 1

β′j , for r1 ≤ j ≤ d.
(85)
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Now, we consider the possibilities for m.

(a) m ∈ {1, . . . , r1 + 1}. Since zmyr1 · · · yd ∈ in<lex
(G) (by (5) or (7)) and f /∈ in<lex

(G), there
exists an index `1 ∈ {r1, . . . , d} such that β`1 = 0. Therefore, since αm > 0, we have that

fπ[d− `1 + 1] =

r1+3∑
i=1

αiA(q)d−`1+1,i︸ ︷︷ ︸
< 0

+
d∑
j=1

βjA(q)d−`1+1,r1+3+j︸ ︷︷ ︸
=0

< 0,

but this contradicts π(f) = π(g) since gπ[d− `1 + 1] = β′`1 ≥ 0 from (85).
(b) m ∈ {r1 + 2, r1 + 3}. Note that since the relatively prime condition implies m 6= n, it

follows that |suppz (f)| = |suppz (g)| = 1 in this case. Therefore, we may assume without
loss of generality that m = r1 + 2 and n = r1 + 3. Since zr1+2y1 . . . yr1−1 ∈ in<lex

(G)
(by (6)) and f /∈ in<lex

(G), there exists an index k1 ∈ {1, . . . , r1 − 1} such that βk1 = 0.
Therefore, since αr1+2 > 0, we have that α′r1+2 = 0 and

fπ[d− k1 + 1] =

r1+3∑
i=1

αiA(q)d−k1+1,i︸ ︷︷ ︸
< 0

+

d∑
j=1

βjA(q)d−k1+1,r1+3+j︸ ︷︷ ︸
=0

< 0.

However, this contradicts π(f) = π(g) since gπ[d− k1 + 1] = −α′r1+2︸ ︷︷ ︸
=0

+β′k1 ≥ 0 from (85).

Since each of the above cases (which together cover all possible pairs (m,n)) yields a contradiction,
Lemma 3.3 implies that G forms a Gröbner basis of IA(q) with respect to <lex, as required. �

In sum, since we have demonstrated that G is a Gröbner basis of IA(q) with respect to <lex,
we know in<lex

(G) = in<lex
(IA(q)). Therefore, since we can clearly see in<lex

(G) is squarefree,
Theorem 1.6 holds and [16, Corollary 8.9] proves Corollary 1.7. As such, there exists a regular
unimodular triangulation of the points in A′(q), as desired.

4. Facets of the Triangulation

For q = (rx11 , (1 + r1x1)
r1−1) with r1 > 1, let T (q) denote the regular unimodular triangulation

induced by the lexicographic term order <lex used in the previous section. This triangulation is
identical to the placing triangulation obtained by placing the columns of A(q) from left to right in
the order as given in Figure 1. Throughout this section, we will abuse notation in that the variable
in K[A(q)] associated with each vertex of the triangulation T (q) will represent that vertex. The
Gröbner basis G for IA(q) in Theorem 3.1 indicates which elements of M(K([A(q)])) generate the
minimal non-faces (i.e., minimal subsets of vertices that are not faces) of T (q). From this, we
can deduce the facets of T (q) as outlined in the following corollary. More specifically, the facets
correspond to the squarefree monomials of degree d + 1 in K[A(q)] that are not contained in
in<lex

(G).

Corollary 4.1. Let f ∈M(K[A(q)]) be squarefree with f /∈ in<lex
(G). Let m denote the minimal

index such that zm divides f . Then, f defines a facet of T (q) when it is one of the following possible
forms (the notation ŷk indicates the variable yk is omitted):

(i) if 1 ≤ m ≤ r1 − 1, then f = zmzm+1zr1+1y1 · · · ŷi · · · yr1−1yr1 · · · ŷj · · · yd for any 1 ≤ i ≤
r1 − 1 and r1 ≤ j ≤ d;

(ii) if m = r1, then f = zr1zr1+1zr1+2y1 · · · ŷi · · · yr1−1yr1 · · · ŷj · · · yd for any 1 ≤ i ≤ r1 − 1 and
r1 ≤ j ≤ d;

(iii) if m = r1+1, then f = zr1+1zr1+2zr1+3y1 · · · ŷi · · · yr1−1yr1 · · · ŷj · · · yd for any 1 ≤ i ≤ r1−1
and r1 ≤ j ≤ d or f = zr1+1zr1+3y1 · · · yr1−1yr1 · · · ŷj · · · yd for any r1 ≤ j ≤ d;



20 BENJAMIN BRAUN AND DEREK HANELY

(iv) if m = r1 + 2, then f = zr1+2zr1+3y1 · · · ŷi · · · yr1−1yr1 · · · yd for any 1 ≤ i ≤ r1 − 1;
(v) if m = r1 + 3, then f = zr1+3y1 · · · yd.

Proof. The normalized volume of ∆(1,q), denoted N(q), is given by N(q) = 1 +
∑d

i=1 qi = 1 +
x1r1 + (r1 − 1)(1 + r1x1) = r1(1 + r1x1). Since T (q) is unimodular, we know the number of facets
of T (q) should equal N(q). Indeed, since d = r1 + x1 − 1, it is straightforward to verify that there
are precisely r1(1 + r1x1) squarefree monomials given by the forms (i)-(v) above. Moreover, note
that any facet of T (q) will require the inclusion of at least one z-variable since facets must consist
of d+ 1 points and there are a total of d y-variables.

Now, suppose 1 ≤ m ≤ r1 − 1. By Lemma 3.4, we know suppz (f) ⊆ {m,m + 1, r1 + 1}.
Since zmy1 · · · yr1−1 ∈ in<lex

(G) by (4) and zmyr1 · · · yd ∈ in<lex
(G) by (5), there exist indices

1 ≤ i ≤ r1 − 1 and r1 ≤ j ≤ d such that yi - f and yj - f . As facets of T (q) must contain exactly
d + 1 points, this forces the inclusion of all other y-variables, zm+1, and zr1+1. With no further
restriction on i and j, we obtain form (i).

Now suppose m = r1. By Lemma 3.4, we know suppz (f) ⊆ {r1, r1 + 1, r1 + 2}. Again, (4)
and (5) indicate that zr1y1 · · · yr1−1 ∈ in<lex

(G) and zr1yr1 · · · yd ∈ in<lex
(G), so there exist indices

1 ≤ i ≤ r1− 1 and r1 ≤ j ≤ d such that yi - f and yj - f . Thus, to have a collection of d+ 1 points,
it must be that f is of the form f = zr1zr1+1zr1+2y1 · · · ŷi · · · yr1−1yr1 · · · ŷj · · · yd, giving form (ii).

Next, suppose m = r1 + 1. Lemma 3.4 gives that suppz (f) ⊆ {r1 + 1, r1 + 2, r1 + 3}, and
we have that zr1+1yr1 · · · yd ∈ in<lex

(G) by (7). Therefore, there exists some index r1 ≤ j ≤ d
such that yj - f . Now, suppose zr1+2 | f . Since zr1+2y1 · · · yr1−1 ∈ in<lex

(G) by (6), there exists
some index 1 ≤ i ≤ r1 − 1 such that yi - f . The exclusion of yi and yj necessarily requires the
inclusion of all other y-variables and zr1+3 to have a total of d+ 1 points. As such, f is of the form
f = zr1+1zr1+2zr1+3y1 · · · ŷi · · · yr1−1yr1 · · · ŷj · · · yd. Otherwise, if zr1+2 - f , then the exclusion of yj
forces the inclusion of all other y-variables and zr1+3 to have a total of d + 1 points. Thus, f is
of the form f = zr1+1zr1+3y1 · · · yr1−1yr1 · · · ŷj · · · yd. Combining these two possibilities gives form
(iii).

Next, suppose m = r1 + 2. Since zr1+2y1 · · · yr1−1 ∈ in<lex
(G) by (6), there exists some index

1 ≤ i ≤ r1 − 1 such that yi - f . To have a total of d+ 1 points, this forces the inclusion of all other
y-variables and zr1+3. Therefore, f is of the form f = zr1+2zr1+3y1 · · · ŷi · · · yr1−1yr1 · · · yd, giving
(iv).

Finally, suppose m = zr1+3. Then, for f to be supported on d + 1 points, we must necessarily
include all y-variables, yielding the form f = zr1+3y1 · · · yd. Note that f /∈ in<lex

(G), so we obtain
form (v). �

Given that we know an explicit description of the facets of the unimodular triangulation T (q),
a natural problem is to find a shelling of the facets from which we can recover the Ehrhart
h∗-polynomial using standard techniques [3, 15]. This would provide another proof of Ehrhart
h∗-unimodality, and give an explicit combinatorial interpretation to the coefficients of the h∗-
polynomial. It is not clear how to construct a shelling in which both the shelling and the restriction
sets admit a reasonable description. For example, one natural way to list the facets is to list them
in lexicographic order; however, while this works for some small values of r1 and x1, computations
with SageMath [17] show that this is not a shelling order when x1 is sufficiently large compared to
r1.

It would be of interest to describe the regular unimodular triangulations of the 2-supported re-
flexive IDP ∆(1,q), and to connect these shellings explicitly to the Ehrhart theory of these simplices.
However, the most important aspect of the existence of the regular unimodular triangulation given
in this work is to establish that the h∗-unimodality of these simplices falls within the framework of
Theorem 1.3.
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