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Abstract—It is desirable to monitor the degradation of
integrated circuits (IC’s) or perform their failure analysis
through their electrical characteristics (such as the voltage
transfer characteristic, VTC, of an inverter). Such a method
is non-destructive, low-cost, and can be applied to a large
number of samples. Machine learning is naturally an
excellent tool to perform this task. However, it is very
expensive, in terms of time and cost, to generate enough
experimental data with well-controlled defects to train a
reliable machine. Moreover, IC defect signatures and
features are usually embedded in the hyper-space of their
electrical characteristics and are difficult to extract. In this
paper, we propose to use dimensionality reduction to
extract the defect signature from the IC electrical
characteristics by using data generated through
simulations. A CMOS inverter is used for demonstration.
The drain contact resistances, which can increase due to
defect or degradation, of the nMOSFET and pMOSFET in an
inverter are extracted using a machine based on
Autoeconder (AE). The machine is trained using data
generated from SPICE simulation. The machine is then
tested using experimental data and high accuracy is
obtained (R?> 0.9). In particular, for the first time, through
the analysis of the hidden variables, we demonstrate that
the machine has effectively extracted the features
automatically which obviates the cumbersome feature
extraction process.

Index Terms—Autoencoder, CMOS Inverter, Contact
Resistance, Defects, Machine Learning, Reverse Engineering,
SPICE simulation

|. INTRODUCTION

DEFECT identification [1] and reverse engineering [2] are the
daily routines in semiconductor manufacturing and
fabrication processes. They rely heavily on destructive and
expensive, in terms of cost and time, failure analysis (FA) tools
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such as SEM [3] and TEM [4]. As Moore’s law reaching its end
[5], fabrication processes become more complicated by using
emerging 3D structures such as FinFET, stacked nanosheet,
and complimentary FET [6][7][8], and the demand for rapid FA
increases. Moreover, since the parasitic resistance and
capacitance start dominating in highly scaled devices in the
Design-Technology Co-Optimization (DTCO) era [9], the
understand and analysis of the parasitic components and their
degradation also become more important. Contact resistance is
one of the most important parasitic components which needs
special attention [10][11]. Contact resistance control is also
important to the success of emerging memories [12].

To meet the increasing demand of FA, it is desirable to find a
low-cost and high-throughput methodology to analyze, narrow
down or even pinpoint the defect properties qualitatively (e.g.
identify the type of defects) and quantitatively (e.g. identify the
contact location and its resistance value). One attractive
proposal is to use the electrical characteristics to deduce the
defect qualitatively and quantitively.

However, the electrical characteristics of devices (such as the
Current-Voltage, I-V, and Capacitance-Voltage, C-V) and
circuits (such as the V'TC of an inverter or the butterfly curves
of an SRAM) usually are not explicitly correlated to the defect
properties. Therefore, machine learning is proposed in
[13]-[21] to learn the correlations. To use machine learning
successfully, enough training data, i.e. electrical characteristics
of devices/circuits with well-controlled defects, is required.
This cannot be obtained easily and accurately through the
experiment at a low cost. In [13], it is proposed to use
Technology Computer Added Design (TCAD) to generate /-V
curves of p-i-n diodes with various epitaxial thicknesses and
doping and a machine is trained to deduce the thicknesses and
doping based on the measured [-V. This is called
TCAD-augmented machine learning. Note that no feature
extraction is performed in [13] and this obviates domain
expertise and the resources required in feature extractions.
However, such an approach can lead to overfitting and cannot
be used in experimental data due to the noise in the
experimental /-V. Principal component analysis [14], noise
technique [15], and Autoencoder (AE) [16][17] are proposed to
solve the overfitting issue when domain expertise and feature
extraction are not used. Among them, AE is the most promising
in that it gives similar results as with feature extraction when
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applied to experimental data [17]. Moreover, it is shown that by
using the same AE architecture, one can apply to both /-V and
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Fig. 1. Overview of the application of this study. SPICE circuit
simulations, a), are performed to generate data to build a machine, b),
without feature extraction. Wafer level measurement, e.g. VTC of an
inverter, are fed into the machine, c), which can deduce the contact
resistances distribution on the wafer level, d), and can be used to
compare to process wafer maps to identify the defect root cause, e).

C-V of FinFET without the need of performing separate feature
extractions for the /-7 and C-V curves [18]. Note that only [14]
and [17] have the results verified with experimental data.

Based on the successful experience in using AE in
TCAD-augmented machine learning, in this paper, we applied
a similar framework to extract the drain contact resistances of
the NMOS and PMOS in an inverter based on its V'7C. The
drain contact resistance can be considered as a result of
manufacturing defects [23] or degradation (e.g. due to radiation
damage [24]). The training data is generated using SPICE
simulation and the result is verified experimentally. This work
has four major achievements. Firstly, it shows that the concept
of TCAD-augmented machine learning can be extended to
other types of simulations (in this case, SPICE) directly.
Secondly, it shows AE-based machine is applicable also to
circuit electrical characteristics without the need for
architectural change. Thirdly, this is the first time to verify a
SPICE-augmented machine learning on a circuit using
experimental data. Lastly, through hidden node analysis, we
show that the machine has successfully performed accurate
feature extraction automatically. It should also be noted that
feature extraction in [17] for TCAD-augmented machine
learning is relatively easy. However, in the VTC case, the
extraction of features based on V7C is far from trivial.

It is worth noting that there were also efforts in the literature
to use TCAD trained data to deduce SOI BV properties [19],
nanowire properties [20], and SRAM defects locations
[21][22]. However, feature extractions are used and they have

not been verified using experimental data (i.e. the trained
machines are tested using unseen TCAD data only).

Il. OVERVIEW

The idea of this paper can be used in the common scenario in
a fab as illustrated in Fig. 1. The goal is to use SPICE
simulation to rapidly generate circuit electrical characteristics
(e.g. VTC of an inverter) with variations of the parameters in
interest (e.g. drain contact resistances) to train a machine
without feature extraction. Circuit measurements on the wafer
level are then fed into the machine to deduce the distribution of
the parameters, which is then compared to any existing process
wafer maps (e.g. contact hole CD) for correlations to
understand the source of defects. To demonstrate this, inverter
and drain contact resistance are the circuit and parameters in
interest, respectively. Inverters with various contact resistances
are first measured experimentally (Section III). SPICE
simulations with contact resistance variations are conducted to
generate training data (Section IV) and a machine is trained
(Section V) to deduce the contact resistances for any given
measured VTC.

[ll. EXPERIMENT SETUP

The inverter is constructed using commercial-off-the-self
(COTS) PMOS and NMOS in ALD1103 by Advanced Linear
Devices, Inc. fabricated using enhanced ACMOS silicon gate
CMOS process [25]. Discrete resistors with accuracy better
than 10% are used to model the extra drain contact resistance of
PMOS and NMOS due to defect or degradation. They are
labeled as Ry and R, respectively. Fig. 2 shows the schematic
of the setup. A USB-powered data acquisition module,
ADALM2000 by Analog Devices [26] is used for biasing, input
sweeping, and data acquisition. Since the input impedance of
the sensing channel of ADALM2000 is only 1MC, a unity gain
buffer is added at the inverter output. Vpp is set to be 3V.

The PMOS and NMOS are characterized by setting [Vgs| =
|[Vps| = Vpp/2 = 1.5V. The drain current, |Ips|, is measured and
their effective resistance, R, for PMOS and R, for NMOS, is
found by 1.5V/|Ipg|. It is found that R,=2243Q and R, = 744Q).

Three sets of inverter experiments are then conducted. Each
set uses 1| NMOS and NP PMOS in parallel, where NP =1, 2, or
3. This represents 3 different types of inverter circuits. For
example, in the set with NP = 3, it has 3 PMOS connected in
parallel to represent an inverter with a stronger PMOS, i.e. the
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Fig. 2. Schematic circuit of the experiment. NP = 3 case is shown.
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Fig. 3. Distribution of Ro and R; pairs used to construct the inverter
circuits for each NP group.

width is tripled. Vi, is swept from OV to 3V and the Vg is
measured to construct the VTC. Different values of Ry and R},
between 0 to 1MQ, are used with 0 representing no extra
contact resistance. There are 25 circuits in each set of
experiments. Fig. 3 shows the distribution of Ry and R; used in
the experiments. Fig. 4 shows the measured V'7C of the circuits.

IV. TRAINING DATA GENERATION

The SPICE models of the PMOS/NMOS in ALD1103 are
not provided by the vendor. To model the PMOS/NMOS in
ALDI1103, a SPICE LEVEL 3 model is created so that the
threshold voltage and R, and R, match the experimental values.
In any modern IC fabrication process, an accurate SPICE
model is usually available and thus it is not necessary to
perform this extra calibration. However, if it is a new process
under development, the SPICE model might not be complete. It
is thus important to show that using a primitive SPICE model
(such as in our case) to generate simulation data is still useful in
simulation augmented machine learning.

About 10,000 VTC curves are simulated using Cadence
Spectre [27] by varying Ry and R; for each NP value. The
resistance values vary from 10Q2 to 10MQ logarithmically. Fig.

00 05 10 15 20 25 3.0

Fig. 4. VTC’s of experimental inverter circuits with various Ro and R;.
groups of circuits are identified. Orange: NP = 1. Purple: NP =
Green: NP = 3.

3
2,

Fig. 5. Simulation VTC’s. 3 groups of inverter circuits are identified.
Orange: NP = 1. Purple: NP = 2, Green: NP = 3. Only 75 curves from
each group are shown for clarity.

5 shows 75 randomly selected simulation curves from each NP
group.

V. MACHINE LEARNING

As shown in Fig. 4 and Fig. 5, it is not trivial to extract the
features that are associated with Ry and R;. One possibility is to
extract the Vi (i.e. Vm = Vin| vin = vour) and slopes of the regions
before and after Vi which are affected not only by Ry and R;
but also R, and R,. As a result, for each set of inverters, one
might need to re-optimize the feature extractions. Moreover,
for small Ry and R;, the VTC is smoother but becomes more
piecewise linear when Ry and R; are large. Therefore, feature
extractions require a lot of domain expertise (knowledge of
how the Ry, R;, R,, and R, affect the shape of the V'TC).

To obviate the cumbersome feature extraction and
re-extraction when different inverters are used, an
autoencoder-based machine is used in this study. Autoencoder

AE Input

Autoencoder AE Output
Input  Hidden Output
Layer Layers Layer

Fig. 6. The autoencoder-based machine used in this study. The machine
has 5 hidden layers, each has 80, 50, 2, 50, and 80 nodes respectively.
For clarity, only the middle layer is shown. Each VTC is discretized into
51 points and encoded as 2 latent variables, ho and h+. The machine is
trained such that the output values equal the input values in the
autoencoder and ho and hrare correlated to Ro and Ry using KNN with
k=3.

[28][29], a type of manifold learning algorithm, is capable of
performing non-linear dimensionality reduction of hyperspace
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Fig. 7. Validation results of NP = 1, 2, 3 cases. Ro and R; are normalized to Rn.

data into latent variables. The V'TC curves are the hyperspace
representing the inverter configuration. Since in the simulation
and experiment, only Ry and R; are varied in each set of
inverters, the V'7TC can be represented by a set of latent variables
with much reduced dimensions. The latent variables can then
be correlated to Ry and R;.

Fig. 6 shows the algorithm used and for clarity, only the
middle hidden layer is shown. Tensorflow platform is used
[30]. Each V'TC is discretized into 51 points (yo to yso). An AE
with 5 hidden layers is used. 90% of the simulation curves are
used as the training data and the rest are used for validation.
The model is trained to have less than 5x10-3 mean squared
error loss by comparing the AE input (yy to ys50) and output (3 to
Vs0). A decaying learning rate scheme is used, in which the

learning rate is gradually reduced from 0.001 before 50 epochs
to 0.0002 after 1700 epochs. This is found to help avoid local
minima in the optimization process. The number of nodes in
each hidden layer is 80, 50, 2, 50, and 80, respectively, and
node counts are manually adjusted to minimize loss.

The latent variables in the middle layer, 4y and h;, are
correlated to Ry and R; through the k-th nearest neighbors
(KNN) algorithm with k = 3. Overfitting is monitored and
avoided by tracking the validation loss and evaluating KNN
performance once every 50 epochs. No overfitting occurs and
2000 epochs are used in the final model.

Fig. 7 shows that the model performs very well and the
coefficients of determination [31], R?, are very close to 1 for
both validation and training (not shown) data.
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Fig. 8. Prediction of experimental Ro and Rs. Ro and R; are normalized to Rx.
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After the machine is trained, experimental V'7C’s from Fig. 4
are then fed into the machine to deduce the Ry and R; of the
inverters, without any manual feature extraction. Fig. 8 shows
that it can predict Ry and R; very well with R? larger than 0.9.

VI. DISCUSSION

We demonstrated experimentally that, without feature
extraction, by using AE, the drain contact resistances in an
inverter can be deduced based on measured V7C's.
Statistically, it deduces the extra resistance location (at PMOS,
i.e. Ry, or at NMOS, i.e. R;) and extra resistance values very
well as shown in Fig. 8. In certain experiments, it can predict
the abnormal resistance with values of only a few percentages
of R, well (e.g. R; in NP =2 case in Fig. 8 even when R//R, <
10%), which is impossible in other FA methods. Overall, the
AE can predict the trend fairly well even for small resistance
(i.e. between R;/R,> 1% and R,;/R, < 100%) in all cases. This is
particularly useful for high throughput wafer map analysis.

Although discrete components are used in the experiment,
the transistors are made in a traditional CMOS IC process.
Therefore, the experimental circuits constructed represent an
integrated circuit inverter well. Such an approach also obviates
the need to fabricate a test chip which might have a limitation
on the number of probe pads. On the other hand, such a setup
introduces more noises due to parasitic capacitance and
resistance than a fully integrated circuit. Since DC
measurement is performed, parasitic capacitance has minimal
impacts. Parasitic resistance is also negligible as it is much
lower than the MOSFET resistance which is further confirmed
with the accuracy in the contact resistance prediction result.
Such extra noise and non-ideality are expected to make it more
difficult to apply simulation augmented machine learning to the
experimental data than if a fully integrated inverter were used.
Since good results are obtained with the current experimental
setup, it is expected that such a methodology will perform even
better on fully integrated circuits. This also shows that the AE
can perform well even when unknown variations are present.
Of course, if the unknown variations are comparable to the
variations been investigated (i.e. Ry and R; in this case), it is
expected that the AE will not be able to perform as well. This

AE Input

AE Output

Vin(V)

Fig. 9. Experimental VTC’s input to the machine (Left) and the VTC’s
output from the machine (Right). NP = 3 is used.
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Fig. 10: hy and h; as the functions of Ry and R; for NP =1, 2,
and 3.

can be solved by generating another model for the suspected
new variations.

To further quantify the ability of the AE on performing
accurate feature extraction, Fig. 9 shows the input and output of
the AE. Note that the AE encodes the 51-dimensional input data
(yo to ys0) to a 2-dimensional space spanned by /4 and 4;, which
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Fig. 11: Ry and R, as the functions of /g and /; for NP =1, 2,
and 3.
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is then used to reconstruct the original curve as the output (¥ to
Vs0). As shown, the output resembles the input very well which
means that the AE has successfully automatically extracted 2
features to represent the VTC.

Fig. 10 and Fig. 11 show the relationship between the latent
variables and Ry and R; for all 3 sets of inverters. It can be seen
that all 3 different sets of inverters (NP = 1, 2, and 3), which
have different Vi, show the same qualitative and very similar
quantitative relationships between the contact resistances and
the hidden variables. Therefore, the AE is repeatable in all 3
cases and has automatically extracted the features that
faithfully represent the parameters, i.e. Ry and R;, that we are
interested in.

The time required to perform 10,000 SPICE simulations for
training data generation is less than 3 hours with 1 Spectre
license and the time required to train the machine is only 20
minutes using Intel 17-8705G CPU with 8 logical cores. The
SPICE simulation time can be further reduced to 16 minutes if
only 1,000 curves are used. The R? of predicting the
experimental data is found to be still better than 0.85 when only
1000 data are used for training. Therefore, this approach is very
rapid and can be performed almost on the fly for semiconductor
defect debugging and yield enhancement without the need for
expensive FA.

In this study, a simple inverter is demonstrated. There might
be a possibility that Ry and R; can be extracted using an
analytical model if the transistor model is very simple.
However, this is usually impossible when a realistic compact
model is used. And it is also very difficult to construct
analytical models for more complex circuits. Compared to the
analytical model, the AE approach is expected to be readily
applicable to other circuits with minimal domain expertise.

VII.

In this paper, we demonstrated a method to deduce the
contact resistances of NMOS and PMOS in an inverter based
on its V'TC by using simulation augmented machine learning
without the need for feature extraction. An autoencoder-based
machine is used, which can reduce the hyper-dimensional V'7C
to a 2-dimensional latent subspace representing the contact
resistances. Such a method is validated experimentally and can
achieve accuracy with R? > 0.9. It is clearly shown that the
latent subspace has faithfully represented the parameters in
interest. Such an approach is not inverter-specific and no
feature extraction is required. It is thus expected to be
applicable to other circuits. Since circuit simulations are fast,
this method is expected to be very useful in improving the
defect debugging and yield enhancement processes.

CONCLUSION
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