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Abstract—It is desirable to monitor the degradation of 
integrated circuits (IC’s) or perform their failure analysis 
through their electrical characteristics (such as the voltage 
transfer characteristic, VTC, of an inverter). Such a method 
is non-destructive, low-cost, and can be applied to a large 
number of samples. Machine learning is naturally an 
excellent tool to perform this task. However, it is very 
expensive, in terms of time and cost, to generate enough 
experimental data with well-controlled defects to train a 
reliable machine. Moreover, IC defect signatures and 
features are usually embedded in the hyper-space of their 
electrical characteristics and are difficult to extract. In this 
paper, we propose to use dimensionality reduction to 
extract the defect signature from the IC electrical 
characteristics by using data generated through 
simulations. A CMOS inverter is used for demonstration. 
The drain contact resistances, which can increase due to 
defect or degradation, of the nMOSFET and pMOSFET in an 
inverter are extracted using a machine based on 
Autoeconder (AE). The machine is trained using data 
generated from SPICE simulation. The machine is then 
tested using experimental data and high accuracy is 
obtained (R2 > 0.9). In particular, for the first time, through 
the analysis of the hidden variables, we demonstrate that 
the machine has effectively extracted the features 
automatically which obviates the cumbersome feature 
extraction process. 

 
Index Terms—Autoencoder, CMOS Inverter, Contact 

Resistance, Defects, Machine Learning, Reverse Engineering, 
SPICE simulation 

I. INTRODUCTION 

EFECT identification [1] and reverse engineering [2] are the 

daily routines in semiconductor manufacturing and 

fabrication processes. They rely heavily on destructive and 

expensive, in terms of cost and time, failure analysis (FA) tools 
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such as SEM [3] and TEM [4]. As Moore’s law reaching its end 

[5], fabrication processes become more complicated by using 

emerging 3D structures such as FinFET, stacked nanosheet, 

and complimentary FET [6][7][8], and the demand for rapid FA 

increases. Moreover, since the parasitic resistance and 

capacitance start dominating in highly scaled devices in the 

Design-Technology Co-Optimization (DTCO) era [9], the 

understand and analysis of the parasitic components and their 

degradation also become more important. Contact resistance is 

one of the most important parasitic components which needs 

special attention [10][11]. Contact resistance control is also 

important to the success of emerging memories [12]. 

To meet the increasing demand of FA, it is desirable to find a 

low-cost and high-throughput methodology to analyze, narrow 

down or even pinpoint the defect properties qualitatively (e.g. 

identify the type of defects) and quantitatively (e.g. identify the 

contact location and its resistance value). One attractive 

proposal is to use the electrical characteristics to deduce the 

defect qualitatively and quantitively. 

However, the electrical characteristics of devices (such as the 

Current-Voltage, I-V, and Capacitance-Voltage, C-V) and 

circuits (such as the VTC of an inverter or the butterfly curves 

of an SRAM) usually are not explicitly correlated to the defect 

properties. Therefore, machine learning is proposed in 

[13]-[21] to learn the correlations. To use machine learning 

successfully, enough training data, i.e. electrical characteristics 

of devices/circuits with well-controlled defects, is required. 

This cannot be obtained easily and accurately through the 

experiment at a low cost. In [13], it is proposed to use 

Technology Computer Added Design (TCAD) to generate I-V 

curves of p-i-n diodes with various epitaxial thicknesses and 

doping and a machine is trained to deduce the thicknesses and 

doping based on the measured I-V. This is called 

TCAD-augmented machine learning. Note that no feature 

extraction is performed in [13] and this obviates domain 

expertise and the resources required in feature extractions. 

However, such an approach can lead to overfitting and cannot 

be used in experimental data due to the noise in the 

experimental I-V. Principal component analysis [14], noise 

technique [15], and Autoencoder (AE) [16][17] are proposed to 

solve the overfitting issue when domain expertise and feature 

extraction are not used. Among them, AE is the most promising 

in that it gives similar results as with feature extraction when 
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applied to experimental data [17]. Moreover, it is shown that by 

using the same AE architecture, one can apply to both I-V and 

C-V of FinFET without the need of performing separate feature 

extractions for the I-V and C-V curves [18]. Note that only [14] 

and [17] have the results verified with experimental data. 

Based on the successful experience in using AE in 

TCAD-augmented machine learning, in this paper, we applied 

a similar framework to extract the drain contact resistances of 

the NMOS and PMOS in an inverter based on its VTC. The 

drain contact resistance can be considered as a result of 

manufacturing defects [23] or degradation (e.g. due to radiation 

damage [24]). The training data is generated using SPICE 

simulation and the result is verified experimentally. This work 

has four major achievements. Firstly, it shows that the concept 

of TCAD-augmented machine learning can be extended to 

other types of simulations (in this case, SPICE) directly. 

Secondly, it shows AE-based machine is applicable also to 

circuit electrical characteristics without the need for 

architectural change. Thirdly, this is the first time to verify a 

SPICE-augmented machine learning on a circuit using 

experimental data. Lastly, through hidden node analysis, we 

show that the machine has successfully performed accurate 

feature extraction automatically. It should also be noted that 

feature extraction in [17] for TCAD-augmented machine 

learning is relatively easy. However, in the VTC case, the 

extraction of features based on VTC is far from trivial. 

It is worth noting that there were also efforts in the literature 

to use TCAD trained data to deduce SOI BV properties [19], 

nanowire properties [20], and SRAM defects locations 

[21][22]. However, feature extractions are used and they have 

not been verified using experimental data (i.e. the trained 

machines are tested using unseen TCAD data only). 

II. OVERVIEW 

The idea of this paper can be used in the common scenario in 

a fab as illustrated in Fig. 1. The goal is to use SPICE 

simulation to rapidly generate circuit electrical characteristics 

(e.g. VTC of an inverter) with variations of the parameters in 

interest (e.g. drain contact resistances) to train a machine 

without feature extraction. Circuit measurements on the wafer 

level are then fed into the machine to deduce the distribution of 

the parameters, which is then compared to any existing process 

wafer maps (e.g. contact hole CD) for correlations to 

understand the source of defects. To demonstrate this, inverter 

and drain contact resistance are the circuit and parameters in 

interest, respectively. Inverters with various contact resistances 

are first measured experimentally (Section III). SPICE 

simulations with contact resistance variations are conducted to 

generate training data (Section IV) and a machine is trained 

(Section V) to deduce the contact resistances for any given 

measured VTC. 

III. EXPERIMENT SETUP 

The inverter is constructed using commercial-off-the-self 

(COTS) PMOS and NMOS in ALD1103 by Advanced Linear 

Devices, Inc. fabricated using enhanced ACMOS silicon gate 

CMOS process [25]. Discrete resistors with accuracy better 

than 10% are used to model the extra drain contact resistance of 

PMOS and NMOS due to defect or degradation. They are 

labeled as R0 and R1, respectively. Fig. 2 shows the schematic 

of the setup. A USB-powered data acquisition module, 

ADALM2000 by Analog Devices [26] is used for biasing, input 

sweeping, and data acquisition. Since the input impedance of 

the sensing channel of ADALM2000 is only 1M, a unity gain 

buffer is added at the inverter output. VDD is set to be 3V. 

The PMOS and NMOS are characterized by setting |VGS| = 

|VDS| = VDD/2 = 1.5V. The drain current, |IDS|, is measured and 

their effective resistance, Rp for PMOS and Rn for NMOS, is 

found by 1.5V/|IDS|. It is found that Rp = 2243 and Rn = 744.  

Three sets of inverter experiments are then conducted. Each 

set uses 1 NMOS and NP PMOS in parallel, where NP = 1, 2, or 

3. This represents 3 different types of inverter circuits. For 

example, in the set with NP = 3, it has 3 PMOS connected in 

parallel to represent an inverter with a stronger PMOS, i.e. the 

 
 
Fig. 2. Schematic circuit of the experiment. NP = 3 case is shown. 

 

 
 
Fig. 1. Overview of the application of this study. SPICE circuit 
simulations, a), are performed to generate data to build a machine, b), 
without feature extraction. Wafer level measurement, e.g. VTC of an 
inverter, are fed into the machine, c), which can deduce the contact 
resistances distribution on the wafer level, d), and can be used to 
compare to process wafer maps to identify the defect root cause, e).  
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width is tripled. Vin is swept from 0V to 3V and the Vout is 

measured to construct the VTC. Different values of R0 and R1, 

between 0 to 1Mare used with 0 representing no extra 

contact resistance. There are 25 circuits in each set of 

experiments. Fig. 3 shows the distribution of R0 and R1 used in 

the experiments. Fig. 4 shows the measured VTC of the circuits. 

 

IV. TRAINING DATA GENERATION 

The SPICE models of the PMOS/NMOS in ALD1103 are 

not provided by the vendor. To model the PMOS/NMOS in 

ALD1103, a SPICE LEVEL 3 model is created so that the 

threshold voltage and Rn and Rp match the experimental values. 

In any modern IC fabrication process, an accurate SPICE 

model is usually available and thus it is not necessary to 

perform this extra calibration. However, if it is a new process 

under development, the SPICE model might not be complete. It 

is thus important to show that using a primitive SPICE model 

(such as in our case) to generate simulation data is still useful in 

simulation augmented machine learning.  

About 10,000 VTC curves are simulated using Cadence 

Spectre [27] by varying R0 and R1 for each NP value. The 

resistance values vary from 10 to 10M logarithmically. Fig. 

5 shows 75 randomly selected simulation curves from each NP 

group.  

V. MACHINE LEARNING 

As shown in Fig. 4 and Fig. 5, it is not trivial to extract the 

features that are associated with R0 and R1. One possibility is to 

extract the VM (i.e. VM = Vin| Vin = Vout) and slopes of the regions 

before and after VM which are affected not only by R0 and R1 

but also Rn and Rp. As a result, for each set of inverters, one 

might need to re-optimize the feature extractions. Moreover, 

for small R0 and R1, the VTC is smoother but becomes more 

piecewise linear when R0 and R1 are large. Therefore, feature 

extractions require a lot of domain expertise (knowledge of 

how the R0, R1, Rn, and Rp affect the shape of the VTC). 

 To obviate the cumbersome feature extraction and 

re-extraction when different inverters are used, an 

autoencoder-based machine is used in this study. Autoencoder 

[28][29], a type of manifold learning algorithm, is capable of 

performing non-linear dimensionality reduction of hyperspace 

 
 
Fig. 3. Distribution of R0 and R1 pairs used to construct the inverter 
circuits for each NP group. 
 

 
 
Fig. 5. Simulation VTC’s. 3 groups of inverter circuits are identified. 
Orange: NP = 1. Purple: NP = 2, Green: NP = 3. Only 75 curves from 
each group are shown for clarity. 
 

 
Fig. 6. The autoencoder-based machine used in this study. The machine 
has 5 hidden layers, each has 80, 50, 2, 50, and 80 nodes respectively. 
For clarity, only the middle layer is shown. Each VTC is discretized into 
51 points and encoded as 2 latent variables, h0 and  h1. The machine is 
trained such that the output values equal the input values in the 
autoencoder and h0 and h1 are correlated to R0 and R1 using KNN with 
k=3. 
 

 
Fig. 4. VTC’s of experimental inverter circuits with various R0 and R1. 3 
groups of circuits are identified. Orange: NP = 1. Purple: NP = 2, 
Green: NP = 3. 
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data into latent variables. The VTC curves are the hyperspace 

representing the inverter configuration. Since in the simulation 

and experiment, only R0 and R1 are varied in each set of 

inverters, the VTC can be represented by a set of latent variables 

with much reduced dimensions. The latent variables can then 

be correlated to R0 and R1.  

Fig. 6 shows the algorithm used and for clarity, only the 

middle hidden layer is shown. Tensorflow platform is used 

[30]. Each VTC is discretized into 51 points (y0 to y50). An AE 

with 5 hidden layers is used. 90% of the simulation curves are 

used as the training data and the rest are used for validation. 

The model is trained to have less than 5×10-5 mean squared 

error loss by comparing the AE input (y0 to y50) and output (ŷ0 to 

ŷ50). A decaying learning rate scheme is used, in which the 

learning rate is gradually reduced from 0.001 before 50 epochs 

to 0.0002 after 1700 epochs. This is found to help avoid local 

minima in the optimization process. The number of nodes in 

each hidden layer is 80, 50, 2, 50, and 80, respectively, and 

node counts are manually adjusted to minimize loss. 

The latent variables in the middle layer, h0 and h1, are 

correlated to R0 and R1 through the k-th nearest neighbors 

(KNN) algorithm with k = 3. Overfitting is monitored and 

avoided by tracking the validation loss and evaluating KNN 

performance once every 50 epochs. No overfitting occurs and 

2000 epochs are used in the final model. 

Fig. 7 shows that the model performs very well and the 

coefficients of determination [31], R2, are very close to 1 for 

both validation and training (not shown) data. 

 

 
Fig. 7. Validation results of NP = 1, 2, 3 cases. R0 and R1 are normalized to Rn. 

 

 

 
Fig. 8. Prediction of experimental R0 and R1. R0 and R1 are normalized to Rn. 
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After the machine is trained, experimental VTC’s from Fig. 4 

are then fed into the machine to deduce the R0 and R1 of the 

inverters, without any manual feature extraction. Fig. 8 shows 

that it can predict R0 and R1 very well with R2 larger than 0.9.  

VI. DISCUSSION 

We demonstrated experimentally that, without feature 

extraction, by using AE, the drain contact resistances in an 

inverter can be deduced based on measured VTC’s. 

Statistically, it deduces the extra resistance location (at PMOS, 

i.e. R0, or at NMOS, i.e. R1) and extra resistance values very 

well as shown in Fig. 8. In certain experiments, it can predict 

the abnormal resistance with values of only a few percentages 

of Rn well (e.g. R1 in NP = 2 case in Fig. 8 even when R1/Rn < 

10%), which is impossible in other FA methods. Overall, the 

AE can predict the trend fairly well even for small resistance 

(i.e. between R1/Rn > 1% and R1/Rn < 100%) in all cases. This is 

particularly useful for high throughput wafer map analysis.  

Although discrete components are used in the experiment, 

the transistors are made in a traditional CMOS IC process. 

Therefore, the experimental circuits constructed represent an 

integrated circuit inverter well. Such an approach also obviates 

the need to fabricate a test chip which might have a limitation 

on the number of probe pads. On the other hand, such a setup 

introduces more noises due to parasitic capacitance and 

resistance than a fully integrated circuit. Since DC 

measurement is performed, parasitic capacitance has minimal 

impacts. Parasitic resistance is also negligible as it is much 

lower than the MOSFET resistance which is further confirmed 

with the accuracy in the contact resistance prediction result. 

Such extra noise and non-ideality are expected to make it more 

difficult to apply simulation augmented machine learning to the 

experimental data than if a fully integrated inverter were used. 

Since good results are obtained with the current experimental 

setup, it is expected that such a methodology will perform even 

better on fully integrated circuits. This also shows that the AE 

can perform well even when unknown variations are present. 

Of course, if the unknown variations are comparable to the 

variations been investigated (i.e. R0 and R1 in this case), it is 

expected that the AE will not be able to perform as well. This 

can be solved by generating another model for the suspected 

new variations. 

To further quantify the ability of the AE on performing 

accurate feature extraction, Fig. 9 shows the input and output of 

the AE. Note that the AE encodes the 51-dimensional input data 

(y0 to y50) to a 2-dimensional space spanned by h0 and h1, which 

 

 
 

Fig. 10: h0 and h1 as the functions of R0 and R1 for NP = 1, 2, 

and 3. 
 

 

 

 
Fig. 11: R0 and R1 as the functions of h0 and h1 for NP = 1, 2, 

and 3. 

 

 
 
Fig. 9. Experimental VTC’s input to the machine (Left) and the VTC’s 
output from the machine (Right). NP = 3 is used. 
 



First Author et al.: Title  

is then used to reconstruct the original curve as the output (ŷ0 to 

ŷ50). As shown, the output resembles the input very well which 

means that the AE has successfully automatically extracted 2 

features to represent the VTC. 

Fig. 10 and Fig. 11 show the relationship between the latent 

variables and R0 and R1 for all 3 sets of inverters. It can be seen 

that all 3 different sets of inverters (NP  = 1, 2, and 3), which 

have different VM, show the same qualitative and very similar 

quantitative relationships between the contact resistances and 

the hidden variables. Therefore, the AE is repeatable in all 3 

cases and has automatically extracted the features that 

faithfully represent the parameters, i.e. R0 and R1, that we are 

interested in. 

The time required to perform 10,000 SPICE simulations for 

training data generation is less than 3 hours with 1 Spectre 

license and the time required to train the machine is only 20 

minutes using Intel i7-8705G CPU with 8 logical cores. The 

SPICE simulation time can be further reduced to 16 minutes if 

only 1,000 curves are used. The R2 of predicting the 

experimental data is found to be still better than 0.85 when only 

1000 data are used for training. Therefore, this approach is very 

rapid and can be performed almost on the fly for semiconductor 

defect debugging and yield enhancement without the need for 

expensive FA. 

In this study, a simple inverter is demonstrated. There might 

be a possibility that R0 and R1 can be extracted using an 

analytical model if the transistor model is very simple. 

However, this is usually impossible when a realistic compact 

model is used. And it is also very difficult to construct 

analytical models for more complex circuits. Compared to the 

analytical model, the AE approach is expected to be readily 

applicable to other circuits with minimal domain expertise.  

VII. CONCLUSION 

In this paper, we demonstrated a method to deduce the 

contact resistances of NMOS and PMOS in an inverter based 

on its VTC by using simulation augmented machine learning 

without the need for feature extraction. An autoencoder-based 

machine is used, which can reduce the hyper-dimensional VTC 

to a 2-dimensional latent subspace representing the contact 

resistances. Such a method is validated experimentally and can 

achieve accuracy with R2 > 0.9. It is clearly shown that the 

latent subspace has faithfully represented the parameters in 

interest. Such an approach is not inverter-specific and no 

feature extraction is required. It is thus expected to be 

applicable to other circuits. Since circuit simulations are fast, 

this method is expected to be very useful in improving the 

defect debugging and yield enhancement processes. 
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