REGULAR UNIMODULAR TRIANGULATIONS OF REFLEXIVE IDP
2-SUPPORTED WEIGHTED PROJECTIVE SPACE SIMPLICES

BENJAMIN BRAUN AND DEREK HANELY

ABSTRACT. For each integer partition q with d parts, we denote by A(; o) the lattice simplex
obtained as the convex hull in R? of the standard basis vectors along with the vector —q. For q
with two distinct parts such that A(; o) is reflexive and has the integer decomposition property, we
establish a characterization of the lattice points contained in A(; q). We then construct a Grobner
basis with a squarefree initial ideal of the toric ideal defined by these simplices. This establishes the
existence of a regular unimodular triangulation for reflexive 2-supported A(; 4y having the integer
decomposition property. As a corollary, we obtain a new proof that these simplices have unimodal
Ehrhart h*-vectors.

1. INTRODUCTION & BACKGROUND
Consider an integer partition q € Zél where ¢; < -+ < qq.

Definition 1.1. The lattice simplex associated with q is

d
=1

where e; denotes the i-th standard basis vector in R%. Set N(q) :== 1+, ¢

It is straightforward to prove [13, Proposition 4.4] that N(q) is the normalized volume of Ay o).
Let Q denote the set of all lattice simplices of the form A(; o). The simplices in Q correspond to
a subset of the simplices defining weighted projective spaces [9]; the vector (1,q) gives the weights
of the associated weighted projective space. Simplices in Q have been the subject of active recent

study [1, 5, 6, 7, 12, 14]. Given a vector of distinct positive integers r = (ry,...,r:), we write
1 T2 Tt\ .__
(P %, o T ) = (1, Ty e T, T2, T2 e oy T2y ey Ty Ty ooy )
x1 times xo times x¢ times

There is a natural stratification of @ based on the distinct entries in the vector q, leading to the
following definition.

Definition 1.2. Ifq = (q1,...,qq4) = (r7",73%,...,71"), we say that both q and A(; g are supported
by the vector r = (r1,...,7) with multiplicity x = (z1,...,x;). We write q = (r,x) in this case,
and say that q is t-supported.

Because A(; 4) contains the origin, the geometric dual AZ‘l Q) is a rational polytope, where

aq) ={y ¢ RY| (a,y) <1forallae A,q}-
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A lattice polytope P is reflexive if the dual of P is also a lattice polytope. It is known [9] that
A(1,q) is reflexive if and only if

d
gi divides 1+ ¢q; forall 1<i<d. (1)
j=1
Thus, when (1) holds, we refer to both q and A(; 4) as reflexive.

We say a lattice polytope P has the integer decomposition property, or is IDP, if for every
M € Z>y and p € (M - P) N Z%, there exist p1,...,pm € PN Z?* such that p = p1 + -+ + pas.
A detailed study of reflexive IDP A(; ) was initiated in [6], motivated by several open problems
regarding unimodality in Ehrhart theory (see [4, Conjectures 1 and 2]). Braun, Davis, and Solus [6,
Theorem 4.1] classified the 2-supported reflexive IDP A(; q), proving that every such q is of the
form (r{*,r5?) where either

ri>1withrg=14+mrmz and 2o =r; — 1, or
r1 = 1 with ro = 1 + x1 and xo arbitrary.

They further established that every A(; o) has a unimodal Ehrhart h*-vector.
It is well known that if a lattice polytope P admits a unimodular triangulation, then P is IDP.
Further, Bruns and Romer proved the following theorem.

Theorem 1.3 (Bruns and Romer [8]). If P is reflexive and admits a reqular unimodular triangu-
lation, then P has a unimodal Ehrhart h*-vector.

Thus, it is of interest to determine whether or not reflexive IDP lattice polytopes admit regular
unimodular triangulations. In particular, while we know that reflexive IDP 2-supported A q)’s
are h*-unimodal, producing regular unimodular triangulations of these simplices demonstrates that
this unimodality is a consequence of the more general Theorem 1.3.

It has been shown [6] that each 2-supported reflexive IDP A o) with q = (171, (1 + x1)*2)
arises as an affine free sum of Ay j=1) and A je5). Thus, every A q) of this form admits a
regular unimodular triangulation, for example the triangulation arising as the join of the bound-
ary of A q=1) X (07?) with the unique unimodular triangulation of (071) x (A je2) — €z, 41) in
R¥1722 (Note that this latter simplex has two triangulations, one being the entire simplex and
the other being the cone of the interior point with the boundary complex, and only one of these is
unimodular.)

In this paper, we study regular unimodular triangulations for the other 2-supported case. Thus,
for the remainder of this paper, we assume that q = (r{*, (1 +r121)" 1) with r; > 1. Observe that
dim A q) = d = 21 +22 = r1 + 21 — 1. Define A'(q) :={a),...,a;, ,3,b},..., by} C 74, where:

aj, 11 = (=)™, (=z1)" 1)

aj, o = (07, (=)

Al g = (07,077
aj=(r—i+1)a,  +a. oforl<i<nr
b;- =eq_jy1 for 1 <j<d

Observe that aj} = —q, so all vertices of A(; q) are contained in A’(q). Note that later in this
work we will use the notation .A(q) to denote the set of these vectors where each vector has a 1
appended. Thus, we use A’(q) for the vectors defined above.

Example 1.4. Let 71 = 6 and z; = 4, so q = (6%,25%) € Z°. The elements of A’(q) are given by
the columns of the matrix in Figure 1.

In this paper, we prove the following theorems.
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aj a, a, aj af ag a, ag ayg b} by, by by bl by b, by bj
-6 -5 -4 -3 -2 -1 -1 0O O O O O O O 0O 0 1
-6 -5 -4 -3 -2 -1 -1 0O O O O O O O 0 1 O
-6 -5 -4 -3 -2 -1 -1 0O O O O O O O 1 0 O
-6 -5 -4 -3 -2 -1 -1 00 O O O O O 1T 0 0 O
-25 -21 -1 -13 -9 -5 4 -1 0 O O O O 1 O O O O
-25 -21 -1 -13 -9 -5 4 -1 0 O O O 1 O O O O O
-25 -21 -1 -13 -9 -5 4 -1 0 O O 1 O O O O O O
-25 -21 -1 -13 -9 -5 4 -1 0 O 1 O O O O O O O
-25 -21 -1 -13 -9 -5 4 -1 0 1 O O O O O O O O

FIGURE 1. A'(q) for q = (64, 25°).

Theorem 1.5. For q = (r{*, (1 + riz1)"* ™) with 11 > 1, the lattice points of the IDP simplex
A1,q) are given by A'(q).

Theorem 1.6. For q = (r{*, (1 + riz1)"" 1) with ry > 1, there exists a lexicographic squarefree
initial ideal of the toric ideal associated with A q)-

Corollary 1.7. Every 2-supported IDP reflevive simplex Ay ) admits a regular unimodular trian-
gulation. When q = (r{', (1+riz1)™ 1) with ry > 1, this triangulation is induced by a lexicographic
term order <jeg.

The remainder of this paper is structured as follows. In Section 2 we prove Theorem 1.5. In
Section 3 we introduce needed algebraic machinery and prove Theorem 1.6. In Section 4 we describe
the facets of the resulting triangulation and discuss connections to the Ehrhart h*-vector of A o).

2. PROOF OF THEOREM 1.5

Our strategy is to determine the number of lattice points in A(q q), show that this value equals
the number of columns of A’(q), and then show that all of the columns of A’(q) are contained in
A
Proposition 2.1. For q as given in Theorem 1.5, we have |A(1,q) N Zd‘ =7ry+d+3.

Proof. Using [6, Theorem 2.2], we know the Ehrhart h*-polynomial of A q), denoted h*(A(; q); 2) =
hi+hiz+---+ h:‘lzd, is given by

1 (x1r1+1)71

TV SR
b=0
where
b b

It is well known (see, e.g., [2]) that the coefficient h] is given by the formula
hi = ’A(Lq) N Zd‘ — (dimAq,q) +1). (2)

To compute A}, we must determine all b for which w(q,b) = 1. Since 0 < b < ry(xyr;+1)—1, the
division algorithm allows us to write b = a(1 4+ x171) + 8, where 0 < a < ry and 0 < 8 < 1 4 2171
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Hence,
w(q,b) = w(q, a1 +z171) + )
=a(l+z1m1) + B — {a(ljfi;lr)f 5J —(h—1) {0‘(1 + illrl) + BJ
=a(l+zm)+—ax;—(r1—1) (axl + {WJ)
:a+ﬁ—Oq—U{a+ﬂJ
1
Therefore, the equation w(q,b) = 1 becomes
a+pB—(r1—1) erﬁJ =1 <= a+p=14+(1-1) {a—FﬁJ .
71 1

_ +8 . . _ . . . .
Now, let ¢/ = Lo‘m J By the previous equation, o + 3 = 1+ (r; — 1)¢. Substituting this equivalent
expression for « + 3 into both sides of the previous equation, it follows that solving w(q,b) =1 is
equivalent to finding all pairs («, 3) such that

L+ (r—1Dl=14+(r; — 1) V i (7;11_ 1)£J

=1+ (r—1) <£+ F;ED

Rearranging this equation yields

Therefore, since 1 > 1, this implies

1-4 0 1
1 1 1
If «+ 8 =1, then (o, 5) = (1,0) or (a, 8) = (0,1). Otherwise, in the case that a + 8 = ry, there

are 7 possible pairs («, 5) where a € {0,...,71 — 1} and 8 =1 — . Thus,
hi=|{b: w(q,b) =1} =r +2.

Consequently, (2) implies
‘A@mﬂﬁﬂ=n+d+&
as desired. O

Proposition 2.2. Fort = (t,...,tq) € R, define
( d
th — xlrltk, ’if 1 S k S I
j=1
7k
d
)\k<t) = th — (7‘1 - 1)tk, ifri+1<k<d
j=1
Jj#k

d
>t ifk=d+1
j=1
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An irredundant H-description of Aq q) is given by A\g(t) <1 for all1 <k < d+ 1.

Proof. Observe that for all 1 < j < d, e; satisfies all of the given inequalities tightly except when
k=j (ie., A\g(e;) =1 for all k # j and Aj(ej) < 1). Moreover, —q satisfies the first d inequalities
tightly (i.e., Ay(—aq) = 1 for all 1 < k < d), but not > ;¢; < 1. Thus, as each vertex of the
simplex A(; ) satisfies exactly d of the given inequalities with equality, the inequalities necessarily
constitute an H-description of A o). ]

Proof of Theorem 1.5. To begin, observe that |[A'(q)| =r1 +d+3 = ‘A(Lq) N Zd‘. Therefore, as
each element in A'(q) is an integer vector, it suffices to show that each point satisfies the inequalities
in Proposition 2.2. To this end, let \; be defined as in Proposition 2.2; we evaluate each vector in
A’(q) on Ag. For each 1 < i < ry, note that

aj = (ri—i+1)a), q +ay o= ((=(r1 =i+ 1), (—(1+ (rn — i+ D))" 7).
Therefore, we have that
M(a]) =1if1<k<d and Mgi(a)) <1,
and for each i € {2,..., 71} U {r; + 2},
Me(al)=1ifx; +1<k<d and Mg(a}) <1 otherwise.
Also,
Me(ay, 1) =1if1<k<az; and Mg (a) ;) <1 otherwise,
and
Ai(ay. p3) <1lforalll<k<d+]1.
Lastly, for all 1 < j <d,
Ae(bj) =1ifk#d—j+1 and M(bj) <1lifk=d—j+1.

Thus, A'(q) € Agq) NZ%, and the result follows. O

3. PROOF OF THEOREM 1.6

We next seek to prove the existence of a regular unimodular triangulation of the convex hull of
these points. Given a field K, there are natural parallels between properties of lattice polytopes and
algebraic objects such as semigroup algebras, toric varieties, and monomial ideals. The following
one-to-one correspondence between lattice points and Laurent monomials plays a central role:

a = (a1,...,a0) €24 — ¥ =10 % e K[tF, . .

For details regarding the significance of this correspondence, see [16, Chapter 8]. Furthermore, for
all notation related to combinatorial commutative algebra, we refer the reader to [10].

Let K be a field, and define A(q) = (a,...,a,,13,b1,...,by) C ZEHDx(1+d+3) 4 he the
homogenization of A'(q) where a; = (aj, 1) and b; = (b’ 1); that is, A(q) is the matrix associated
with the point configuration consisting of all vectors in A’(q) lifted to height 1. (Note that we
can view the columns of A(q) as the intersection of Z4*! with the degree 1 slice of the polyhedral
cone over A q).) Let K[A(q)] := K[21,...,243,¥1,--,Ya] be the polynomial ring associated
with the columns of A(q) in 1 + d + 3 variables over K. Moreover, let M(K[A(q)]) denote the
set of monomials contained in K[A(q)], and let Rx[A(q)] be the K-subalgebra of the Laurent
polynomial ring K[t*!] := K[t{,... ,técil] generated by all monomials t* with a € A(q), where
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t? = 7" tjfll if a = (ai1,...,aq11). The toric ideal I4q) is the kernel of the surjective ring
homomorphism 7 : K[A(q)] = Ri[A(q)] defined by

m(z) =t*, for 1 <i<r;+3
m(y;) =tP, for 1 <j < d.
A generating set for I 4q) is given by the set of all homogeneous binomials f — g with 7(f) = 7(g)

(
and f,g € M(K[A(q)]), see [16, Lemma 4.1]. We fix the lexicographic term order <, on K[A(q)]
induced by the ordering of the variables

21> 2> > 243 S YL > Yo > o > Y
Moreover, for f = z{"-- ::Igg’y‘fl e ygd € M(KJ[A(q)]), we introduce the notation

supp, (f):=={ie{l,...,r1 +3} : v > 0}.

Given this setup, we restate Theorem 1.6. Note that Corollary 1.7 follows immediately from
Theorem 3.1 as it indicates the existence of a squarefree initial ideal of the toric ideal I 4(q) 16,
Corollary 8.9].

Theorem 3.1 (Restatement of Theorem 1.6). Let B be the set of all (i,7) € N? satisfying the
following conditions:
(i) j—i>2
(ii) 1 S ) S T
(i) j <71 +3
(v) j#r+1
(v) (i,5) # (ri,r1 +2)
Given (i,7) € B, define (k,?) as follows:

[ 'l Y ifj<r+1

2 2

1+j5—1 t+j5—1 e
o [ ] s
k=i+1,¢l=r+1 ifj=r1+3,i#mr
k=rm+1,40=r+2 ifj=r1+3,i=r1.

If ©1 > r1 — 2, then the set of binomials G given by

2iZj — 220, (i,j) € B (3)
ri—1
Zk+1 H Ye — r1+1 r1+3a 0<k<r -1 (4)
2k Hyz—zﬁzf;i% FL0<k<m -1 (5)
{=r1
ri—1
Rri+2 H Ye — ZIII+37 (6)
Zri+1 H Ye — er11+227"1+3 (7)

l=r1
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is a Grobner basis of 1 4(q) with respect to the lexicographic term order <ie, as specified above. In
the case that x1 < r1 — 2, replace (5) above with

d
k r1+1-k
Zri—k I[yg—zmzrllJr2 , 0<k<z+1
l=ry *
d (5%)
k—a1—1 2z, +2—k
Zri—k H Yo— 2 0 TR 42 <k <r -1
l=r

Note that regardless of case (either z; > r; — 2 or x1 < 71 — 2), the initial terms of the k-th
binomial in (5) and (5*) are identical. Therefore, whenever we are considering only leading terms
of these polynomials, we can ignore any relationship between x; and r1 — 2.

Remark 3.2. The intuition for most of these binomial relations is that they are encoding the
additive structure on the columns of A(q). Specifically, in the definition of A’(q), we see that
a; = (r1—i+1)a), ., +al o for 1 <i<rq, and there are natural syzygies that result from this
structure. We require the replacement of (5) with (5*) in the case that x1 < 1 — 2 since otherwise,
the exponent of z,, 12, namely z; + 1 — k, would fail to be positive when z; +2 <k <r; — 1.

To prove Theorem 3.1, we employ the following well-known lemma, e.g. [11, (0.1)], for proving a
finite subset of the toric ideal I 4(q) is a Grobner basis of I 4(q). For a finite set of polynomials G in
a polynomial ring with a term order <, let in-(G) denote the ideal generated by the set of initial
terms of elements of G.

Lemma 3.3 ([11]). A finite set G of 1 4(q) s a Grébner basis of I 5q) with respect to the term order
< if and only if {m(f) : f € M(K[A(Q)]), f & in<(G)} is linearly independent over K ; i.e., if and
only if 7(f) # (g) for all | ¢ in<(G) and g & in<(G) with  # g.

We will also require the following fact which provides an upper bound on the supported z-
variables for any monomial outside the initial ideal generated by the binomials in Theorem 3.1
with respect to <jes.

Lemma 3.4. Let G be the set of binomials given in Theorem 3.1. Suppose
T B 0,
f=at 2yt € MIK[A(Q)])

with f ¢ in<,  (G) and |supp, (f)| > 1. Let m denote the minimal index such that z,, divides f.
Then, |supp, (f)| < 3 and we are restricted to the following possibilities:
(1) if 1 <m <1y —1, then Ym+1, V41 > 0 and v; = 0 for all i € {1,...,r1 + 3} \ {m,m +
1,71 +1}.
(2) if m =71, then Yp 41,V 42 >0 and v =0 for alli € {1,...,711 — 1} U{r; + 3}.
(8) if me {r1+1,mr1 +2,r1 +3}, then v =0 for all i <m and ~; > 0 for all i > m.

Proof. Suppose 1 < m < r; — 1. Since zmzm41 ¢ in<,, (G) and zmzr 41 ¢ in<,, (G), Zm+1 and
Zr,+1 possibly divide f. However, given the structure of B as defined in Theorem 3.1, it follows
that 2z, 2r, 42, 2m2r, 43, 2m2n € ine,, (G) for all n with n > m + 1,n # r1 + 1. Therefore, since m is
minimal, [supp, (f)| < 3 and we precisely satisfy the conditions of Lemma 3.4(1).

Now, suppose m = r1. By the minimality of m, we need only consider indices greater than ry.
Observe that 2z, zp, 11 € in<, (G), 2r 2r42 & ine,(G), and 2, 2p, 43 € inc, (G). Thus, we have
that |supp, (f)] < 3 and we end up in Lemma 3.4(2).

Finally, for m € {r; + 1,71 + 2,71 + 3}, minimality of m immediately implies |supp, (f)| < 3. To
see that this case yields Lemma 3.4(3), observe that 2,2, ¢ in, (G) form,n € {ri+1,r1+2,7+3}
with m # n. 0
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Proof of Theorem 5.1. One easily checks that each binomial h = mj —m2 € G is contained in I 4(q)
by showing 7(m1) = 7(mz). To show G is a Grobner basis of I 4(4), we employ Lemma 3.3. Suppose
fr9 € M(K[A(q)]) with f # g, f ¢ in<,(G), and g ¢ in.,  (G). Write
fm eyl and g = g

where a;, o}, 8;,8; > 0. We may assume f and g are relatively prime (since otherwise, we could
simply factor out the common variables and consider the images of the reduced monomials). Further
assume to the contrary that m(f) = m(g), and without loss of generality, assume [supp, (f)| >
|supp, (g)|. For convenience, let £, g™ € Z%*! denote the exponent vectors associated with m(f)
and m(g), respectively, and let f™[k] (resp. g™ [k]) denote the k-th entry of £™ (resp. g™). With this
notation, observe that m(f) = n(g) if and only if f7[k] = g”[k] for all 1 <k < d + 1.

The general structure for the rest of the proof is to consider cases based on the size of the z-
support for monomials g and f. Throughout, we identify the minimal indices of the z-variables
dividing both g and f, and we repeatedly apply Lemma 3.4 to deduce a contradiction in each of
the resulting cases.

Case 1: |supp, (9)| = 0. By definition, it follows that o = 0 for all 1 <4 < r; + 3. Therefore,

we know that

Subcase 1.1: |supp, (f)| = 0. Thus,

fﬂ = (Bdav/@hzjﬁj)
Since 7(f) = m(g), this implies §; = B} for all 1 < j < d, and consequently, f = g, a
contradiction.

Subcase 1.2: |supp, (f)| > 1. Let m denote the minimal index such that z,, divides f (i.e.,
am >0 and o; = 0 for all ¢ < m).

(a) Suppose 1 <m < r;+1. Since 2pYr, -+ Ya € in<,, (G) (by (5) and (7)) and f ¢ in.,_(G),
there exists an index ¢ € {ry,...,d} such that 5, = 0. Hence,

r1+3 d
f7ld — £+ 1] = > A @a—er1i+ > BA@d—e11m 1345 < 0.
i=1 j=1

-~

<0 =0

However, g™[d — ¢ + 1] = 8, > 0, a contradiction.

(b) Suppose m = r1 + 2. Since zp 42y1 - Yr—1 € ing,, (G) (by (6)) and f ¢ in.,_ (G),
there exists an index k € {1,...,71 — 1} such that 8y = 0. Since k < 71, it follows that
d—Fk+1> x1. Therefore, A(q)q—r+1,r+2 = —1. Hence,

r1+3 d
f7ld —k+ 1] = > i A(@d-ks1i+ > BjA@d—kr143+) < 0.
i=1 =

:—ar1+2<0 =0

However, g"[d — k + 1] = ;. > 0, a contradiction.

(c) Suppose m = 71 + 3. Since m is minimal, we know a; = 0 for all 1 < i < r; + 2.
Since A(q) is homogenized, we also know >, a; + >, Bj = >, a; + >, B; (this can be
seen directly from f"[d + 1] = g”[d + 1]). Hence, in this case, the equation simplifies to
Qry+3 + >, B; = >, B}, and moreover,

7 = (ﬁd)' "aBlaaT1+3 + Z]ﬁﬂ)



REGULAR UNIMODULAR TRIANGULATIONS... 9

Since 7(f) = 7(g), B = B} for all 1 < j < d. Therefore, substituting into the above
equation,

arys+ 085 = 2285 =225
but oy, +3 > 0, a contradiction.

Case 2: [supp, (¢)| > 1. Let n denote the minimal index such that z, divides g (i.e., o], > 0 and
a; = 0 for all 4 < n). Since |supp, (f)| > |supp, (¢)| and |[supp, (g)| > 1, we know supp, (f) # 0.
Hence, let m denote the minimal index such that z,, divides f. Via Lemma 3.4, this case naturally
lends itself to the following subcases of consideration.
Subcase 2.1: n € {1,...,r — 1}. By Lemma 3.4, we know o;, > 0, oy, 1,0} 1 > 0, and
af =0forallie{l,....,r1 +3}\ {n,n+ 1,71 +1}. Since z,y1 - Yr,—1 € in<, (G) (by (4)),
ZnYr, -+ Ya € ine,, (G) (by (5)), and g ¢ in<,, (G), there exist indices k1 € {1,...,r; — 1} and
1 € {r1,...,d} such that 3, = 3, = 0. Then,

r1+3

F7ld — k1 + 1) = > 0w A(Qd—k 14 + Bry (8)
1=1

gild— ki +1]=—(1+(r—n+1Dai)aj, — (L+ (r —n)x)ap — 2105, 4 (9)
r1+3

£7[d— 0 +1] = Y 0 A(@a—o+1 + B, (10)
=1

g'ld— 0l +1]=—(r1 —n+1)ay — (1 —n)ag g —ap 1. (11)

Note that 7(f) = 7(g) implies (8) = (9) and (10) = (11). Now, we claim m € {1,...,r1 + 1}.
Indeed, assume otherwise, that is, supp, (f) C {r1 + 2,71 +3}. Then, f7[d— ¢+ 1] = 8, > 0 for
all £ € {ry,...,d}, but from (11), g"[d — ¢; + 1] < 0 since o, > 0 and o, 1, ,; > 0. This
contradicts 7(f) = m(g). Hence, given the structure of Lemma 3.4, we consider the following
subsubcases.
(a) m e {1,...,r1 — 1}. Since zmy1 - Yr,—1 (by (4)), 2m¥Yr, -+ ya € in<, (G) (by (5)), and
f ¢ inc,(G), there exist indices k2 € {1,...,71 — 1} and ¢y € {ry,...,d} such that
Bk, = Be, = 0. Then, we have that
r1+3
f7ld — ke + 1] = Z @i A(Q)d—ky+1,i (12)
i=1
gld—ko+1]=—14 (r1 —n+1)z1)a, — (1+ (11 — n)z1)ad, 4

(13)
- xla,rl—i-l + /81,62

r1+3
fld—Lo+1]= > A(@atr414 (14)

i=1
g7ld—lo+1]=—(r1 —n+1)ay — (r1 —n)asy — ap 1 + 5y, (15)
where (12) = (13) and (14) = (15) as w(f) = 7(g). Since 1 < k; < r; —1 for i € {1,2},
subtracting the equation (12) = (13) from (8) = (9) implies 8, = —f;,. Similarly,

since 1 < ¢; < d for i € {1,2}, subtracting equation (14) = (15) from (10) = (11)
implies By, = —f,,. Since B;,8; > 0 for all 1 < j < d, this implies By, = B, = By, =
622 = 0. Also, by Lemma 3.4, we know oy, > 0, amy1,00,+1 > 0, and a; = 0 for all
ie{l,...,r1+3}\ {m,m+1,r + 1}. Consequently, equations (8) and (10) simplify to
f7d =k + 1] = =1+ (rn —m+ Dz1)am — (14 (r1 — m)@1)amir — 210041 (16)
ffld— 01+ 1) = —(r1 —m+ Doy — (11 — m)ams1 — Q1. (17)
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Since 7(f) = 7(g), (16) = (9) and (17) = (11), thereby implying z;(11) — (9) = z1(17) —
(16). Observe that z1(11) — (9) = 21(17) — (16) is the following
U + Qg1 = Ay + a4 (18)
Now, consider the equation (17) = (11):
—(r1—=m+1)ou, — (r1 — m)aumqr — app1 = —(r1 —n+1)ag, — (1 —n)aj, 1 — o 41
Adding (18) to this equation r; times yields
(m = Dam + moumg1 — ar41 = (n— 1)ay, +nay, — a4

Either m < n or m > n (note that m # n since f and ¢ are relatively prime). First,
suppose m < n. Subtracting (18) from our previous equation m — 1 times gives

Qg1 = Q1 = (0 —m)ay, + (n—m+ 1)aj g —ap (19)

As m < n, we have that
_ / / /
Comt1 — A1 = (m—m) oy +(n—m+ 1)y, —aly
>0 >0 >0 >0
/ / /
> ap, + Qpy1 — Q1

(18) '
= Qm + Qmt1 — Oy,

which implies
/ /
()ZT1+1 > Qup +a7”1+1 — OZT1+1 > 0.
>0

Since f and g are relatively prime, this forces a,,+1 = 0. Thus, supp, (f) C {m,m + 1}.
Moreover, a;,,; = 0 since [supp, (f)| > [supp, (¢)| and we have found «j,,c;. ,; > 0.
Consequently, (18) reduces to o), = a, + am41 and (19) reduces to

oy 41 = (n—m)am + (n—m— 1oy (20)

Now, f™[d + 1] = g™[d + 1] gives that

U+ mir + Y Bj=a,+a, 1+ > B
i J

Since oy, = aum + @pt1 and oy, 4y > 0, this implies 37, 8; > 3, B8} For each r < j < d,
—f7[d—j+ 1] = —g"[d — j + 1] is given by
(r1 = m+1am + (1 —m)amsr — B = (11 —n + Dag, + ap 4 — B;-
Solving for o |, and substituting o), = oy, + a1 yields
O/TH_1 =(Mn—-—m)a,m+nm—m—1amnt + ﬂ; - B;.
Adding these equations for each r; < j < d gives
(d—mr+ 1)04;,1“ =(d-—r+1)[(n—m)am+ (n—m—1)ay41]
DR (2
r1<j<d
Similarly, for each 1 < j <ry — 1, —f"[d — j + 1] = —g™[d — j + 1] is given by
1+ (r1 —m~+1D)z1)am + (1 + (r1 — m)zy)amy1 — B = (L4 (1 — n+ L)ar)og, + 2107, 41 — ﬁ;
Solving for x1a. ,+1 and making the appropriate substitutions yields

azla;ﬁl =(n—m)riam + (n—m—1)xiamer + Bg — Bj.
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Adding these equations for each 1 < j < ry — 1 gives
(r1 — Dzi0g, 41 = (r1 — 1) [(n — m)@100m + (0 — m — 1)@ 10 41]

+ Z 6 BJ (22)

1<j<r;—1

Combining (21) and (22) gives

d
100, 1 = r1@1 [(n— m)og, + (n—m — 1)am41] + Z(ﬂ; - Bj)s
j=1

:O/Tl+1 by (20) —_———

<0

a contradiction. Now, suppose m > n. In this case, rather than subtracting m — 1 copies
of (18), we instead subtract n — 1 copies of (18) yielding

(m = 1), 4+ (M —n+ 1)Qmy1 — Qri41 = 0] — O 4.
Then, since m — n > 0, the same argument from the m < n case will follow through by
appropriately replacing each occurrence of o), with o, a, with o), aj, with a1,

. / / . . /
Q1 With o, 1y, o 1 with ap 41, and o) +1 with o 4.

m = 7. Since ZriY1-Yr—1 (by (4))’ ZriYry cYd € in<lem (g) (by (5))7 and f g in<lex (g)v
there exist indices k2 € {1,...,r1 —1} and ¢3 € {ry,...,d} such that S, = B, = 0. Then,
we have that

r1+3
£7(d —ky+ 1) = Z i A(Q)d—ko11,i (23)

i=1
g7ld — ko +1] = —(1+ (r = n+ D)), = (1+ (11 = m)ar)alyy (24)

— 210, 41 + B,

r1+3
fTd—tla+ 1] = Z @ A(A) d—to 411 (25)

i=1
g'ld—tla+1]=—(r1 —n+ 1)04;1 —(r1 — n)a;H-l - O‘;q-i-l + /8227 (26)
where (23) = (24) and (25) = (26) as 7(f) = 7(g). Subtracting the equation (23) = (24)
from (8) = (9) implies By, = —f,. Similarly, subtracting equation (25) = (26) from

(10) = (11) implies B¢, = —f3,. Since 3;,5; > 0 for all 1 < j < d, this implies S, = 5, =
Be, = 522 = 0. Also, by Lemma 3.4, we know o, > 0, oy +1, 0,42 > 0, and o; = 0 for all
ie{l,...,r1 —1} U{rs + 3}. Consequently, equations (8) and (10) simplify to

fﬁ[d k1 + (1 + xl)aﬁ — L1041 — Q42 (27)
f7[d — 01 + —Qp, — Q4. (28)

1] =
1] =
Since 7(f) = w(g), (27) = (9) and (28) = (11), thereby implying x1(11) — (9) = x1(28) —
(27). Observe that x1(11) — (9) = x1(28) — (27) is the following

Oy Qg2 =, F Al (29)
Now, consider the equation —(28) = —(11):
Qpy + i1 = (r1 —n+ 1o, + (r — n)a;LJrl + oz;lJrl.
Substituting (29) into this equation yields

/ / / / /
o, + Apy1 — Opr42 +ap 41 = (Tl —n+ 1)an + (Tl - n)an+1 =+ Qpiy1-
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Rearranging by subtracting «a;, + a;,,; on both sides yields

Q41— Q2 = (11— n)ag, + (1 —n—1aj 4 +ap, . (30)

>0 >0

Observe that (30) implies a,,4+1 > 0, so since f and g are relatively prime, this forces
a1 = 0. Therefore, subtracting r; —n copies of (29) from (30) gives

41— (11— n)ay, — (11 —n+ 1oy 12 = =, 44,
which implies

oy = (11 —n)ap, + (r1—n+ 1)y, 42 — ap 1. (31)
Now, f™[d + 1] = g™[d + 1] gives that

Qpy + 01+ 02+ Y B =l +al o+ B
J J

Since a;, = ar, + ary+2 — ap 4 by (29) and a1 > 0, this implies >, 8; < >°. 5;. For
each r; < j<d, —f"[d—j+ 1] = —g™[d — j + 1] is given by

ar, + ap1 — B = (r—n+ Daj + (r —n)ajy — Bj.
Solving for o, and substituting o, = o, + ;42 — o, yields

ag@—&-l = (Tl - n)aﬁ + (Tl —n+ 1)arl+2 — Q41+ /Bj - ﬁ;
Adding these equations for each r; < j < d gives
(d—ri+1apy =(d—ri+1)[(r —n)or, + (11 —n+ Lo 42 — oy 41
+ Y 3-8 (32)
r1<j<d
Similarly, for each 1 < j <7y —1, —f"[d —j+ 1] = —g"[d — j + 1] is given by
(14 z1)on, + @100 11+ apyg2 — B = (1 + (1 —n+ Dar)ay, + (1+ (11 — n)zr)ay, . — B

Solving for z1a, 1 and making the appropriate substitutions yields

105,41 = (r1 = n)x10e, + (1 —n+ D)z100, 12 — L1005, 11 + 55 — B}

Adding these equations for each 1 < j < ry — 1 gives
(r = Dziag g = (11 = D [(r — n)ziay, + (11— n+ D)zia 42 — 2105, 41]
Y B (33)
1<j<ri—1
Combining (32) and (33) gives

d
?”1.%'10/n+1 =1z [(r1 — n)ar, + (1 —n+ Dar 42 — oy 41] +Z(6j - B;)y
— oy, by (31) =

<0
a contradiction.
(c) m =1+ 1. Since zp,41Yr, - Yd € in<,,,(G) (by (7)) and f ¢ in., (G), there exists an
index ¢y € {ry,...,d} such that 8, = 0. Then, we have that
r1+3
fTd -ty + 1] = Z aiA(q)d_bH,i (34)
i=1
g ld—tly+1]=—(r1 —n+1)a, — (11 — n)oz;Hl — a;,ﬁl + 522, (35)
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where (34) = (35) as 7(f) = w(g). Subtracting the equation (34) = (35) from (10) = (11)
implies B, = —f3,. Since f3;, 87 > 0 for all 1 < j < d, this implies 5, = 5, = 0. Also,
by Lemma 3.4, we know oy 41 > 0, apy+2, 43 > 0, and oy = 0 for all 4 € {1,...,r1}.
Consequently, since 8y, = 0, equations (8) and (10) simplify to

fﬂ-[d — kl + ]-] = —T10p 41 — Op 42 + Bkl (36)
£7[d — 01 4+ 1] = —ap, 41. (37)

Furthermore, since f and g are relatively prime, o, 41 > 0 implies O‘;"l +1 = 0, so equa-
tions (9) and (11) simplify to

gld—ki+1=—14(r1 —n+1)z1)ay, — (1+ (1 —n)z1)ad, (38)
g'ld—t1+1]=—(r1 —n+1)al, — (r — n)a;H. (39)

Since w(f) = 7(g), (36) = (38) and (37) = (39). Therefore, we have that —(36) = —(38)
and —(37) = —(39), that is,

L1041 + Q2 — /Bkl = (1 + (7’1 —-n—+ 1)371)@41 + (1 + (7“1 — n)a:l)a;#l (40)
and
ar+1 = (1 —n+1)ag, + (1 —n)ag, 1. (41)

Now, f7[d + 1] = g"[d + 1] gives that

’ ’ /
Qpy41 + Q42 + Qg3 + § Bj =+ ap + E Bj'
J J

Substituting (41) and since (r; — n)al, > 0, we obtain
IBLADILE (12
J J

For each m < j <d, —f"[d — j + 1] = —g"[d — j + 1] is given by
41— By = (r1 —n+1)a), + (1 —n)ag, . — B;-,
which readily implies
ar 1= (1 —n+ oy + (rn —n)ajy + B — Bj.
Adding these equations for each r; < j < d gives
(d=—r1+Dap41=(d—r1 +1) [(rl —n+ 1)04;1 +(r1 — n)a;H]

+ > (8- B

r1<j<d
Using (41), this simplifies to
0="> (B8 (43)
r1<j<d
Similarly, for each 1 < j <ry — 1, —f"[d — j + 1] = —g™[d — j + 1] is given by
10 41+ Qppo — B = (1+ (1 —n+ D)z1)a;, + (L+ (r1 — n)z1)og, g — B},
which implies

10,41 = (1+ (r1 —n+Dzi)ag, + (14 (11 — n)z1)apq — ar g2 + 6 — 65
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Adding these equations for each 1 < j < ry — 1 gives
(r1 — Dxyap,41 = (r1 — 1) [(1 +(ri—n+ 1z, + (1 + (r1 — n):ﬂl)a;H
- O‘TH—?] + Z (ﬁj - B}) .

1<j<ri—1
Using (40), this simplifies to
—(rm =18+ >, Bi—8). (44)
1<j<ri—-1

Combining (43) and (44), and observing (42), gives

d
=—(r = 1B, + > _(B;
-
<0
which implies (r; — 1)5k, < 0, a contradiction.
Subcase 2.2: n = 7. By Lemma 3.4, we know a;, >0, o, 1, .5 > 0, and o = 0 for all

ie{l,...,r1 —1}U{r1 +3}. Since zp,y1 - yr,—1 € m<m(g) (by (4)), 2rYr, -+ Ya € in<,,, (G)
(by (5)), and g ¢ in<,_(G), there exist indices ki e {1,...,r1 — 1} and ¢; € {7“1, ...,d} such
that 8;, = ), = 0. Then,

r1+3

f7[d — k1 + 1] = Z @ A(A) d—k1 41,0 + By (45)
i=1

g"[d — k1 +1] = —(1+21)ay, — 105, 41 — O} 49 (46)
r1+3

f7ld— 0, +1] = Z a A(d)a—e,+1, + Bey (47)
i=1

ghld—t+1]=—a;, — ) 1. (48)

Note that 7(f) = m(g) implies (45) = (46) and (47) = (48). Now, we claim m € {1,...,r;—1}U
{r1+1} (we need not consider m = r since f and g are relatively prime and n = r; in this case).
Indeed, assume otherwise, that is, supp, (f) € {r1 + 2,71 + 3}. Then, f"[d —¢+1] = [, >0
for all £ € {r1,...,d}, but from (48), g"[d — {1 + 1] < 0 since a;, > 0 and o], ,; > 0. This
contradicts m(f) = m(g). Hence, given the structure of Lemma 3.4 and since m cannot be ry,
we consider the following subsubcases.

(a) m e {1,...,r1 — 1}. Since zmy1 - Yr,—1 (by (4)), 2m¥Yr, -+ Ya € in<,(G) (by (5)), and
f ¢ inc,(G), there exist indices ko € {1,...,71 — 1} and ¢ € {rq,...,d} such that

Bry = Be, = 0. Then, we have that

r1+3

£7[d — ko + 1] = Z @ A(Q)d—kot1,i (49)

g7[d — ke +1] = —(1 +21)a,, — 2105, 11 — &4 1o+ B, (50)
r1+3

7 d foy + 1 Z a; A d lot1,i (51)

g"ld— Ll + 1] =—al —al 4+ B, (52)

where (49) = (50) and (51) = (52) as 7(f) = 7(g). Subtracting the equation (49) = (50)
from (45) = (46) implies B, = —f;, . Similarly, subtracting equation (51) = (52) from
(47) = (48) implies B¢, = —f3,. Since 3;,5; > 0 for all 1 < j < d, this implies By, = 3, =



REGULAR UNIMODULAR TRIANGULATIONS. .. 15

Be, = 622 = 0. Also, by Lemma 3.4, we know o, > 0, ttmt1, @r 41 > 0, and a; = 0 for all
ie{l,...,r1+3}\ {m,m+1,r + 1}. Consequently, equations (45) and (47) simplify to
7 ld—ki+1=—0+ (r1 —m+ Da)am — (1+ (r — m)x1)ams1 — L1041 (53)
ffld— 0+ 1) =—(r1 —m+ 1)am — (11 — m)ams1 — o 41 (54)

Since w(f) = 7(g), (53) = (46) and (54) = (48), thereby implying z,(48) — (46) =
x1(54) — (53). Observe that x;(48) — (46) = z1(54) — (53) is the following

Qo + Qg1 = 0 + Q. (55)
Now, consider the equation —(54) = —(48):
(r1 —m+ 1), + (11 — m)ame1 + g1 = o + 4.
Substituting (55) into this equation and solving for a;. ,, yields
g1 = (11— m)am + (11 —m — Dami1 + a1 + g 4o (56)

Observe that (56) implies 0‘;1 41 > 0, so since f and g are relatively prime, this forces
ar,+1 = 0. Thus, supp, (f) € {m,m + 1}. Moreover, since |supp, (f)| > |supp, (9],

ar 41 = 0, and we have o ,a; ,; > 0, it follows that oyt > 0 and a5, = 0. Conse-

quently, (55) reduces to o)., = Qu, + Q1 and (56) reduces to
oy 41 = (r1 —m)am + (r1 — m — 1)am1.
Summing these reduced equations yields
oy, oy = (r1—m+ Do + (r1 — m)omsr. (57)

Now, f™[d + 1] = g™[d + 1] gives that

(6779 + am-i—l + Zﬁ] = a;‘1 + a/7‘1+1 + Zﬁ;
J J

Since oy, = ay + @1 and o, > 0, this implies
>8> 8 (58)
J J

For each 1y < j <d, —f"[d — j+ 1] = —g"[d — j + 1] is given by
(r1 —m+ D + (11— m)amr = B = ap, + a1 = Bj,

which, via (57), implies 8; = ;. Similarly, for each 1 < j <73 — 1, —f7[d —j + 1] =
—g"[d — j + 1] is given by

(14 (r1 =m+Dxy)am + (1 + (11— m)z1)amyr — B = (1 + x1)oy, + 2105, 11 — 5,

(b)

which, via (57), implies 8; = 3}. Thus, we have that 3; = 3} for all 1 < j < d, but we had
in (58) that >_. B; > 3, B}, a contradiction.

m = ry + 1. Since 2z, 41Yr, -+ Ya € in<,, (G) (by (7)) and f ¢ in,  (G), there exists an
index ¢y € {ry,...,d} such that B, = 0. Then, we have that

r1+3

7l d -t + 1) = Z i A(Q)d—t5 11, (59)
=1

gﬂ[d - 62 + 1] = _O‘;ﬁ - a;“1+1 + 622’ (60)

where (59) = (60) as 7(f) = m(g). Subtracting the equation (59) = (60) from (47) = (48)
implies B, = —f3,. Since f3;, 8; > 0 for all 1 < j < d, this implies 5, = 5, = 0. Also,
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by Lemma 3.4, we know oy, 11 > 0, oy 12,045,433 > 0, and o = 0 for all ¢ € {1
Consequently, since ¢, = 0, equations (45) and (47) simplify to

fﬂ[d - kl + 1] — _1'1051"1+1 - aT‘1+2 + 5k’1
fﬂ[d — 0+ 1] = —Qp 41

.y 7’1}.

(61)
(62)

Furthermore, since f and g are relatively prime, a;, 41 > 0 implies ;.
tions (46) and (48) simplify to

= 0, so equa-
g'ld—k+1]=—(1+z1)ay, —o7 4 (63)
g7[d— 1 +1] = —al.. (64)
Since w(f) = 7(g), (61) = (63) and (62) = (64). Therefore, we have that —(61) (63)
and —(62) = —(64), that is,
(1 +z1)a, +ah 40 = 105,41 + Qrys2 — By (65)
and
Qpy = Qg1 (66)
Plugging (66) into (65) and solving for S, gives

’
/Bkl = Q42 — Q41 — Q9.

(67)
Note that if ;. o > 0, the relatively prime condition would force a;,+2 = 0, thereby
implying B, <0, a contradiction. Hence, we may assume «;. ,, = 0, and since S, > 0, it
must be that a,, 12 > 0. Now, f7[d + 1] = g"[d + 1] gives that

aT‘1+1 + a’l"1+2 + a’l"1+3 + Z/BJ = 04‘1 + Z/Bl
J J

Substituting (66) and since «;, 12 > 0, this implies

> B < 2.8 (68)

J J

For each m < j <d, —f"[d—j+1]=—-g [d — j + 1] is given by
Qpy+1 — /Bj ry 5‘;7

which, via (66), implies 3; = ﬁ; Similarly, for each 1 < j <7y — 1, —f7[d — j + 1]
—g"[d — j + 1] is given by

T10r +1 + Qry 42 — B
which, via (65), implies By, = 5; — B’~. Therefore,
d

ri—1

0<> (B =8)=>_(8—B) +Z By —Bj) = —(r1 —1)B, <0
j=1 =1 j=r1

a contradiction.

e (1 + xl)a,l’,.l - 5,

70

Subcase 2.3: n =71 + 1. By Lemma 3.4, we know o, | >0, o, .o, 3> 0, and aj = 0 for
all © € {1,...,r1}. Since zp, +1Yr,
index ¢, € {ry,

r—
- ) 1
Ya € ine,,(G) (by (7)) and g ¢ in<,, (G), there exists an
.,d} such that 8) = 0. Then,

r1+3
fld— 01+ 1] = Z a; A(d)d—e, 41 + Bey (69)
i=1
gild—t1+1] = _a;~1+1a

(70)
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where (69) = (70) as w(f) = m(g9). Now, we claim m € {1,...,r1} (we need not consider
m = 11 + 1 since f and g are relatively prime and n = r; 4+ 1 in this case). Indeed, assume
otherwise, that is, supp, (f) C {r1+2,71+3}. Then, f"[d—¢+1] = 3y > 0 for all ¥ € {ry,...,d},
but from (70), g"[d — ¢1 + 1] < 0 since a;. ;; > 0. This contradicts 7(f) = 7w(g). Hence, given
the structure of Lemma 3.4 and since m cannot be r1 + 1, we consider the following subsubcases.

(a) m e {17 sl — 1}' Since ZmY1 - Yri-1 € in<lez (g) (by (4))7 ZmYry - Yd € in<lez (g) (by
(5)), and f ¢ in, (G), there exist indices ko € {1,...,71 — 1} and ¢3 € {ry,...,d} such
that B, = Br, = 0. Then, we have that

r1+3

f7[d — ko + 1] = Z i A(A)d—ko+1,i (71)
i=1

g ld—ky+1] = —z107, .1 — ) 10+ B, (72)
r1+3

f7d -l + 1) = Z @ A(A)a—es+1,i (73)
i=1

g7ld —lo+ 1] = —al 1 + By, (74)

where (71) = (72) and (73) = (74) since 7(f) = 7(g). Subtracting the equation (73) = (74)
from (69) = (70) implies B, = —f3;,. Since B;,8; > 0 for all 1 < j < d, this implies
Be, = ﬁéz = 0. Also, by Lemma 3.4 and since n = r; + 1, we know a,,, > 0, apy1 > 0,
ar,41 =0,and oy =0 for all i € {1,...,71 4+ 3} \ {m,m+1}. Consequently, since 8y, = 0,
the equation (69) = (70) simplifies to

—(r1 —m+1)og, — (11— m)oumgr = = 41,

which implies

o 41 = (r1—m~+1)am + (1 — m)am1. (75)
Furthermore, the equation —(71) = —(72) simplifies to

1+ (r1 = m+Dz)am + (L + (11 — m)z1)amsr = 2104, 41 + @y 19— By,
Via (75), this equation is equivalent to
Qm + Am+1 + xla;‘l—‘rl = xla;j-i—l + a;"1+2 - 51/627
which implies
Bly = Wp 2 — Oy — Q1. (76)

Note that if ;. o = 0, 8, < 0 by (76), a contradiction. Hence, we may assume «;. 5 > 0.
Also, since [supp,, (f)| > |supp, (g)| and oy, 11 = 0, it follows that a,,11 > 0and a;, 3 = 0.
Now, f7[d + 1] = g™[d + 1] gives that

(7% +am+1 + Zﬁj = a;”1+1 +a;”1+2 + Z/B.;
J J
Substituting (75), this implies

Zﬁj >Z/3;.. (77)

For each r < j <d, —f"[d—j+ 1] = —g"[d — j + 1] is given by

(Tl —m+ 1)am + (7“1 — m)am+1 - 5]' = a;"1+1 - ﬁ;’
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which, via (75), implies 8; = f}. Similarly, for each 1 < j <r — 1, —f7[d —j + 1] =
—g™[d — j + 1] is given by
(L+ (r1 —m+Dz)ay + (14 (11 —m)z1)amir — B = 2105, 41 + ap 40 — B,
which, via (75) and (76), implies

Br, = B — Bj- (78)
Therefore, by (77) and (78),
d ri—1 d ri—1
0<> (BB =D B =B+ D (B —8)=>_(8—Bj) =—(r1 — 1), <0,
j=1 j=1 j=r1 j=1

a contradiction.

(b) m = rq. Since 2z, y1 - Yr,—1 € in<, (G) (by (4)), 21, Yry -+ Ya € in<, (G) (by (5)), and
f ¢ inc,(G), there exist indices ko € {1,...,r1 — 1} and ¢ € {rq,...,d} such that
Bk, = Be, = 0. Then, we have that

r1+3

£7d —ky +1] = > i A(Q)d—ks 414 (79)
i=1

g'ld—ke+1] = —:L’loz;lH — oz;l+2 + ﬂ;’w (80)
r1+3

£7[d — Lo+ 1] = D 0 A(Q)a—ry41, (81)
i=1

g"ld—lr+ 1] = —al 1 + B, (82)

where (79) = (80) and (81) = (82) since 7(f) = 7(g). Subtracting the equation (81) = (82)
from (69) = (70) implies B, = —f3;,. Since B;,8; > 0 for all 1 < j < d, this implies
Be, = By, = 0. We know a, 41 = 0 since o, ,; > 0. Also, by Lemma 3.4, we know
ay, > 0 and a, 42 > 0, so it follows that o; = 0 for all i € {1,...,r1 + 3} \ {r1,r1 + 2}.
Consequently, since 8y, = 0, the equation (69) = (70) simplifies to
Qry = a;‘1+1' (83)
Furthermore, the equation —(79) = —(80) simplifies to
(1 +z1)ar, + a2 = 2105, 11 + 5 o — B,
Via (83), this equation is equivalent to
(L+x1)al 1 + Qrpo = 2100, 11 + abio — Bl

which implies

/8;62 = a;‘1+2 - a;‘1+1 - aTl"FQ’ (84)
Note that if o], 1, =0, 8;,, < 0 by (84), a contradiction. Hence, it must be that a;, 5 > 0.
However, by the relatively prime condition, this implies a,,+2 = 0. As a consequence,
since apy 41 = ap42 = 0 and a7 44,05, 5 > 0, we have that

|supp, (f)| =1 <2 < |supp, (9)],

contradicting our assumption that |supp, (f)| > |supp, (9)]|.

Subcase 2.4: n € {r; + 2,71 + 3}. In this case, supp, (9) € {r1 + 2,71 + 3}. Consequently, for
1 < j <d, we have that

—a Loofor1<j<r—1
gw—j+”={ P (35)

i for r1 < j <d.
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Now, we consider the possibilities for m.
(a) me{1,...,m +1}. Since zmyr, - - Yq € ine,, (G) (by (5) or (7)) and f ¢ in.,  (G), there

exists an index ¢, € {ry,...,d} such that §,, = 0. Therefore, since a,,, > 0, we have that
r1+3 d
f7d— 6 +1] = > @ A@ar1i+ ) BiA@a—t 1101345 <0,
i=1 j=1
<0 =0

but this contradicts 7(f) = 7(g) since g™[d — ¢1 + 1] = ;, > 0 from (85).

(b) m € {r1 +2,r; + 3}. Note that since the relatively prime condition implies m #* n, it
follows that |supp, (f)| = |supp, (¢)| = 1 in this case. Therefore, we may assume without
loss of generality that m = 1 + 2 and n = r1 +3. Since 2z, 12y1...Yr—1 € ing,,(G)
(by (6)) and f ¢ in.,  (G), there exists an index k; € {1,...,71 — 1} such that 8, = 0.
Therefore, since a,, 42 > 0, we have that o/, ,, = 0 and

ri+3 d
f7[d— ki +1] = > A @arkr1i+ Y BjA@dk 101315 < 0.
i=1 =1

<0 =0
However, this contradicts 7(f) = 7(g) since g™[d — k1 + 1] = — o}, 45+, > 0 from (85).
~——
=0

Since each of the above cases (which together cover all possible pairs (m,n)) yields a contradiction,
Lemma 3.3 implies that G forms a Grobner basis of I 4(q) With respect to <je, as required. O

In sum, since we have demonstrated that G is a Grébner basis of I 4(q) with respect to <jeq,
we know inc,, (G) = in<,,(l4q))- Therefore, since we can clearly see inc,  (G) is squarefree,
Theorem 1.6 holds and [16, Corollary 8.9] proves Corollary 1.7. As such, there exists a regular
unimodular triangulation of the points in A’(q), as desired.

4. FACETS OF THE TRIANGULATION

For q = (r{', (1 + ri21)™ 1) with 71 > 1, let 7(q) denote the regular unimodular triangulation
induced by the lexicographic term order <., used in the previous section. This triangulation is
identical to the placing triangulation obtained by placing the columns of A(q) from left to right in
the order as given in Figure 1. Throughout this section, we will abuse notation in that the variable
in K[A(q)] associated with each vertex of the triangulation 7 (q) will represent that vertex. The
Grébner basis G for [ 4(q) in Theorem 3.1 indicates which elements of M (K ([A(q)])) generate the
minimal non-faces (i.e., minimal subsets of vertices that are not faces) of 7(q). From this, we
can deduce the facets of 7(q) as outlined in the following corollary. More specifically, the facets
correspond to the squarefree monomials of degree d + 1 in K[A(q)] that are not contained in

in<lex (g) .

Corollary 4.1. Let f € M(K[A(q)]) be squarefree with f ¢ in.,, (G). Let m denote the minimal
index such that z,, divides f. Then, f defines a facet of T (q) when it is one of the following possible
forms (the notation gy, indicates the variable yi is omitted):
(i) if 1< m <1y =1, then f = ZmZmstZ ¥ G Yra1Yrs - G+ ya Jor any 1 < i <
rr—1andr <j<d;
(it) if m =ry, then f = 20 Zp 412 42Y1 Ui Yri—1Yr - Y5 - Ya for any 1 < i <ry —1 and
r1 < ] < d;
(id) if m =r1+1, then f = 2 412 422m+3Y1 Ui+ Yri—1Yry - G5+ ya forany 1 <i <rp—1
andry < j<dor f= 241204391 Yri—1Yry - Yj oY for any r < j < d;
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(Z'U) ifm:r1+2, thenf:Z7”1+2Z7”1+3y1"’@‘"'yrl—lyrl"‘ydfOT’ anyléiérl—l;
(v) if m =11+ 3, then f = zp, 13y1 - Ya.

Proof. The normalized volume of A(; q), denoted N(q), is given by N(q) = 1 + Z?:l g =1+
xir1 4+ (r1 — 1) (1 4+ riz1) = r1(1 + r121). Since T(q) is unimodular, we know the number of facets
of T(q) should equal N(q). Indeed, since d = r; + x; — 1, it is straightforward to verify that there
are precisely 71 (1 + rix1) squarefree monomials given by the forms (i)-(v) above. Moreover, note
that any facet of 7 (q) will require the inclusion of at least one z-variable since facets must consist
of d + 1 points and there are a total of d y-variables.

Now, suppose 1 < m < r; — 1. By Lemma 3.4, we know supp, (f) € {m,m + 1,r1 + 1}.
Since zmy1 -+ Yr—1 € ine, (G) by (4) and znyr, - -Ya € in<, (G) by (5), there exist indices
1 <i<ri—1andr <j<dsuchthat y;{ f and y; { f. As facets of 7 (q) must contain exactly
d + 1 points, this forces the inclusion of all other y-variables, 2,11, and z,,4+1. With no further
restriction on i and j, we obtain form (7).

Now suppose m = ;. By Lemma 3.4, we know supp, (f) C {r1,r1 + 1,71 + 2}. Again, (4)
and (5) indicate that 2z, y1 - yr,—1 € inc, () and 2z, yr, - - Y4 € ine,, (G), so there exist indices
1<i<ri—landr <j< d such that y; J( f and y; J(f Thus to have a collection of d 4 1 points,
it must be that f is of the form f = 2z, 2 120 42¥1 Ui Yri—1Yr - Uj - - - Yd, giving form (47).

Next, suppose m = r; + 1. Lemma 3.4 gives that supp, (f) C {r + 1,7“1 + 2,7 + 3}, and
we have that 2z, {1yr, - yq € in<,, (G) by (7). Therefore, there exists some index r; < j < d
such that y; 1 f. Now, suppose 2,42 | f. Since 2z, youy1 -+ Yr,—1 € inc,(G) by (6), there exists
some index 1 <4 < r; — 1 such that y; { f. The exclusion of y; and y; necessarily requires the
inclusion of all other y-variables and z,,+3 to have a total of d+ 1 points. As such, f is of the form
f=2r412m422m43Y1 Ui+ Yri—1Yry - Yj - - - Ya. Otherwise, if 2z, 2 { f, then the exclusion of y;
forces the inclusion of all other y-variables and z,,43 to have a total of d + 1 points. Thus, f is
of the form f = 2z, y12p 43Y1 - Yri—1Yr, - - Uj - - - Y4. Combining these two possibilities gives form
(iid).

Next, suppose m = r1 + 2. Since 2z, 42y1 -+ Yr—1 € inc,,,(G) by (6), there exists some index
1 <i <1y —1such that y; 1 f. To have a total of d+ 1 points, this forces the inclusion of all other
y-variables and z,, ;3. Therefore, f is of the form f = 2z, 422r,43Y1 - Ui Yr,—1Yry - - * Yd, lving
(iv).

Finally, suppose m = z,,+3. Then, for f to be supported on d + 1 points, we must necessarily
include all y-variables, yielding the form f = z,,13y1 - - - yq. Note that f ¢ in,_(G), so we obtain
form (v). O

Given that we know an explicit description of the facets of the unimodular triangulation 7(q),
a natural problem is to find a shelling of the facets from which we can recover the Ehrhart
h*-polynomial using standard techniques [3, 15]. This would provide another proof of Ehrhart
h*-unimodality, and give an explicit combinatorial interpretation to the coefficients of the h*-
polynomial. It is not clear how to construct a shelling in which both the shelling and the restriction
sets admit a reasonable description. For example, one natural way to list the facets is to list them
in lexicographic order; however, while this works for some small values of 1 and z1, computations
with SageMath [17] show that this is not a shelling order when x; is sufficiently large compared to
1.

It would be of interest to describe the regular unimodular triangulations of the 2-supported re-
flexive IDP Ay q), and to connect these shellings explicitly to the Ehrhart theory of these simplices.
However, the most important aspect of the existence of the regular unimodular triangulation given
in this work is to establish that the h*-unimodality of these simplices falls within the framework of
Theorem 1.3.
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