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ON AN INVERSE PROBLEM OF NONLINEAR IMAGING
WITH FRACTIONAL DAMPING

BARBARA KALTENBACHER AND WILLIAM RUNDELL

ABSTRACT. This paper considers the attenuated Westervelt equation in pres-
sure formulation. The attenuation is by various models proposed in the litera-
ture and characterised by the inclusion of non-local operators that give power
law damping as opposed to the exponential of classical models. The goal is the
inverse problem of recovering a spatially dependent coefficient in the equation,
the parameter of nonlinearity x(z), in what becomes a nonlinear hyperbolic
equation with non-local terms. The overposed measured data is a time trace
taken on a subset of the domain or its boundary. We shall show injectivity of
the linearised map from k to the overposed data and from this basis develop
and analyse Newton-type schemes for its effective recovery.

1. INTRODUCTION

The problem of nonlinear B/A parameter imaging with ultrasound [21[3}5L1533]
36L137] in lossy media amounts to identification of the space dependent coefficient
k(z) for the attenuated Westervelt equation in pressure formulation

) (v—m(m)v2)tt—chv+Dv:r in Qx(0,7)
v=00n9dN x (0,7); v(0) =0, v(0) =0 in Q

from observations Here ¢y > 0 is the wave speed (possibly space dependent as
well), and Dv a damping term that will be specified below. For simplicity we impose
homogeneous Dirichlet boundary conditions here, but the ideas in this paper extend
to more realistic boundary conditions, such as absorbing boundary conditions for
avoiding spurious reflections and/or inhomogeneous Neumann boundary conditions
for modelling excitation via, e.g., some transducer array. Note that the excitation
here is modelled by an interior source r, and we refer to a discussion on this in [21].

By letting our v equation satisfy boundary (or possibly interior) observations we
obtain an inverse problem for the recovery of k. These measurements will be taken
to be

(2) glx,t) =v(x,t), x €%, te€(0,T)

either at single point ¥ = {xg} or — in the spatially higher dimensional case — on
some surface Y contained in Q.

The inverse problem represented by equations (Il) and (2] is challenging on at
least three counts. First, the underlying model equation is nonlinear and in fact
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the nonlinearity occurs in the highest order term. Second, the unknown coefficient
k(z) is directly coupled to this term and third, is spatially varying whereas the data
g(t) is in the “orthogonal” time direction and this is well known to lead to severe
ill-conditioning of the inversion of the map from data to unknown.

The use of ultrasound is a well-established protocol in the imaging of human
tissue and, besides the classical sonography methodology, there exist several novel
imaging principles, such as harmonic imaging or nonlinearity imaging. The lat-
ter [2113115,[15,1331[36,[37] relies on tissue-dependence, hence spatial variation of the
parameter of nonlinearity B/A that is contained in x. It thus inherently needs a
nonlinear acoustic model as an underlying PDE and we refer to e.g., the review
[17] and the references therein for a brief derivation of the fundamental nonlinear
acoustic equations. The quantity of interest from an imaging perspective is the
coefficient k and its recovery in the case when the damping term was Du = bAu,
was the subject of [2I]. This is the classical formulation of damping being propor-
tional to velocity but there are may alternative models that are prominent in the
literature. We mention some of these in the next section but the main change is
the incorporation of non-local terms involving either fractional derivatives in time
or modifying the operator (—A) to have the Laplacian raised to a fractional power
(—A\)B. These have the effect of ameliorating the exponential decay of the solution,
by a fractional exponent in the frequencies in the case of (—A)# and by a power law
decay in the case of a fractional time derivative. The use of such operators in in-
verse problems is now well documented in the literature (see |[L6] and in particular,
for the wave equation in [22]).

In this paper we will provide analysis for the forward problem and in particular
regularity and well-posedness for the coefficient-to-state map G : k +— v where
v solves (. The forward map is defined by F(x) = trgv, where trsv denotes
the time trace of the space-and-time dependent function v : Q x (0,7) = R at
the observation surface ¥ (which may also just be a single point ¥ = {z¢}). Its
linearization at x = 0 is F’(0) and we will prove an injectivity result in section @l
which will both show local uniqueness and pave the way for the use of Newton’s
method which we formulate and apply to obtain reconstructions of x in section [Gl

2. THE IMAGING PROBLEM

As already mentioned in the introduction, the inverse problem under considera-
tion is to recover the space dependent coefficient x(x) in the attenuated Westervelt
equation which can also be written in the form

wp + A Au+ Du = k(z)(u?)y + 7 in Q x (0,T)

) u(0) =0, u(0)=01inQ

from observations
(4) g(z,t)=u(z,t), zeX, te(0,T),

where ¥ C Q typically consists of a surface or a collection of discrete points or even
just a single point. Some comments on the question about how rich it needs to be in
order to allow for unique recovery of x can be found in Remark[4.1l Note that we do
not make any smoothness assumption on . Here, ¢ > 0 is the constant mean wave
speed, and A = —(co(x)?/c?)/\ contains the possibly spatially varying coefficient
co(z) > 0 and is equipped — for simplicity — with homogeneous boundary conditions.
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Moreover r = r(z,t) is a known source term modelling excitation of the acoustic
wave by a transducer array, see [22]. Throughout this paper we assume 2 C R9,
d € {1,2,3} to be a bounded domain with C''! boundary and the coefficient co(x)
contained in A to be bounded away from zero and infinity.

The damping operator D appearing in (3) is a differential operator containing
space and/or time derivatives. Classically, D will consist of integer derivatives,
typical examples being D = A0; or D = 9, often referred to as strong and weak
damping, respectively. We here list some of the (due to experimentally found power
law frequency dependence) practically relevant fractional damping models, that we
have already discussed in [22] in a different imaging context, namely for the inverse
PAT/TAT problem:

Time fractional models.
e Caputo-Wismer model [6], [35, eq. (5)], called Kelvin wave equation in
4} eq. (19)]
(5) D =bA0;,
where typically o € [0, 1].
e (Modified) Szabo model [30], [4] eq. (42)]
(6) D = b3+,

where o € [-1,1], b > 0.
e Fractional Zener (combined Caputo-Wismer-Szabo) model [141[23], [4 eq.

(30)]
(7) D = by A + baof> 2,
where a; > ag € [0,1], by > bac?, cf. [14] Section I1L.B].

In these models 95 denotes the Djrbashian-Caputo fractional time derivative, which
here, due to the homogeneous initial conditions, coincides with the Riemann-
Liouville one.

Space fractional models.
e Chen-Holm model [T, eq. (21)]

(8) D =bAP
typically with 5 € [0,1], where Kelvin-Voigt damping is recovered when
8 =1.
o Treeby-Cox model [32] eq. (28)]
(9) D = by APy + by AP/

typically 8 € [0, 1], which is an extension of the former.

Here we use the spectral definition of the Laplacian which coincides with the Riesz
version on R?; however, they differ in case of bounded €.

In this paper, we will focus on two damping models namely (a) a combination
of (@) and (8)), since we find it interesting to investigate the interplay of space-
and time-fractional derivatives and its influence on the ill-posedness of the inverse
problem; (b) (@) as it contains higher than second order time derivatives which are
in case ay = 1 known to make the equation have wave-like behavior (finite speed of
propagation) in spite of the damping, which is expected to influence the degree of
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ill-posedness of the inverse problem as well. Thus we here focus on the two damping
models

D = bAP9? (combination of Caputo-Wismer-Kelvin and Chen-Holm model — cH )
D = by A™ + b9 2 (fractional Zener — Fz).

3. ANALYSIS OF THE FORWARD PROBLEM

The purpose of the analysis in this section is to provide the mathematical basis
for writing the inverse problem (3]), (4) as an operator equation on appropriate
function spaces and for applying Newton’s method as a reconstruction scheme for
K, see section [6.1]

To this end, we study well-posedness of the initial value problem for the param-
eter-to-state map G : k — u where u solves ([B) and its linearisation z = G’ (k)dk
(10)

(1 — 2ku) 2 + 2 Az + Dz — dkuy 2 — 26Uy 2 = 20K (wugy +u?) in Q x (0,7T)

z2(0) =0, 2z(0)=0inQ

for given k and dk, respectively, in the context of the two damping models D defined
according to the CH and the FZcase. In order to prove Fréchet differentiability, we
will also have to consider the difference v = G(%&) — G(k) = @ — u, which solves

(1 — 2ku) vy + AV + Dv — 26(Ty + ug) vp — 26004 v
(11) = 2(k — k) (Tl +@7) in Q x (0,7)
v(0) =0, v:(0)=0inQ
as well as the first order Taylor remainder w = G(&) — G(k) — G'(k)(k — k) which
satisfies
(12)
(1 — 2ku)wy + 2 Aw + Dw — 4kuy wy — 2Ky w
= 20K (Vg + vy + (T + ug)vy) + 26(vvy +v7) in Q x (0,T)
w(0) =0, w(0)=01in Q,

with dk = & — k.

Here we can allow for spatially varying sound speed co(z) for which we only
require

(13) cop € L*(Q) and ¢o(z) > ¢ >0

unless otherwise stated, by setting

2
C,
(14) A==,

where —A\ is the Laplace operator equipped with homogeneous Dirichlet bound-
ary conditions. We denote by (¢,,A;) an eigensystem of the operator A with
domain H?(Q) := D(A) which is selfadjoint and positive definite with respect to
the weighted L? space L?(Q) := LE2/C(Q)(Q). Note that by these assumptions the
operator A~ : L2(Q) — L?(Q) is compact (based on the fact that € is bounded; for
some comments on more general domain and boundary settings we point to [22]),
so that the eigensystem exists and is complete with A\; — 0o as j — oo. Moreover,

this defines a scale of Hilbert spaces H*(Q) := D(A%/?), s € R, whose norm can
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1/2
be defined via the eigensystem as |[v[| . q) = (Zjoil A%[{v, ¢j>|2) in case s > 0

and as the dual norm of H~%(f) in case s < 0. We will denote by (-, -) the L? inner
product (that is, the weighted one) on € whereas the use of the ordinary L? inner
product will be indicated by a subscript (-, -)r2. Moreover, we use the abbreviations
||uHLf(Lq) = [lullr(0,6529(0))» 1ullr(ney = lullr0,7;00(0)) for space-time norms.

Throughout this paper, we denote by 9% the (partial) Caputo-Djrbashian frac-
tional time derivative of order a € (n — 1,n) with n € N by d¢u = I’ *[0fu],
where 9]' denotes the n-th integer order partial time derivative and for v € (0, 1),
and I} is the Abel integral operator defined by

It"[v](t)_r(l)/o( o) g

ol t—s)t

For details on fractional differentiation and subdiffusion equations, we refer to, e.g.,
[8,19112428]29]. See also the tutorial paper on inverse problems for anomalous dif-
fusion processes [16]. Whenever we use the Riemann-Liouville fractional derivative
Or I~ this will be denoted by #L92. These two versions of the fractional deriva-
tive coincide when applied to a function whose initial derivatives up to order n — 1
vanish at ¢ = 0.

The crucial tool we need in obtaining the required estimates is the following
consequence of Alikhanov’s Lemma |1l Lemma 1]

(15) 0/ [w](t)w(t) = 3(8]w?)(1)

for any absolutely continuous function w. We apply it to w = 0v with vy =1 — a,
using the identities

Of w = 8} 7% = 9} I} ", = vy,

/0 (O w?)(s) ds = / 0,12 [w?)(5) ds = I [w?)(t)

that hold for v; € L°°(0,T) and for w? € W(0,T) with w(0) = 0. Note that
for w = dfv we automatically have w(0) = 0 and If[w?](t) = 0. After integration
with respect to time this implies the following result.

Lemma 3.1. For v € WbH*°(0,T) with (0fv)? € WHL(0,T), and t € (0,T), the
following estimate holds.

1) [ ol ds > 17 [0F0F] > g 0T el

A stronger version of this with respect to temporal regularity, however with a
coefficient that vanishes as « 1, is the following coercivity estimate [11, Lemma
2.3], see also [34, Theorem 1]: For any w € H~(1=%/2(0, ),

t
(17) / (2 w(s), w(s)) ds 2 cos(ZED) [wll?y o ar/ago.n-

In order to prove well-posedness of the nonlinear equation (B]) (with initial condi-
tions) needed for defining the forward operator, as well as the linear equations (L0,
(L) required for establishing Fréchet differentiability, we will proceed similarly in
both damping model cases: First of all, we analyse a related linear equation with
general coefficients that allows us to formulate the nonlinear equation as a fixed
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point problem and to apply Banach’s Fixed Point Theorem for proving its well-
posedness. Then we apply the same general coefficient linear result to the two
linear problems ([I0)), (1)) in order to prove differentiability. It will turn out that in
the CH case we need three different regularity levels in the solution spaces, whereas
the analysis is somewhat simpler for FZ and allows us to work on the same solution
space for all purposes pointed out above.

3.1. Caputo-Wismer-Kelvin-Chen-Holm damping. We start with the
Caputo-Wismer-Kelvin-Chen-Holm model

(18) D =bAP0*  witha €[0,1], B€[0,1], b>0

and first of all consider the initial boundary value problem for the general linear
PDE

(19) (1 — o)ug + A Au+ bAPOCu + puy + pu=h

(20) w(0) =ug, u(0)=uy

with constants b, ¢ > 0 and given space and time dependent functions o, u, p, h
where o satisfies the non-degeneracy condition

(21) oz, t) <o <lforallze€Q te(0,T).

In order to prove existence and uniqueness of solutions to (19)), (20), we apply
the usual Faedo-Galerkin approach of discretisation in space with eigenfunctions of
A, u(z, t) mu™(z,t) = D1 ul(t)¢i(z) and testing with ¢;, that is,

(22) ((1—o)ull+cAu" +bAP O u™ +pul +pu —h,v) =0 v € span(ey, ..., ¢n) .

This leads to the ODE system
(23)
(1= S™ ()" (£) + b (A (@ u™) (1) + MM (™ (1) + (¢ A+ R (1) )™ (1) = "

with matrices and vectors defined by

(24)
@n(t) = ( ?(t))i:L...n y hn(t) = (<h(t)’ ¢i>)i:1,...n ) A" = diag(Al, sy An) )
S"(t) = (a(t)i, &5))ii=1..m»  M"(t) = () Pi> §3))ij=1,..n »
R"(t) = ({p(t) @i @j))ij=1,..n -

Existence of a unique solution u" € C?([0,T];R") to (23) follows from standard
ODE theory (Picard-Lindel6f Theorem and Gronwall’s Inequality), as long as o,
p and p are in C([0,T]; H*(Q)) for some s € R (noting that the eigenfunctions
¢; are contained in H*(Q) for any k € N and therefore the vector and matrix
functions A", S™, M™, R" in (24) are well-defined and contained in C([0,T]; R™)
and C([0,T];R™*™), respectively). Moreover due to (21, the symmetric matrix
S™(t) is positive definite with smallest eigenvalue bounded away from zero by 1 —&

cf (210).
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AN INVERSE PROBLEM OF NONLINEAR IMAGING 251

We multiply 23) with (A™)2u™ (¢) and integrate with respect to time, using the
identity

(S™ (B (£) T (A")*u™'( ZZ t)6i, 050 Njui" ()uj’ (t)

= 33 ot i WA 0+ 3D (006 41) Oy~ A A 1)

=1 j=1 =1 j=1
d n n , ,
_ %EZZ@(Q@,@MW AU (t) — —ZZ (o2 (8) 5, by ) Al (A (8)
i=1 j=1 i=1 j=1
+ 30 ({065, Ady) = (o065, Asi) i (N (1),
i=1 j=1
where

(o(t)pi, Adj) — (o (t) 9, Agi) = (Ao (t)pi] — o (t)Adi, d;)
= (=A[o(t)gi] + o (t)Adi, ¢5) 12 = —((c5 /) (Da(t) ¢i + Vo(t) - Vi), d5)

provided o(t)¢; € H*(2)) for some s € R. (Note that the latter identity also holds
true in case of spatially varying cg since we use the ¢?/c2 weighted L? inner product
then.) Thus we have

/0 (T — 8(s))u™" (5))T (A2 (s) ds

= [ G V= TAI 0)6) + o)A 5 A 5)

+((c3/c*)(Do(s) ufy(s) +VU(S) - Vug(s), AUF(S)>)dS

= _” V31— J Aut Lz @ H va Aut L2 Q)

+ / (%at(s)Auf(s) + (/) (Aa(s)ul(s) + Vo(s) - Vul(s)), Aul(s)) ds
0
Similarly, we have
(M™(#)u™ (£)) (A™)?u™ (t)
= (u(t)Aup (1), Aup (t)) — ((c5/) (Apt) ui (t) + Vi(t) - Vui (1)), Aug (t))

= (p(t)Au" (1), Aui' () — ((c5/c*)(Dp(t) w"(8) + Vp(t) - Vu' (1)), Auf (1)) .
Finally,

[ @y sy = [T 3o o)

1 2+8 /t a,n 2 1 1+8/2 9, n
> E ; oOXy" d N
=z 2F( )tl—a )\] ; ( P U (s)) S 5 ( )tliaHA (‘) || 212

j=1
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and

(A (1)) (A2 1 zx’ (s (s) ds
0

1 - 3 ! n n 2 1 n 2
-5 |5 (6) 0 ds = SIV A @) = 51V ACO) e

This together with Young’s inequality yields the energy estimate
(25)

b c? ,
_H V31— 0 Aut ||L2(Q W‘|A1+ﬁ/28?u"||i%@2) + _HVAU, L(t)H%P(Q)
2
C n n
—||\/1 — a(0)Auy (0)lI32 g + 5 IVAu 0)1Z2(0) T 5 ||A“t ||L2 i2)
€

1
Sl = goedul’ — pAu} — pAu™ + Ah + (/)

(=Aouy, — Vo - Vul, + Apuy + V- Vuyl + Apu”™ + Vp - Vu™)

+

HLZ(LQ)
2
C n n

< SIVT= oAU O) gy + 5 ITAO) Ry + 5 A0 2

€ n .
+ §(§||0t\|L$(Loo)||Aut Lo (z2y + Nl L2 (poey AU || L5 22
1ol (oo 1AW [ 1o (12) + [LAB] 2 12

||COHL°°(Q)(

+ ||AU||L°°(L4)||UZSHL2(L4) + ||VU||L$°(L°°)Hvu?t”Lf(Lz)

+ 1Aul L2 2y lu | e ooy + [Vl L2y VU [ Lo (14
18z e oy + 190l e 1907 e 1) )
Here we can make use of the fact that [|[u”(|pe<(0,..2) < [[u™(0)]|z + VT ||u} | £2(0,6:2)
and the embedding estimates
(26) lvl|Lay < Crr sl V||, ve Hj (),
vl (9) € Crz poo AVl 2y v € Ho () N H?(),

(the latter resulting from elliptic regularity and continuity of the embedding H?((2)
— L*°(Q)) in order to further estimate

luitllz2(zey < Crr al| Vug | L2z
luf lLge Loy < Chz oo [|AUY || oo 2
[u"llLge (L) < Chz,poe | AU || oo 2
[Vu™||pee(nooy < Oz poo [|[VAU"|| Loo(L2).

For the last inequality to hold, we need more smoothness than the globally assumed
L boundedness on the variable wave speed ¢y contained in A and its reciprocal,
namely, bearing in mind the identity V.Au"=[—(co(2)?/c*)A — V[(co(x)?/ )]V ]Vu",
(27) co € WH>(Q).
Now we proceed with estimating || Vul}||2, by multiplying the ODE ([23) with A"u"™",
that is testing (22) with v = Auf,(¢), and using integration by parts (note that all
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AN INVERSE PROBLEM OF NONLINEAR IMAGING 253
terms in (1 — o)ull, + 2 Au™ + bAPOPu™ + pul + pu™ — h vanish on 9Q) as well as
Young’s inequality

0= ((1—o)ul, + P Au™ + bAPO*u™ + pul + pu™ — h, Aul)
= IV1=0Vuglliz (o)
+ (=Vouy + V(CQ.AU" + b.Aﬁﬁf‘u” + puy + pu"—h) s Vug) r2(q)
m 1 —
> V1 = oVug |72 — 5(1 — )V 7z
| = Voull + 2VAu" 4 bVAP ot u™

1
2(1—-70)
+ Vpuy + pVuy + Vpu™ 4+ pVu™ — Vh||%2(9)

which yields

IVugllLz 2y < T

: (HV0||L°°(L4)||UZH%2(L4) + A VAU 312y + bHAl/Hﬁan"HLg(Lz)
+ IVl Lz llud e ey + il 2oy VU | oo (22
+ IVollz 2y lu™ || Loe (zeey + ||/J’||L3(Loo)||VU”HLg>°(L2)),
where we can again employ the embedding estimates (26) and assume
1—-7
28 Vol e <
(28) Vol (L%) Crops

in order to extract an estimate of the form
(29)
IVug |l Lz(z2)

< C(IV AUl 3z + AP0 | gy + IV e 22 + 90" e (1) )

Adding a multiple (factor e(|\AoH2LOO(L4)(C’H1’L4)2+ ||V0’H%$Q(LOC))) of the square
of (29) to (25), making € small enough (so that C%e < W
containing L°°(0,T) norms of 4™ on the right hand side of (25]) can be dominated

by left hand side terms) using the fact that 1/2 4+ 5 < 1+ 3/2 for 8 € [0,1] and
Gronwall’s inequality we end up with an estimate of the form

IV 2o z2y + IAGE T o 2 + AT 2000 oy + VAW e 1)

< C(T) ([ AU (0)172 ) + VAU (0172 () + AR 2 2
(@) (£2)

which via weak limits shows the existence of a solution to the homogeneous initial
boundary value problem for ([19)) and transfers to u as
(31)

lullfr = I VurelFogoy + Muel] o oy + IATE208u] 7,

) and all terms

(30)

(i T ||VAU||2L;>°(L2)

< O (1A O ey + IVAUO ) + 4 1))

Uniqueness of a solution follows from an energy estimate obtained in a lower regu-
larity regime (see Proposition [3.3)
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The required regularity on o, p, p, h, ug, u1 is, besides (21)) and (28]
o€ HY0,T; L>(Q)) N L>=(0, T; W24(Q) n W (Q))
(32) pe LX0,T; H(Q), pe L*0,T; H(2)
he L?(0,T; H*(Q)), wuo € H3(Q), wu € H* ().
Proposition 3.1. Under conditions 1), 1), @28), B2), there exists a unique
solution
(33) we U :=H*0,T; L*(Q) n W (0,T; H*(Q)) N L>=(0,T; H3(Q))
to the initial boundary value problem ([19), 20). This solution satisfies the estimate
31).

The energy estimate leading to this result has been obtained by basically “mul-
tiplying (19) with A%u,”, that is, taking the L?(Q2) inner product of the PDE with
A?u; and using selfadjointness of A in L?().

Later on, we will also need less regular solutions along with estimates on them.
Since the proofs are actually somewhat simpler then, we skip the details on Galerkin
approximation and only provide the energy estimates.

Multiplying (19) with Au; we obtain
(34)

c? 1
—||\/1 — U Vut HL2(Q EHAU’(t)H%ﬂ(Q) + QF(Q) ||‘A(1+6)/2aauHL2(L2)
—||\/1 — 0(0)Vu(0 ||L2 Q) + ||.Au( )||L2(Q)

t
1
- / <§at(s)Vut(s) + Vo(s) uw(s) + Vius + pVuy
0
+ Vpu+ pVu—Vh, Vu(s))2(q) ds

c2
1
—||\/1—c7 )V (0 ||L2(Q)+ 1AuO) 320y + 5 IVuelTz 12)

€

* 5(5”“t”L%<Lw>HWtIIL:O(m) + (Vo e o) el 2222y

+ IVl Lz oy el Lo (ney + [[pll 2 poe) Vel Loe (22

2
+ IVl eyl ey + lollza ey IVull e uoy + VR 22))

The PDE provides us with

1
llweell 22 _U(C2Au+b¢4’68f‘u+uut+pu—h)||Lz(Lz)

1
< C(IIuIILg(Lm> + el L4>)

< s (IVT=a Va0 ey + S AU gy + 5

te(0,T) (a )tl @

which, due to the condition 8 < (1 + 5)/2, allows us to dominate the euy term on
the right hand side of (B4). Thus, using Gronwall’s inequality, we get an estimate
of the form

el = loel2 gy + 19l 2+ LA 20802 )+ Al o)

< C) (9 (0) 32y + 146032 ) + I Vhl3(15))

40wl )
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provided
o€ HY0,T;L°(Q)) N L>(0,T; W->(Q)),

(36) w€ L0, T; L= Q)N Wh(Q)), pe L?0,T; H(Q))
he L*0,T; HY(Q), wue H*(Q), u € HY(Q).

Again, uniqueness of a solution follows from an energy estimate in a lower regularity
regime (see Proposition B.3]).

Proposition 3.2. Under the conditions 1)), B4), there exists a unique solution
u € Uy, C H?(0,T; L3(Q)) n W20, T; HY(Q)) N L*°(0,T; H*(2)), to the initial
boundary value problem ([19), 20Q), and this solution satisfies the estimate (33]).

Uniqueness and an even lower regularity estimate can be obtained by multipli-
cation of (19) with wu, (note that this is admissible for u € Uj,, cf., (85), so we do
not move to Galerkin discretizations here,) which yields

1 o
SIVT= o001 0+ 5 HW()H%Z(QWWHAW@ ez i
C
< SIVT= o) g + 5 V020,

= [ Gorlopunls) + e + pu = hou(s) ds
0

| /\

1
_H V1—0(0)u (0 L2 ) + ||Vu( )||2L2(Q) + i“ut”ig@q

€
+ 5(auotummHutumm llellez oo el e i2y

2
+ lellza oo s ooy + 1Al 2gin )
(where we have used the fact that [|£ | z=(q) < 1), hence an estimate of the form
lallZ, = el 2 + 47207l 2y + I VUl Zee (£2)
< @) ()32 gy + 1V0(O0) By + 111, )
Here it obviously suffices to assume
o€ H'(0,T;L®(Q), pelLi(L>), pelLl*(L")
heL?(L%), wuoe HY(Q), wu € Ll?*Q).

(38)

(39)

The estimate (38]) also yields uniqueness of higher regularity solutions (see Propo-
sitions [3.1] B.2)), since in the linear setting we are considering here, for this purpose
it suffices to prove that any solution with zero right hand side and initial data
h =0, ug =0, uy = 0 needs to vanish.

Proposition 3.3. Under conditions (21)) and B9), any solution u lying in the
space Uy, and satisfying the initial boundary value problem ([19), [2Q) satisfies the

estimate (B8)).

Remark 3.1. Existence of a very low regularity solution u € U, = H(0,T; H~(2))
AWL2(0,T; L2(2)) N L*°(0,T; H(Q)) can be shown by approximating o, u, p, h,
ug, u1 by sequences (ox)ren € H(0,T; L%°(2)) N L (0, T; WH>(Q)), (px)ren C
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256 BARBARA KALTENBACHER AND WILLIAM RUNDELL

L*(0,T; L¥(Q)NWHH(Q)), (p)ren S L*(0,T5 HY(Q)), (hi)ren € L2(0, T; H' (),
(uox)ren C H2(), (u1p)ren € HY(R), cf. [B6), and applying Proposition B.2] to
obtain a sequence (u)ren C Uj, of corresponding solutions. Due to the energy esti-
mate (B8], this sequence is bounded in U,; and therefore has a weakly(*) convergent
subsequence, whose limit (by testing with a smooth space and time dependent func-
tion) can be shown to satisfy (19)), (20).

Uniqueness is inherently harder to obtain — first of all just conceptually, since it
affects a larger space, secondly also technically, since testing with such low regularity
solutions in (B7) is not feasible. Still, one might possibly use arguments in the spirit
of [31} §2.4] (see also the proof of [20, Proposition 4.1]) to establish uniqueness even
in le.

Note however, that for the purpose of proving Fréchet differentiability, the energy
estimate stated in Proposition [3.3]is enough and neither existence nor uniqueness
is really needed for that, see the comment preceding Theorem [3.2]

We proceed to proving well-posedness of the nonlinear problem (3)) with D =
bAPOZ by applying a fixed point argument to the operator 7 mapping v to the
solution of
(1 —2kv)us + A Au+ b.Aﬁﬁf“u —2kvpuy =7 in 2 x (0,7T)

u(0) =0, u(0)=01in Q
that is, of ([19), Q) with o(z,t) = —2k(x)v(z,t), p(z,t) = —26(x)v(z, ), p(z,t) =
0, h(x,t) = r(z,t). We first consider self-mapping of 7. Even in case of constant

K, the regularity requirements on o, u, p force us into the high regularity scenario
of Proposition B.1l For spatially variable , due to the estimates

[Apllrz L2y = 2|1A(kve)[ L2 (L2

(40)

< 21188l 2@ oel 2020 () + 2 T8l acey | Vel 2o

+ Il 180l o))
lotll Lz (poey < 2CH2 oo || A(Kve) || L2(12)
A0 e (zay = 2([A(KV) || Lo (24)
< Z(HA”HL“(Q)HU”L“(LO")"_QHV’{HL“(Q)”vv”LOO(LW)"'H”HLOO(Q)HAU”LW(U‘))
||VUHL§°(L°°) = 2||V("W)||L;>°(Loo)

< 2(I Vsl @ 0l ez + I8l @ V0 e (r) )
the regularity
(41) k€ W2HQ) N Wheo(Q)

is sufficient for obtaining the regularity (82) for any for any v € U. To achieve the
nondegeneracy and smallness conditions (21)), (28], we use the estimates

42) loll g (noey < 2)lKllLoe @Il e (1)
VoL 1y < 2[[VE| s llvll Lo (pooy + 216l Loe () | V]| oo (£4)

and additionally to (4I]) require smallness of v.
Proposition [B.1] yields that 7 is a self-mapping on

BR:{’UEU : ||7)||U§R}
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provided the initial and right hand side data are sufficiently small so that
(43) C(T) (I us 131 gy + IV Auol 320y + 172510 ) < B2
with C(T') as in Proposition B.1l In view of 1)), (28], (42]), we choose R such that
(44)
1

(CH1~>L4 <||Vf€|\L4(Q)CH2,Loo + ||H\|Loe(sz)CH1,L4) + H“HLoo(Q)CH2,Loo)R <3-

Contractivity of 7 can be shown by taking v!) and v(®) in By and considering
v = ToW and u® = Tv® | whose differences @ = uV) — 42 and 7 = v(H) — (@

solve
(45) (1 — 260y + A AT + bAPOP T, — 2/<w( "y = 2k, u( )+ 2/<wu( )
with homogeneous initial conditions. Similarly to the above, with o = —2kv(),

w= —2/{11( ), plx,t) =0, h = 2/@vtu§ )+ QI%UE?, since v(), u(?) € Bp (the latter
due to the already shown self-mapping property of T') we satisfy the conditions (21]),
©8)), (32) on o and p. However h in general fails to be contained in L%(0, T; H?(12))

(in particular the term Qm)utt ) hence we move to the lower order regularity regime
from Proposition 3.2l To this end, we estimate

IVl < 208l ey (1T g g o) + 10 ol ll2 ey ) -
Thus imposing the additional smallness condition
0 := 2|\l 1) VCCm1 4Chz o« (VT + 1)R < 1
on R and employing from Proposition [3.2] we obtain contractivity
1To® = Tv@ v, = llle,, < 6lT)u,, = 6llv™ — 0@y,

Theorem 3.1. Assume that [27) holds. For any o € (0,1), T >0, r € WQ’%(Q) N
Whee(Q) there exists Ry > 0 such that for any data ug € H*(Q), wp € H*(Q),
r e L?(0,T; H*(Q)) satisfying

(46) [ AUl 2 ) + IV Auol72(0) + AT 175 2y < R

(L?)
there exists a unique solution u € U of
(1 — 2ru)uyy + A Au + bAPOu = 2k (uy)* 4+ 1 in Q x (0,T)

(47) w(0) = ug, u(0) =wuy in Q.

Existence of the linearisation of G requires well-posedness of (I0) with D =
bAOY, that is, (19), Q) with 0 = —2ku, p = —4kuy, p = —2Kuy, h = 20k(uuy +
u?). Due to the appearance of a uy term we are in a similar situation to the
contractivity proof above and therefore the lower regularity Proposition 3.2]is the
right framework for analysing the linearisation of the forward problem.

Proposition 3.4. Under the assumptions of Theorem B.1, for any dx € W1>°(Q)

there exists a unique solution z € Uy, of

(48)

(1 —2Ku)zy + Az + bAﬁataz — dkuy zp — 2Ruy 2 = 20k(u Uy + uf) in Qx (0,7T)
2(0) =0, 2z(0)=01inQ,

where u € U solves ([AT)).
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258 BARBARA KALTENBACHER AND WILLIAM RUNDELL

In order to prove Fréchet differentiability we also need to bound the solution w
of (I2) with (I8]) that is, (19), Q) with o = —2ku, p = —4kus, p = —2Kuy, h =
26k (Vg +uvgy + (T +ug v ) +2k (Vv +0?2 ), where v can be bounded analogously to z
by Proposition[3.2} in particular we can only expect to have vy, € L2(0,T; L2(£2)), so
h € L?*(0,T; H'(Q)) is out of reach and we show Fréchet differentiability in the very
low regularity regime of Proposition[3.3l Note that we actually only need the energy
estimate from Proposition B.3]in order to bound w. Existence is already guaranteed
by existence of the three terms which compose w = G(k) — G(k) — G'(k)(Fk — k),
namely u = G(k) (solving {T)), & = G(k) (solving (417)) with k replaced by &) and
z (solving (8)). Clearly, uniqueness is not needed either.

Theorem 3.2. For any a € (0,1), T > 0, R > 0 there exists Ry > 0 such
that for any data ug € H3(Q), uy € H?(Q), r € L*(0,T; H*(Q)) satisfying (46),
the parameter-to-state map G : Bg(0) — U is well-defined according to Theorem
B.Il Moreover, it is Fréchet differentiable as an operator G : Bg(0) — Uy. Here
Ba(0) = {x € W21(Q) A W(Q) © [lsllwas ooy < R}

3.2. Fractional Zener damping. Consider
(49) D = bl AdM + b0 with by > 0, by > byc®, 1> a; > ay >0,

where based on the analysis in [22] we expect to get well-posedness of the nonlinear
forward problem only in case a1 = 1, so we first of all focus on this case. Later on
we will also prove a well-posedness result on the equation linearized at x = 0 in the
practically relevant case a; = ay =: a. We refer to [25] for an analysis of the linear
fractional Zener wave equation, even in the tensorial setting of viscoelasticity. See
also [20] for an analysis of several different linear and nonlinear fractional acoustic
wave equations as well as a derivation of these models and justification of their
limits as a; = g = " 1.

As in the previous section, we first of all consider the initial boundary value
problem for the general linear PDE

(50) (1 — o)ug + ¢ Au + by Auy + b23f2+2u + pug +pu=h
. 1
(51) w(0) =uo, u(0)=wu1, (uu(0)=usin case ag > 5)

with given space and time dependent functions o, u, p, h.

Again we skip the details about the Faedo-Galerkin approach and the discretisa-
tion index n and only provide the crucial energy estimate. We multiply (5Q) with
Auyy and integrate with respect to time, using the inequalities and identities

| ) A5 s = CAute) (1)) = (Au(0), A 0)) = [ A (5) o
and . .
| @ ul(s), Aua(o) ds = [ (0 Va9, V() ds
0 0

1 ¢ a 2
5 | o [Vl ] ) ds
1

1 11—« 2 2
=5h [HvuttHLQ(Q)} (t) = mHVUttHLg(m)a

%
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AN INVERSE PROBLEM OF NONLINEAR IMAGING 259

where the latter equality holds provided uy(0) = 0 and we have applied ([13) (ac-

tually to the Fourier components of the Galerkin discretisation w = )\;/ 2u””) with

J
Y= Q2.
This yields the energy estimate

bg _ 2 bl 2
(m +1- 0) Vel 722y + §\|«4ut(t)|\p(m
b
< 5 M (0)[3 1) + ¢ (Au(0), Auy(0)
A (Au(t). Au(t) + ¢ [ Au L 1
t
+ / (Voug + V(uus + pu — h)(s), Vug(s)) ds
0
b
< S IAw ()11 1) + (Au(0), Au(0))

bl 04
+ Z”Aut( )HLQ(Q E”Au( )HL2 (Q) + C2||Aut||i?(L2)
+ IVo | Lo (pay lueel| 2y [ Vuee || 22y + 5\|Vutt||ig(m)
1
+ 5= (V8 e e el 0.1 0 + il zoe o) Ve ey

2
+ ||vp||L';’(L2)||u||Lt°°(L°°) + [Ipll 22 oy [[Vull oo (pay + ||Vh||L’;’(L2)) .

Here we assume nondegeneracy

b
and a smallness condition on Vo
by —
Ti—eyre T 1—70
(53) V]| gy < ~-2T
CHI—)L4

Now choose € <
Lemma,

(54)  IVulague + Aul2a o < C (1O + IV, 12 ).
The required regularity on o, u, p, h, ug, u1, is, besides (62)), (53)
peL=0,T;HY(Q), peL*0,T;H(Q),

he L*0,T; HY(Q), wuo,us € H*(Q), uy=0.

m +1—0 — Oy, 14]| Vo o (14) to obtain, using Gronwall’s

(55)

Proposition 3.5. Under conditions (52)), (B3)), (B5)), there exists a unique solution
(56) ue U= H*0,T; H(Q)) N Wh>(0,T; H*())
to the initial boundary value problem ([BQ), (E1)), and this solution satisfies the

estimate (B4)).

Theorem 3.3. For any as € (0,1), T >0, x € Wh4(Q) there exists Ry > 0 such
that for any data ug,uy € H2(Q), r € L2(0,T; H'(Q)) satisfying

(57) ||.AU1|| 2(Q) + ||‘AU‘OHL2(Q) + ”VTH%"’(L"’) < Rg
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there exists a unique solution u € U of

bg@taﬁzu + (1 = 2Ku)ugs + A Au + by Aug = 26 (ug) + 7 in Q x (0,T)

u(O) = Uo, Ut(o) =uy, Uy =01inQ.

(58)

To prove well-posedness of (10) in the Fzcase, we apply proposition [B.5] with
h = 26k(uuy + u?), which is contained in L?(0,T; H'(2)) for u € U provided
ok € L3(9).

Proposition 3.6. Under the assumptions of Theorem B3], for any dx € L3(£2)
there exists a unique solution z € U of

b2a?2+22 + (1—2ku) 24 + Az +bi Az —Akug 20— 26U 2
(59) = 26k(w g +u?) in Q x (0,T)
2(0) =0, 2z(0), 24 =0=01nQ,
where u € U solves (B8]).

Fréchet differentiability follows from application of proposition B.5] with h =
2(k — k) (Vi + uvy + (g + ug)ve) + 26(vvy + v7) where v = G(k) — G(k) € U and
u = G(k) € U. Thus, for h to be contained in L?(0, T} H'(Q)), it is again enough
to asssume & — k € L3(Q).

Theorem 3.4. For any ay € (0,1), T > 0, R > 0 there exists Ry > 0 such that
for any data ug,u; € H2(Q), r € L*(0,T; H*()) satisfying B7), the parameter-
to-state map G : Bg(0) — U is well-defined according to Theorem B3l Moreover,
it is Fréchet differentiable as an operator G : Bg(0) — U. Here Bi(0) = {k €
WH(Q) + [|sllwra@) < R}

We now consider the linear problem in case a; = ag =: @, by = bac? + § with
6>0

(60) (1 — o)ug + * Au + by A0 u + b28?+2u + pug + pu = h
in which the differential operator can partially be factorised as
(1 —0)0 + A+ (bac® + 8)ADX + ba0P 2 + ud; + pid
- (att + c2A) (anf + id) — 00y + 8AD® + pdy + pid.

Thus, up to the “perturbation” terms containing o, §, u, and p, the auxiliary
function 4 = be0fu + u satisfies a wave equation @y + c2Ati=h. Motivated by this
fact, we multiply (60) with A@; to obtain the energy identity

(61)

1 c?
IV B207u + )i (B2 (0) + 5 G207 u + u)(B)][F2
t
+ (5/ (Voju(s), V(b20u + u)i(s)) ds
0
1 1eY 2 CQ « 2
= S IV(207u + w)e (072 () + 5 [AB205u +u)(0)][75

+ / (V(h+ ouy — puy — pu)(s), V(0205 u + uw)(s)) ds .
0
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The term containing § can be nicely tackled by means of Lemma [3.1]

/0 (VOFu(s), V(b207u + u).(s)) ds

b (0% b (0% ¢ (0%
= SIVOu®)720) = 5 IVOFu(0) 720 + /0 (VOfu(s), Vue(s)) ds
) [ Py —— 7O
=75 t W) L2(Q) M (a)ti—o t UllL2(r2)>

(which reflects the physical fact that ¢ is the diffusivity of sound and therefore the
corresponding term models damping). However, in the term containing o this is
inhibited by the time-dependence of o. Thus in case a; = as =: a < 1 we have to
restrict ourselves to the linearisation of the forward problem at x = 0 (where also
u =0, p=0), where the above together with Young’s inequality yields the energy
estimate
(62)

DI o5 + )il e 1) + A0 0 + )

_d
I(a)tl—«
< V(5207w + u)t(O)H%?(Q) + | A(bo 0 u + U)(O)H%z(g) + 2||Vh||2Lg(L2)-

2
e (i)

+ 02| VO u(t) |2 o 12, + IVoRullZa e

Due to the identity (0fu)¢(0) = limy o ﬁt‘”‘ut(O)7 in order for the right hand
side to be finite, we need to assume u:(0) = 0 here.

The PDE yields an estimate of @y as follows
©) 00wl = I - FAGE + 0 g

To extract temporal reguarity of u from regularity of b205'u+u for be > 0, we make
use of regularity results of time fractional ODEs: ba0fu +u = @ € Wk>(0,T; Z)
implies u € W*+2°(0, T; Z), due to the fact that I* maps L>(0,T) to C%*(0,T);
see [29, Corollary 2, p. 56]. Thus, provided h € L*(0,T; H*()) N L>®(0, T; L?(2))
and the initial data ug € H?(Q), u; = 0, up € L?*(R), we have that u exhibits the
regularity

(64) w e U := W20, T; L*(Q)) W0, T; HY(Q))NW (0, T; H*(Q)).

We thus obtain the following result in case of ¥ = 0 on the (then linear) forward
problem:

Proposition 3.7. For any o € (0,1), T > 0, and for any data ug € H2(Q),
ug € L2(Q), r € LY(0,T; HE(2)) N Le°(0,T; L?(QQ)) there exists a unique solution
w=G(0)eU of
b0 2 + gy + A Au + by AU = 1 in Q x (0,T)
u(()) = Uy, ut(o) =0, uy =mus in .

We now consider the linearization of G at & = 0, which is defined by (L0). To this
end, we derive a weaker energy estimate by multiplying (60) with @; = (b20fu+u);
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to obtain the estimate
1 o o
S G205 + w2 ) + IV (B20F 0 + w03 1

(65) + 8ba|0F u(t)]] e ) + 107 ull72

0
T(a)ti—o (£2)

< 0207w + w)e (0172 ) + NIV (0207w + u)(0) 172 () + 2[1AI7 5 (12

The required regularity of dx to guarantee h = 20k (u uy +u?) € L1(0,t; L*(Q)) for
u = G(0) € U is obviously dx € L>=(Q).

Proposition 3.8. Under the assumptions of Proposition B.7, for any 0k € L*°(9)
there exists a unique solution z €U, =W?2T2(0, T; H=1(Q))NWHe20(0, T; L2(Q))
AW (0,T; HY(Q)) of

b28§‘+22 + Ztt + C2AZ —+ blAagZ = 25_}{(uutt + u%) m Q % (O’T)
Z(O):O7 Zt(o)zo, zze =0 1n Q.
Since we cannot establish well-definedness of G(k) for & # 0 we cannot prove

Fréchet (actually not even directional) differentiability of G at x = 0, though; so z
is only a formal linearization of G at x = 0 into the direction J&.

4. INJECTIVITY OF THE LINEARISED FORWARD OPERATOR

The forward map is defined by F(k) = trgu, where trsv denotes the time trace
of the space and time dependent function v : (0,7) x Q at the observation surface
Y (which may also just be a single point ¥ = {x¢}) and u solves

ugs + A+ Du = k(x)(u?)g + 7 in Q x (0,7)

(66) u(0) =0, wu(0)=01in Q.

Its linearisation at x = 0 in direction dx is F'(0)dx =

trszg, where zg solves

(67) 2 + A Az + Dz = 0k (uo)tt,
where
(68) g ¢ + 2 Aug + Dug = 1.

Both PDEs (67)), (68) come with homogeneous initial conditions.
As in the previous section, we consider the two damping models

(69) D =bA%02 (cH)
and
(70) D = bl A + b0 (Fz).

The Laplace transformed solutions to the corresponding resolvent equation

s2 4+ bAPs® 4+ 2 for cH

71 0(A, 8) =
(71) WA, s) bos?to2 4 g2 4 hy As®t + 2 )\ for FZ

1
w(A,s)

will play a crucial role in the proofs below.
Moroever, we will make use of the following results from [22].

with w(A, s) = {
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Lemma 4.1 ([22| Lemma 4.1 and Remark 4.1]). For A,B > 0, a € (0,1) the
function @ defined by W(A, B; s) = s+ As*+ B has precisely two complex-conjugate
zeros which lie in the left hand complex plane. Moreover, for A # X and w(\, s) :=
W(bA, ¢2\; ) the locations of the roots of w(X;-) and of w(X;-) differ.

From Lemma [4.1] we conclude that in case of CH, the function w (},-) has
precisely two complex-conjugate zeros p{" (A), p™ (A), which lie in the left hand
complex plane.

For rz, we first consider the particular parameter configuration (corresponding
to vanishing viscosity of sound)

(72) by = bec? and ag = s
in which we can factorise w™ (), s) = (bas®2 4 1)(s? 4 ¢*\) and get the roots

Py = _bl (only in case a3 = as = 1), PEN) = HieV\.
2

Note that pg? is independent of A, but p' (A) obviously allows to distinguish be-
tween different \’s. This distinction is possible in general, a fact that has already
been shown for the cHcase with 8 = 1 in see Lemma 4.1l As an additional re-
sult, that is not needed for the uniqueness proof but might be convenient for the
computation of poles and residues, we state that the poles are single in certain
cases.

Lemma 4.2. The poles of w™ and of W™ (except for p’ in case a1 = ag = 1)

differ for different \. Moreover, in the case CH and in the case FzZ with ({2) the
poles are single.

Proof. For cH, let f(z) = 22 + 2\, g(z) = bA?2%. Then for a sufficiently large
R > ) let Cg be the circle radius R, centre at the origin. Then |g(z)| < |f(z)| on
Cr and so Rouché’s theorem shows that f(z) and (f + g)(z) have the same number
of roots, counted with multiplicity, within C. For f these are only at z = +iv/Ac
so the same must be true of f + ¢g and so w®" has precisely one single root in the
third and in the fourth quadrant, respectively.
Suppose now that w°" has a pole at re??, where 7/2 < § < 7, for both \; and
MA2. Then for s = re®®
sz—i—b)\?sa—l—cQ)\l:O 32+b)\§sa+02)\2:()
so that
b (Af B )‘g) _ «
02 (/\1 — )\2) -0
Now if A\; # Ay then the left hand side is positive and real and so af = 7. This
means that 8 > 7, a contradiction.
In case of Fz, assuming that p is a pole of both @W"* (A1, ) and @™ (\g, ) we have

0= w()‘lap) - w(>‘27p) = (>‘1 - AQ)[blpal + 62] )

where due w(\1,p) = 0, the term in brackets b;p®* + ¢* = —%(bgpa2 +1) #£0,
hence A1 = Ag. In the factorisable case (72) of Fz, obviously all roots are single. O

As in [21] (where we used the classical damping term D = bAJ;), we assume
that r has the form

(73) r(x,t) = f(@)x"(t) + Af(2)x(t) + D[f (2)x(t)]
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264 BARBARA KALTENBACHER AND WILLIAM RUNDELL

with some function f in the domain of .4 vanishing only on a set of measure zero and
some twice differentiable function y of time such that (x?)”(t) # 0 for some to > 0.
With (73)), the solution ug of equation (G8) is clearly given by ug(x,t) = f(x)x(t),
so that dk(u3)y can be written in the form

(74) (d_“( )“0 Z, t ZGJ%

where a; are the coefficients of dk- f with respect to the eigenfunction basis (¢;) e,

and v; = (x2)".
We can rewrite equation (67) as

(75) Z;/(t) + 02/\j2’j(t) + Dij = ajl/)j(t) ) t> 07 Z](O) = 0, ZI(O) =0
for all j € N, where

> bA? 2 for cH
)= z(t)gi(x), Dj=1< I,!
zO(;E ) = ZJ( )¢]($) J {b28t2+a2 —|—b1)\j8?1 for FZ.

Applying the Laplace transform to both sides of (73] yields

~ 1
(76) 2i(s) = w;i(s)a;v;(s), where ;(s) = m , seC,
and we have used homogeneity of the initial conditions.
Thus, assuming that F’(0)dk = trszg = 0 implies that
0= Zo(x0, s Zajqu (@o)w;(s )zzj(s), foralls € C, zp € X.

Considering the residues at some pole p,,, corresponding to the eigenvalue \,, and
using the fact that by Lemma[.2] lim,_,, (s — pm)wW(A;,s) = 0 for j # m yields

~

0 = Res(2o(z0; pm)) Zajqﬁj 20) lim (s — pp ) mi(Nj, 8)i(s)

S—Pm
=1
= Res (W p) 05 (Pm) Y ardi(o)
keEK,

Here ¢,, is the multiplicity of p,,, as a root of w(A,,, ) and K,,, C N is an enumeration
of the eigenspace basis (¢x)reck,, corresponding to the eigenvalue \,,. To extract
the coefficients a; we assume that

(77) O (pm) # 0

and that for all A eigenvalue of A with eigenfunctions (¢x)iecg», the restrictions of
the eigenfunctions to the observation manifold are linear independent, that is, the
following implication holds for any coefficient set (by)pecpr:

(78) > brgr(x) =0 forallz e X | = (b =0forall k€ K*).
kERKX
From this we can conclude that a; = 0 for all k € K,,.

Now since (ud)u(to) = f(x?)"(to) only vanishes on a set of measure zero and
([4), we can conclude that dx = 0 almost everywhere.
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Theorem 4.1. Under the above assumptions ({4)), ((7), (@8) for allm € N, k €
K, the linearised derivative at k =0, F'(0) is injective.

Remark 4.1. In particular, (8] is satisfied in the spatially 1-dimensional case ¥ =
{zo}, where all eigenvalues of A are single, i.e., #K,, = 1 for all m, provided
none of the eigenfunctions vanish at xg; this can be achieved by taking x¢ on the
boundary and where ¢; is subject to non-Dirichlet conditions.

To give an example in higher space dimensions, let us consider the unit disc €2,
where the eigenvalues and eigenfunctions of the negative Laplacian A with homo-
geneous Dirichlet boundary values are given in terms of the Bessel functions Jy
and their positive roots p, in polar coordinates z = (rcosf,rsinf), r € [0,1],
0 € [0,2m) as follows

Mo = Mim s Do (r,0) = Jo(penr) cos(l8),  dun2(r,0) = Jo(pienr) sin(€9) .
For a fixed eigenvalue \ of A, the index set K* is therefore given by
(79) KM= {(6n) €N : 2, = A} = {(6n()) : £ € M}

since if A = /J’Zn is an eigenvalue of A for any ¢ € N, then the corresponding number
n(¢) of the Bessel function root is clearly unique since these roots are single.

To satisfy (Z8), we select r, € (0,1) in such a way that v/Ar, is not a root
of any Bessel function (which is actually the generic case) and choose the circle
Y ={(r«cosf,r.sinf), 0 € [0,2m)} as observation surface. Indeed this can easily
be seen to satisfy (Z8]) as follows. The premise is written — in terms of the index
set K according to (79) specific to our setup, whose indexing also applies to the
arbitrary coefficients by — as

Z co (bz,n(z),1 cos(£8) + by n(e),2 Sin(ﬁﬁ)) =0 for all 6 € [0,27),
LeM>

where ¢, = Jy(v/Ar,) # 0 for all £ € Ng. Taking the L?(0,2n) inner product with
cos(j6) and sin(j#) (or simply using linear independence of the functions cos(¢0),
sin(¢6), ¢ € M*), we conclude that cebeneey,1 = 0 and cpby ()2 = 0 for all £ € M*,
that is, due to the fact that ¢, # 0, all the coefficients by ,,(¢), £ € M ie{1,2}
vanish. Alternatively one could choose ¥ to be a diameter of the disc at an angle
0 avoiding the zeros of cos(¢f), sin(£f) and make use of the fact that the Bessel
functions are linear independent.

This construction principle carries over to other geometries and higher space
dimensions whenever the eigenfunctions allow for a separation of variables. Obvious
examples for this are spheres or cuboids, where the eigenfunctions are composed of
spherical harmonics and/or trigonometric functions. To see this, recall that (7S]
simply says that the eigenfunctions, when resticted to the observation surface, are
linear independent. So if ¥ is oriented along one of the directions of separability,
one can make use of linear independence of the eigenfunction factors in the other
direction. For an investigation on how to choose the observation location in a
related problem using separable eigenfunctions, as well as numerical reconstruction
results see [27].

A sufficient condition for (Z8) to hold is that there exist points zo 1, ... Zo A N €
¥, N* > #K* such that the matrix ®r(To,xi) ek, ie{1,..., N>} has full rank HEK.
Accumulating this over the sequence of eigenvalues A of A and bearing in mind
the fact that in higher space dimensions their multiplicity can become arbitrarily
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large (e.g., in the cuboid example above), we conclude that the cardinality of ¥ will
typically have to be infinite; still this can allow X to consist of a countable discrete
sequence of points.

5. ILL-POSEDNESS OF THE LINEARISED INVERSE PROBLEM

As in the injectivity section, we consider the linear(ised at x = 0) problem of
recovering 0k(z) from time trace observations h(t) = truzo = 2o(zo,t0), To € X,
where zq solves (67) with ug solving (68]), both with homogeneous initial conditions.

Again, we assume that the excitation r has been chosen such that uy takes the
form wug(z,t) = f(x)x(t) and employ the shorthand notation ¥ = (x?)”. Using the
eigensystem of A we can then write

oo

2@ t) =) o@)z(t),  (s) = d(N, )85+ f,65)X(s)
j=1

with @(A;, s) according to (71). As in the injectivity section we obtain (for sim-
plicity in the 1-d case where all eigenvalues are single)

(80) Res(h(pm)) = Res (s pin) X (D) (85 - f, ) b (w0)
that is,
. . -1
(1) (8- f6m) = Res(h(pm)) (Res(tbmi )X (pm)6m(@0)) -
By I'Hospital’s rule we have
Res(tpm; pm) = lim ST Pm_ iy L

s=pm W(A,8)  s=pm w(A,S)

— L f
or CH
2pm+abX] p !

L fi
= or FzZ .
(2+a2)b2p3n+a2+2Pm+a1b1/\jpaml !

Thus, the factor multiplied with (d& - f, ¢n,) in ([BI) only mildly grows with p,.

Remark 5.1. In higher space dimensions, to resolve the equations

Res(iL(pm)) = Res(wm5pm);z(pm) Z (0K - f, o) Pr(20), T0 € X
keK,,

that replace (BQ) then, again condition (78] is obviously crucial. Referring to Re-
mark [4.1] in the separable eigenfunction setting of, e.g., discs, balls, cubiods, etc.,
the fact that the eigenfunction factors along X are mutually orthogonal clearly aids
numerical implementation and stability.

The major ill-posedness seems to lie in the evaluation of the residue of the ob-
servations Res(h(pm)) at the poles py,, from knowledge of h(t) for t > 0, that is,
from h(s) = JoT e *h(t) dt for s with nonnegative real part (so that the integral
defining the Laplace transform is well-defined). If these poles lie on the imaginary
axis (wave equation), this is still well posed. The further left the poles lie, the more

ill-posed this problem.
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5.1. Location of the poles of the relaxation functions. Motivated by their
role for the degree of ill-posedness of the inverse problem, we develop some further
results — beyond those stated in Lemma [4.2] as essentials for our uniqueness proof —
for each of the two models under consideration and also provide some computational
results with plots of these poles for several parameter configurations.

The cHmodel: Poles of the CHmodel are the roots of the function

Wey (8) 1= 82 + bAPs® + PN =0.

We recall that according to Lemma [4.1] whose proof relies on Rouché’s theorem,
they lie in the left hand complex plane and this is easily shown by the following
alternative argument.

Suppose s is a root in the first quadrant.

Then s, the line joining the origin to the point 5 y
s can be split into a component in the direction °
of the positive real axis and one in the direc-
tion of the positive imaginary axis. Then since
a < 1, s® has components in the same direc-
tions. Similarly, the vector s? has a component
parallel to the real axis and again one in the .
direction of the positive imaginary axis. Since 1
A > 0, the same is true of the vector bA\Bs®. The
third vector representing c?Ax points along the
real axis. However, the sum of these three vectors cannot add to zero contradicting
the claim the root s lay in the first quadrant. An identical argument shows s cannot
lie in the fourth quadrant and hence cannot lie in the right half plane.

For b = 0 the poles are along the imaginary axis and spaced exactly as the
eigenvalue sequence {\,} stretched by the factor ¢2. As b increases so does the
(negative) real component of the poles which follow a curve whose rough slope is
determined by the ratio of b and ¢?. The powers o and /3 also are factors that
influence the skewness of the curve along which the poles align. The magnitude
of the real and imaginary parts show the relative strengths of the damping and
oscillation effects respectively in the equation.

The roots of wey (s) are shown in Figure [l with b = 0.1, \,, = n?z?%, and for
both ¢c=1and ¢ =5, as well as o = % and a = % and illustrate the above point.

We now provide some notes on how these poles were computed. For rational
a = p/q, wey (s) can be written as 227 + BzP + C with B = b\?, C = ¢\ and
where s = 2. Now the 2¢'" degree polynomial can be represented as the char-
acteristic polynomial of a 2¢ x 2¢ matrix. Then the roots of this polynomial are
calculated by computing the eigenvalues of the companion matrix. This gives a
good approximation even for reasonably large g values but additional care must be
taken, see, for example, [10]. Given now the values of {z,} for A € {\,}, one can
recover {s,} from s, = zP. This is subject to considerable round-off error for even
modest values of p. However it is usually sufficient as an initial approximation for
Newton’s method to then compute a more exact value of the roots of w to desired
accuracy. This is also successful for real a by first taking a rational approximation
« = p/q for the initial approximation of the roots and then proceeding as above.

The Fz model: Poles of the fractional Zener model are the roots of the func-
tion

Wiy (8) 1= bys?T2 4+ 62 4+ b As™ + A =0.
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FIGURE 1. Roots of wey(s) for various a, 3, ¢ values

There is a more complex relationship here and more constants whose value can
affect the outcome. In the case that ay = ay = o, we can re-write this as

Wiz (8) 1= (bas® +1)(s2 + 2N\) + dAs™ =0, where 6 1= by — ¢?by

and ¢ needs to be nonnegative, cf. [14] Section I11.B]. If § = 0 then w, (s) factors.
There will be two roots at =i v/ ¢ on the imaginary axis and a potential root coming
from s® + 1/by = 0. The latter only exists in case a = 1 for otherwise writing
s = re? with € (—n, 7] we have that af € (—m,7) and therefore J(s* + 1) =
r®sin(af) = 0 implies af = 0, hence R(s* + 1/b2) = r*cos(ad) + 1/by > 0. In
case a = 1 we obviously have a root at —1/bs, whose modulus, notably, does not
increase with A, as opposed to the two other complex conjugate roots of wy; .

Clearly, physical reasoning leads us to the conclusion that in case of a nonnegative
diffusivity of sound § > 0, all poles need to have nonpositive real part. However,
the complex analysis arguments from [22] Lemma 4.1] via Rouché’s theorem, using
as a bounding function the dominant power part f(z) = byz?T%2 + ¢2), does not
seem to directly carry over to the FZ case. This is basically due to the fact that
we cannot say anything about the number of roots of the non-polynomial function
f. Additionally, asymptotics in terms of powers of s will be much less effective
here since, for small by and/or as, the term s? will be de facto dominant even for
relatively large magnitudes of s.

Therefore we have to take a different path to conclude that also in the Fz case,
the poles lie in the left hand complex plane. We do so by means of energy estimates
similar to those in section[3.2], which basically corresponds to the mentioned physical

argument. As a (partial) counterpart to Lemma [4.1] in the CH case we state the
following.
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Lemma 5.1. The roots of wy, (s) with a1 = ay = o and § := by — by > 0 lie in
the left hand complex plane.

Proof. We consider the following initial value problem for the relaxation equation
(82) b0 w +w” + A A w =0, w(0)=0, w'(0)=1, w"(0)=0.
The Laplace transform w of its solution satisfies

(bos®t22 4 5% L by As P N)a(s) = bos™? + 1
bps*2+1

wipy(s)
analogously to the proof of Proposition 3.7, we obtain an energy estimate for w :=

b20fw + w by multiplying (82) with w” and integrating with respect to time

1 - 2 CQ>\ - 2 b2 a 2 1 /t [} 2
B OF + W + (G100 + g | Iorw(mldr)

and therefore w(s) = Now if @1 = as = o and 6 := by — Zby > 0,

1 . AN
< 5@ (0) + [ (0)”
for all t > 0. This implies uniform boundedness
B(1)] < /(2 Amin) ~ i@ (0)[2 + [@(0)|? =: C

by a constant independent of A. Taking Laplace transforms

o0 o0 C
e St (t dt‘ < / e ROt 0= ——
| Wt < R()

for R(s) > 0, we see that w(s) cannot have any poles in the right half plane. Due

~ «@ 2
to the identity w(s) = (bas® + 1)w(s) — bas® w(0) = (bas® + 1)w(s) = %
(where the numerator has no zeros in case a € (0, 1)), the assertion follows. O

i (s)| =

The effect of § on the poles in the FZ model can also be assessed by means of
the implicit function theorem, applied to the function

F(r,0:6) = bor?T2 cos((2 + a2)8) + 12 cos(20) + by Ar®t cos(az6) + ¢\
e sin((2 + a2)f) + 72 sin(26) + by Ar®1 sin(a;6)

whose zeros are the magnitudes and arguments of the roots s = re?® of w™. Now

s (5 5) w-(a)
a(r,0) By By )7 85 Cy
and using Cramer’s rule this yields
Or _ B1Cy — ByCy 00 _ CiAs — O Ay
88 A1By—A3By’ 95 A1By— A3Bp’
where by = byc? + 6 and for (r, §) satisfying f(r,0;) = 0. Then
Ay = (2 + a2)bar' ™2 cos((2 + a2)0) + 27 cos(20) + by \r®** ~t cos(aq 6)

! (0[27“2 cos(20) 4+ (2 4+ ag — ay)by1 Ar® cos(a16) + (2 + a2)02)\)

o
Ay = (2+ a2)byr' T2 sin((2 + a2)0) + 2rsin(26) + a1by Ar® ' sin(o4 6)

= _% <0‘2T2 sin(26) + (24 ag — aq)by Ar? sin(aﬁ))
By = —rA, By = 1A, C1 = Ar® cos(an ), Cy = Ar® sin(o1 ) .
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This results in

A1By—AsBy = r(A3 + A)

B1Cy—ByC1 = \r™t (a2r2 cos((2—a1)0)+H(2+ s —al)bl)\ral—i—(Z—l—ag)cz)\ Cos(alﬂ))
C1As—Cs Ay = Arer—! (—a2r2 sin((2 — a1)0) + (2 + az)c?A sin(a19)) ,

and therefore g—g >0, % > 0, for the case of the known roots r = v\, 6 = +7/2
at § = 0, for a; = . That is, increasing § tends to move the poles into the left
hand complex plane, which is intuitive in view of its physical role as a diffusivity
of sound.

Also here we have employed the method for numerically computing roots as
described above. In particular we use this in order to illustrate the influence of
4 > 0 on the behaviour of the roots, see Figure [2

* _ —
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FIGURE 2. Roots of w, (s) for various § values with: left a = 1
right a = %

The location of the poles can thus be computed from knowledge of the constants
b1, ba, ¢, the exponents o and 3 as well as the values of A\,. These poles are also
obtainable from the time trace measurements as the zeros of the relaxation function
which is the Laplace transform of this data g. Thus assuming the spectrum {\,, }5° 4
of A was known it is perfectly reasonable that a least-squares fit could be made to
determine the damping constants contained in the term D appearing in equation (3]
and/or the wave speed c¢. While an ill-conditioned problem, it would be particularly
feasible if the time trace data were measured at several points along an arc rather
than at a single point. It is further conceivable that spectral information on the
eigenvalues of A could be determined, in particular those of the low frequency.
This in turn might be used to obtain knowledge on either a coefficient in A or
on the domain €2 itself as there is geometrical information contained in the lowest
few eigenvalues. See, for example, [I12]. As noted earlier, the Laplace transform
gives information on w(s) on the right half plane. Using analytic continuation to
recover the poles on the left half plane results in severe ill-conditioning and the
more negative the real part the more extreme this becomes. The figures in this
section indicate the effect various parameters have on this process.

6. RECONSTRUCTIONS OF K

6.1. Newton type methods for recovering «. From Theorems [3.1] and [3.3] we
obtain well-definedness of the forward operator F' by F(k) = try o G, where tryv
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denotes the time trace at the observation surface ¥ (which in one space dimension
may also just be a single point ¥ = {z(}) in both cHand Fzmodel cases of the
parameter-to-state map G : k — u where u solves ([B) with ([I8) or (9)) (the latter
with ay = 1). Hence the inverse problem under consideration can be stated as

F(r) =g,

where ¢ is the measured data (2) and we consider F' as an operator F' : D(C
X) — Y. Here the domain D of F is defined as a ball with fixed radius in X =
W24 Q) N Wh>(Q) (cu) or X = WH4(Q) (rz) and additionally, the initial data
and driving term are supposed to satisfy certain regularity and smallness conditions.
For drawing this conclusion on the composite operator, in addition to the mentioned
theorems on G, we use the fact that the trace operator try is linear and well-
defined on the spaces Uj, or U according to (B5) or (b)), respectively, and maps
into Y C C([0,T]; C(X)). Typically we will have Y = LP(0,T, RY), N € NU {co}
in case of ¥ being a discrete set or Y = LP(0,T; L4(X)) in case of ¥ being a surface.

From Theorems B.2] 3.4] we additionally conclude Fréchet differentiability of F'
on D. Thus we are in the position to formulate Newton’s method which defines the
iterate kg1 implicitely by the linearised problem

F'(kg) (kg1 — kr) = g — F(kr)
or its frozen version

F'(ko) (k41 — ki) = g — Fkg)
which is known to save the computational effort of evaluating the derivative in
each step — at the cost of yielding only linear convergence. This is the approach
we are going to take in the numerical reconstructions to be shown in this section.
Concerning solvability of the linearisation, we have commented on injectivity of
F'(ko) in case ko = 0 in section @l As pointed out in section [5 inversion must
be expected to be ill-posed, though and also surjectivity of F’(kg) is not likely to
hold on the relatively large space Y. Therefore, we will rely on a regularized least
squares variant

(83)  hkp1 = argmingep || F(sk) + F' (ko) (R — ki) — glly + V17 — rollx

of the frozen Newton method. A minimizer exists, since the cost function is weakly
lower semicontinuous and has weakly compact sublevel sets in the space X, which in
both cH and Fz cases is the dual of a separable space. Uniqueness of this minimizer
follows easily from strict convexity of the cost function for v > 0. In the injective
setting of section Ml this remains valid also with v = 0. Dispensing with unique-
ness (that is, replacing “= argmin” by “C argmin” above), we can also choose to
completely skip the regularization term, since stabilization is already achieved by
imposing the constraint & € D. The formulation (83]) also allows to deal with noisy
data, cf., e.g., [13/[L8][19[26].

We mention in passing that Proposition (3.8) still allows one to rigorously apply
F'(0) in the case a3 = « of CH as well; however, F’(0) is only a formal linearization,
not a true derivative. Moroever, in that case, well-definedness of F(ky) is missing.

We now provide reconstruction results for x in the CH model with g = 1.

The boundary conditions for our test cases were homogeneous Dirichlet at z = 0
and homogeneous Neumann at = 1 with a nonhomogeneous driving term r(x, t)
with greater weight near x = 1. Thus the solution was small in the region near
2 = 0 in comparison to near = 1 where the data h(t) = u(1,¢) was measured.
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The consequence of this was that «(x) for x small was multiplied by terms that
were also small in comparison to that at the rightmost endpoint and resulting in
greater ill-conditioning of the inversion near x = 0. This will be apparent in each
of the reconstructions to be shown below.

The data h(t) was computed by the direct solver at the endpoint z = 1 and a
sample of 50 points was taken to which uniformly distributed random noise was
added as representing the actual data measurements that formed the overposed
data. This was then filtered by a smoothing routine based on penalising the H?
norm with regularisation parameter based on the estimate of the noise and then
up-resolved to the working size for the inverse solver.

Discretisation of k was done by means of a fixed set of 40 chapeau basis functions
and we applied a regularised frozen Newton iteration, stopped by the discrepancy
principle, for numerically solving the discretised inverse problem.

Figure [3] shows the reconstruction of a piecewise linear x for the values o = 1,
a=0.9, a=0.5 and a = 0.25. In each case the damping coefficient b was kept at
b = 0.1 and the wave speed at ¢ = 1. The (L*°, L?) norm difference for the final

()

#(2)

a=09

0.15 - a=10 0.15

0.10

0.10

0.05

0.00

0.15 + 0154 a=0.25

0.10 4 0.10

0.05 0.05 -

0.00 . . : . 1 0.00 . ‘ T \ 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 3. Reconstructions of x(x) for various « values.  Noise = 0.1%.

versus the actual reconstruction were: (0.109,0.078), (0.116,0.084), (0.184,0.126),
(0.315,0.191), respectively and show the increase in resolution possible with a de-
crease in a.

Note that the reconstructions of x are clearly superior at the right hand end-
point due to imposed conditions as the wave is essentially transmitting information
primarily from right to left but the amplitude is damped as it travels. The smaller
the fractional damping the lesser is this effect which is also apparent from these
figures.
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shows.
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0.0 0.2 0.4 0.6 0.8 L 00 0.2 0.4 0.6 0.8 10
FIGURE 4. Reconstructions of x(x) for & = 0.25, 0.9.  Noise =

0.5% (blue) and 1% (green).

Figure [0l shows the singular values of the Jacobian matrix used in the (frozen)
Newton method. The results confirm our findings from section [5.1] cf. Figure [I]
namely the fact that the further away the (negative) real part of the poles is from
the real axis, the more ill-posed the inverse problem of recovering information from
them. This was pointed out at the end of section Bl Note that if the function
can be well represented by a small number of basis functions then the dependence
with respect to a will be fairly weak. On the other hand, if a large number of basis
functions are needed for k to be represented, then the dependence on « becomes
much stronger although by this point the condition number of the Jacobian is
already extremely high for all  and relatively few singular values are likely to be
usable in any reconstruction with data subject to extremely small noise levels. The

0q* IOglo(G'n) 09 logw(gn)
* .
¢ *
Oggs s
gcwm&* L
4 Ggﬁggg‘z:?%zszséézssgggg —4 ‘*tnéﬁﬂ
L]
*ec0, §§?§§§§$¢6655555
e, %0, 8830060
. IS ®ee,00
* a=0.25 ®e O * a=0.25 ®e
-8 4 o a=05 e % -89 oa=05
o a=09 ®e o a=09
e =10 c=1 ®e e =10 c=5
n n
_12 T T T T T 1 _12 T T T T T 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30

FI1GURE 5. Singular values for various « values: left; ¢ = 1, right;
c=95

effect of damping is to directly contribute to the ill-conditioning and thus it is clear
that for fixed o and ¢ this will increase as the coefficient b increases. The degree of
ill-conditioning as a function of the wave speed c is less clear.

Figure [0 shows the singular values {o,,} of the Jacobian matrix for both ¢ =1
and ¢ = 5. This illustrates the decay of the singular values and hence the level
of ill-conditioning does depend on ¢ but certainly not uniformly for all values of
the fractional exponent «. For « near unity, that is damping approaches or is at
the classical paradigm, there is a considerable increase in the smaller, high index
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274 BARBARA KALTENBACHER AND WILLIAM RUNDELL

singular values indicating the problem is much less ill-posed for larger wave speeds
c. For the smaller index o,, the ratio 0,,/07 is almost the same indicating at most
a weak effect due to the wave speed. Thus for a function x(x) requiring only a
small number of basis functions the effect of wave speed is relatively minimal but
this changes quite dramatically if a larger number of singular values are required.
For « less than about one half the condition number o, /01 becomes relatively
independent of ¢ — at least in the range indicated.
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