
27

CeMux: Maximizing the Accuracy of Stochastic Mux Adders

and an Application to Filter Design

TIMOTHY J. BAKER and JOHN P. HAYES, Department of Electrical Engineering and Computer

Science, University of Michigan

Stochastic computing (SC) is a low-cost computational paradigm that has promising applications in digi-

tal filter design, image processing, and neural networks. Fundamental to these applications is the weighted

addition operation, which is most often implemented by a multiplexer (mux) tree. Mux-based adders have

very low area but typically require long bitstreams to reach practical accuracy thresholds when the num-

ber of summands is large. In this work, we first identify the main contributors to mux adder error. We then

demonstrate with analysis and experiment that two new techniques, precise sampling and full correlation,

can target and mitigate these error sources. Implementing these techniques in hardware leads to the design

of CeMux (Correlation-enhanced Multiplexer), a stochastic mux adder that is significantly more accurate and

uses much less area than traditional weighted adders. We compare CeMux to other SC and hybrid designs for

an electrocardiogram filtering case study that employs a large digital filter. One major result is that CeMux

is shown to be accurate even for large input sizes. CeMux’s higher accuracy leads to a latency reduction of

4× to 16× over other designs. Furthermore, CeMux uses about 35% less area than existing designs, and we

demonstrate that a small amount of accuracy can be traded for a further 50% reduction in area. Finally, we

compare CeMux to a conventional binary design and we show that CeMux can achieve a 50% to 73% area

reduction for similar power and latency as the conventional design but at a slightly higher level of error.

CCS Concepts: • Hardware → Arithmetic and datapath circuits; Emerging architectures; Application

specific integrated circuits; • Theory of computation→ Probabilistic computation;

Additional Key Words and Phrases: Stochastic computing, approximate computing, weighted addition, mul-

tiplexers, digital filters, electrocardiogram

ACM Reference format:

Timothy J. Baker and John P. Hayes. 2022. CeMux: Maximizing the Accuracy of Stochastic Mux Adders and

an Application to Filter Design. ACM Trans. Des. Autom. Electron. Syst. 27, 3, Article 27 (January 2022), 26

pages.

https://doi.org/10.1145/3491213

This block will be automatically generated when manuscripts are processed after acceptance.

This research was supported by the U.S. National Science Foundation under grant no. CCF-2006704.

Authors’ address: T. J. Baker and J. P. Hayes, Department of Electrical Engineering and Computer Science, University of

Michigan, 2260 HAYWARD ST Ann Arbor, MI 48109, USA; emails: {bakertim, jhayes}@umich.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1084-4309/2022/01-ART27 $15.00

https://doi.org/10.1145/3491213

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

https://doi.org/10.1145/3491213
mailto:permissions@acm.org
https://doi.org/10.1145/3491213

27:2 T. J. Baker and J. P. Hayes

1 INTRODUCTION

Digital systems, like those in biomedical implants and the Internet of Things [27], often have
computational needs for which approximate results are acceptable, but stringent implementation
constraints such as low power and small size must be met. Stochastic computing (SC) [3] has re-
cently emerged as a promising computational paradigm for such applications. SC employs streams
of random bits to process data, where the value of a bitstream is related to the probability that its
bits take value 1.
A major advantage of the stochastic number (SN) encoding scheme is that it enables the use of

simple digital circuits to implement important arithmetic operations such as multiplication and
addition. SC is especially appealing for use in neural networks [17–19], image processing [8] or
finite impulse response (FIR) filters [4–10]. These applications rely heavily on the weighted addi-
tion operation, which is expensive to implement in traditional binary computing (BC). In contrast,
weighted addition can be implemented very efficiently by SC using low-cost trees of multiplexers
(muxes).
Some prior studies of SC mux-based weighted adders for digital filters and similar applications

[7, 11, 17] have found that muxes can have unacceptably low accuracy when the number of sum-
mands is large. This inaccuracy stems from SC’s use of random bits, which lead to random fluc-
tuation errors in computed output values. Longer bitstreams mitigate the random errors, but they
lead to unacceptable latency and high energy use. The inaccuracy of mux adders has increased
interest in other, more expensive SC adders, such as the accumulative parallel counter type [25].
Unexpectedly, recent work [1] has pointed out that small mux adders can be made far more

accurate than expected via careful use of SC properties such as correlation. That this accuracy
improvement can also be done efficiently for large, multi-input adders is a major conclusion of
this article. To illustrate, consider an experiment that compares a conventional mux adder [6, 7]
to our correlation-enhanced mux adder CeMux, which is presented in Section 4. Each adder is
configured to implement weighted addition with 2m summands and all weights randomly set to
±1/2m for a range ofm values. In Figure 1, both designs are simulated with input values that are
randomly chosen from the interval [−1, 1]. The estimated root mean squared error (RMSE), defined
as

RMSE(Z , Ẑ) =

√√√
1

R

R∑
i=1

(
μZi − μ̂Zi

)2, (1)

is recorded, where μZi and μ̂Zi are, respectively, the circuit’s target value and actual output value
during simulation run i . Figure 1 shows that CeMux’s error is 3.4× to 12× lower than the conven-
tional design’s error across a range of input sizes.
In this work, we first identify the main error sources in mux adders through analysis that ex-

plores new angles of SC theory. This analysis leads to the concepts of precise sampling and full
correlation, which leverage aspects of correlation to reduce randomness in the operation of mux
trees and thereby lower error levels. Implementing these techniques efficiently in hardware is at
the heart of the CeMux design and the fact that it is orders of magnitude more accurate than alter-
native mux-based adders. The article culminates in an application of CeMux to electrocardiogram
(ECG) filtering.
The key contributions of this work are:

• Formulation of mux adder variance as the sum of three components, which provides key
insights into how variance can be decreased. Exact expressions are derived for mux adder
variance in typical scenarios.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

Maximizing the Accuracy of Stochastic Mux Adders and an Application to Filter Design 27:3

Fig. 1. Root mean squared error versus number of mux adder inputs M for a conventional mux-based SC

adder (black) and CeMux (blue). SN length is 29 bits.

• Introduction of the error-reduction techniques’ precise sampling and full correlation for
mux adders.

• Design of CeMux, a new mux adder design that exploits these techniques along with a low
discrepancy number source to achieve high accuracy, even for large input sizes.

• An ECG case study that demonstrates not only CeMux’s superior accuracy, but also the fact
that it greatly reduces both latency and area compared with existing SC designs.

2 BACKGROUND

First, we introduce relevant background information on stochastic computing. We adopt a slightly
non-standard, but consistent notation for SC concepts that will simplify various equations.

2.1 Stochastic Computing Basics

2.1.1 Stochastic Numbers. SC uses (pseudo) random bitstreams called stochastic numbers (SNs)
to encode and process information. An SN X is a stream of random bits X1X2 . . .XN that all have
the same probability of taking value 1: P (Xi = 1) = PX for 1 ≤ i ≤ N . The numerical value μX
of X is derived from PX and depends on the SN format used. Two popular formats are unipolar,
where μX = PX , and bipolar, where μX = 2PX − 1. When using the unipolar format, SN values
are restricted to the unit interval [0, 1] while the bipolar format extends SN values to the negative
domain [−1, 1]. This work mainly uses the bipolar format, but the results also extend to the simpler
unipolar case.
The usefulness of the stochastic encoding is best demonstrated with an example. Consider an

AND gate with unipolar SN inputs X, Y and output Z (Figure 2(a)). The output value of this
simple circuit is μZ = P (Zi = 1) = P (Xi ∧ Yi = 1) which, if X and Y are uncorrelated, becomes
P (Xi = 1)P (Yi = 1) = μX μY . Thus, μZ = μX μY , implying that the AND gate acts as a single-gate
unipolar SN multiplier. Similarly, in the bipolar format, an XNOR gate performs multiplication on
uncorrelated inputs. The simplicity of multiplication in SC is a principal driving force for interest
in the field.
A drawbac +k of the AND gate multiplier (or any single-output SC circuit) is that its output is

not μZ but rather a stream of random bits Z = Z1Z2 . . .ZN that give an approximate estimate of
μZ . The most common estimator for unipolar SNs is the frequency of 1s in Z.

μ̂Z =
1

N

N∑
i=1

Zi (2)

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

27:4 T. J. Baker and J. P. Hayes

Fig. 2. Stochastic computing circuits and elements. (a) Unipolar multiplier circuit. (b) Stochastic number

generator based on an LFSR randomnumber source and a comparator. (c)Multiplexer used in an SCweighted

adder.

This estimator can be implemented with only a counter provided that the SN length N is a power
of 2 so that division by N is effectively implemented by the radix point’s implicit location in the
counter’s state. The estimator for bipolar SNs where μZ = 2PZ − 1 is similarly

μ̂Z = 2 ��
1

N

N∑
i=1

Zi�� − 1, (3)

which can be implemented with an up-down counter [3].
The difference between Z’s value μZ and Z’s estimated value μ̂Z is the circuit error, which fluc-

tuates due to the randomness of Z. Importantly, subtle changes in the circuit’s design can greatly
affect the variance of μ̂Z and the circuit’s accuracy. As exemplified in Section 3, understanding the
relationship between circuit design and the statistics of μ̂Z is crucial to managing error in SC.

On the input side of a stochastic circuit lie the stochastic number generators (SNGs) used to
generate input SNs. A typical SNG consisting of a linear feedback shift register (LFSR) [3] and
a comparator is shown in Figure 2(b). The LFSR’s state R cycles through integers in the range
[1, 2n − 1] in a pseudo random order and acts as a pseudo uniform random number source. Each
clock cycle, R, is compared to PX to produce Xi , where P (Xi = 1) ≈ PX . By changing the control
input PX , the SNG generates SNs with desired values.

2.1.2 Stochastic Cross Correlation. SC elements are usually designed to operate on statistically
independent or uncorrelated SNs, although some designs require correlated inputs. When the in-
tended level of input correlation is not realized, the circuit can have a biased output, which can lead
to serious errors [14, 22]. The correlation between bits of two SNs, X1 andX2, is usually quantified
by the stochastic cross correlation (SCC) metric, which measures the expected overlap between
the 1s in X1 and X2 [14].
SCC takes values in [−1, 1], where SCC(X1, X2) = 0 implies that X1 and X2 are uncorrelated.

An SCC(X1, X2) of +1 (−1) implies that the 1s in X1 and X2 overlap the maximum (minimum)
number of times as determined by PX1 and PX2 . For example, A = 010110 (PA = 1/2) and B =

010010 (PB = 1/3) have an estimated SCC of +1 because their 1s overlap as much as possible based
on PA and PB , while A and C = 101011 (PC = 2/3) have an estimated SCC of −1 because their 1s
overlap as infrequently as possible based on PA and PC .

Two SNs, X1 and X2, can be generated with zero SCC by using separate and statistically uncor-
related RNSs in their SNGs. An SCC of +1 or −1 can be obtained by sharing an RNS between the
SNGs, as shown in Figure 3. Sharing in this manner saves hardware but increases the overall error
if the circuit function requires uncorrelated inputs.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

Maximizing the Accuracy of Stochastic Mux Adders and an Application to Filter Design 27:5

Fig. 3. Generating cross-correlated SNs X1, X2. (a) Maximally correlated SCC(X1, X2) = 1. (b) Maximally

anti-correlated SCC(X1, X2) = −1.

2.2 Mux Adders

We turn now to another fundamental SC operation, weighted addition, which is most often im-
plemented by a multiplexer (mux), the focus of this article. Figure 2(c) shows a 2-input mux that
has two data inputs and a control input called the select line. If SNsA and B are applied to the data
inputs, then the output Z’s value is a weighted sum of A’s value and B’s value where the sum’s
weights are determined by the value of an SN S applied to the select line. The weights of A and B
must sum to one,which enables a small range of adder types to be implemented and ensures that
the sum is restricted to the probability range [0, 1]. For instance, the mux in Figure 2(c) is usually
configured to compute

μZ =
1

2
μA +

1

2
μB (4)

by setting S’s value μS to 1/2, implying thatA and B are equally weighted. One way to understand
Equation (4) is to envision themux as a sampling unit, where in each clock cycle the control input S
determines which input,A orB, is sampled and has its bit propagated to the output. Since μS = 1/2,
A and B have an equal chance of being sampled each clock cycle, implying that, on average, half of
Z’s bits will be from A and half from B. Thus, Z’s value is given by Equation (4). The viewpoint of
muxes as sampling units will serve important role in understanding how correlation can be used
to improve the accuracy of mux adders.
The 2-input mux generalizes to anM-input mux circuit that computes

μZ =
1∑M

i=1 |wi |

M∑
i=1

wiμXi
, (5)

where X1,X2, . . . ,XM are bipolar input SNs with weights w1,w2, . . . ,wM , respectively. Conven-
tional SC mux adders that compute Equation (5) often have two stages: an XNOR gate array
of bipolar multipliers followed by a mux adder tree, as shown in Figure 4(a) [4, 6, 7, 10]. The
XNORs multiply each bipolar data input with the sign of its corresponding weight. Then, each Yi

(μYi = sign(wi)μXi
) is routed into a mux tree that computes μZ =

1∑M
i=1 |wi |

∑M
i=1 |wi |μYi .

There are various mux tree designs that, together with an XNOR array, implement Equation
(5). They mainly differ in how they use the mux select inputs to encode the normalized weight
magnitudes, |w̃i | = |wi |/

∑M
i=1 |wi |. One basic design is the so-called “hardwired” mux tree [7],

which is best explained with an example. The hardwired mux tree in Figure 5(b) computes

μZ =
1

2
μY1 +

3

8
μY2 +

1

8
μY3 . (6)

Here, the mux select inputs S2, S1, and S0 all have value 1/2 and are shared amongst muxes on
the same level of a full mux tree. With this configuration, all 8 mux tree inputs have a probability
of 1/8 of being sampled each clock cycle. Y2 is then hardwired to three of the eight mux tree inputs

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

27:6 T. J. Baker and J. P. Hayes

Fig. 4. M-way weighted mux adder design. Each 2-way mux has a single select input; the input generation

circuits may contain SN generators in various configurations.

Fig. 5. Three-input weighted mux adder that implements Equation (6) and uses a hardwired mux tree [7].

The magnitudes of the normalized weights w̃i = wi/
∑
i wi are encoded in the wiring of the data inputs of

the mux tree and the signs of the weights are accounted for by the XNOR gate array.

because |w̃2 | = 3/8. Likewise, Y1 is hardwired to half the mux tree inputs since |w̃1 | = 4/8 and Y3

is hardwired to just one input because |w̃1 | = 1/8. Thus, through hardwiring each Yi to one or
more input slots of the mux tree, weighted addition is implemented. In general, the height of the
mux tree determines the values to which the normalized weights must be quantized; Algorithm 1
describes the quantization procedure. In Figure 5, the height is 3 and all w̃i are quantized to 3-bit
precision. The hardwired mux tree is most useful in resource-limited applications in which the
weights are not expected to be updated, such as in hearing aid filters [31, 33] or electrocardiogram
filtering [32].
In cases in which weights are expected to be updated, the “biased selector” mux tree introduced

in [5] is another design that can be used to implement weighted addition. In this case, the weights
are not hardwired; rather, they are encoded into the select input SNs’ values, which are no longer
all set to be 0.5. When a change in summand weights is needed, the select input values can be
updated. The weight flexibility comes at a high area cost, however, since many additional SNGs

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

Maximizing the Accuracy of Stochastic Mux Adders and an Application to Filter Design 27:7

are needed for the select input SNs. Recent work aims at reducing this SNG overhead [4, 6]; see
also Section 3 in [4] for a detailed explanation of the biased selector mux tree design. Note that the
terminology “biased selector tree” is not used in [4] but was introduced here to help differentiate
mux tree designs.
The central idea of this work is a new way to use correlation in mux trees. In [4, 6], the authors

use correlation to reduce the biased selector tree’s SNG area while sacrificing as little accuracy as
possible. Our work is distinct from [4, 6] because here we use correlation to improve the accuracy
of mux trees while incidentally decreasing their area. Additionally, our correlation techniques’
impact on accuracy is validated by simulation in Section 5 as well as the analysis presented in
Section 3 and the Appendix.

ALGORITHM 1:Mux Tree Weight Normalization and Quantization

Input: Weightsw = [w1, . . . ,wM] and height of hardwired mux treem
Output: Absolute values of the quantized, normalized weights [|w̃1 |, . . . ,|w̃M |]

a = elementwise_absolute_value (w)
t = 2ma/sum(a) // t is the numerator of the normalized weights that have denominator 2m .
q = elementwise_round_to_nearest_inteдer (t) // q is the quantized version of t

// Sometimes after rounding, the quantized normalized weights do not sum to 1 and slight adjust-
ments are
// needed. q represents the numerator of these weights that have denominator 2m .

// If the sum of q exceeds 2m , decrement the numerator that results in smallest bias.
while sum(q) > 2m do
i = argmax(q − t)
qi = qi − 1

end

// If the sum of q is below 2m , increment the numerator that results in smallest bias.
while sum(q) < 2m do
i = argmax(t − q)
qi = qi + 1

end
return q/2m

3 MUX ADDER ANALYSIS AND OPTIMIZATION

This section introduces our main accuracy enhancement techniques, precise sampling and full
correlation, and demonstrates their effectiveness through a new analysis of mux tree errors.

3.1 Mux Adder Error

A stochastic circuit’s error ϵZ is the difference between the output Z’s estimated value, μ̂Z , found
using a counter, and its target value, μ∗Z , found, in the case of mux adders, using Equation (5):

ϵZ = μ̂Z − μ∗Z . (7)

The mean squared error, MSE(μ̂Z , μ
∗
Z) = E[ϵ2Z], can be expressed in the form of a bias-variance

decomposition [2]:

MSE
(
μ̂Z , μ

∗
Z

)
= Bias

(
μ̂Z, μ

∗
Z

)2
+ Var (μ̂Z) , (8)

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

27:8 T. J. Baker and J. P. Hayes

where bias quantifies the circuit’s systematic error and variance quantifies the circuit’s random
error.

Bias
(
μ̂Z , μ

∗
Z

)
= E [μ̂] − μ∗Z (9)

Var (μ̂Z) = E
[
(μ̂Z − E [μ̂Z])

2
]
= E

[
μ̂2Z

]
− E[μ̂Z]2 (10)

In the context of mux trees, the bias is error resulting from quantizing the input values and
weights in Equation (5) while the variance is error resulting from random fluctuations in the real-
ized SN bit patterns. The variance is normally much greater than the bias in SC; thus, the bias is
often approximated as zero. A key conclusion of the traditional Bernoulli model of SC is that the
variance of any combinational circuit with bipolar output SN Z can be expressed as

Var (μ̂Z) =
1 − E[μ̂Z]2

N
, (11)

where N is the length ofZ [23]. Equation (11) is useful becauseE[μ̂Z] is easy to compute for a given
circuit. For instance, the variance of a mux adder that computes Equation (5) can be expressed as

Var (μ̂Z) =
1 −
(∑M

i=1 w̃iμXi

)2
N

, (12)

where w̃i = wi/
∑M

i=1 |wi | and μXi
have been quantized to the precision of the circuit.

In many cases, Equations (11) and (12) overestimate the variance of a circuit that employs typ-
ical LFSR SNGs (Figure 2(b)) because these SNGs do not produce Bernoulli-type SNs. Instead, the
hypergeometric SN model can be used to obtain better estimates of variance for LFSR SNGs [1].
We now present a new formula for mux circuit variance that flexibly applies to both the Bernoulli
and hypergeometric SN models:

Var (μ̂Z) = ϵnoise + ϵsamp + ϵcorr . (13)

Formal definitions and derivations for ϵnoise , ϵsamp , and ϵcorr are given in the Appendix. Here, we
focus on a high-level explanation of Equation (13).
Like Equation (12), ϵnoise , ϵsamp , and ϵcorr all depend on the SN length, the input values, and

the weights. Decomposing mux variance into these three specific components highlights how pre-
cise sampling and full correlation improve mux accuracy. For instance, Figure 6 illustrates how
ϵnoise , ϵsamp , and ϵcorr vary with the number of mux inputs M for a mux adder that has random
bipolar input values and all weights randomly set to ±1/M . Figure 6(a) corresponds to a conven-
tional mux adder and shows that as the number of inputs increases, the variance quickly saturates
to a high value of 1/N [11]. Figure 6(b) corresponds to a mux adder with our proposed precise
sampling and full correlation methods. It shows that precise sampling reduces ϵsamp from about
1/(3N) to zero, and full correlation pushes ϵcorr from zero to about −1/(3N). Together, these tech-
niques lead to a significant overall variance reduction of 67%. In Section 5, we will show that this
accuracy improvement is further amplified when a low discrepancy RNS is used in place of an
LFSR-type RNS.
Similar to Equation (13), other equations that decompose stochastic circuit error into distinct

components have been proposed in research that does not specifically focus onmux adders. In [16],
the authors express circuit error as a sum of approximation, quantization, and fluctuation errors.
The former two errors are systematic and together constitute the bias of the circuit whereas the
latter error is the variance. In [22], the authors express error with a correlation term and a variance
term. Their correlation error is a non-negative bias term and is distinct from ϵcorr , which can
take negative values and quantifies how correlation affects circuit variance. In [24], the authors
introduce a hypergeometric decomposition method that maps a circuit’s variance into a function

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

Maximizing the Accuracy of Stochastic Mux Adders and an Application to Filter Design 27:9

Fig. 6. Variance of bipolar mux adders versus the number of mux inputsM when input values are uniformly

random andweights are randomly set to±1/M . (a) An unoptimizedmux circuit. (b) Amux circuit with precise

sampling and full correlation implemented. All values are normalized by multiplying by N , the bitstream

length.

of the input values and input variances. Our analysis differs from most prior error analyses [7, 11,
16, 22, 23] because, like [1] and [24], it applies to the hypergeometric model of SNs, which much
better represents SNs derived from typical LFSR SNGs.

3.2 Sampling Error and Precise Sampling

Mux addition relies on sampling the input SNs, and ϵsamp measures the variation of that sampling
process. For instance, consider the mux tree of Figure 5(b) with independent inputs Y1, Y2, Y3 that
have lengthN = 16. Since |w̃2 | = 3/8,Y2 is expected to be sampled six times (|w̃2 |N = (3/8)16 = 6),
but Y2 may be sampled anywhere from zero to 16 times due to random fluctuations in the mux
select inputs S2, S1, and S0. When Y2 or any other input is not sampled its expected number of
times, the mux output will be biased, thus causing an error that is characterized by ϵsamp . If Ci is
the number of times bipolar input Yi is sampled, then, for the mux tree in Figure 5(b),

ϵsamp =
1

162

3∑
i=1

3∑
j=1

μYi μYjCov
(
Ci ,Cj

)
, (14)

where Cov(Ci ,Cj) is the covariance between Ci and Cj and Cov(Ci,Ci) = Var(Ci). Equation (14)
highlights the fact that ϵsamp (and, thus, part of the mux’s variance) is dependent on the variation
in the number of times each input is chosen. Reducing this variation motivates the concept of
precise sampling.
Let N-bit SNs Y1,Y2, . . . ,YM with normalized weights |w̃i |, be input to a mux tree and let

Ci be the number of times Yi is sampled by the tree. A mux tree performs precise sampling

when, with probability 1, each input is sampled its expected number of times, up to a round-
ing error. Formally, precise sampling is when P (|Ci − E[Ci]| < 1) = 1 for all i . After quantizing
E[Ci] = |w̃i |N to the nearest integer, implementing precise sampling reduces ϵsamp to zero. Con-
ventional hardwired mux trees such as HWA [7] do not perform precise sampling because separate
and independent RNSs are used to feed the mux select lines, and fluctuations between these RNSs
causes sampling variation as seen in Figure 7(a). Instead, when the SN length is 2n , precise sam-
pling can be performed by a height h hardwired mux by deriving the mux select lines from the
state of a single RNS as shown in Figure 7(b). A key feature of the chosen RNS is that it generates

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

27:10 T. J. Baker and J. P. Hayes

Fig. 7. Sampling inputs from a hardwired mux tree where each input is equally weighted. (a) Noisy sampling

where the select lines are generated from independent RNSs. (b) Precise sampling where the select lines are

derived from a single RNS state. Note how in (b) each evenly weighted input is sampled exactly 25% of the

time whereas the same is not true in (a).

Fig. 8. Effect of data correlation onmux behavior. (a) Possible outcome of mux tree with uncorrelated inputs.

(b) Unique outcome of mux tree with maximally correlated inputs of the same value.

numbers from [0, 2n − 1] without repetition. This construction ensures that each mux input slot
is sampled exactly 2n−h times and eliminates variation in the number of times an input is sam-
pled, implying that ϵsamp = 0. Moreover, our new construction (Figure 7(b)) replaces the h RNSs
of the conventional design (Figure 7(a)) with a single RNS, thus saving considerable area. Suitable
choices for a precise sampling (pseudo) RNS include an n-bit LFSR with the all-0 inserted to its
state sequence, making it nonlinear [1], and an n-bit counter.

3.3 Full Correlation

Figure 3 shows two SNGs sharing a single RNS. The sharing of a single RNS amongst the M data
inputs of a mux adder is common practice in SC because it saves considerable area and because
correlation among the mux data inputs was believed to have no effect on output error. This as-
sumption of correlation insensitivity was disproven recently when it was shown that correlation
can greatly increase the accuracy of a mux [1].
To illustrate, consider the mux tree in Figure 8(a) with four uncorrelated inputs Y1, Y2, Y3, Y4,

each with unipolar value 1/2, length 8, and weight 1/4. During each clock cycle i , some of the input
bits (Y1,i ,Y2,i ,Y3,i ,Y4,i) are 0 and others 1. By happenstance, it is possible for the mux to propagate
a 0 every single clock cycle, resulting in Z = 00000000. In this case, Z’s estimated value is 0, which
poorly represents Z’s actual value of 1

4 (
1
2 +

1
2 +

1
2 +

1
2) = 1/2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

Maximizing the Accuracy of Stochastic Mux Adders and an Application to Filter Design 27:11

Fig. 9. The proposed CeMux design for computing Equation (5). Instead of an array of XNOR gates, inverters

are explicitly shown for inputs with negative weights.

In contrast, Figure 8(b) shows the same mux adder configuration, but when Y1, Y2, Y3, Y4 are
maximally correlated by sharing an RNS. Here, Y1, Y2, Y3, Y4 are identical since they all have the
same value and share an RNS. Regardless of the mux select inputs, the output Z will always be a
copy of one of the mux’s four identical inputs and Z’s estimated value is always the correct value
of 1/2.
In general, when the data inputs have different values, correlation amongst mux tree data inputs

lessens the possibility of high error caused by the mux selection process (an example of high error
is given in Figure 8(a)). Correlation’s impact on accuracy is quantified by ϵcorr in Equation (13)
and the impact is greatest when correlation is maximized. Thus, to maximize accuracy, mux trees
should achieve full correlation, which occurs when the SCC is +1 between all pairings of mux data
inputs. Full correlation can be achieved by careful sharing of RNSs; an example is given in our
CeMux design (Section 4.1) whose mux tree achieves full correlation. Note that full correlation
can be applied to improve accuracy when using a hardwired mux tree like that in CeMux but also
when using a biased selector mux tree like the designs in [4, 6].

4 CORRELATION-ENHANCED MULTIPLEXER

Now, we formally introduce CeMux, a bipolar weighted mux adder that combines our two
correlation-inspired techniques, precise sampling and full correlation, with other recent advances
in SC to form a particularly efficient design. CeMux (Figure 9) implements weighted addition
(Equation (5)) using an XNOR multiplier array and hardwired mux tree as in the general mux
adder structure of Figure 4. Since the weights are fixed and known ahead of time, Figure 9 simpli-
fies the XNOR array of Figures 4 and 5(a) by explicitly showing that inputs with negative weights
are inverted by the XNOR array and inputs with positive weights are unmodified by the XNOR
array. The following subsections explain the remainder of the design in a component-wise manner.
Algorithm 2 summarizes the overall design procedure.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

27:12 T. J. Baker and J. P. Hayes

ALGORITHM 2: Designing a CeMux Adder

Input: Weightsw = [w1, . . . ,wM], precision n and SN length 2n

Output: Specifications for a CeMux design

Data RNS: Introduce an n-bit Sobol LDS generator [9]. Connect its output to the probability con-
version (PCC) array.
Correlation Inverters: Use a set of n inverters to generate the inverted Sobol RNS value, which
is also connected to the PCC array.
PCC Array: Construct an array of n-bit comparators that compare data inputs μ+2 , μ

+
2 , . . . μ

+
Xk

with

positive weights to Sobol RNS value and compare inputs, μ−X1
, μ−X2

. . . μ−XM−k
with negative weights

to the inverted Sobol RNS value. The output of this array is a set ofM SNs, X1, X2, . . . XM.
Sign Inverter Array: Place inverters on all Xi whose wi < 0. Leave other Xi’s untouched. The
output of this array is a set of SNs Y1. . .YM. Note this inverter array is equivalent to the XNOR
array of conventional mux designs [4, 6, 7].
Precise Sampling RNS: Assemble an n-bit counter whose i-th MSB is connected to the select line
of all muxes on the i-th level of the mux tree (the tree root is level 1).
Hardwired Mux Tree: Utilize Algorithm 1 with inputs w and n to derive the absolute values of
the normalized weights |w̃1 | . . . |w̃M |. Each Yi input is hardwired to |w̃i |2n mux tree input slots.
The output of this tree is CeMux’s output SN Z.

Output Counter: Insert an n-bit up-down counter that increments when Z’s bit is 1 and decre-
ments when Z’s bit is 0. The output of this counter is Z’s estimated value μ̂Z .

4.1 Data Input RNS and Full Correlation

Like other mux adders [4, 6, 7], CeMux uses a single RNS to generate its data input SNs. Recently, it
has been shown that stochastic circuit’s accuracy can be improved by using low discrepancy (LD)
sequence generators as the RNS for SN generation [9, 19, 28, 29]. LD sequences are deterministic
sequences sometimes used to emulate a sequence of uniformly random numbers but with lower
variance. Well-known examples are the Halton, Sobol, and van der Corput sequences [28, 29].
Examples of LD-generated SNs (LD SNs) are A = 10101010 (PA = 1/2) and B = 11101110

(PB = 3/4), which exhibit the key feature of LD SNs—the 1s are roughly uniformly distributed
throughout the SN rather than randomly distributed. This uniform distribution of 1s reduces ran-
dom fluctuation in the circuit operation and can often lead to more accurate results. The accuracy
improvement is more significant when the circuit has few RNSs, such as in the CeMux design,
which uses just a single RNS. Thus, the simplest Sobol sequence generator (implemented using
the reverse state of a standard counter [9]) serves as CeMux’s RNS.
CeMux’s mux tree achieves full correlation when SCC(Yi,Yj) = +1 for all i,j. Ensuring that

this happens is not as straightforward as simply sharing the RNS amongst all data input SNGs.
Figure 10(a) demonstrates this point where a mux containing four inputs X1, X2, X3, X4 with
corresponding weights w1,w4 > 0 and w2,w3 < 0 is shown. The pairwise SCC amongst X1, X2,
X3, X4 is 1 since these input SNs share an RNS. However, this correlation does not carry over
to the mux inputs Y1, Y2, Y3, Y4. Since w2,w3 < 0, X2 and X3 are inverted, which results in
SCC(Y1,Y4) = SCC(Y2,Y3) = 1 and SCC = −1 for all combinations of Y1, Y2, Y3, Y4. Thus, full
correlation is not achieved for the mux tree in Figure 10(a).
In contrast, CeMux’s proposed SNG configuration for these SNs is shown in Figure 10(b). A

single RNS is shared by the SNGs, but the RNS output is inverted for X2’s and X3’s SNGs. The
result is SCC(X1,X4) = SCC(X2,X3) = 1, and SCC = −1 for all other SN pairings. Following the

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

Maximizing the Accuracy of Stochastic Mux Adders and an Application to Filter Design 27:13

Fig. 10. Visualizing the correlation of mux tree inputs Y1, Y2, Y3, Y4 with w1,w4 > 0 and w2,w3 < 0.

(a) Conventional SN generation where all SNs are generated using the same RNS output. (b) Full corre-

lation generation method where SNs with positive weights are generated using the RNS output while SNs

with negative weights are generated using the inverted RNS output. All data SNs in (b) are fully correlated

as they enter the hardwired mux tree.

inversion of X2 and X3, we have that SCC(Yi,Yj) = 1 for all i,j and full correlation is achieved by
the mux tree. More generally, to achieve full correlation in CeMux, all inputs share an RNS, but
inputs with negative weights use the inverted RNS output for SN generation while inputs with
positive weights use the unaltered RNS output for SN generation.

4.2 Probability Conversion Circuits

The comparator used in an SNG can be generalized to what is known as a probability conversion
circuit (PCC) and another choice for an SNG’s PCC is a weighted binary generator (WBG) [21].
A study by Zhong et al. [6] on mux adders showed that using WBGs in place of comparators can
reduce circuit area by over 50% because about half of the WBG circuit can be shared amongst
all SNGs. WBGs’ area efficiency suggests that they may be useful in CeMux; however, extensive
simulation experiments show that input SNs cannot be reliably correlated when WBGs replace
comparators in SNGs. In other words, full correlation cannot be achieved with WBGs, implying
that their use degrades CeMux’s accuracy. Tomaximize accuracy, comparators are used as CeMux’s
PCCs. Nevertheless, due to the WBG’s impressive area efficiency, we evaluate a version of CeMux
that uses WBGs in the case study (Section 5.3).

4.3 Hardwired Mux Tree and Precise Sampling

CeMux’s hardwired mux tree height is set to n, where 2n is the SN length. This is the largest tree
height that enables precise sampling to function fully and yields the lowest quantization error.
Increasing n might seem to imply a large increase in hardware due to the exponential increase in
mux numbers. That is not the case, however, because many of the 2-way muxes in a hardwired
mux tree have identical data inputs and, thus, can be eliminated. For instance, all shaded muxes in
Figure 5(b) can be removed, reducing the mux count from seven to three. In general, the number
of muxes in a hardwired mux tree grows linearly with n.
The scaling of the number of non-redundant muxes in a hardwired mux tree can be understood

by relating it to Knuth and Yao’s discrete distribution generating (DDG) trees for random number

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

27:14 T. J. Baker and J. P. Hayes

Fig. 11. CeMux’s hardwired mux tree implementation. (a) DDG tree corresponding to random variable X
with distribution PX (O1) = 7/16, PX (O2) = PX (O3) = 1/4, and PX (O4) = 1/1. (b) Corresponding DDG-

style hardwired mux tree that implements Equation (15). (c) Using a counter to implement precise sampling

for a mux tree that implements μz = 1/4(μA + μB + μC + μD).

generation [15]. A DDG tree describes an algorithm that uses a series of fair coin flips to sample
from the given discrete distribution. Each internal node in a DDG tree corresponds to a coin flip
and each leaf node corresponds to an outcome of the given distribution; an example is shown in
Figure 11(a). In terms of our work, each 2-way mux in a hardwired mux tree corresponds to a
DDG tree internal node (i.e., a coin flip), each hardwired mux input Y1, Y2, . . . , YM corresponds to
a DDG tree leaf node (i.e., a sampling outcome), and the normalized weights |w̃1 |, |w̃2 |, . . . , |w̃M |
correspond to the DDG tree’s target distribution. Bearing inmind this connection, Knuth and Yao’s
work tells us that an optimal height-n hardwired mux tree can be constructed simply by inspecting
the n-bit binary expansions of the normalized weights.
For example, consider the hardwired mux tree construction in Figure 11(b) which computes,

μZ =
7

16
μY1 +

1

4
μY2 +

1

4
μY3 +

1

16
μY4 . (15)

This construction can be arrived at in the following manner. Let level 1 be the root of the mux
tree. First, Y1 is connected to a mux on level 2, level 3, and level 4 of the tree because w̃1’s binary
expansion (0.01112) has a 1 in the 2−2, 2−3, and 2−4 place. Likewise, w̃2 = w̃3 = 0.01002 implies Y2

and Y3 should both be connected to a mux on level 2 of the tree. Finally, w̃4 = 0.00012 implies that
Y4 is to be connected to a mux on level 4.
Generally, the DDGmethod of constructing a height-n hardwired mux tree implies that the total

number of muxes in the simplified tree is one less than the total number of 1s in the n-bit binary
expansions of the normalized weights. For an M-input height-n hardwired mux tree, the worst-
case scenario is when every weight has an all-1s binary expansion (note, however, that this worse
case is often impossible since the weights must sum to 1). Combining this pessimistic worst case
with the consideration that a height-n mux tree has at most 2n − 1 muxes implies a (loose) upper
bound of min(Mn − 1, 2n − 1) on the maximum number of muxes. Hence, the number of muxes
grows linearly rather than exponentially with n.

CeMux implements precise sampling by using an n-bit counter’s state as the mux select input
lines. The counter’s i -th MSB is connected to muxes on the i-th level of CeMux’s hardwired mux
tree, as in Figure 11(c). With this construction, the output Z tends to consist of runs of bits from
the same SN (also seen in Figure 11(c)). Since CeMux uses a low-discrepancy RNS that uniformly
distributes the 1s in each input SN, this method of precise sampling leads to a highly accurate
output.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

Maximizing the Accuracy of Stochastic Mux Adders and an Application to Filter Design 27:15

Fig. 12. Errors versus number of mux inputs for various mux adders given random bipolar input values and

weights. SN length is 210 and RMSE is normalized by multiplying by
√
210. (a) RMSE for CeMux with and

without its correlation techniques. (b) RMSE for CeMux with and without its Sobol RNS, as well as RMSE

for HWA. (c) RMSE for CeMux and two of its variants.

5 EXPERIMENTAL EVALUATION

Finally, we evaluate the effectiveness of full correlation and precise sampling experimentally and
compare CeMux to alternative weighted-adder designs.

5.1 Full Correlation and Precise Sampling with Random Data

We first consider using CeMux to compute Equation (5) in the case wherewi and μXi
are randomly

chosen from [−1, 1]. CeMux’s precision n is fixed at 10, and the number of inputs (M in Equation
(5)) is varied from 8 to 256. The SN length is 210 and R = 5,000 simulation runs are used. The
RMSE Equation (1) is measured when simulating CeMux both with and without full correlation
and/or precise sampling. The results are shown in Figure 12(a). The RMSE for every configuration
increases as the number of inputsM is increased, which is consistent with other mux adder studies
[4, 6, 7, 11].
Full correlation is removed from CeMux by deleting the n leftmost inverters in Figure 9. Remov-

ing full correlation increases the RMSE by about 25% for all values ofM , as shown in Figure 12(a).
On the other hand, when precise sampling is removed from CeMux (by replacing the bottom RNS
in Figure 9 with a set of n = 10 LFSRs), the RMSE rises by about 114% to 630% depending on M .
This larger RMSE increase indicates that precise sampling improves accuracy much more than full
correlation. Finally, CeMux without either correlation technique has the worst RMSE, which is
about 160% to 810% higher than full CeMux’s RMSE.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

27:16 T. J. Baker and J. P. Hayes

We then repeated the foregoing experiment but replaced CeMux’s Sobol RNS with an LFSR to
evaluate the usefulness of the low discrepancy RNS. The results are plotted in Figure 12(b) and
show that CeMux with the Sobol RNS is more accurate than CeMux with an LFSR RNS. Thus,
the low-discrepancy sequence complements our correlation techniques and further improves ac-
curacy. For additional reference, also plotted in Figure 12(b) is the RMSE when using HWA from
[7]. In all, CeMux is found to be 1.5× to 5.7× more accurate than CeMux with an LFSR, and 2.6×
to 9.3× more accurate than HWA, a standard mux adder design.

5.2 CeMux Variants

In the previous section, we observed that accuracy is degraded by removing full correlation or
precise sampling from CeMux. These correlation techniques always maximize accuracy, but useful
accuracy-area trade-offs are possible and may sometimes be worth considering. First, as discussed
in Section 4.2,WBGs can be used in place of comparators to save a large amount of area in return for
the loss of full correlation. Second, CeMux’s precise sampling method is built around a hardwired
mux tree whose design cannot readily adapt to a change in summand weights. A biased selector
mux tree can replace CeMux’s hardwired mux tree, resulting in a design that implements full
correlation, but not precise sampling. Importantly, this design variant can adapt to changes in
summand weights by updating the appropriate registers.
To explore these trade-offs further, the following analysis considers CeMux along with two vari-

ations on its design. The first variant, “CeMux with WBGs” has better area than CeMux while the
second variant “CeMux biased selector” has more flexibility in updating summand weights but
worse area. However, both designs will have worse accuracy than CeMux. Demonstrative of this
point is Figure 12(c), which uses the same experimental set-up as Section 5.1 but has these CeMux
variants as the designs under consideration. The data in Figure 12(c) reveals that the CeMux vari-
ants have lower accuracy than CeMux and the trends in the RMSE data match that of Figure 12(a)
where correlation techniques were explicitly removed from CeMux.

5.3 ECG Case Study

Next, we present an ECG filtering case study that evaluates the performance of CeMux and other
SC designs in the context of a practical application in the biomedical device field. Analysis of
denoised ECG signals is used to monitor patient cardiovascular health and, for example, detect
conditions such as arrhythmia [12]. Noise is often removed from an ECG signal with an FIR filter,
but FIR designs tend to place large computational demand on an ECG monitor’s limited computa-
tional resources [26, 32]. The simplicity of SC digital filters suggests a promising direction for filter
design in the ECG domain. In this case study, we demonstrate that CeMux is the most promising
SC design candidate for ECG digital filtering.

5.3.1 Digital Filter Design. An M-tap digital finite impulse response FIR filter implements
Zi =

∑M−1
j=0 hjXi−j , where the {Xi } are samples from a digital signal, {hi } are the constant filter

coefficients, and {Zi } is the filtered signal. Filters with more taps tend to perform better filtering
but at the cost of higher computational resources such as more multipliers. Equation (5) is a scaled
version of the filter equation and thus mux adders are well suited for SC-based filter design [5].
Muscle contractions, device noise, and electrosurgical noise are three major ECG noise types

that can be modeled by random noise [20]. We thus add random noise to a benchmark ECG signal
[12, 13] to generate a suitable test input. Then, as is common practice in filter design, we utilize
MATLAB to derive the coefficients of an M-tap lowpass filter with a cutoff frequency of 0.1π
rad/sample. The purpose of this lowpass filter is to remove the high-frequency noise from the
ECG signal.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

Maximizing the Accuracy of Stochastic Mux Adders and an Application to Filter Design 27:17

Table 1. SC Mux-based Filter Design Specifications and Features

Next, we compare CeMux and its variants mentioned in Section 5.2 to other SC designs for the
ECG filter application. One design we compare against is built around a hardwired mux tree (like
HWA in [7]) while another is built around a biased selector mux tree (like MWA in [7] and the de-
signs found in [4, 6, 10]). We also compare our designs with a typical accumulative parallel counter
(APC) design [25]. For the APC case, an array of XNOR gates is used to perform SC multiplication
between each signal input and its corresponding filter coefficient. Then, each product bitstream is
accumulated by the parallel counter, which exhaustively counts all of the incident bits. Only two
Sobol RNSs [9] are needed in an M-input APC design, one RNS for the M signal inputs and one
RNS for theM filter coefficients.
Table 1 summarizes the mux-based SC designs under consideration and their features. All de-

signs employ a shared Sobol RNS for the mux data input SNs, which gives the best accuracy.WBGs
are used and shared [6] whenever possible because they need less area than comparators. Designs
that feature a hardwired mux tree do not need PCCs for the mux select input SNs because those
SNs always have value 0.5 and, thus, can be produced from the RNS directly. We do not consider ad
hoc accuracy-sacrificing techniques such as circular shifting,which degrade accuracy to improve
area [4]. For all designs, including the APC case, the bit-width of all RNSs, counters, WBGs, and
comparators is set ton bits, wheren is varied throughout the case study. Bitstream length is always
set to N = 2n .

5.3.2 Accuracy and Latency Analysis. First, each hardware filter design listed in Section 5.3.1
is simulated with the derived filter coefficients and the noisy ECG signal as input. The RMSE
(Equation (1)) is estimated using R = 10,000 simulation runs when the precision of each circuit is
set to n = 10 bits and the number of filter tapsM is varied. The results are plotted in Figure 13(a).
CeMux’s RMSE ranges from 4× to 12× lower than all the other SC designs, indicating its superior
accuracy. Further, CeMux maintains its low RMSE, as M is increased and never exceeds an RMSE
of 2−7, indicating that CeMux remains accurate with large input sizes. CeMux’s variants are also
significantly more accurate than the traditional SC designs because they each implement one of
our two correlation techniques.
Surprisingly, CeMux’s accuracy far exceeds that of the APC design, which usually has very high

accuracy due to the use of an expensive parallel counter to perform deterministic summation [19,
25]. In the present case, however, we find that RNS sharing leads to high summation error caused
by highly correlated intermediate errors. Not sharing RNSs would improve accuracy but lead to
unreasonable area cost. Note that RNS sharing does not always lead to high error in the APC
design, which has been shown to perform accurately in neural networks [19].

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

27:18 T. J. Baker and J. P. Hayes

Fig. 13. Error analysis of various SC digital filters for ECG case study. (a) RMSE versus number of inputs,M .

(b) RMSE versus latency and SN length, N . RMSE is normalized in (a) by multiplying by
√
210.

Fig. 14. Component-wise area breakdown for (a) CeMux and (b) CeMux with WBGs. Precision n is 10 bits

and the number of filter tapsM is 100.

Next, to understand the latency of each design, we perform a similar experiment in which the in-
put sizeM is fixed to 150 while the precisionn and bitstream length N = 2n are varied. Figure 13(b)
plots the RMSE estimated by simulation against the latency N of each design. The latency needed
for CeMux to surpass certain accuracy thresholds is always much lower than its SC counterparts.
For instance, CeMux achieves an RMSE below 2−4 with 64-bit SNs whereas the other mux designs
require 256-bit SNs to meet the same target. The slope of the CeMux curve is also steeper than the
other mux designs’ curves, indicating that CeMux’s latency improvement increases when more
stringent accuracy thresholds are required. Overall, to hit a given accuracy threshold, CeMux and
its variants require a latency around 4× to 16× lower than their counterpart SC designs.

5.3.3 Area Analysis. Next, we use Synopsys Design Compiler with the Nangate 45-nm open cell
library to synthesize the various filters and estimate the area of their weighted addition datapath.
We do not consider the memory used to store prior signal values since each design requires
the same amount of memory. Figure 14(a) shows CeMux’s component-wise area breakdown for
an n = 10-bit precision design that implements an M = 100 tap filter. CeMux’s 100 compara-
tors take up 80% of the overall area, indicating that efforts to improve CeMux’s area should
target these components. One such approach would be to decrease the bit-width of CeMux’s

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

Maximizing the Accuracy of Stochastic Mux Adders and an Application to Filter Design 27:19

Fig. 15. Area versus input size for various SC digital filter designs. Precision n is 10 bits for all designs.

comparators, which saves area but will increase the quantization error of CeMux. For instance,
changing CeMux’s comparator’s bit-width from 10 to 9 bits would reduce the comparator area by
about 10%, while increasing the quantization error from ∼ 1

210
to ∼ 1

29
[7].

For comparison, we also synthesized CeMux with WBGs and plotted the results in Figure 14(b).
In this case, the WBGs take up 60% of the overall area. The total circuit area of CeMux with WBGs
is 50% less than the standard CeMux design, which, along with Figure 13, again indicates that using
WBGs can lead to area savings at the cost of accuracy.
Finally, we synthesize the various SC filter designs while varying the filter size. Figure 15 plots

the circuit area versus number of filter tapsM for n = 10 bit precision. CeMux is smaller than other
SC designs, achieving an average 35% area reduction over other conventional SC designs because it
replaces costly SNGs for weights or mux select inputs with a simple but precise sampling counter.
As before in Figure 14, Figure 15 shows that usingWBGs instead of comparators in CeMux reduces
the area by about half due to the WBGs’ area efficiency. Thus, at the expense of accuracy (see
Figure 13) the area of CeMux can be further reduced by employing WBGs.
Figure 15 also shows that the three largest designs are conventional biased selector, APC, and

CeMux biased selector. These designs have higher area because they use more SNGs and because,
unlike the other designs, they are flexible in their ability to update filter coefficients stored in an
external memory whose cost is not considered here. CeMux biased selector is the costliest design
because it uses comparators rather than WBGs as the PCCs.
Importantly, however, this CeMux variant’s accuracy leads to better latency than the APC and

conventional biased selector designs (Figure 12(b)), making it a suitable alternative for accuracy-
stringent applications. While flexibility in updating filter coefficients is a convenient feature, FIR
designs for resource-limited applications such as ECG filtering [32] and hearing aids [31, 33] often
assume and benefit from fixed filter coefficients.

5.3.4 Comparison with Binary Computing. The focus of this work has been on the analysis and
improvement of SC mux adders. We have demonstrated that CeMux is the best mux-based SC
adder in terms of accuracy (Figure 13) and area (Figure 15). For completeness, we also give a brief
comparisonwith a conventional binary design.We compare a 10-bit CeMux filter with a traditional
sequential binary (SB) filter designed using MATLAB’s Filter Design HDL coder. The SB design
is synthesized assuming that the filter coefficients are fixed, and the SB design employs standard
optimizations such as the exploitation of symmetric coefficients, which greatly reduces multi-
plier count. Note that the designs’ precision levels are chosen to give them similar accuracy. Both

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

27:20 T. J. Baker and J. P. Hayes

Table 2. Cost and Performance of a CeMux Filter and a Sequential Binary (SB) Filter

10-bit CeMux Filter 8-bit Sequential Binary Filter
Input Size,M Area

(μm2)
Power
(μW)

RMSE
(×10−3)

Area
(μm2)

Power
(μW)

RMSE
(×10−3)

25 566 13.16 4.17 1158 20.67 5.06
50 853 20.16 4.47 1385 23.45 3.49
75 1085 25.71 4.57 1603 28.51 3.99
100 1212 28.82 4.87 1761 29.64 3.61
125 1314 31.42 5.16 1855 30.83 3.13
150 1465 35.52 5.41 2066 36.58 4.69
175 1578 37.50 5.62 2119 37.99 4.85
200 1670 39.79 5.64 2293 39.71 3.55
225 1658 39.44 6.26 2324 39.70 4.19
250 1813 43.20 6.05 2477 41.70 4.12

Fig. 16. Noisy ECG waveform (bottom) filtered by various 10-bit precision SC designs. SN length is 210.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

Maximizing the Accuracy of Stochastic Mux Adders and an Application to Filter Design 27:21

designs are also configured to operate in real time, which requires each one to process digitized
ECG samples at the sampling rate of 360 Hz.
Table 2 shows the area, power, and RMSE of the CeMux and SB filters as the filter length is

varied from M = 25 to M = 250. CeMux’s area is 49% to 73% lower than the SB design’s area due
to the use of cheap SC computational units. The CeMux design must process the entire 1024-bit SN
at a rate of 360 Hz to meet the real-time latency constraint. Consequently, CeMux’s digital clock
frequency is set to be faster than the SB’s design digital clock frequency, which results in both
designs having similar power despite CeMux having lower area. Finally, the SB design has better
RMSE, especially as input size grows. Based on the data presented in Table 2, we conclude that
CeMux, a mux-based SC adder, has the potential of being a lower-cost alternative to conventional
binary designs. Besides being smaller, SC designs also offer greater fault tolerance [7], which is
one avenue for future exploration with CeMux.

6 CONCLUSION

As a closing, example, we compare the performance of all SC filter designs considered here in the
case of a noisy ECG signal filtered by anM = 100 tap filter with precision n set to 10. As Figure 16
shows, the CeMux-based filters produce the smoothest, most noise-free curves, another reflection
of CeMux’s superior accuracy. In general, we have seen that CeMux is the best SC design developed
so far for large weighted-adder networks in terms of both accuracy and accuracy-area trade-offs.
These properties result from two key design features: full correlation and precise sampling, both
of which exploit correlation in new ways to reduce errors in stochastic signals. CeMux can thus
be considered a major step towards practical implementation of many-input, compact adders for
a variety of SC applications.

APPENDICES

Here, we derive analytic expressions for mux adder variance and various adder configurations
using the Bernoulli and hypergeometric SN models. Expressions derived with the hypergeometric
SN model match the simulated variance of circuits that employ LFSR SNGs but overestimate the
variance of CeMux when a low discrepancy random number source is used.
In the following derivations, a bipolar SN’s bits are defined to take values {−1, 1} rather than
{0, 1}, where −1 acts as logical 0. Consequently, an N-bit bipolar SN X’s estimated value becomes
1
N

∑N
i=1Xi and the expected value of a bit E[Xi] becomes μXi

both of which match the unipolar
case. Ultimately, changing the definition of bipolar bits allows some of the following expressions to
simultaneously apply to both unipolar and bipolar SNs. The analysis also assumes that the bits of
all input SNs are identically distributed, which is the case in both the Bernoulli and hypergeometric
SN models. It is helpful to note that the expectation operation, E[·], is linear.

A.1 Mux Variance Decomposition

Consider a mux tree with M data input SNs, X1X2. . .X M that have values μX1 , μX2 , . . . , μXM
and

length N . The mux tree has a select input S, which is a stream of identically distributed random
words. S’s value S j determines which data input is selected during clock cycle j. Let |w̃i | be the
probability that Xi is sampled during any given clock cycle. Let the output of the mux tree be
SN Z = [Z1,Z2, . . . ,ZN]

T ,whose estimated value is μ̂Z =
1
N

∑N
i=1 Zi . The variance of the mux tree

output estimator is

Var (μ̂Z) = E
[
(μ̂Z − E [μ̂Z])

2
]
. (16)

LetCi be a random variable representing the number of times that Xi is sampled by the mux tree.
First, it can be shown that since the input SN bits are identically distributed, the output SN’s value

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

27:22 T. J. Baker and J. P. Hayes

can expressed as follows.

μ̂Z =
1

N

N∑
i=1

Zi =
1

N

M∑
i=1

Ci∑
j=1

Xi, j , (17)

where Xi, j represents Xi’s bit when it is sampled for the jth time rather than Xi’s j
th bit.

E [μ̂Z] =
1

N

M∑
i=1

E

⎡⎢⎢⎢⎢⎢⎣
Ci∑
j=1

Xi, j

⎤⎥⎥⎥⎥⎥⎦
(18)

Because Ci is a random variable, E[
∑Ci

j=1Xi, j] is a random sum of random variables, which eval-

uates to E[Ci]E[Xi, j]. Further, since Ci is the number of times that Xi is sampled and |w̃i | is the
probability that Xi is sampled during any given clock cycle, we have that E[Ci] = |w̃i |N . Putting
these notions together yields

E

⎡⎢⎢⎢⎢⎢⎣
Ci∑
j=1

Xi, j

⎤⎥⎥⎥⎥⎥⎦
= E [Ci]E

[
Xi, j

]
= |w̃i | NμXi

. (19)

Thus, Equation (18) becomes

E [μ̂Z] =
M∑
i=1

|w̃i | μXi
. (20)

In other words, we have that the mux’s expected output value is a weighted sum of its input
values, which is the usual expression. The output variance (Equation (16)) can then be rewritten
using Equations (17) and (20):

Var (μ̂Z) = E

⎡⎢⎢⎢⎢⎢⎣
��
�
1

N

M∑
i=1

Ci∑
j=1

Xi, j −
M∑
i=1

|w̃i | μXi

��
�
2⎤⎥⎥⎥⎥⎥⎦
. (21)

Now, define ϵi =
1
N

Ci∑
j=1

Xi, j − |w̃i |μXi
. Then,

Var (μ̂Z) = E

⎡⎢⎢⎢⎢⎢⎣
�
�
M∑
i=1

ϵi��
2⎤⎥⎥⎥⎥⎥⎦
= E

⎡⎢⎢⎢⎢⎢⎣
M∑
i=1

M∑
j=1

ϵiϵj

⎤⎥⎥⎥⎥⎥⎦
(22)

Var (μ̂Z) =
M∑
i=1

E
[
ϵ2i
]
+

M∑
i=1

M∑
j =1
j � i

E
[
ϵiϵj

]
. (23)

First, re-express E[ϵ2i] in Equation (23):

E
[
ϵ2i
]
= E

⎡⎢⎢⎢⎢⎢⎣
��
�
1

N

Ci∑
j=1

Xi, j − |w̃i | μXi

��
�
2⎤⎥⎥⎥⎥⎥⎦
. (24)

Noting Equation (19) and the definition of variance, we have that

E
[
ϵ2i
]
=

1

N 2
Var

��
�
Ci∑
j=1

Xi, j
��
� . (25)

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

Maximizing the Accuracy of Stochastic Mux Adders and an Application to Filter Design 27:23

SinceCi is random,
∑Ci

j=1Xi, j is again a random sum of random variables. Since the Xi, js are iden-

tically distributed and independent of Ci , it can be shown that Equation (25) becomes

E
[
ϵ2i
]
=

1

N 2

��
�Var

��
�
E[Ci]∑
j=1

Xi, j
��
� + Var (Ci)E

[
Xi, jXi,k

]��
� . (26)

Next, re-express E[ϵiϵj] in Equation (23):

E
[
ϵiϵj

]
= E

⎡⎢⎢⎢⎢⎢⎣
�
�
1

N

Ci∑
k=1

Xi,k − |w̃i | μXi
�
�
��
�
1

N

Cj∑
l=1

X j,l − ���w̃ j
��� μX j

��
�
⎤⎥⎥⎥⎥⎥⎦
. (27)

Expanding Equation (27) yields

E
[
ϵiϵj

]
= E

⎡⎢⎢⎢⎢⎢⎣
1

N 2

Ci∑
k=1

Xi,k

Cj∑
l=1

X j,l −
���w̃ j

��� μX j

N

Ci∑
k=1

Xi,k −
|w̃i | μXi

N

Cj∑
l=1

X j,l + |w̃i | μXi

���w̃ j
��� μX j

⎤⎥⎥⎥⎥⎥⎦
.

(28)
Using Equation (19) with Equation (28) yields,

E
[
ϵiϵj

]
=

1

N 2
E

⎡⎢⎢⎢⎢⎢⎣
Ci∑
k=1

Cj∑
l=1

Xi,kX j,l − N2 |w̃i | μXi

���w̃ j
��� μX j

⎤⎥⎥⎥⎥⎥⎦
. (29)

Noting
∑Ci

k=1

∑Ci
l=1

Xi,kX j,l is a random sum of random variables, E[Ci] = |w̃i |N and E[Xi, j] = μXi

E
[
ϵiϵj

]
=

1

N2

[
E
[
CiCj

]
E
[
Xi,kX j,l

]
− E [Ci]E

[
Cj

]
E
[
Xi,k
]
E
[
X j,l

]]
. (30)

Noting the definition of covariance for two random variables A and B, Cov(A,B) = E[AB] −
E[A]E[B]

E
[
ϵiϵj

]
=

1

N2

[
Cov
(
Ci ,Cj

)
E
[
Xi,kX j,l

]
+ E [Ci]E

[
Cj

]
Cov
(
Xi .k ,X j,l

)]
. (31)

Putting Equations (23), (26), and (31) together yields

Var (μ̂Z) =
1

N 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M∑
i=1

Var
��
�
E[Ci]∑
j=1

Xi, j
��
� +

M∑
i=1

Var (Ci)E
[
Xi, jXi,k

]

+

M∑
i=1

M∑
j =1
j � i

[Cov(Ci ,Cj)E[Xi,kX j,l] + E[Ci]E[Cj]Cov(Xi .k ,X j,l)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For a random variable A, Var(A) = Cov(A,A); hence, the second summation∑M
i=1 Var(Ci)E[Xi, jXi,k] and first term in the final double summation can be combined:

Var (μ̂Z) =
1

N 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M∑
i=1

Var
��
�
E[Ci]∑
j=1

Xi, j
��
� +

M∑
i=1

M∑
j=1

Cov
(
Ci , Cj

)
E

[
Xi,kX j,l

]
+

M∑
i=1

M∑
j =1
j � i

E [Ci]E
[
Cj

]
Cov
(
Xi .k , X j,l

)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(32)

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

27:24 T. J. Baker and J. P. Hayes

Table 3. Derived Variances for Bipolar Mux Adders

Input SN Model Sampling
Method

Input SCC
Level

Derived Output Variance

Bernoulli Noisy Any
1−(∑Mi=1 w̃i μXi)

2

N

Bernoulli Precise Any
1−∑Mi=1 |w̃i |μ2Xi

N

Hypergeometric Noisy 0
1−(∑Mi=1 w̃i μXi)

2−∑Mi=1 w̃2
i (1−μ2Xi)

N

Hypergeometric Noisy 1

∑M
i=1

∑i−1
j=1 |w̃i | |w̃ j |(s(j)μX (j)

−s(i)μX (i)
)

N

Hypergeometric Precise 0

∑M
i=1 |w̃i |(1−|w̃i |)(1−μ2Xi)

N−1

Hypergeometric Precise 1

∑M
i=1

∑i−1
j=1 |w̃i | |w̃ j |(s (j)μX (j)

−s (i)μX (i)
) (1−(s (j)μX (j)

−s (i)μX (i)
))

N−1

Define

ϵnoise =
1

N2

M∑
i=1

Var
��
�
E[Ci]∑
j=1

Xi, j
��
� (33)

ϵsamp =
1

N2

M∑
i=1

M∑
j=1

Cov
(
Ci ,Cj

)
E
[
Xi,kX j,l

]
(34)

ϵcorr =
1

N2

M∑
i=1

M∑
j =1
j � i

E [Ci]E
[
Cj

]
Cov
(
Xi .k ,X j,l

)
, (35)

where Ci is the number of times Xi is sampled and Xi,k is the k-th sampled bit of Xi (not the k-th
bit ofXi). This redefinition ofXi,k is permitted because both the Bernoulli and hypergeometric SN
models assume that bits are identically distributed. Note that we defined that P (Xi is sampled) =
|w̃i |. Equations (33−35) apply to both the unipolar SN and bipolar SN cases. However, in the bipolar
SN case, the bits take value {−1, 1} instead of {0, 1}, where −1 acts as logical 0. Finally, if an XNOR
array is used before the mux tree, as in Figure 4, Equations (33−35) still apply, but Xi, j is redefined
to be sign(wi)Xi, j , where sign(wi) = 1 ifwi ≥ 0 and sign(wi) = −1 otherwise.
ϵnoise (Equation (33)) depends only on the variance of the input SNs, which is determined by

the SN model (i.e., Bernoulli or hypergeometric). ϵsamp (Equation (34)) depends mainly on the
covariance of the number of times each input is sampled, which is determined by the sampling
method (noisy or precise). ϵcorr (Equation (35)) is a function of the covariance between sampled
bits of two input SNs, which depends on the SN model and on the SCC between input SNs. In all,
we have that

Var
(
μ̂Zi
)
= ϵnoise + ϵsamp + ϵcorr (36)

A.2 Expressions for Variance Components

In Table 3, we list expressions for Var(μ̂Zi) when the mux tree has bipolar inputs and when an
XNOR array is used before the mux tree. To derive such expressions, ϵnoise , ϵsamp , and ϵcorr are
re-expressed according to which SNmodel (Bernoulli or hypergeometric), sampling method (noisy
or precise) and input correlation level (SCC = 0 or SCC = +1) is used. Then, ϵnoise , ϵsamp , and
ϵcorr are summed together. For precise sampling, we assume that |w̃i |N is an integer, which is

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

Maximizing the Accuracy of Stochastic Mux Adders and an Application to Filter Design 27:25

always the case if N is a power of 2 and a hardwired mux tree is used. Input correlation of SCC =
0 means that the pairwise SCC between all mux tree inputs is 0 and input correlation SCC = +1
means that the pairwise SCC between all mux tree inputs is +1 (as is the case when full correlation
is achieved). Note that these derived equations were experimentally validated by simulating the
stochastic circuits to which they correspond.
Finally, for the SCC +1 case, it is helpful to define the order statistics [30] of the mux tree input.

Let si = sign(wi) and let A = {s0μX0 , s1μX1 , . . . , sM μXM
} be the values of the SN inputs to the mux

tree. Then, s (i)μX (i)
is defined to be the i-th order statistic ofA. For instance, s (0)μX (0)

is theminimum
element in A, s (M)μX (M)

is the maximum element in A and, in general, s (i)μX (i)
is the i-th largest

element in A.
Of the six equations presented in Table 3, only the first corresponding to the Bernoulli model

with noisy sampling has appeared in SC literature before [7, 23]. Inspecting the equations in Table 3
reveals that switching from Bernoulli to hypergeometric input SNs decreases variance except in
atypical cases, such as when all SNs have value +1, all have value −1 in the bipolar case, or all
have value 0 in the unipolar case. In those cases, variance stays the same when switching from
Bernoulli to hypergeometric SNs. Likewise, both switching from noisy to precise sampling and
switching from input SCC level 0 to level +1 decreases variance except in atypical cases in which
variance stays the same. Thus, according to the hypergeometric and Bernoulli SN models, using
precise sampling and achieving full correlation are always beneficial.
Interestingly, when full correlation (SCC level +1) is achieved for hypergeometric SNs, the vari-

ance is a function of the difference between input SN values rather than a function of the input
SN values themselves as in other cases. This implies that if the input SN values are similar, the
variance is smaller. Indeed, in the example of Figure 8(b), the input SNs all have the same value
and variance in that case is zero.

REFERENCES

[1] T. J. Baker and J. P. Hayes. 2020. The hypergeometric distribution as a more accurate model for stochastic computing.

In Proceedings Design, Automation & Test in Europe Conference and Exhibition (DATE’20), March 9 – 13, 2020, Grenoble,

France. IEEE, 592–597.

[2] T. J. Baker and J. P. Hayes. 2020. Bayesian accuracy analysis of stochastic circuits. In Proceedings IEEE/ACM Interna-

tional Conference on Computer Aided Design (ICCAD’20), November 2 – 5, 2020, San Diego, CA, USA. IEEE, 1–9.

[3] B. R. Gaines. 1969. Stochastic computing systems. Advances in Information Systems Science 2 (1969), 37–172.

[4] H. Ichihara, T. Sugino, S. Ishii, T. Iwagaki, and T. Inoue. 2019. Compact and accurate digital filters based on stochastic

computing. In IEEE Trans. ETC 7 (2019), 31-43.

[5] Y. Chang and K. K. Parhi. 2013. Architectures for digital filters using stochastic computing. In Proceedings IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP’13), May 26 – 31, 2013, Vancouver, BC, Canada.

IEEE, 2697–2701.

[6] K. Zhong, M. Yang, and W. Qian. 2018. Optimizing stochastic computing-based FIR filters. In Proceedings IEEE 23rd

International Conference on Digital Signal Processing (DSP’18), November 19 – 21, 2018, Shanghai, China. IEEE, 1–5.

[7] R. Wang, J. Han, B. Cockburn, and D. Elliott. 2016. Design, evaluation and fault-tolerance analysis of stochastic FIR

filters. Microelectron. Reliability 57 (2016), 111–127.

[8] A. Alaghi, Cheng Li, and J. P. Hayes. 2013. Stochastic circuits for real-time image-processing applications. In Pro-

ceedings ACM/EDAC/IEEE Design Automation Conference (DAC’13), May 29 – June 7, 2013, Austin, TX, USA. IEEE ,

1–6.

[9] M. H. Najafi, D. J. Lilja, and M. Riedel. 2018. Deterministic methods for stochastic computing using low-discrepancy

sequences. In Proceedings IEEE/ACM International Conference on Computer-Aided Design (ICCAD’18), November 5 –

8, 2018, San Diego, CA, USA. IEEE, 1–8.

[10] M. M. Wong, D. Wong, C. Zhang, and I. Hijazin. 2017. Stochastic inner product core for digital FIR filters. WSEAS

Trans. Systems and Control 12 (2017), 246–252.

[11] B. Moons and M. Verhelst. 2014. Energy and accuracy in multi-stage stochastic computing. In Proceedings IEEE 12th

International New Circuits and Systems Conference (NEWCAS’14), June 22 – 25, 2014, Trois-Rivieres, QC, Canada. IEEE,

197–200.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

27:26 T. J. Baker and J. P. Hayes

[12] G. B. Moody, W. E. Muldrow, and R. G. Mark. 1984. A noise stress test for arrhythmia detectors. Computers in Cardi-

ology 1 (1984), 381–384.

[13] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K.

Peng, and H. E. Stanley. 2000. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource

for complex physiologic signals. Circulation 101 (2000), e215–e220.

[14] A. Alaghi and J. P. Hayes. 2013. Exploiting correlation in stochastic circuit design. In Proceedings IEEE 31st Interna-

tional Conference on Computer Design (ICCD’13), October 6 – 9, 2013, Asheville, NC, USA. IEEE, 39–46.

[15] D. E. Knuth and A. C. Yao. 1976. The complexity of nonuniform random number Generation. In Algorithms and

Complexity: New Directions and Recent Results, Joseph F. Traub (Ed.). Academic Press, Inc., Orlando, FL, 357–428.

[16] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja. 2011. An architecture for fault-tolerant computation with

stochastic logic. IEEE Trans. Computers 60 (2011), 93–105.

[17] Z. Li et al. 2019. HEIF: Highly efficient stochastic computing-based inference framework for deep neural networks.

IEEE Trans. CAD 38 (2019), 1543–1556.

[18] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi. 2016. Dynamic energy-accuracy trade-off using stochastic computing

in deep neural networks. In Proceedings 53nd ACM/EDAC/IEEE Design Automation Conference (DAC’16), June 5 – 9,

2016, Austin, TX, USA. 1–6.

[19] S. R. Faraji, M. Hassan Najafi, B. Li, D. J. Lilja, and K. Bazargan. 2019. Energy-efficient convolutional neural networks

with deterministic bit-stream processing. In Proceedings Design, Automation & Test in Europe Conference & Exhibition

(DATE’19), March 25 – 29, 2019, Florence, Italy. IEEE, 1757–1762.

[20] G. M. Friesen, T. C. Jannett, M. A. Jadallah, S. L. Yates, S. R. Quint, and H. T. Nagle. 1990. A comparison of the noise

sensitivity of nine QRS detection algorithms. IEEE Trans. Bio. Eng. 37 (1990), 85–98.

[21] P. K. Gupta and R. Kumaresan. 1988. Binary multiplication with PN sequences. IEEE Trans. ASSP 36 (1988), 603–606.

[22] T. Chen and J. P. Hayes. 2014. Analyzing and controlling accuracy in stochastic circuits. In Proceedings IEEE 32nd

International Conference on Computer Design (ICCD’14), October 19 – 22, 2014, Seoul, South Korea. IEEE, 367–373.

[23] F. Neugebauer, I. Polian, and J. P. Hayes. 2017. Framework for quantifying andmanaging accuracy in stochastic circuit

design. In Proceedings Design, Automation & Test in Europe Conference & Exhibition (DATE’17), March 27 – 31, 2017,

Lausanne, Switzerland. IEEE, 1–6.

[24] C. Ma, S. Zhong and H. Dang. 2012. Understanding variance propagation in stochastic computing systems. In Pro-

ceedings IEEE 30th International Conference on Computer Design (ICCD’12), September 30 – October 3, 2012, Montreal,

QC, Canada. IEEE, 213–218.

[25] P. Ting and J. P. Hayes. 2014. Stochastic logic realization of matrix operations. In Proceedings 17th Euromicro Confer-

ence on Digital System Design (DSD’14), August 27 – 29, 2014, Verona, Italy. IEEE, 356–364.

[26] D. Jingwei and J. Wenwen. 2015. Design of digital filter on ECG signal processing. In Proceedings 5th International

Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC’15), September 18 –

20, 2015, Qinhuangdao, China. IEEE, 1272–1275.

[27] Y. Yuehong, Y. Zeng, X. Chen, and Y. Fan. 2016. The internet of things in healthcare: An overview. In Journal of

Industrial Information Integration 1, 3–13.

[28] A. Alaghi and J. P. Hayes. 2014. Fast and accurate computation using stochastic circuits. In Proceedings Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE’14), March 24 – 28, 2014, Dresden, Germany. IEEE, 1–4.

[29] S. Liu and J. Han. 2018. Toward energy-efficient stochastic circuits using parallel Sobol sequences. IEEE Trans. VLSI

26, 7, 1326–1339.

[30] H. A. David and H. N. Nagaraja. Order Statistics (3rd ed.). John Wiley & Sons, Inc., 2003.

[31] K. Chong et al. 2006. A 16-channel low-power nonuniform spaced filter bank core for digital hearing aids. IEEE Trans.

Circuits & Systems II 53 (2006), 853–857.

[32] S. Asgari and A. Mehrnia. 2017. A novel low-complexity digital filter design for wearable ECG devices. PLOS ONE 12

4, (2017).

[33] T. J. Baker, Y. Sun, and J. P. Hayes. 2021. Benefits of stochastic computing in hearing aid filterbank design. In Pro-

ceedings IEEE Biomedical Circuits and Systems Conference (BioCAS’21), October 7 – 9, 2021, Berlin, Germany. IEEE,

1–5.

Received March 2021; revised July 2021; accepted September 2021

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 27. Pub. date: January 2022.

