IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 3, NO. 1, MARCH 2022 147

Coded Shotgun Sequencing

Aditya Narayan Ravi™, Alireza Vahid™, Senior Member, IEEE, and Ilan Shomorony, Member, IEEE

Abstract—Most DNA sequencing technologies are based on the
shotgun paradigm: many short reads are obtained from random
unknown locations in the DNA sequence. A fundamental ques-
tion, studied in Motahari ef al., (2013), is what read length and
coverage depth (i.e., the total number of reads) are needed to
guarantee reliable sequence reconstruction. Motivated by DNA-
based storage, we study the coded version of this problem; i.e.,
the scenario where the DNA molecule being sequenced is a code-
word from a predefined codebook. Our main result is an exact
characterization of the capacity of the resulting shotgun sequenc-
ing channel as a function of the read length and coverage depth.
In particular, our results imply that, while in the uncoded case,
O(n) reads of length greater than 2logn are needed for reliable
reconstruction of a length-n binary sequence, in the coded case,
only O(n/logn) reads of length greater than logn are needed for
the capacity to be arbitrarily close to 1.

Index Terms—Shotgun sequencing, DNA storage, channel
capacity, data storage, DNA sequencing.

I. INTRODUCTION

VER the last decade, advances in DNA sequencing tech-

nologies have driven down the time and cost of acquiring
biological data tremendously. At the heart of this sequencing
revolution was the development of high-throughput shotgun
sequencing platforms. Rather than attempting to read a long
DNA molecule from beginning to end, these platforms extract
a large number of short reads from random locations of the
target DNA sequence (e.g., the genome of an organism), in a
massively parallel fashion. Sequencing must then be followed
by an assembly step, where the reads are merged together
based on regions of overlap with the intention of reconstructing
the original DNA sequence.

In the context of this shotgun sequencing pipeline, it is
natural to ask when it is possible, from an information-
theoretic standpoint, to reconstruct a sequence from a random
set of its substrings. More precisely, suppose we observe K
random reads (i.e., substrings) of length L from an unknown
length-n sequence x". What conditions on x", K and L guar-
antee that x* can be reliably reconstructed from the observed

Manuscript received September 15, 2021; revised January 23, 2022;
accepted February 7, 2022. Date of publication February 17, 2022; date of
current version April 12, 2022. The work of Aditya Narayan Ravi and Ilan
Shomorony was supported in part by the NSF under Grant CCF-2007597, and
in part by the NSF CAREER Award under Grant CCF-2046991. The work of
Alireza Vahid was supported in part by the NSF under Grant ECCS-2030285
and Grant CNS-2106692. (Corresponding author: Aditya Narayan Ravi.)

Aditya Narayan Ravi and Ilan Shomorony are with the Electrical
and Computer Engineering Department, University of Illinois at Urbana—
Champaign, Champaign, IL 61801 USA (e-mail: anravi2@illinois.edu;
ilans @illinois.edu).

Alireza Vahid is with the
University of Colorado Denver,
alireza.vahid @ucdenver.edu).

Digital Object Identifier 10.1109/JSAIT.2022.3151737

Electrical
Denver,

Engineering Department,
CO 80204 USA (e-mail:

- mE m e m -

el e e e e
1

Fig. 1. The blue region describes a feasible region where the normalized read
length L and the number of reads K satisfies conditions needed for perfect
sequence reconstruction in the uncoded setting [1]. In the coded setting studied
in this paper, the requirements for the capacity to be 1 are significantly less
stringent: L > 1 and K growing faster than n/logn suffices.

reads? This problem was first studied from an information-
theoretic point of view by Motahari et al. [1]. The authors
considered the asymptotic regime where n — oo and L
scales as

L = Llogn, (1)

for a constant L. They also defined ¢ = % to be the coverage
depth; i.e., the average number of times each symbol in x" is
sequenced. This appropriate scaling of the read length allowed
the authors of [1] to show a surprising critical phenomenon: if
x" is an i.i.d. Ber(1/2) sequence, when L < 2, reconstruction
is impossible for any coverage depth c, but if L > 2, recon-
struction is possible as long as the coverage depth is at least
the Lander-Waterman coverage crw = In(n/€).

The Lander-Waterman coverage [2] is the minimum cover-
age needed to guarantee that all symbols in x"* are sequenced
at least once with probability 1 — €. The result in [1] estab-
lished a feasibility region for the shotgun sequencing problem,
illustrated in blue in Figure 1. Notice that the number of reads
required is linear in n since

n n (E) _ nlin(n/e)

K=—--cw=-In = = O(m).
L € Llogn =)

L
One key aspect about the framework studied in [1] is that the
sequence x" is chosen “by nature” (which can be modeled
as a random process as in [1] or as an unknown deter-
ministic sequence as later done in [3], [4]). However, in
recent years, significant advances in DNA synthesis tech-
nologies have enabled the idea of storing data in DNA,
and several groups demonstrated working DNA-based storage
systems [S]-[11]. In these systems, information was encoded
into DNA molecules via state-of-the-art synthesis techniques,
and later retrieved via sequencing. This emerging technology
motivates the following question: How do the fundamental

2641-8770 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on May 04,2022 at 14:56:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8841-7956
https://orcid.org/0000-0002-5079-4617

148 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 3, NO. 1, MARCH 2022

(@ w () w

w

C=(1-e°(1-1/L)

_ ge1-1/I)

Fig. 2. Comparison between the (a) Shotgun Sequencing Channel (SSC) and
the (b) Shuffling-Sampling channel from [12] and the corresponding capacity
expressions. The input to the SSC is a single (binary) string x" and the output
are K random substrings of length L. In the Shuffling-Sampling channel, the
input are M strings of length L, which are sampled with replacement to pro-
duce the channel output. Both capacity expressions can be written in terms
of the expected coverage depth ¢ and the normalized read length L.

limits of shotgun sequencing from [1] change in the coded
setting where x" is chosen from a codebook?

Motivated by this question, in this paper we introduce
the Shotgun Sequencing Channel (SSC). As illustrated in
Figure 2(a), the channel input is a (binary) length-n sequence
x", and the channel output are K random reads of length L
from x". Each read is assumed to be drawn independently and
uniformly at random from x" and we consider the read length
scaling in (1). Notice that this is essentially the same setup as
in [1], except that the “genome” x" is chosen from a codebook
rather than decided by nature. Our goal is to characterize the
capacity of this channel.

In order to build intuition it is worth considering the related
setting of the shuffling-sampling channel [12], illustrated in
Figure 2(b). In this case the input are M strings of length L,
and the output are K strings, each chosen uniformly at random
from the set of input strings. If we define the coverage depth
for this setting as ¢ = A% = K/M, the result in [12] implies
that, for L > 1, the capacity of this channel is

Csmut = (1= e™€)(1 = 1/L),)

and Cgyur = 0 for L < 1. The term (1 — ™€) captures the loss
due to unseen input strings and (1 —1/L) captures the loss due
to the unordered nature of the output strings (which becomes
more severe the shorter the strings are).

Intuitively, the capacity of the SSC should depend on ¢ and
L in a similar way as in (2). The expected fraction of symbols
in x" that are read at least once can be shown to be 1 — e™¢,
which provides an upper bound to the capacity of the SSC.
But it is not clear a priori which of the channels in Figure 2
should have the larger capacity. Our main result establishes
that, for L > 1, the capacity of the SSC is given by

Cssc = 1 —) 3)

Notice that the dependence on L appears as the term (1 —1/L)
in the exponent and, as ¢ — 0o, Cssc — 1 for any L>1.
This is in contrast to the shuffling-sampling channel, where
Csnuf — 1—1/L as we increase the coverage depth ¢ to infinity.
Therefore, even in the high coverage depth regime, if L ~ 1,
Cshuf = 0. Furthermore, it can be verified that Cgpyr < Cssc
for any ¢ and L, establishing the advantage (from a capacity

standpoint) of storing data on a long molecule of DNA as
opposed to on many short molecules.

The above result also allows for an interesting compari-
son with the uncoded setting (i.e., the genome sequencing
problem) of [1]. When we allow coding over the string, the
critical threshold on the read length reduces to L > 1, com-
pared to L > 2 for the uncoded setting. Moreover, in the SSC
it is possible to achieve a capacity close to 1 by having the
coverage depth be a large constant, while in the uncoded case
the ¢ needs to grow as logn.

Background and Related Work: The first prototypes of DNA
storage systems were presented in 2012 and 2013, when
groups lead by Church et al [5] and Goldman et al [6]
independently stored about a megabyte of data in DNA. In
2015, Grass et al. [7] demonstrated that millenia long storage
times are possible by protecting the data using error-correcting
codes. Yazdi et al. [8] showed how to selectively access parts
of the stored data, and in 2017, Erlich and Zielinski [9]
demonstrated that practical DNA storage can achieve very high
information densities. In 2018, Organick et al. [10] scaled up
these techniques and stored about 200 megabytes of data. We
point out that, in all of these prototypes, data is stored on
many short DNA molecules, as opposed to storing it in a sin-
gle very-long DNA molecule. This is because synthesizing
long strands of DNA is prohibitively expensive with current
technology. Hence, this work seeks to answer what storage
rates could be achieved if we were able to synthesize long
DNA molecules at reasonable costs.

The prospect of practical DNA-based storage has motivated
a significant amount of research into its theoretical underpin-
nings. The idea of coding over a set of strings that are shuffled
and sampled was studied in several settings [12]-[18]. Many
works have focused on developing explicit codes tailored to
specific aspects of DNA storage. These include DNA synthe-
sis constraints such as sequence composition [8], [9], [19], the
asymmetric nature of the DNA sequencing error channel [20],
the need for codes that correct insertion errors [21], and the
need for techniques to allow random access [8].

The problem of reconstructing a string from a set of its
subsequences has also been considered in various settings.
Several works studied the problem of genome sequenc-
ing and assembly from an information-theoretic standpoint
[1], [3], [4], [22]. The trace reconstruction problem is another
related setting where one observes (non-contiguous) subse-
quences of the input sequence and attempt to reconstruct
it [23]-[25].

A very relevant related setting is the problem of reconstruct-
ing a string from its substring spectrum [26], [27]. Our setting
is similar to this problem in two ways: (i) that both prob-
lems look at trying to reconstruct strings from substrings of
fixed lengths, in general with overlaps, and (ii) the string is
chosen from a codebook. However, these works have focused
on the setting where a noisy substring spectrum (the multi-
set of all substrings) is available, while we consider that a
fixed number of reads (or substrings) are extracted from ran-
dom locations. Moreover, these works proposed explicit code
constructions, while we focus on the problem of capacity
characterization.

Authorized licensed use limited to: University of lllinois. Downloaded on May 04,2022 at 14:56:02 UTC from IEEE Xplore. Restrictions apply.

RAVI et al.: CODED SHOTGUN SEQUENCING

II. PROBLEM SETTING

We consider the Shotgun Sequencing Channel (SSC), shown
in Figure 2(a). The transmitter sends a length-n binary string
X" e {0,1}", corresponding to a message W e [1 : 2"K].
The channel output is a set of length-L binary strings). The
channel chooses K starting points uniformly at random, rep-
resented by the random vector TX € [1 : n]X. The vector TK
is assumed to be sorted in a non-decreasing order. Length-L
reads are then sampled with 7;, i = 1,..., K as their start-
ing points. We allow the reads to “wrap around” X"; i.e., if
for any i, T; + L > n, we concatenate bits from the start of
X" to form length-L reads. For example if 7; = n — 2 and
L = 5, then the read Y associated with this starting loca-
tion is ¥ = [Xn—2, Xu—1, Xy, X1, X2]. Notice that the channel
effectively treats the codeword as circular, equivalent to the
circular DNA model considered in [1]. The unordered multi-
set) = {171, 172, R 171(} of reads resulting from this sampling
process is the channel output.

The expected number of times a symbol from X" is
sequenced is defined as the coverage depth c, given by

KL
c=—.
n

We focus on the regime where the length of the reads
sampled is much smaller than the block length n. In partic-
ular, as shown in previous works [12], [28]-[31], the regime
L = ®(logn) is of interest from a capacity standpoint. Hence,
as in [1], we fix a normalized length L and define L := Llogn.
Notice that, in this regime, the total number of reads is

K _cn :®< n >’
Llogn logn

which is a logn factor smaller than what is needed in the
uncoded setting from [1].

We define an achievable rate in the usual way. More
precisely, a (2" n)-code consists of a message set [1 : 27R] an
encoder that assigns codeword x"(W) to a W € [1 : 2"R]and
a decoder that assigns an estimate W(y) € [1: 2"R]. Rate R is
achievable if there exists a sequence of (2"%, n) codes whose
error probability tends to zero as n — oco. The capacity C of
the SSC is the supremum over achievable rates.

Notation: log(-) represents the logarithm in base 2. For func-
tions a(n) and b(n), we say a(n) = o(b(n)) or b(n) = Q2 (a(n))
if a(n)/b(n) — 0 as n — oo. Further, we say that a function
a(n) = O(f(n)) if there exist nyp € N, k1, k> € (0, 00), such
that kif(n) < a(n) < kof(n) Yn > ng. For an event A, we
let 14 be the binary indicator of A. For a set B, |B| indicates
the cardinality of that set and B denotes the complement of
that set.

III. MAIN RESULTS

The DNA storage problem considered here has two impor-
tant properties: (i) the reads in general overlap with each other
and (ii) the set of reads is unordered. Property (i) was explored
in the context of genome sequencing [1]. Intuitively, the over-
laps between the reads allow them to be merged in order to
reconstruct longer substrings of X”. Property (ii) has been ana-
lyzed before in the context of several works on DNA storage.

149

In particular, in the context of the shuffling-sampling channel
from [12], illustrated in Figure 2(b), the input to the channel
is a set of strings of length L, and the capacity is given by
Csut = (1 —e™)(1 = 1/L).

Notice that, in the case of the shuffling-sampling channel,
the output strings have no overlaps (they can only be non-
overlapping or identical). In the context of the SSC, on the
other hand, overlaps can provide useful information to fight
the lack of ordering of the output strings. Our main result
captures the capacity gains achieved by optimally exploiting
the overlaps. Specifically, we characterize the capacity of the
SSC for any coverage depth ¢ and normalized read length L.

Theorem 1: For any ¢ > 0 and L > 0, the capacity of the
Shotgun Sequencing Channel is

C= (1 - e—c(l—l/z))+.)

In order to prove Theorem 1, we consider a random coding
argument and develop a careful decoding algorithm that allows
for a tight analysis of the error probability. For the converse
we use a novel constrained-genie argument, which specifically
tackles property (i).

Notice that the capacity of the SSC given in Theorem 1 is
zero when L < 1. An intuitive reason for this is that when
L < 1, the number of possible distinct length-L sequences
is just 2L1°¢" = »L = o(n/logn) = o(K), and many reads
must be identical. This can be used to show that the decoder
cannot extract any meaningful information from). Section V
discusses this further. When L = 1, this same intuition doesn’t
hold, but as a consequence of the continuity of C, we have
C =0 when L = 1. This is indeed true as seen in Section V.

In order to interpret the capacity expression in (4) notice that
the probability that a given symbol in X" is not sequenced by
any of the K reads is

(A1-L/mX=1-L/nT — ¢¢, (5)

as n — o0o. Hence the expected fraction of symbols in X"
that are covered by at least one read is asymptotically close
to 1 — e, If instead of reads of length L = Llogn we had
reads of length (L — 1) logn, the coverage depth would be

K(L—1)logn _
= (—)g =c(1 - 1/L),
n
and the expected fraction of symbols in X" that would be
sequenced would be 1 — e™¢ = 1 — ¢~ ¢(=1/L) Hence, the

capacity expression in Theorem 1 suggests that, on average,
logn bits from each read are used for ordering information,
while the remaining (L— 1) log n bits provide data information.

It is also interesting to compare the capacity of the SSC
and the capacity of the shuffling-sampling channel Cgy¢ =
(1 —e~©)(1 — 1/L). Note from Figure 3, that Cgpyf is strictly
upper bounded by (4). This shows that given a coverage depth
¢, there are significant gains in terms of capacity to be obtained
if we store data on a long DNA molecules instead of many
short DNA molecules. Moreover if we let the coverage depth
¢ — 00; i.e., allow for a large number of samples, when L>1,
Cohut = 1 — 1/I:, while C — 1. In particular, when reads are
very short and L ~ 1, Cqr ~ 0, while the capacity of the
SSC can be close to 1 for large enough c.

Authorized licensed use limited to: University of lllinois. Downloaded on May 04,2022 at 14:56:02 UTC from IEEE Xplore. Restrictions apply.

150 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 3, NO. 1, MARCH 2022

Lr | |- - - Expected coverage 1 —e™¢
Capacity of shuffling channel (Cinur)
08 | | — Capacity of the SSC (C)
—— Omniscient genie upper bound

0.6 |- - | —— No merge rate analysis
04 i
0.2} i

0 L. L L L L L

0 1 2 3 4 5
coverage depth ¢
. . . —c(1-1)
Fig. 3. Comparison between the capacity of the SSC C =1 —¢ L

with L = 1.5, the capacity of the shuffling channel with fragments of fixed
length L, the maximum rates achieved on the SSC when we allow a genie to
merge the reads and the maximum rate achieved if reads are not merged.

It is also interesting to compare Theorem 1 to the uncoded
setting of genome sequencing studied in [1]. As discussed in
Section I and illustrated in Figure 1, the results in [1] show that
the perfect reconstruction reconstruction (with error asymp-
totically going to 0) of a random (uncoded) string X", can be
done as long as L > 2 and K = @ (n). In contrast, for the cod-
ing setting of the SSC, as long as L > 1 and K = @(@),
we can obtain a positive capacity. Moreover as discussed in
the introduction, since as ¢ — 0o, C = 1 we can claim that if
K = Q(n/logn), then for L > 1, C = 1. This means that cod-
ing allows us to considerably reduce the threshold on sampled
read size (by a factor of half) and the number of samples (by a
factor of nearly 1/logn), while still admitting asymptotically
perfect reconstruction.

The remainder of the paper is organized as follows. In
Sections IV and V, we prove the achievability and converse of
Theorem 1 respectively. We conclude the paper in Section VI.

IV. ACHIEVABILITY

We use a random coding argument to prove the achievability
of Theorem 1. We generate a codebook with 2"% codewords
of length n, independently picking each letter Ber(1/2). Let
the codebook be C = {x1, X2, ..., Xor}. The encoder chooses
the codeword corresponding to the message W e [1 : 2"K],
and sends xy across the Shotgun Sequencing Channel. The
output, Y, is presented to the decoder. For the analysis and
without loss of generality, we assume W = 1.

The optimal decoder looks for a codeword that contains all
the reads in) as substrings. Analyzing the error probability
of this optimal decoder, however, is hard. We therefore aim to
develop a decoding rule that is simple enough to analyze.

A. Analysis Without Exploiting Overlaps

The fact that, in general, there are overlaps between the
reads is an important feature of the output, since they allow
reads to be merged, and this should be taken into account in
the decoding rule. To motivate this, let us first bound the error
probability without exploiting the overlaps for merging reads.

We say that the ith bit of X" is covered if there is a read
with starting position in {i — L+ 1,i — L+ 2,...,i}, where
the indices wrap around X”. We then define the coverage as
® =135 | L bitis covered)-

Lemma 1 (Coverage): For any € > 0, as n — o0,
Pr(|®— (1—¢)| >e(l —e€)) — 0. (6)

The proof of this lemma is presented in Appendix A. Note
that lim,_, o E[®] = 1 — ¢ ¢ as described in (5), and thus,
Lemma 1 guarantees that the coverage & is concentrated
around its expected value. We use this fact to discern how
many bits in a candidate codeword need to match the bits
sampled in the reads.

The decoding rule we consider is as follows: The decoder
looks for the codeword in the codebook that contains all reads
as substrings of that codeword and that for an € > 0, the
coverage of these reads > (1 —¢€)(1—e™°). It declares an error
if more than one such codeword exists. We want to bound the
probability of error £ based on Lemma 1. We define B :=
(1 —€)(1 —e™¢) and follow steps similar to [29] to obtain

Pr(f) = Pr(§|W = 1) < Pr(E|W = 1, ® > B) + Pr(® < B)
@ 1
< 2" x 1K x S +o(1) = 210 KIemn=® (1),

@)

where (a) holds because there are at most nX ways to arrange
the K reads on a codeword and, given an arrangement, at least
nB bits of an incorrect codeword would need to match our
reads to create an error. Since (K logn)/n = ¢/L, in order for
Pr(£) — 0 as n — oo, we would need

R<1—e“—c/L. (8)

The achievable rate obtained from this analysis is plotted in
Figure 3 in magenta. This rate is suboptimal and in fact (above
a critical value of ¢) reduces as the coverage depth increases.
This arises because when we bound the number of ways to
arrange the reads on a length-n codeword by nX, it does not
take into account overlaps between the reads. To be able to
discern higher rates, we need to develop a way to utilize the
fact that, in general, many of the reads overlap with each other.

B. Using Overlaps to Merge Reads

The analysis above indicates the need to merge the
reads before we compare them to candidate codewords.
Unfortunately, merging reads is not a straightforward process
because reads ¥; and 17! may have an overlap even if they do
not correspond to overlapping segments of X". In general, the
merging process will be prone to errors and we need to develop
a decoding algorithm that considers merges in a careful way.

In Section II, we defined the unknown vector TX to be the
ordered starting positions of the reads in). Thus, without
loss of generality we assume that Y; starts at 7;. We define
the successor of)7,- as f’i+1. We assume Y] is the successor of
Yx. Now we need a consistent definition to characterize how
large the overlap of a given read is.

Definition 1 (Overlap Size): The overlap size of a read is
defined as the number of bits the suffix of the read shares with
its successor. It has an overlap size of 0 if no bits are shared
(i.e., if a read and its successor have no overlap).

The above definition implies that the overlap size of 17,- is
(L—(T;41 —T;))™. Notice that some reads might share some of

Authorized licensed use limited to: University of lllinois. Downloaded on May 04,2022 at 14:56:02 UTC from IEEE Xplore. Restrictions apply.

RAVI et al.: CODED SHOTGUN SEQUENCING

their prefix bits with a predecessor read, but we do not consider
this a contribution to the overlap size of that read. Intuitively
speaking, since each bit of X" was generated independently
as a Ber(1/2) random variable, we would expect larger over-
lap sizes to be easily discerned as compared to smaller ones.
Therefore, we would need to know: (a) how many pieces exist
of particular overlap sizes, and (b) given an overlap size, how
“easy” it is to merge a read with its successor.

To handle (a), we define G(y) as a random variable that
counts the number of reads with overlap size y logn, where
yel = {@, @, A Z}. Thus, y is chosen from a finite

set that depends on n. If G(y); =1
G(y) =Y G

To capture (b), given a binary string 7z, we define the random
variable M; as the number of times 7 appears as the prefix of
a read in). Note that the length of Z is in [1 : Llogn]. Let Z
be the set of all binary strings with lengths in [1 : Llogn]. If
we can identify the merges correctly, we are left with a set of
variable-length strings called islands, formally defined next.

Definition 2 (Islands): The set of non-overlapping sub-
strings that are obtained after merging all the reads to their
successors based on positive overlap sizes are called islands.

Let K’ be the number of islands. Then, we have:

Lemma 2 (Number of Islands): For any € > 0, as n — 00,

{)7,- has an overlap size of y logn}’

Pr(|K' — Ke “|> eKe) — 0.)

The proof of this lemma is available in Appendix B. Similar
to the previous lemma, Lemma 2 guarantees that the num-
ber of islands K’ is concentrated around its expectation Ke °.
Lemmas 1 and 2 are used in the later part of the decoding to
look at different arrangements of the non-overlapping islands
and the bits that match these arrangements. However, to use
these results, the decoder would first need to obtain the non-
overlapping islands (the decoder only has the reads currently).
The following lemmas give the decoder some guidelines on
how to construct these islands from the reads.

Lemma 3 (Number of Potential Overlaps): For any € > 0,

Pr U

7eZ:y@)<l—e

Pr U

€2y (@)>1—€

{ ‘Mg — Kn 7@

> eKn_”(z)} — 0 and

{Mg Zne} — 0,

(10)

as n — 0o, where we define y (7) := |z|/logn.

Lemma 3 considers two separate cases for binary strings
based on their length. For strings 7 with length at most (1 —
€)logn, Lemma 3 states that M3 is close to its mean

Kn™"® = en'=7@ /(Llogn).

For strings 7 with length greater than (1 — €) logn, the same
concentration result does not hold, and Lemma 3 simply states
that Mz < n¢ with high probability.

Lemma 4 (Number of Reads of a Given Overlap Size):

Pr(| J{IG) - Gl = G} | — 0
yell

(11)

151

as n — oo, for all € > 0, where G(y) = E[G(y)].

Lemma 4 give us a handle on the expected number of over-
laps of each size, which will be used by the decoder when
trying to construct the islands from the reads. Lemmas 3 and 4
are proved in Appendices C and D.

The decoding procedure starts with a brute-force search over
ways to merge the reads into islands, which we refer to as the
Partition and Merge (PM) algorithm. We will first explain it
in words and follow it by outlining the exact algorithm. First,
the decoder considers all possible partitions of the reads into L
groups, by assigning potential overlap sizes to each read. This
can be done by looking at all ways of assigning a number
in [0 : L] to each of the reads. To make this precise, we can
look at all possible vectors of the form p == (p1, p2, ..., pk) €
[0 : L]X and call them partition vectors. Each element p; of the
vector corresponds to an assigned overlap size of read f/a(,-)
for some permutation o of the elements of). Thus, each
partition vector along with a permutation o can be viewed as
assigning an overlap size to each read. It is easy to see the total
number of such partition vectors (and hence the total possible
partitions) will be P := (L 4+ 1)K,

Rather than considering all P partitions, we will only
consider partitions that satisfy the bounds implied by
Lemmas 1-4. To make this requirement precise, we define
for a partition vector p, G(p, y) to be the number of reads
in) that would have an overlap size of y logn according to
partition vector p, which can be written as

G@.y) = i : pi =y logn}|. (12)
Note that since the number of potential islands is exactly equal
to the number of reads with overlap size zero, the total number
of islands according to p is G(p, 0). Moreover we define ® (p)
as the total coverage of the reads according to p, given by
®(p) == KL — Y X | pi. We then define P as the set of all p
such that (for fixed € > 0):

o |P(P)— (1 —e 9| <e(l—e°) (ie., coverage is close

to expected coverage),

e |G(p,0)—Ke °| < eKe ¢ (i.e., number of islands is close

to expected number of islands),

e |G(@,y)—G(y)| <€G(y) forall y €T (i.e., number of

reads with overlap size y logn is close to its expectation).

Therefore, P restricts the total number of partition vectors to
a smaller set of partition vectors that are admissible according
to Lemmas 1, 2 and 4.

Now, for each partition vector p € P, we take all possible
K! permutations o of the reads. For each permutation, all of
the reads are compared to their successors. If every read can
be successfully merged with its successor with the assigned
overlap size, we retain the set of substrings formed after these
merges as a Candidate Island set, and add it to the set CIL.
Notice that CI is a set of sets of variable-length strings. This
procedure is summarized in Figure 4 and Algorithm 1. After
completion of Algorithm 1, the decoder checks, for each set
of candidate islands in CI, whether there exists a codeword
that contains all the candidate islands as substrings. If only
one such codeword is found, the decoder outputs its index.
Otherwise, an error is declared.

Authorized licensed use limited to: University of lllinois. Downloaded on May 04,2022 at 14:56:02 UTC from IEEE Xplore. Restrictions apply.

152 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 3, NO. 1, MARCH 2022

"= [o]1JoJoJ1JtJo1oo 1]

y={[eTe] [[To] [
1

2

o[0] [o]oT1]}
3 4

F=10,2,2,0] L 5=12020 L F=12,0,1,0
o=1[2,1,3,4] o= 103.2,41] o=11,3,2,4]
[o]1To §|10-5- [ooT1 { [o]1]o [oT1To
[oT1T0] 1]0])o of 1]io] 01o|§ 1Jo]o] oJo]1]
v BRI TTx v

N\ /
CI:{{|0|1|0||o|1|0|0|1|},{|0|1|0|0| of1]oJo 1}}

Fig. 4. The decoder receives the shotgun sequenced reads) and performs
the Partition and Merge procedure. For each partition p € [0 : L1K of the K
reads according to overlap size, and each ordering of the reads o, the decoder
attempts to merge the reads into islands based on o and p. The figure shows
this procedure for three choices of p (out of (1 + L)K) and three choices of
o (out of K!). If the merging of all reads is successful for some p and o, the
set of resulting islands is added to the set CIL.

Algorithm 1: Partition and Merge

for each partition vector p € P do
for each permutation o of [1 : K] do
check if suffix of length p; of f’g(,') matches
prefix of 17(,(,41), fori=1,...,K
if prefix and suffix match for i =1, ..., K then
Merge reads according to overlaps
Add set of resulting islands to CI

return CI

Let the event that the decoder makes an error be £. An
error occurs if more than one codeword contains any of the
CI sets as substrings. We define By = (1 4+ €)Ke™ ¢, By =
A—e1 —e), By(y) = (1+en'7 fory < 1—e¢,
Bs(y) =nf fory > 1—¢€ and B4(y) = (1 +e)G(y), and we
define the corresponding undesired events as

Bi={K'>Bi}. By={®<B)}
By = U {M; > B3(y@)}, Ba= U{G(y) > B4(y)}.
zeZ yel

From Lemmas 1, 2, 3 and 4, if we let

B=BUBy,UB3U By, (13)

we have Pr(B8) — 0. Note that conditioned on B, we are
guaranteed that the CI set outputs the true island set. This
is because exactly one partition and one arrangement given
that partition correspond to the true order in which the reads
were sampled. Before we use this to bound the probability of
error, notice that the error event depends on the total number
of CI sets output by the PM algorithm. In general, this is not
a deterministic value. We will define CI, as an upper bound
on the number of CI sets conditioned on B. We claim that
conditioned on B, after the PM algorithm, the resulting CI
(which is a set of sets of binary strings) satisfies

Icli <P x [] B x [] n®" =Cl,. 4

y<l—e y>1—¢

To see this, first we notice that |P| < P. According to a given
partition vector p € P, there are at most B4(y) reads with
overlap size y logn. Given a read 17,- with assigned overlap
size y logn, when y < 1 — ¢, there are at most B3(y) reads
whose prefix matches the (y log n)-suffix of 17,~ and, therefore,
at most B3(y) potential valid merges. Therefore, for a given
overlap size y logn, y < 1, there at most B3(y)54) merge
possibilities. However, when y > 1 — €, we know that for the
given read, there at most n¢ potential valid merges. Therefore
there are at most n°34(¥) merge possibilities. We thus bound
the probability of error averaged over all codebooks as

Pr(&)

Pr(E|W = 1) < Pr(€|W = 1, B) + Pr(B)

— 1
< 2"R % CI, x n®' x T +o(1)
— 2nR+lOgan+Bllogn7nBz + 0(1)
_ 2nR+logan+(l+e)Ke’”logn—n(l—e)(l—e’”) +o(1). (15)

This follows because an error occurs if any of the 2% — 1
codewords (W # 1) contain any of the sets of candidate islands
in CI (which is upper bounded by CI, when conditioned on
B). Each of the sets in CI contains at most B; islands and
a total island length of at least nB; bits. Hence, there are at
most n81 ways to arrange the islands on a codeword and, given
one such arrangement, an an erroneous codeword must match
these islands at at least nB, bits.

Let us compare (7) and (15). The term nX in (7), which
bounds the number of arrangements of reads on a candidate
codeword, is replaced by n®' x CI,, in (15), which carefully
takes into account both the cost of merging reads together and
the number of arrangements after all the reads are merged
together to form CIs. This improvement, as we see below, is
crucial to achieve optimal rates.

In order to have Pr(£) — 0 in (15), we require
ce™®

L

n— oo

: _ | J—
R < lim <(1—6)(]—e VY—d+e) ——logCIn>
n
ce ¢ N
— lim —logClI,

L n—oo n

=(—e)(l —e_c) —(1+e)

The following lemma, proved in Appendix E, evaluates the
last term in the above expression..
Lemma 5: The upper bound CI, on |CI]| satisfies
1 .
i) _ (E + 1>e‘ +f(e),

| R— -
lim —logCI, <e c<
n—oon
where f(€) — 0 as € — 0.
This Lemma is proved in Appendix E. From Lemma 5 and
by letting € — 0T, we conclude that all rates
1
R<1-— e_c(l_z)

b

are achievable, completing the achievability of Theorem 1.

V. CONVERSE

To prove the converse, we borrow some insights from the
achievable scheme in Section I'V. The idea is to have a genie-
aided channel in which the reads are already merged into
islands. However, this step needs to be carried out with care.

Authorized licensed use limited to: University of lllinois. Downloaded on May 04,2022 at 14:56:02 UTC from IEEE Xplore. Restrictions apply.

RAVI et al.: CODED SHOTGUN SEQUENCING

More specifically, an omniscient genie, which merges all cor-
rect overlaps, would be too powerful and therefore result in a
loose upper bound. Instead, we use a constrained genie that
can only merge reads with overlap sizes above a certain thresh-
old, and the resulting upper bound matches achievable rates
of Section IV.

The proof is organized as follows. We first look at the case
when L < 1 and show the capacity is zero. Next, we provide
the argument with an omniscient genie, which as we men-
tioned, results in a loose upper bound. We then show how to
carefully constrain this genie to obtain a tighter upper bound
that matches the achievable rates.

Short reads (L < 1): The intuition is that, when L < 1, the
number of possible distinct length-L sequences is just pLlogn —
nt = o(n/logn) = o(K), and many reads must be identical.

By Fano’s inequality, followed by the counting argument
similar to [12], we have that

HQ) @ 1 K+2L—1 K K+2L—1
< —log < —log| ——
n n K n K

K 2L —1\\ ®» 2f =
—log| 1+ <K— =c¢cn — 0,
n K nkK

as n — oo, when L < 1. In the above set of equations (a) is
due to Lemma 1 in [12] and () is because log(1 + x) < x,
for x > 0. Note that this holds irrespective of the value of K.

Omniscient genie: As observed in Section IV, merging the
reads correctly to form islands is helpful while decoding the
message. To capture this in the converse, suppose we have
a genie that merges the reads into islands a priori and thus,
forms variable-length non-overlapping substrings. Let)’ be
the multiset of the islands this genie creates from). Then,
from Fano’s inequality,

R < lim lI(X”;y) < lim HY)
n—oon n—oo n
< lim H_(y,y) = lim H(y)—i—H(J/D))' (16)
n—00 n n—00 n

Consider the second term in the numerator of the above
expression. Notice that this term intuitively looks at the uncer-
tainty in the set of reads given the fully merged islands. It
would be helpful to get a handle on the number of reads per
island to bound this term. Thus we define D as the maximum
number of reads making up an island.

Lemma 6 (Maximum Number of Reads Per Island): For any
yo > —1/log(1 —e™¢), as n — oo,

Pr(D > yylogn) — 0. an

This lemma is proved in Appendix F. Now define B as
in (13). For a fixed yp > —1/log(1 — ™),

HOY) = H(Y. 15 poptogal?’) = H(YY 15 poyy 0gn)
+ 1 <1+H(YIY,B,D < yylogn) Pr(B,D < yylogn)
+ H(YIY', {BorD > yylogn}))(Pr(B or D > yylogn))
<1+ H(YY'.B,D < ylogn)
+ HQ{Bor D > yglogn})(Pr(B) + Pr(D > yg logn)).
(18)

Now, since) is fully determined by X" and the read starting
points TX, we have that HYI{B or D > yylogn}) < 2n. We
can thus claim that

1
lirrolo —HY{B or D > yylogn})(Pr(B) 4+ Pr(D > yglogn))
n—oon

(%) lim 2(Pr(B) 4+ Pr(D > yplogn)) =0, (19)
n—oo
where (a) is due to the fact that Pr(B) — 0 and Lemma 6.
We now focus on the first entropy term in (18). Let O be the
total number of substrings of length-L in an island. Given the
maximum number of reads per island D < yglogn, we can say
that the total length of an island cannot exceed L x yplogn =
Lyo log? n. Therefore the total number of substrings per island
QO cannot exceed

Q < Lyglog*n. (20)

Since there are K’ < K islands in)/, we can say that the total
number of substrings of length-L in)" is upper bounded by
KQ < K x Lyylog® n = ypcnlogn.

Now for the term H(Y|)',B,D < yylogn), Y can be
thought of as an histogram over these KQ length-L sub-
strings with the sum of the histogram entries being exactly
K. Following the counting argument from [12, Lemma 1]

H(Y|Y',B.D < yylogn) < log <KQ +KK - 1)
e(KO+K—-1) cn - 2
X) < logn log <(ecLy0) log n)

< Klog(

This implies that

1 _
lim —(1 + H(y|y’, B,D <y logn)) =0. 2n
n—oon
Therefore from equations (19) and, (21) (16) becomes
1
R < lim —H()'). (22)

n—oon

As before, let K’ be the number of elements in)’ and let the
random variable N1, Na, ..., Nk be the lengths of the islands.
The result in [29] gives us a way to upper bound this entropy
term. It showed that the entropy of unordered sets of variable
length binary strings can be upper bounded by the difference of
two terms as “cumulative coverage depth — reordering cost",
two terms that were introduced in [29]. Precisely it showed
that for an unordered set)’ with binary strings of lengths
given by Ny, Na, ..., Ng/, where K’ is also a random variable,
we have

lim “H(Y) < lim <1E[1</]E[N1] — E[K] log”>
n

n—oon n—oo\ n
(@ —c ¢ ¢
= (1 e) Le ,

. logn 2 21 ; H
when lim,,— o N € (0, 00) and E[N7/(logn)“] is finite and
bounded. This is indeed true and is proved in Appendix G.
Here (a) is due to Lemmas 1 and 2.

This is an upper bound to the achievable rate we seek to
match from Section IV. Figure 3 shows that this is in fact
a strict upper bound. This intuitively indicates that the genie

Authorized licensed use limited to: University of lllinois. Downloaded on May 04,2022 at 14:56:02 UTC from IEEE Xplore. Restrictions apply.

154 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 3, NO. 1, MARCH 2022

we use is probably too powerful. This makes sense, since dis-
cerning smaller overlaps probably adds a cost. In fact, our
achievable rate calculated this cost (see Lemma 5).
Constrained genie: Let’s re-introduce a genie, except this
genie can only merge reads with overlap sizes of at least
8 log n. Following the nomenclature in [2], we call these appar-
ent islands. Let)5 be the set formed by this genie. Following
the same steps as above, we can say that
1
R < lim -H(yg). (23)
n—oon
Let K” be the number of apparent islands formed. Let
N‘f, e, N}S(,, be the length of the islands. Like before we use
the result in [12] to bound (23). We omit the many steps
that are exactly the same as that for the omniscient genie.
Employing the result in [29] again, we obtain

lim LH()}) < lim <1E[K”]E[N1] —E[K”]loﬁ) 24)
n

n—oon n—oo\ n

Setting 0 =1 — % it can be shown that

1 I
lim (—E[K”]E[Nl] = E[K”]E)
n—>oo\ n n

(25)

= (1 - e_w) +c(l1—0)e % — %e_w.
The proof of this is presented in Appendix H. Therefore,
. l / —COo —Co ¢ —Cco
lim_ r-lH(ya) <(1-e“)4c(l—0)e — e (26)

The final step is to minimize this bound over o. The min-
imum value of (26) is achieved when 0 = 1 — % (or § =1).
Therefore, substituting this value, we obtain

lim lH(J)/) <1-— e_c<1_%).

n—-»oo n

27)

An interesting observation here is that § = 1 implies the
constrained genie should merge all reads with overlap sizes
greater than log n for the converse to match the achievable rate.
This is consistent with Lemma 3, which implies that multiple
merge candidates are likely to exist when the overlap size is
less than or equal to logn. This completes the converse proof.

VI. CONCLUSION

In this work, motivated by applications in DNA data stor-
age, we introduced the Shotgun Sequencing Channel (SSC).
We characterized the SSC capacity exactly. This capacity was
shown to strictly upper bound the capacity of a shuffling-
sampling [12] channel, which modelled DNA storage systems
that sampled uniformly at random from a set of short length
strings. In fact, we showed high gains for the same, by show-
ing that the capacity of the SSC goes to one for high coverage
depth, allowing highly reliable reconstruction of the string,
even for short read lengths L = logn. In contrast, for the
shuffling-sampling channel [12] the capacity goes to zero in
the same regime, implying we would not be able to recover the
set of short strings in the same regime. This reveals the high
capacity gains that would be achieved if data could be stored
in a long DNA molecule instead of short-length molecules.

We further showed that when we shotgun sequence a DNA
string that is a codeword from a codebook, we can reduce the
minimum required read length by a factor of 2 and the number
of reads sampled by a factor of logn, while still admitting
arbitrarily close to perfect reconstruction.

DNA synthesis and storage in general admit errors that can
cause bit flips and erasures. This has been studied before in
the context of the shuffling-sampling channel [13], [16], [18].
This motivates studying a noisy version of the SSC, where
the noise can be modeled as concatenated binary symmetric
or erasure channels. We also note that our analysis is restricted
to the asymptotic regime n — oo. It may be of interest to see
the reliability of such systems in the finite blocklength regime.

APPENDIX A
PROOF OF LEMMA 1

To prove the above result we first compute E[®] as follows:
(We define A; := {X; is covered by J})

1 n
Elo] = X;E[lAi] = Pr(A,) = 1 — Pr(AS)
=
= 1 —Pr(X, is not covered by Y, Vie[l: K])

@y Pr(X, is not covered by f’l)K

®

1—(1—-L/nf > 1-¢°, (28)

as n — oo. Here, (a) is due the starting points being picked
independently and uniformly at random, and (b) is due to the
fact that X,, needs to start in L (contiguous) bits out of »n total
bits to cover X,,. From the definition of limit, we know that
there for every € > 0, there exists an N such that, for n > N,

|E[®] — (1 —e)| <e(1—e79)/2.

If it also holds that |[® — E[®]] < €(1 — e7¢)/2, then by
triangle’s inequality, we obtain |® — (1 —e™¢)| < |® — E[P]|+
|E[®] — (1 — e79)| < e(1 — ™), for sufficiently large n.
Defining €’ = €(1 — e~¢)/2 and using Chebyshev’s inequality
for n large enough, we have

Pr(|CI> — (1 — e_c)| > e(l — e_c))
Var(®)

< Pr(|® — E[®]| > €) < >

(29)
Let’s calculate Var(®). By linearity of covariance, we have

Var(d) = n—lz > Cov(I1y)). (30)
ij

Now, note that for (i —j) mod n > Zlog n, we can calculate
the covariance as
COV(IA;IA/‘) = E[lAflA/] - E[lAf]E[lAj]
@ L\K ! L\K\’
< 1—(1—7 1-(1-= - 1—(1—7
n n n
<0.

Here, (a) is because there exists at least one read that has to
cover X; and not X; when (i —j) mod n > Llogn. Therefore,

Authorized licensed use limited to: University of lllinois. Downloaded on May 04,2022 at 14:56:02 UTC from IEEE Xplore. Restrictions apply.

RAVI et al.: CODED SHOTGUN SEQUENCING

we can upper bound (30) as

1 n
Var(®) < — (Z Var(14,) +
i=1

2

COV(lAilA,.))
ij : ((i—j) mod n<Llogn)
1 -
< ﬁ(n + Lnlogn).
This leads to (29) being upper bounded as

Var(®) 1 Zlog n\ 1
< — 4+ —
e? —\n n €

€Y

Pr(|® — E[®]] > €') <

as n — oo, which completes the proof.

APPENDIX B
PROOF OF LEMMA 2

To prove the above lemma, first we note that we can count
the number of islands by counting the reads that have no
overlap, since any read with no (suffix) overlap must be
the lasg read of an island. Therefore, we have (We define
P; .= {Y; has no overlap})

K 1N\K-1
E[K'| = E|lp, | =KPr(P)) =K[1— — . (32
[K'] =) E[1r] (P1) <n> (32)

i=1

Note that lim,_ oo loff"E[K’] = £e7¢. Thus, we can say
(from the definition of limit) that for any €/2 > 0, |E[K'] —
Ke™©| < Ke “€/2, for n large enough. Therefore if |[K' —
E[K']| < Ke™“€/2, then by triangle’s inequality| K’ — Ke™¢| <
|K' — E[K']| + |E[K'] — Ke™¢| < Ke™“e, for n large enough.
Using Chebyshev’s inequality, for n large enough we have that

Pr(|K' — Ke™¢|> eKe™)

Var(K’
< Pr(|K' — E[K']|= €Ke™) < eﬂ%(e—)k -0, (33)
as n — oo and € = ¢/2. To see this, we can calculate

Var(K’) as Var(K') = Zi,j Cov(lp1p,). If i # j, then we
can compute the covariances as follows (we define the event
Q;;j = {Y; and Y; overlap with each other}):

2 (@
Cov(lp1p) = E[1p1p] = E[1p,]" < Pr(Q:))
N L 2(K-1)
+ Pr(Yi, Y; don’t have overlaps|ij) — <1 _Z
’ n

®) L*®=2 klogn L\2&=D
<(1=-= + —(1-= <0,
n n

n
for n large enough and a fixed constant k. (@) is due the Law
of total probability and (b) is because conditioned on the fact
that two reads don’t overlap with each other, the probability
that they don’t overlap are independent of one another. We
calculate the worst case probability of the rest of the reads
overlapping with them. This can be done assuming there K —2
reads left at most for each. Therefore for n large enough, we
can say that Var(K’) < Z;K=1 Var(1p,) < K. Therefore, (33)
can be upper bounded as

Pr(|K' — Ke ¢|> eKe ™) < !

as n — OQ.

155

APPENDIX C
PROOF OF LEMMA 3

We will first prove the first part of the lemma and then the
second part of the lemma. Both proofs are similar with some
small variations. We first look at a concentration result on the
number of times Z appears on a length-n i.i.d. Bern(1/2) string
X". We will then use this to prove Lemma 3. Let N; =
Z?:] 1z present starting at the ith symbol of X"} = Z?:] 1. Note
that E[N:] = n x 277 @logn — »1-r@,

Lemma 7: For all € > 0,

Pr< > Enl—V(Z)) < (zilogn)e—(ne)ez/(Zl_,logn).

(35)
Proof: We can rewrite Nz as

n
N; = ZIFI. =
i=1

N: — nl—y(Z)

n _ _n___1
y(@) logn y(2)logn

Z 1F1+t}/(2) logn + Z 1F2+IV(E) logn

=0 t=0

Nz
1

Nz

_n
y@logn

RE Z IFV(E) logn+ty(2)logn *
t=0

Ny(?) logn,z

Notice that each summation deals with starting locations that
are at least y(Z)logn symbols apart, and the resulting ran-
dom variables 17, are independent. Now note that by triangle
inequality if each of

nl-r® nl—7®
R; = |N;;

i,z

(36)

- —= <€—5
y () logn y(z)logn

then |N; — n'=7@| < enl=r@, Employing the union bound,
we can say that

¥ @logn

sl) < Y PR

i=1

Pr(‘Ng —n!77®

@ —nxn~Y @2

< (Llogn) Pr(RS) < (2L1ogn)e?@oen(i-7)

< (2Llog n)ef”lfy(z)fz/(zmogﬂ) (2 (2L1og n)efneez/(Zilogn)
(37)

where step (b) holds for all y(Z) <1 — €. Here (a) is due to
the following form of Hoeffding’s inequality:

Lemma 8: For i.i.d. Bernoulli X1, X5 ...X, with parame-
ter p,

|

This ends the proof of Lemma 7. |

Now given the string X", define D =
{Starting point indices of 7 in X"}.

Therefore M; = Zlel L{ith read has starting point in D}~ Since the
generation of these reads is independent and uniformly at

l n
r_lZXi 4

i=1

> Ep> < 2~ P(ellp) < 9—npe?/(1=p)

(38)

Authorized licensed use limited to: University of lllinois. Downloaded on May 04,2022 at 14:56:02 UTC from IEEE Xplore. Restrictions apply.

156 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 3, NO. 1, MARCH 2022

random, the random variables in the summation are indepen-
dent of each other (given D). Now we can say (We define

S={IN; —n' 7O < en' 7O
el |- k@] 2 ek @)
€2,y ()<l
@ e e
<dn max Pr(HMg —Kn79| > eKn7 })
ZeZ,y@)<1
® @ e
<dn max (Pr(HM; —KnTV%¥|> eKn7V% ”S))
72eZ,y@)<l1 '

cn

N () _— 2 - € T
+ Pr(59) < dn<2e Zioen® 4 (2L1logn)e ™" fz/z“ogn)

— 0, 39)
as n — 00. Here (a) is due to the union bound on the number
of Z for y(Z) < 1—e (which is < dn, for some fixed constant d,
since there are at most nyl_e oy logn Zy§1_€ n? vectors
of that size, and for y < 1—¢,)" n’ < n'=¢logn < dn,
for n large enough), () is from the law of total probability and
(c) is due to the Hoeffding’s inequality. To see the last step
note that 1y, read stam in D} is a Bern(p) RV. When conditioned
on the event |[N: —n' 7@ < en! @ p e [1—e)n 7@, (1+
n~7@]. We can apply Hoeffding’s inequality assuming the
worst case of p = (1 + e)nY@ . Now since y <1 —¢€in the
above case, this implies that np < nx (1+e)n_7’® < (14+¢€)nc.
Now apply this bound on np to Lemma 8, to obtain the result.

Now for the second part of the proof we employ a similar
trick as before. Using the same split on N; as before we have

that
(@ - n¢
Pr| N; > < (Llogn)Pr{N;z > —
c

nl=v

_ né nl—y
- (Llogn) Pr(Nl,g -7 > — I)
(ne/c - nl_V/L)2
2n1*1’(1 —n7v)

_ pl—y—€ 2
< (I:logn)exp <_n(26(1y')) (l/c nZV /L)) (40)

L x n¢

< (Llog n) exp (—

where (a) is due to the union bound, specifically because y <
L, which implies that there are at most Llog n terms. Here we
use the following version of Hoeffding’s inequality:

Lemma 9: If X1, ..., X, are i.i.d. Ber(p) random variables,

n
PI(Z Xi —np > x) < e—xz/(ZVlP(l—p))

i=1

(41)

We now use (40), to condition the event {M; > n¢} on N; <
(Ln®)/c and follow an analysis similar to (39), to arrive at

— 0,

Pr U

€2 : y@)>1—¢

{Mz > n}

as n — OQ.

APPENDIX D
PROOF OF LEMMA 4

Proof: We use Chebyshev’s inequality to see that

- - Var(G(y))
Pr(|G(y) = G(y)| = €G(y)) < Bk (42)
This can be rewritten using the fact that
2
Var(G(y) _ E[60)°] @)
G(y)? G(y)?

We also have that (Define J; j := E[G(y);G(y);])

for- (o)]-(Eto)

+ Y Jij < Kh + Ko = KE[Gyn] + K2,
i#]

= G(y) + K’E[G(y)1G(y)2]. (44)

Recalling that the definition of “overlap”, implies an overlap
only between successive reads (Definition 1) and focusing on
the second term in the above equation, we have (Recall Q; ; =
{Y and Y overlap with each other})

E[G(y)1G(y)2] = Pr(Y;, Y, both have overlap size y logn)
< Pr(Y}, Y2 both have overlap size y log n|Qﬁ‘,2)
+ Pr(Q12)

(a) . k1
% Pr(Y1, Y2 both have overlap size y log n|Q§,2) + ogn

®» Gy)? 1
2 (7/2) +k0gn’

n

(45)

where k is a finite constant. Here (a) is because two reads with
lengths Llogn have an overlap if their starting points Ty, T>
are such that 7, — 71 < L and (b) is because the conditioning
constrains the starting points to not be such that 7, — 71 < L,
implying that the events {Y; has an overlap of size y logn} for
i = 1,2 are conditionally independent and with probability at
most E[G(y)1] = G(y)/K. Therefore we have

= - logn
E[60?] = G+ G + K22 a6)
Hence,
Var(G(y)) E[G(y)?] B 3 K?klogn
G(y)? G(y)? ~ G(y) nG(y)?
1 K?klogn
- G(y) n@(n2/10g4 n)
(@) —17..3
= +® log”
1)2(1 = y)log,n+1)(K*2) (n 8 n)
< @ *11 3
- (K — 1)2(Llogn+l)<K 2 + <}’l 8 n)
3
n

Authorized licensed use limited to: University of lllinois. Downloaded on May 04,2022 at 14:56:02 UTC from IEEE Xplore. Restrictions apply.

RAVI et al.: CODED SHOTGUN SEQUENCING

where (a) is due to the lower bound in (50), followed by further
noting that K — 1 < K. Now due to the union bound

7 3
- Llogn ® log” n '
T €2 n

The above expression — 0 as n — oo. |

Pr| J{I60) — Gl = €G(n))

yel

APPENDIX E
PROOF OF LEMMA 5

From the definition of CI,,,
CI =P x 1_[B3()/)B4(V) % 1_[n€Bay) —
y<l—e
x (1 + e)1=0Llogn, (1+6) 3, 1 (1-7)G(y)

X n6(1+€) Zy>l—e G(V) .

L+ DK
y>l—e

(43)
Hence, we have that (We define g(¢) := €(1 +€))
1 _
lim —logCI,
n—oon
Klog(L+1) LI
— lim og (L +)+ Og”(l
n

n—oo n

—ée)log(1 +¢)

logn

d+e) Y (1=y)Gy)
y<l—e
n €(1+¢€)logn Z &)

n
y>1—¢

1
= lim 21+ Y. (1-»Gk)

n—)oo

y<l—e

. logn -
+ g(e) lim % > G,

y>1—¢€

(49)

Notice that second term in (49) satisfies

I _ I
0< e(1+e)n113010% 3 G Se(1+e)n1_i>rgo%l<
y>l—€

C
=El+€:—)0,
()L

as € — 0.

Now we look at the first term in (49). Before we proceed to
evaluate the required summation, we need to calculate C(y).
Calculating this exactly is difficult, but we can find upper and
lower bounds that asymptotically converge. We start by notic-
ing that (We define the function R(X1, X3 ...X,) be the min
start location of (X1,X>...X},))

G(y) = K Pr(X; has an overlap of size y logn)

= K Pr(X; has an overlap of size y logn|X; starts from 1)
= KPr(R(Xa, ..., Xk) = (L — y)logn|X; starts from 1).

Let’s look at Pr(min start location of (Xa,...,Xg) = (L —
y)logn|X; starts from 1). We can upper and lower bound this
probability by forcing one read to start at position (L—y) logn
and all others to start at position (L—y) logn or higher (which
will lead to double counting, and thus an upper bound). For

157

the lower bound we can assume that exactly one of the reads
starts at (L — y)logn and the rest start at positions strictly
greater than (L — y) logn. Thus we get

. K2
K(K_l)xl<1_w) <G(y)
n

n
= K-2
1 L—y)lo
< KK —1) x -(1—w> (50)
n n
Pick A, =y + 1olgn — y. Now we can say that
. logn - G(y)logn
1 1- in 1—y)—22 S A,
Jim == y;_e(Y)G(y) = lim V;f A

(D

l1—e 2
(2/ (1—7y) lim (G()(Og"))dy,
0 n— 00

where (a) follows from the definition of Riemann integration.
Let us evaluate the limit inside the integral first. Applying the
Sandwich theorem to (50), we have that

(logn)2 ? y
G() =1 exp((1 — z))

Therefore from (51) we have that

. logn
lim
n—oo n

Y. (1=yG»)

y<l—e

1—e 2
= / (1—y) lim <G<y>(l°g"))dy
0 n— 00 n

02 1—e
= ? (1—-y)exp <—c<l -))dy
7 / (1 —y)exp (—c(l)dy

= C—zeic(li%) /] ze iz
L 0

) (1 - (g ; 1);(%)) _ o0 - (g n l)e—

where we used the substitution z = 1 — y. Finally, plugging
everything back into (49), we obtain

b= 0D~ (1))

lim —logCIl, < (1+4+¢€)|e L)—=+1]e +g(e)=

n—o0o n L L
= eﬂ'(lia - (% + l)e_c +f(e),

where f(€) — 0 as € — 0, concluding the proof.

N~

| /\

hl\ﬁ
N

APPENDIX F
PROOF OF LEMMA 6

We first upper bound the Pr(D > yplogn) as

Pr(D > yologn)
< K Pr(No. of samples in a given island > yglogn) (52)

and then show that this upper bound tends to zero as n — co.
We first define a few terms. Let the sequence Y1, Yz, ..., Tep-
resent the reads (in an ordered fashion) in the given island.
We define U; = T;y1 — T; with TK being the vector of
ordered starting locations, as the separation between read Y;

Authorized licensed use limited to: University of lllinois. Downloaded on May 04,2022 at 14:56:02 UTC from IEEE Xplore. Restrictions apply.

158 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 3, NO. 1, MARCH 2022

and 17,-+1. We can thus think of the sampling scheme as a
random process that picks starting locations 7X with inter-
arrival times Uy, Us, ..., Ugx_1. For convenience, we define
Uk = (T — Tg) mod n) + 1 (this is to capture the wrap
around nature of the reads). Note that ZzK:1 Ui =n.

Thus we calculate Pr(A given read has an overlap) as fol-
lows,

Pr(A given read has an overlap)
LN\K-1
= 1 — Pr(A given read has no overlap) = 1 — (1 - 7) .
n
(53)
We now use the above quantity to calculate (52). We note that

Pr(No. of samples in a given island > yglogn)
= Pr(No. of samples in a given island
> 0 10gn| given island starts from f’l)
=Pr(Ui <L, Uy <L,...,Uplogn-1 <L)
=Pr(Uy <L) xPr(U; <L|IU; <L)
x -« X Pr(Upytogn—11Ut <L, Uy <L x ... Uplogn—2 <L)

@
< Pr(Uy <L) Pr(Us < L)... Pr(Uyyrogn1 < L)

L K—1 Yo logn—1
n

where (a) is because the U;, i € [1 : K] are negatively associ-
ated (because the larger one U; is, the less room there is on x”
for the other U;’s). For negatively associated random variables
we know that [32]

(54)

Pr(U;<L:i€e[l :K]) < l'IlK:1 Pr(U; <L) (55)
Therefore (52) can be upper bounded as
L K—1\ Yologn—1
Pr(Dzyologn)§K<l—<1——))
n
% 2]ogn+(yolognfl)]og(lf(lf%)K_l)
B Llogn
e x 2]ogn(l+y0log(lf(lfﬁ)l(_])>7]og(l7(17%)K_1)
= = . (56)
Llogn

Now as long as

JALSE
lim <1+y010g<1—(1——>)) <0 or
n—o00 n

-1

" (i)

Equation (56) — 0 as n — oc.

APPENDIX G

FINITENESS OF ISLAND LENGTHS

We are required to prove that (a) lim,_ % € (0, 00)

and (b) E[N12 /(log n)?] is finite and bounded. We note that

N; = Z{:l Z;, where J is the random variable which indicates
the number of reads in an island and Z; is the length of the
reads after removing the overlapping part of the read. To see
(a) note that there are K’ islands. Define J1, J2, ..., Jx' as the
number of reads in each of these islands. Note that J and J;
are identically distributed for all i. Therefore,

«
K= ZJi.
i=1

Note that K is a stopping time with respect to J1, J2, This
implies that E[K']E[J] = K. Also note that J is a stopping time
with respect to Z1, Z, ... Therefore we can say

. logn . logn E[K']logn
lim = lim —=—— = S B
n—oo E[N1] n—oo E[J]E[Z] n—o KE[Z]

E[K'] —
— (1im EEY (i 1087 @ €7 0,00,
n—oo K n—oo E[Z1] L

where d is a fixed constant, since E[Z;] ~ ©(logn)). To
handle (b) we note the following

E[N?]:E (éz,) <E (éL)z =E[12]L2, (57)

since each of Z; < L for all i. Let us look at the distribution
of J. We notice that

2

Pr(J = i) = Pr(J = i|Island starts from first read)
=Pr(Uy <L,...,U_1 <L, U;>L)
<Pr(U) =L,...,Ui-1 L)

-
IN®

Pr(U; <L)Pr(Uy <L)...Pr(Uji—1 <L)

(08)0
(-7

where (a) is due to the fact that U;,i € [1 : K] are negatively
associated. Now we can upper bound E[J?] as

K K_1\ i1
E[ﬂ] =Y PP =i) < Zi2<l _ (1 _ %))

i=1 i=1

Aol)

2 C
i“Il—exp| ———= ,
: (1 _ L](;g2)

where (a) is since 1 —x > e+ and (b) is due to the max of
logn/n being log2/2 for n € N.

The above series converges to a finite value. To see this, note
that this summation is of the form Zlel 2o, for o € O, 1),
which converges by the root test. Therefore E[J*] has to have

IA

M=

INE
M=

i—1

INE
M =

Authorized licensed use limited to: University of lllinois. Downloaded on May 04,2022 at 14:56:02 UTC from IEEE Xplore. Restrictions apply.

RAVI et al.: CODED SHOTGUN SEQUENCING

a finite bound (let this be M). This implies (57) can be upper
bounded as

E[N?] < ML?(logn)>.
This implies that E[Nl2 /(logn)?] is bounded and finite.

APPENDIX H
PROOF OF EQUATION (25)

We aim to prove (25) here. First note that E[K”] can be
calculated as

E[K"] = K Pr(Read has overlap size < §logn)
L —§log n)Kl

n

= KPr(U; > L —§logn) = K<1 -
(58)

It is easy to see that lim,_, 10%E[K”] = %e’“’. Note that
the formation of apparent islands can be interpreted as equiv-
alently finding real islands with read lengths truncated by
8logn (except for the last read in the island). The quantity
limy,— o0 %E[K”]E[Nf] is just the coverage of this modified
expression. But since the last read is still size L, we can think
of that read in two parts, one part which contributes L—§ logn
and the other 6 log n. Therefore the total coverage is

1—e % +c(l —0)e .

(59)

This is because the reads of length L — §logn contribute to

a coverage of 1 — e~ (the effective coverage depth is short-

ened). Now the additional élogn contribute individually an

extra length for each island, but this only needs to be added

for the last read. Since there are K” islands, the cumulative

contribution is lim,_, o %E[K”]((S logn) = c(1 —o)e .
Therefore from (58) and (59), we can say that

lim
n— oo

(lE[K”]E[Nl] = E[K”]loﬁ)
n n

(60)

=(1=e) +c(l—a)e < — [%e_w.

REFERENCES

[11 A. S. Motahari, G. Bresler, and D. N. C. Tse, “Information theory of
DNA shotgun sequencing,” IEEE Trans. Inf. Theory, vol. 59, no. 10,
pp. 6273-6289, Oct. 2013.

[2] E. S. Lander and M. S. Waterman, “Genomic mapping by fingerprint-
ing random clones: A mathematical analysis,” Genomics, vol. 2, no. 3,
pp. 231-239, 1988.

[3] G. Bresler, M. Bresler, and D. Tse, “Optimal assembly for high through-
put shotgun sequencing,” BMC Bioinformat., vol. 14, no. S5, p. S18,
2013.

[4] 1. Shomorony, T. A. Courtade, and D. Tse, “Fundamental limits of
genome assembly under an adversarial erasure model,” IEEE Trans. Mol.
Biol. Multi-Scale Commun., vol. 2, no. 2, pp. 199-208, Dec. 2016.

[5] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital
information storage in DNA,” Science, vol. 337, no. 6102, p. 1628,
2012.

[6] N. Goldman et al., “Towards practical, high-capacity, low-maintenance
information storage in synthesized DNA,” Nature, vol. 494, no. 7435,
pp. 77-80, 2013.

[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

(30]

(31]

(32]

159

R. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust
chemical preservation of digital information on DNA in silica with
error-correcting codes,” Angewandte Chemie Int. Edition, vol. 54, no. 8,
pp. 2552-2555, 2015.

H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A rewritable,
random-access DNA-based storage system,” Sci. Rep., vol. 5, Sep. 2015,
Art. no. 14138.

Y. Erlich and D. Zielinski, “DNA fountain enables a robust and efficient
storage architecture,” Science, vol. 355, p. 6328, pp. 950-954, 2017.
L. Organick et al., “Random access in large-scale DNA data storage,”
Nat. Biotechnol., vol. 36, pp. 242-248, Feb. 2018.

P. L. Antkowiak et al., “Low cost DNA data storage using photolitho-
graphic synthesis and advanced information reconstruction and error
correction,” Nat. Commun., vol. 11, p. 5345, Oct. 2020.

R. Heckel, I. Shomorony, K. Ramchandran, and D. N. C. Tse,
“Fundamental limits of dna storage systems,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), 2017, pp. 3130-3134.

I. Shomorony and R. Heckel, “Capacity results for the noisy shuffling
channel,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2019, pp. 762-766.
I. Shomorony and R. Heckel, “DNA-based storage: Models and funda-
mental limits,” IEEE Trans. Inf. Theory, vol. 67, no. 6, pp. 3675-3689,
Jun. 2021.

A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Anchor-based
correction of substitutions in indexed sets,” 2019, arXiv:1901.06840.
A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding over
sets for DNA storage,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
2018, pp. 2411-2415.

A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “An upper bound
on the capacity of the DNA storage channel,” in Proc. IEEE Inf. Theory
Workshop, 2019, pp. 1-5.

A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakohi, “Achieving the
capacity of the DNA storage channel,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process. (ICASSP), 2020, pp. 8846—8850.

H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 3125-3146,
Jun. 2016.

R. Gabrys, H. M. Kiah, and O. Milenkovic, “Asymmetric Lee dis-
tance codes: New bounds and constructions,” in Proc. IEEE Inf. Theory
Workshop (ITW), 2015, pp. 1-5.

F. Sala, R. Gabrys, C. Schoeny, and L. Dolecek, “Exact reconstruc-
tion from insertions in synchronization codes,” IEEE Trans. Inf. Theory,
vol. 63, no. 4, pp. 2428-2445, Apr. 2017.

I. Shomorony, S. H. Kim, T. A. Courtade, and D. N. Tse,
“Information-optimal genome assembly via sparse read-overlap graphs,”
Bioinformatics, vol. 32, no. 17, pp. 1494-i502, 2016.

T. Holenstein, M. Mitzenmacher, R. Panigrahy, and U. Wieder, “Trace
reconstruction with constant deletion probability and related results,” in
Proc. SODA, vol. 8, 2008, pp. 389-398.

S. R. Srinivasavaradhan, M. Du, S. Diggavi, and C. Fragouli, “On maxi-
mum likelihood reconstruction over multiple deletion channels,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), 2018, pp. 436—440.

M. Cheraghchi, J. Ribeiro, R. Gabrys, and O. Milenkovic, “Coded
trace reconstruction,” in Proc. IEEE Inf. Theory Workshop (ITW), 2019,
pp. 1-5.

R. Gabrys and O. Milenkovic, “Unique reconstruction of coded
sequences from multiset substring spectra,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), 2018, pp. 2540-2544.

S. Marcovich and E. Yaakobi, “Reconstruction of strings from their
substrings spectrum,” 2019, arXiv:1912.11108.

I. Shomorony and A. Vahid, “Communicating over the torn-paper
channel,” in Proc. IEEE Global Commun. Conf., 2020, pp. 1-6.

A. N. Ravi, A. Vahid, and 1. Shomorony, “Capacity of the torn paper
channel with lost pieces,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
2021, pp. 1937-1942.

I. Shomorony and A. Vahid, “Torn-paper coding,” IEEE Trans. Inf.
Theory, vol. 67, no. 12, pp. 7904-7913, Dec. 2021.

S. Nassirpour and A. Vahid, “Embedded codes for reassembling non-
overlapping random DNA fragments,” IEEE Trans. Mol. Biol. Multi-
Scale Commun., vol. 7, no. 1, pp. 40-50, Mar. 2021.

K. Joag-Dev and F. Proschan, “Negative association of random variables
with applications,” Ann. Stat., vol. 11, no. 1, pp. 286-295, 1983.

Authorized licensed use limited to: University of lllinois. Downloaded on May 04,2022 at 14:56:02 UTC from IEEE Xplore. Restrictions apply.

