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Editor’s notes:

This extended editorial provides an introduction into stochastic computing
(SC) and its usage in emerging neuromorphic applications. It covers SC
primitives and the tradeoffs that occur when designing larger SC-based
systems. The article shows how SC enables low-cost, low-power, and error-
tolerant hardware implementation of neural networks suitable for edge
computing. It provides a brief survey about recent proposals in this domain

and introduces the articles in this special issue.

—Jo6rg Henkel, Karlsruhe Institute of Technology

I AFTER DECADES OF research on general-purpose
computing, the main pathway of computer archi-
tecture research has recently shifted to domain-spe-
cific concepts. In their Turing lecture in 2018, Hen-
nessy and Patterson [1] have called the transition
to domain-specific languages and architectures a
“golden age for computer architects.” Neuromor-
phic architectures have raised tremendous inter-
est from researchers and industrial users. We can
distinguish two main trends: specialized neural
network (NN) processors with size and throughput
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exceeding that of off-
theshelf ~ CPUs—such
as the 400,000-core CS-1
wafer-scale engine by
Cerebras [2]—and small
NN solutions for use in
resource-constrained
systems, whose main
advantage is their area
and power efficiency.
This special issue is
devoted to hardware realizations of NNs based on
the stochastic computing (SC) paradigm [3], [4].
While intrinsically digital, SC offers several advan-
tages enjoyed by analog computing: very compact
and power-efficient realization of certain primi-
tives—including multipliers and adders which are
ubiquitous in NNs—and a natural compatibility
with sensors and actuators. In addition, SC does
not have a notion of bit significance and therefore
is comparatively error-tolerant. Machine learning
and pattern recognition were major driving forces
for the initial development of SC in the 1960s [3],
yet the researchers of that time did not manage to
achieve scalability nor widescale adoption.
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The interest in SC has increased dramatically
in the last few years; theoretical understanding
of SC has improved a lot and a number of better
basic blocks have become available. Perhaps, most
importantly, we understand now much better what
factors limit the accuracy of stochastic circuits and
how to overcome these limitations [5]. Interestingly,
the first success stories after SC's reemergance in
the mid-2010s were not NNs but rather digital fil-
ters [6], image processing [7], and decoding of
low-density parity codes [8]. However, the increas-
ing interest in edge computing has driven renewed
research in SC to reduce the high power and area
costs for NN tasks. Enabling low-power NN tasks at
the edge with SC would also obviate the need for
transmitting data to the cloud that requires using a
potentially unreliable or unsecure wireless commu-
nication channel.

This extended editorial aims at making the reader
familiar with the basic concepts of SC and SC-based
NN realizations. It is not a comprehensive survey and
only aims to cover the minimal material required to
make the articles in the special issue accessible. For
more extensive surveys of SC, we refer the reader to
[4] for general SC and [9] for SC NNs.

Stochastic computing

The central concept of SC is a stochastic number
(SN). An SN is a sequence of n bits. The numerical
value of an SN z that has n, zeros and n, ones is x =
ny/n. In contrast to the conventional binary encoding,
the bits of an SN have no positional significance, for
example, 0100011010 and 1100010101 have the same
value 4/10 = 0.4. The numbers representable as SNs lie
in the interval [0, 1] like probabilities and follow cer-
tain properties of probabilities; this has led to the name
“stochastic computing.” Picking a bit at a random posi-
tion within an SN will result in a 1 with a probability
equal to the SN’s value. To process numbers outside of
[0, 1], they must be scaled into this interval.

The main strength of SC is its area- and power-
efficient operations. An AND gate performs a multi-
plication of two SNs z and y on its inputs and pro-
vides the product on its output. To see why this is
the case, recall that the probability of encountering
a 1 on a randomly picked SN position is its value. If
we assume that this holds for all positions z; of zand
y; of y, then the probability of finding a 1 in position
(x AND y), on the output of the AND gate corre-
sponds to the probability of z; and y; being 1

Multiplexer

0100001010

(ab + cd)/2
=03

1000001000 | |

Multiplier (unipolar) Scaled adder

Figure 1. Example stochastic circuit [11].

simultaneously, or the arithmetic product of the
individual probabilities for z; and y,. This holds
only when z and y are uncorrelated; otherwise, z;
and y; are not independent of each other. We will
discuss the correlation problem and ways to over-
come it further below.

If, besides multiplication, it could also support
addition, SC would be able to compute all polyno-
mial functions and approximate all other functions
by polynomials [10]. However, implementing addi-
tion directly in SC is difficult because adding two
numbers in the interval [0, 1] may overflow this
interval. Scaled addition is used instead: two SNs z
and y are applied to the data inputs of a multiplexer
(Mux) and its select input is connected to a random
stream of zeros and ones (or, equivalently, an SN
of value 0.5). The Mux’s output computes the value
(z+ y)/2. If a circuit includes k Mux-based additions
in series, the outcome must be multiplied by 2F to
compensate for downscaling.

Figure 1 illustrates a stochastic circuit that com-
putes the polynomial (ab + ¢d)/2 for specific values
of the four inputs. An SN generator (SNG) converts
a binary number into an SN (a stream of the SN
bits), in analogy to an analog-to-digital converter.
Once the numbers are in the stochastic domain,
efficient arithmetic operations (AND for multiplica-
tion, MUx for scaled addition) can be applied. Com-
pare this with binary adders, especially multipliers
that need hundreds or thousands of gates for the
usual 32- or 64-bit operations!

A typical implementation of SNG is shown in
Figure 2. It compares, in each cycle, a random
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Figure 2. (a) SNG and (b) stochastic-to-
binary counter.
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number with the number N € [0, 1] to be converted.
This produces a stream of bits with 1-probability
equal to N, this is nothing else than an SN with this
value. We can use either a pseudorandom number
generator (PRNG) or a true random number gener-
ator (TRNQG) to generate the random number. How-
ever, the simplest PRNGs, that is, linear feedback
shift registers (LFSRs), can introduce undesired
correlations when producing multiple SNs in paral-
lel; improved PRNGs for SN generation have been
proposed [12]. Conversion back to binary is simply
done by a counter that determines the number of 1’s
in the SN. An interesting feature of SC is a natural
interface to the analog domain; to this end, there are
circuits to convert analog values directly into the sto-
chastic representation [3].

Addition and multiplication are not the only SC
primitives. Further useful SC blocks are the division
circuit [13] and some operations found in image pro-
cessing [7]. Even more important in the context of
SC NNs are circuits for the activation function (e.g.,
the hyperbolic tangent function [14]) and the maxi-
mum function [15] for the max-pooling layer and for
the rectified linear unit (ReLU) activation function.
These circuits include sequential elements.

A number of different SC encodings have been
used in the literature. Among these, the most pop-
ular is the bipolar encoding, where the value of an
SN z is taken to be z= (n; — ny)/n. For example, the
bipolar interpretation of 0100011010 is (4 — 6)/10 =
-0.2, as opposed to 0.4 according to the encoding
introduced before (that encoding is called unipolar).
Bipolar encoding represents numbers in the interval
[-1, 1], which is useful in NN calculations that can
include negative numbers. When computing in the
bipolar stochastic domain, multiplications are real-
ized by XNOR gates rather than AND gates, and scaled
additions remain MUX based.

SC tradeoffs and challenges

The main advantage of SC is the extremely small
footprint of its primitives. The tradeoff is compara-
tively long SNs, leading to long latencies, and some
degree of inaccuracy introduced by approximation.
For example, the exact value of ab in Figure 1is 0.7 -
0.9=0.63, but it cannot be represented exactly using
a 10-bit SN, so its approximation 0.6 is used instead.
The accuracy is further diminished by random fluc-
tuations. For example, cd in Figure 1 is equal to 0.08,
but the computed value is 0.2 and not the closest
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quantized value 0.1, just because the SN representa-
tion of d happens to have two I's in the same posi-
tions as in c.

Several researchers worked on formalizing the
notion of accuracy in stochastic circuits and iden-
tifying sources of inaccuracies. Qian et al. [10]
distinguished between errors due to quantization,
random fluctuations, and, for the generic case
of nonpolynomial functions, functional approx-
imation. Subsequent works considered further
sources of errors, for example, the correlations
between bits in different SNs [16], the choice of
the RNG used to create SNs [17], and autocorrela-
tion [18]. As an example, the inset “Using Isolators
to Overcome the Curse of Correlations” in the fol-
lowing section discusses the correlation problem
and its possible remedies.

Several recent approaches automatically evalu-
ate the accuracy of a given stochastic circuit. Out of
these, [11] is based on direct Monte Carlo simulation
and [19] on Bayesian analysis.

The accuracy of SC increases with SN length,
and it is possible to continue running the com-
putation, that is, extending the length of the SN,
until a sufficient accuracy has been attained. This
is referred to as progressive precision and is illus-
trated in Figure 3a.
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Figure 3. (a) Progressive precision for an edge-
detection application and (b) error tolerance
of SC [7].
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We have seen that SC is affected by inaccuracies
due to quantization and random fluctuations. Some
sources of inaccuracy are “intrinsic,” that is, they
stem from SC’s nondeterministic nature. However,
SC’s encoding scheme makes it surprisingly robust
against “extrinsic” errors, that is, disturbances due
to noise or radiation. Imagine that a bit is flipped in
one of the SNs in the circuit of Figure 1. The circuit
output will change, but only by a small value, as
every bit contributes only 1/n to the overall result.
Figure 3b shows the superior error tolerance of SC
using imaging applications as an example. Multiple
bit flips may even cancel out (i.e., 1-to-0 combined
with a 0-to-1 bit flip result in no error in SC).

From SC primitives to SC systems

One major advantage of all digital technolo-
gies is their scalability: if you have designed good
primitives, you can compose many of them into
as large a system as can fit onto your circuit area
and into your power budget. This is in contrast to,
for example, analog circuits where different com-
ponents are sensitive to disturbances stemming
from their neighbors, and a system that integrates
too many components no longer operates reliably.
As in many other aspects, stochastic circuits fall
into an intermediate position between analog and
digital circuits when it comes to scaling. They are
regular digital circuits and so are unaffected by
any technology-level integration issues. However,
simply connecting good stochastic primitives will
not necessarily make a working system.

The first major obstacle is the presence of cor-
relation among the SNs. Figure 4 illustrates how
correlated values degrade the accuracy of SC multi-
plication; the inputs to the circuit have the same value
but different correlations in this example. As a result,
the outputs of Figure 4a and b differ substantially.
Correlations can occur when, for example, neigh-
boring stages of the same LFSR (or a different PRNG
with a high autocorrelation) feed multiple SNGs that

001101000 000000
0001001000 000000
07010010 45 2 00000 45 4

1010 10

(2) (b)

1010 10

Figure 4. (a) Exact calculation of the
product of two SNs and (b) the same
calculation made inexact by correlations.

Inset 1: Using Isolators to Overcome the
Curse of Correlation

Assume that you need to compute the
square of a number, that is, the function z(x)
= z°. Observing that 22 = z - 1, it appears logi-
cal to take an AND gate and connect the SN z to
both its inputs. However, as shown in Figure 5a,
the calculated output bits will be z; = z; AND z;
= I;; 2y = Ty AND Z, = Zy; and so forth, that is,
z will be equal to z and not z2. Obviously, SN
z is maximally correlated with its own copy. A
remedy is to add an isolator flip-flop ¢, which
will delay one input stream by one cycle. As a
consequence, the output bits will be z; = 2, AND
Ty, 2y = T3 AND Zy; 23 = T, AND z3; and so forth;
note that this stream is produced with one cycle
delay. Under the (reasonable) assumption that
Z;, T, ... are not autocorrelated, this computa-
tion gives the correct 2(z) = z°.
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Figure 5. (a) Incorrect (correlated)
squarer; (b) correct (decorrelated)
squarer; (c) incorrect quartic circuit;
and (d) correct quartic circuit [11].

The difficult part about correlations is that
they manifest themselves beyond the bounda-
ries of one component. To see this, assume we
are now implementing the quartic function z(x)
= z*. Since we have designed a correct (decorre-
lated) squarer, intuitively it makes sense to just
cascade two such squarers, using two isolator
flip-flops as shown in Figure 5c. However, this
will give us the output sequence z; = y, AND y; =
(z3 AND 5) AND (Z5 AND ;) = z; AND Ty AND Zs; 25
= I, AND z3 AND z; and so forth. Obviously, we
are calculating 2(z) = #® instead of the correct
2(x) = z*. This is because two of the four paths
through the circuit have the same number of
one isolator flip-flops. Figure 5d shows a design
that overcomes this problem.
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are used together. A rather expensive technique to
eliminate correlations is to regenerate an SN: convert
it into binary and back into stochastic domain using
an unrelated SNG. Special correlation-reduced SNGs
have been proposed in the past [12]. There is also
a decorrelation technique based on adding isolator
flip-flops [16] (see Inset 1 for details).

The second obstacle to designing large SC systems
is the prevalence of scaling addition: adding every k
numbers leads to an unavoidable scaling by at least a
factor of k (the outcome could violate the represent-
able range of [0, 1] for unipolar or [-1, 1] for bipolar
numbers otherwise). This scaling deteriorates pre-
cision. Unfortunately, many applications, including
NNs, include a large number of additions. We will
discuss possible NN-specific countermeasures fur-
ther below. A generic approach is to use a hybrid sto-
chastic-binary circuit for addition. For example, the
approximate parallel counter (APC) [20] takes 16 SNs
and produces a 4-bit binary output that approximates
their sum.

Neuromorphic architectures
based on SC

On an abstract level, an NN is a sequence of basic
operations, such as additions, multiplications, acti-
vation functions, and maximum functions. Given
that all these basic functions have good SC primi-
tives, a designer can implement a stochastic NN
circuit by simply putting the stochastic primitives
together. However, he or she must take care of two
problems. First, some inaccuracy issues outlined

above, most notably correlations and scaling effects
of additions, manifest themselves only in larger sys-
tems. Second, SC NNs are much larger than most sto-
chastic circuits discussed previously, which leads to
nontrivial control methods to orchestrate all SNGs,
stochastic arithmetic units, on-chip memories, and
communication protocols.

Before delving into these two challenges, we
point out that an NN, at a high level of abstraction,
has two basic modes of operations: 1) training and
2) inference. During training, the NN determines
(learns) its internal weights; during inference, it pro-
cesses its input data using the previously learned
weights. The typical application scenario of a
resource-constrained NN, which is the main target
for SC NN, is a pretrained NN where learning is not
required, not feasible, and in the case of a safe-
ty-critical application such as an autonomous vehi-
cle, even not desired for liability reasons. Therefore,
the majority of SC NNs introduced so far [25]-[27],
[29], [32]-[34] focus on the inference step done in
SC hardware while skipping training. (Interestingly,
one notable exception is the first comprehensive SC
NN publication [14].)

To keep inaccuracies in check, SC NNs can use
all the above-mentioned techniques for generic sto-
chastic circuits: using APC instead of the Mux-based
addition; correlation-aware SN generation; adding
isolators where needed; and so forth. There are also
approaches designed specifically for SC NNs. First,
the designer can use hybrid stochastic-binary imple-
mentations [21], thus realizing the savings from the
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Figure 6. Hybrid binary-stochastic NN (redrawn from [21]). Only the first layer is in SC,

while the other layers are binary.
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Table 1. Numbers of nonzero weights (out of 16) in four kernels
of a stochastic NN before and after regularization and retraining
(from [22, Fig. 4]). Lower numbers correspond to fewer
numbers to be added and less precision loss due to scaling.

Before After After
regularization | regularization | retraining
Kernel 1 15 5 4
Kernel 2 16 9 4
Kernel 3 16 7 3
Kernel 4 16 6 5

stochastic part while not letting its inaccuracies accu-
mulate beyond some limit (see Figure 6 for an exam-
ple). Second, the designer can modify the network
itself before mapping it to hardware. The NN commu-
nity has developed the notion of regularization, that
is, modifying an NN’s weights with limited impact on
the network’s performance. Table 1 shows how reg-
ularization with respect to the L, norm (followed by
retraining) reduces the number of nonzero weights
in a simple network [22]. Since we only need to do
inference and do not modify the weights during oper-
ation, it is safe to ignore the zero weights and only
provide addition hardware for nonzero weights, thus
reducing the unwanted scaling factor.

To illustrate the complexity of a full-fledged SC
implementation of even a comparatively small and

simple NN, Figure 7 shows one full design of the sev-
en-layer LeNet-5 network for the Xilinx Zynq XC7Z020-
484C FPGA on the ZedBoard development board [23].
This design uses 512-bit unipolar SNs with an extra
sign bit, and therefore the training procedure extracts
NN’s weights and biases as 9-bit binary numbers.
A correlation-controlled SNG design [12] makes it
possible to use one SNG block to generate up to 36
different SNs. The stochastic neuron in Figure 7 uses
an exact binary adder especially designed for sign-ex-
tended unipolar SNs to eliminate scaling effects and a
sigmoid activation function realized by a modification
of the saturating counter from [14]. For max-pooling
operations, a 2 x 2 array of neurons is combined with
a four-input stochastic maximum circuit (“QuadSC
Neuron” in Figure 7).

An SD card stores the images to be classified and
the NN parameters (weights and biases). A bare-
metal application on the embedded ARM micropro-
cessor controls their reading as well as the interface
with the board’s pushbuttons and LEDs and com-
municates the classification result via UART. Rather
than processing the whole image at once, all layers
except the first and the last one work sequentially,
making it necessary to store intermediate results
in special output buffers. Together with the frame
buffer to store the image under analysis and the
parameter buffers to store weights and biases (the
values used for the ongoing computation are stored
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—
Computer Bare-metal
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Figure 7. Block diagram of an FPGA implementation of a seven-layer fully stochastic
LeNet-5 NN [24] for real-time image classification (redrawn after [23]). Register matrix
(RM) blocks store parameters, such as weights, needed for the current computation in

binary form to reduce required memory.
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in a memory called “register matrix”), the implemen-
tation requires 48 out of a total of 140 36-KB block
random-access memory (BRAM) blocks availa-
ble on the FPGA. The design uses a total of 27.8 K
lookup tables (LUTs) (out of 53.2 K available) and
26.5 K flip-flops (out of 106.4 K available).

The system achieves 98.13% classification accu-
racy on the MNIST data set and 83.06% accuracy
on the more challenging fashion-MNIST data set. In
comparison, the fully binary implementation of the
same network achieves 98.67% and 85.97% accuracy,
respectively. The binary version is faster, yet the sto-
chastic implementation’s latency is sufficient for real-
time operation. A binary version with precisely the
same structure as the stochastic one would consume
approximately nine times its number of LUTs and
would not fit on the FPGA used. For example, one
SC neuron from layer 1 requires 121 LUTs and 14 flip-
flops, while a binary neuron with same parameters
would use either 3,862 LUTs and 1,666 flip-flops, or
511 LUTs, 21 flip-flops, and 25 digital signal-processing
cores out of 220 available on this FPGA.

Further SC NN designs

While artificial-intelligence tasks were considered
in the early days of SC [3], the first comprehensive
treatment of an SC NN is the article by Brown and
Card [14] from the year 2001. The first (to the best
of our knowledge) actual fabrication of an SC NN
circuit was reported in 2003 [25]; the implemented
network was a three-layer Boltzmann machine with
50 SC neurons. Starting from 2015, a relatively large
number of different SC NN designs were proposed.
We reiterate that it is not our aim to provide a com-
prehensive survey of the extensive number of SC NN
publications from the last few years and point the
interested reader to the survey [9]. Instead, we will
briefly explain several recent directions of improve-
ment for SC NNs and refer the reader to a few inter-
esting publications for each class of the discussed
improvements.

Improved components

One avenue to improve SC NNs is to improve
the performance of their building blocks and/or
their integration into the overall system. APCs dis-
cussed above overcome downscaling during addi-
tion [20]. The HEIF scheme [26] further improved
the APC circuit implementation and introduced
a new stochastic ReLU activation function. Kim et
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al. [27] presented a new stochastic activation func-
tion design and combined it with a weight rescaling
method, which eliminates near-0 weights and scales
up the remaining ones. A more accurate hardware
implementation of activation functions for SC NNs
based on piecewise linearization is found in [28].

SNs beyond unipolar and bipolar

Canals et al. [29] designed an SC NN based on
extended stochastic logic (ESL), where the ratio of
two SNs determines the value of a number. ESL elim-
inates the restriction to range [-1, 1], but complicates
addition. Ardakani et al. [30] demonstrated a deep
belief network (DBN) based on integer SC, where
an SN is a stream of integers rather than a stream
of bits. Another DBN implementation [31] supports
unsupervised learning using the ADAM algorithm; it
is reconfigurable and includes an approximate SC
activation (SCA) unit that can implement different
activation functions. Faraji et al. [32] used deter-
ministic bit stream processing (sometimes also
called deterministic SC) with SNs generated from
the so-called low-discrepancy sequences instead of
RNGs. This makes the operations more accurate and
predictable at the cost of additional area.

SC for realizing other types of NNs

A few recent publications consider stochastic
implementations of recurrent NNs (RNNs), and spe-
cifically long short-term memory (LSTM) networks
[33], [34]. RNNs include feedback loops, which
can lead to accumulation of error effects, thus
necessitating careful control of inaccuracies. LSTM
designs proposed so far include the same compu-
tational primitives as regular NNs and employ the
same optimization techniques, for example, Liu
et al. [34] used the integer SC encoding from [29].
An RNN variant with a recent SC implementation
is the time delay reservoir [35]. Other types of NNs
that can benefit from SC are spiking NNs (SNNs).
For instance, Smithson et al. [36] noticed striking
similarities between leaky integrate and fire (LIF)
neurons of SNNs and finite-state machines (FSMs)
for nonlinear functions in SC.

Case studies and practical implementations
Many of the above-mentioned methodology-ori-
ented works included implementations of SC NNs to
demonstrate their ideas. A number of articles, how-
ever, focus on implementing an SC NN on either an

11
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Inset 2: Stochastic Computing the Day After
Tomorrow

This text focuses on SC NN circuits that rep-
resent today’s state of the art. However, we can
speculate about SC laying the foundation for more
radical breakthroughs in the future:

Neural-to-SC interfaces: Biologists observed
as early as 1926 that the information carried by
nerves relates to the rate of electrical spikes in the
signal [41]. Almost 100 years later, we still do not
fully understand how the human brain represents
and transmits information, and yet the principle of
rate encoding has striking similarities to SNs (see
Figure 8). If we extend our knowledge about the
meaning of signals produced by brain and other
organs, we may develop extremely efficient SC
implants to, for example, quickly detect medical
conditions with no need for powerhungry
analog-to-digital converters. Future biomedical cir-
cuits may even be able to generate neural signals
and actively feed them into the nervous system to
overcome health problem such as epileptic attacks.

0100010100101010111000000010000000

Figure 8. Are neural signals SN?

ASIC or an FPGA. We already discussed [23] (the
first ASIC implementation of an SCNN) and [25] (the
example of the “Neuromorphic architectures based
on SC” section). A further interesting approach is
found in [37], where SC components on an FPGA
process sensor data in a fault-tolerant manner.
Kim et al. [38] presented an implementation which
maps parts of a convolutional NN to the FPGA’s
LUTs while using the on-FPGA microprocessor for
the remaining operations. In [39], SC-enabled mod-
ules accelerate stochastic gradient descent com-
putations during deep learning. Maor et al. [40]
introduced an FPGA implementation of an LSTM
network (see the “SC for realizing other types of
NNs” section).

SC and nanotechnology: Memristive nanode-
vices can realize stochastic circuit components,
both as a TRNG for SN generation and for arith-
metic operations [42]. (Indeed, one of the arti-
cles in this special issue is about memristive SC!)
Nanodevices offer a low area and power footprint
and promise an easy integration of logic with non-
volatile memories, further reinforcing the intrinsic
advantages of SC. Moreover, SC can compensate
for an intrinsic drawback of most nanodevices:
their limited reliability and their vulnerability to
errors and noise. SC comes with error tolerance
on board and may be the architectural principle
of choice during the adoption of at least the first
few generations of unreliable nanodevices.

SC for secure AI: The usage of NNs and other
artificial intelligence techniques is at risk of adver-
sarial attacks, where small perturbations in images
or audio files can be practically imperceptible but
lead to wrong classification outcomes. For exam-
ple, an adversary could manipulate an intelligent
personal assistance device to “misinterpret” the
phrase “switch on the light” as “transfer $100 to
account XYZ.” One defense against adversarial
attacks is to inject randomness into NNs, thus
making it harder for the adversary to determine
the minimal extent of manipulations. SC NNs can
provide such randomness naturally, and design-
ers can add special randomness-injection circuits
to increase the resistance of NN implementations
to adversarial attacks [43].

Articles in this special issue

This special issue starts with a keynote article by
Brian R. Gaines, the inventor of SC. He shares both a
view back on the history of neuromorphic computing
and a view forward on deep learning as a new infor-
mation processing technology. Gaines observes that
computing has been a recursive technology: it supports
other technologies that in turn support the progress
of computing itself, leading to a positive exponential
feedback loop and an exponential growth. He infers
that the same holds for deep learning with its ability
to meta-learn solutions to its own design problems.
Gaines specifically focuses on energy aspects of hard-
ware-backed learning and inference and the chal-
lenges due to still lacking theoretical foundations.
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The first regular article, “Embracing Stochasticity
to Enable Neuromorphic Computing at the Edge,”
by Agrawal et al,, goes beyond SC in the sense of
“‘computing with SNs.” It discusses emerging nano-
devices—resistive RAMs and spintronics—and their
use in future neuromorphic systems. The authors
discuss construction of stochastic neurons and syn-
apses and their use for (supervised and unsuper-
vised) learning and inference.

“Exact Stochastic Computing Multiplication in
Memristive Memory,” by Alam et al., continues the
theme of using nanodevices for SC. The authors focus
on memristors and demonstrate how to convert num-
bers between binary and stochastic domains and how
to perform multiplications using in-memory computa-
tions by the memristive logic family “MAGIC.” In con-
trast to earlier works on memristive SC, the authors
do not harness the intrinsic stochasticity of memris-
tive devices but rather create deterministic SNs using
well-defined operations. They compare their opera-
tions with both: earlier non-SC memristive solutions
and with off-memory SC.

Ardakani et al. devote their article, “Training
Binarized Neural Networks Using Ternary Multipli-
ers,” to the under-investigated problem of training
SC NNs (as we have pointed out, most existing works
focus on inference). They introduce a new dynamic
sign magnitude representation for symbols in ternary
format {-1, 0, 1}, instead of the alphabet {0, 1} used
for unipolar SNs and {-1, 1} used for bipolar SNs, to
facilitate learning while retaining SC’s benefits.

In their article “In-Stream Correlation-Based
Division and Bit-Inserting Square Root in Stochastic
Computing,” Wu et al. design improved SC primi-
tives for division and square root operations. Both
are nonlinear functions that cannot be reduced to
additions and multiplications. The authors make use
of the very correlations that are usually considered
undesirable in SC; their controlled injection into
computations leads to good compromises between
convergence time and area requirements.

The article “High-Performance Deterministic Sto-
chastic Computing Using Residual Number System,”
by Givaki et al., discusses how to reduce the latency
of stochastic computations. The authors represent an
integer number as a set of remainders with respect
to a set of relatively prime moduli, for example, the
representation of number 17 with respect to the
moduli set <5, 7, 8> is <2, 3, 1>, because 2 = 17 mod
5,3=17mod 7,and 1 = 17 mod 8. Operations such as
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multiplication, implemented using a deterministic

version of SC, work directly on the remainders, thus

yielding a partitioning of the original computation

and a significant decrease in the number of clock

cycles required for computation.

FINALLY, IN THEIR article, “An Area- and Power-

Efficient Stochastic Number Generator for Bayesian

Sensor Fusion Circuits,” Belot et al. introduce a new

SNG module with low autocorrelation properties

and systematically compare it with earlier propos-
als regarding its implementation cost, its theoretical
properties, and its performance in a specific appli-
cation: Bayesian sensor fusion. ]
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