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ABSTRACT
We consider initial boundary value problems for one-dimensional diffu-
sion equation with time-fractional derivative of order α ∈ (0, 1) which are
subject to non-zero Neumann boundary conditions. We prove the unique-
ness for an inverse coefficient problem of determining a spatially varying
potential and the order of the time-fractional derivative by Dirichlet data
at one end point of the spatial interval. The imposed Neumann conditions
are required to be within the correct Sobolev space of order α. Our proof
is based on a representation formula of solution to an initial boundary
value problem with non-zero boundary data. Moreover, we apply such a
formula and prove the uniqueness in the determination of boundary value
at another end point by Cauchy data at one end point.
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1. Introduction

We consider the following initial boundary value problem for a one-dimensional time-fractional
di!usion equation:






dαt u(x, t) = ∂2x u(x, t) + p(x)u(x, t), 0 < x < 1, 0 < t < T,
∂xu(0, t) = 0, ∂xu(1, t) = g(t), 0 < t < T,
u(x, 0) = 0, 0 < x < 1.

(1)

Here and henceforth let ∂x = ∂
∂x , ∂

2
x = ∂2

∂x2 , and we de"ne for absolutely continuous g on [0,T]

dαt g(t) = 1
#(1 − α)

∫ t

0
(t − s)−α

dg
ds

(s) ds, 0 < t < T,

that is, the fractional derivative of order α, 0 < α < 1, and of Caputo type (see, e.g., Podlubny [1]).
The "rst equation in (1) is a time-fractional di!usion equation of subdi!usion type modelling, for
example, anomalous di!usion in heterogeneous media. For some applications , see, e.g., Metzler and
Klafter [2].

In this article, we are concerned with the question of uniqueness for the inverse problem:
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2 W. RUNDELL ANDM. YAMAMOTO

Let g = g(t) be given for 0< t<T.Given data u(0, t) for 0< t<T or u(1, t) for 0< t<T, does they
uniquely determine α ∈ (0, 1) and p(x), 0 < x < 1?

In place of (1), we can also consider





dαt u(x, t) = ∂2x u(x, t) + p(x)u(x, t), 0 < x < 1, 0 < t < T,
∂xu(0, t) = ∂xu(1, t) = 0, 0 < t < T,
u(x, 0) = a(x), 0 < x < 1.

(2)

Uniqueness for this type of inverse problem for (2) with α = 1, that is, for the initial boundary value
problem for the heat equation, was considered by, for example, Murayama [3], Suzuki andMurayama
[4]. For the case with 0 < α < 1, we refer to Cheng, Nakagawa, Yamamoto and Yamazaki [5], Li,
Zhang, Jia and Yamamoto [6]. Also see Jin and Rundell [7], Jing and Peng [8], Jing and Yamamoto [9],
and survey chapters Li, Liu and Yamamoto [10], Li and Yamamoto [11], Liu, Li and Yamamoto [12].
Both for the cases of α = 1 and 0 < α < 1, the uniqueness for (2) requires a quite strong condition
to be imposed for the initial value a(x).

On the other hand, for the inverse problem for (1) with a zero initial value but g #≡ 0, we refer to
Pierce [13] who proved the uniqueness for α = 1 with the quite mild assumption g #≡ 0.

For "xed α ∈ (1, 2), Wei and Yan [14] established the uniqueness in determining p(x) with g ∈
C2[0,T] imposing additional conditions.

For the inverse problem for (1) with 0 < α < 1, see Rundell and Yamamoto [15]. The purpose of
this article is to complete [15] within a weaker class of solutions in suitable Sobolev space in time. For
the case of 1 < α < 2, we can argue in a similar manner but we concentrate on the case 0 < α < 1.

For the mathematical formulations, we need to introduce function spaces and relevant operators;
all functions considered are assumed to be real-valued. Let L2(0, 1) be a usual Lebesgue space and let
〈·, ·〉 and ‖ · ‖ denote the scalar product and the norm respectively in L2(0, 1), and let 〈·, ·〉X be the
scalar product in other Hilbert spaces X when we so specify.

We de"ne the fractional Sobolev spaceHα(0,T) on the interval (0,T) (see, e.g.[16], Chapter VII)
with the norm in Hα(0,T):

‖u‖Hα(0,T) :=
(

‖u‖2L2(0,T)
+
∫ T

0

∫ T

0

|u(t) − u(s)|2

|t − s|1+2α dt ds
)1

2

.

We further de"ne the Banach spaces

Hα(0,T) :=






{u ∈ Hα(0,T); u(0) = 0}, 1
2 < α < 1,

{
v ∈ H

1
2 (0,T);

∫ T
0

|v(t)|2
t dt < ∞

}
, α = 1

2 ,

Hα(0,T), 0 < α < 1
2

with the following norm:

‖v‖Hα(0,T) =






‖v‖Hα(0,T), 0 < α < 1, α #= 1
2 ,

(
‖v‖2

H
1
2 (0,T)

+
∫ T
0

|v(t)|2
t dt

) 1
2
, α = 1

2 .

We de"ne the Abel (Riemann–Liouville) fractional integral operator

Jαg(t) = 1
#(α)

∫ t

0
(t − s)α−1g(s) ds, 0 < t < T, 0 < α < 1.

Henceforth by x ∼ y, we mean that there exists a constant C> 0 such that C−1y ≤ x ≤ Cy for all
quantities x, y under consideration.
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In Goren#o, Luchko and Yamamoto [17], Kubica, Ryszewska and Yamamoto [18] (Theorem 2.1),
it is proved that Jα is an isomorphism between L2(0,T) and Hα(0,T). We de"ne

∂αt g = (Jα)−1g for g ∈ Hα(0,T) = JαL2(0,T).

Then also by Theorem 2.5 in [18], we see
{

‖∂αt g‖L2(0,T) ∼ ‖g‖Hα(0,T), g ∈ Hα(0,T),

∂αt g = dαt g if g ∈ W1,1(0,T) satis"es g(0) = 0 and tα−1 dg
dt ∈ L∞(0,T).

(3)

In other words, ∂αt is an extension of the Caputo derivative dαt to Hα(0,T).
Thus throughout this article, in place of (1) we consider






∂αt u(x, t) = ∂2x u(x, t) + p(x)u(x, t), 0 < x < 1, 0 < t < T,
∂xu(0, t) = 0, ∂xu(1, t) = g(t), 0 < t < T,
u ∈ Hα(0,T; L2(0, 1)).

(4)

We assume

p, q ≤ 0, p, q #≡ 0 on [0, 1], p, q ∈ C[0, 1]. (5)

Then we can prove

Proposition 1.1: Let g ∈ Hα(0,T) and let 0 < α < 1. Then there exists a unique solution up,α =
up,α(x, t) ∈ Hα(0,T; L2(0, 1)) ∩ L2(0,T;H2(0, 1)) solving (4).

In (4), we interpretu(x, ·) ∈ Hα(0,T) as an initial condition: ifα > 1
2 , then the Sobolev embedding

yields Hα(0,T; L2(0, 1)) ⊂ Hα(0,T; L2(0, 1)) ⊂ C([0,T]; L2(0, 1)) and so this means that u satis"es
the initial condition in a usual sense. However for α < 1

2 , the time regularity does not admit such a
usual initial condition and alternatively the third equation in (4) is required. For the class of solutions
with the Hα-regularity in t, it is su$cient to assume the same regularity in t for boundary data g(t),
that is, g ∈ Hα(0,T). Moreover for α > 1

2 , the condition means that g(0) = 0, which is a natural
compatibility condition at x = 0 and t = 0. We emphasize that since the order of time derivative
appearing in the equation is up to α < 1, it is natural to work within ‘α-time di!erentiability’, and
not in the C1 nor H1-class.

We can relax the condition on the signs of p, q in (5), but for simplicity of the arguments, we keep
the condition p, q ≤ 0, #≡ 0 on [0,T].

For the initial boundary value problems with the zero boundary values, we refer to Goren#o,
Luchko and Yamamoto [17], Kian and Yamamoto [19], Kubica, Ryszewska and Yamamoto [18],
Kubica and Yamamoto [20], Luchko [21], Sakamoto and Yamamoto [22]. On the other hand, for
initial boundary value problems with non-zero boundary data, there are not many works and we
refer only to Yamamoto [23] in the case of less regular boundary data, and one can consult the ref-
erences therein. On the other hand, the proof of Proposition 1.1 can be done directly, thanks to the
one-dimensionality, and see Section 2.

Now we are ready to state the main result of this article.

Theorem 1.2: We assume (5) and 0 < α,β < 1,

g ∈ Hmax{α,β}(0,T), g #≡ 0 in (0,T). (6)

Then either up,α(0, t) = uq,β(0, t) for 0< t<T or up,α(1, t) = uq,β(1, t) for 0< t<T, yields

α = β , p(x) = q(x), 0 < x < 1.
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By the regularity shown in Proposition 1.1 and the trace theorem, we notice that the data up,α(0, t),
etc. can make sense in L2(0,T). We stress that the condition g #≡ 0 in (6) for the boundary input is
quite generous.

In the multidimensional spatial cases, our approach does not work. Our method relies on the
inverse spectral problem, data for which are closely related to the Dirichlet-to-Neumann maps. As
for works on Dirichlet-to-Neumann maps, we refer to Kian, Oksanen, Soccorsi and Yamamoto [24],
Li, Imanuvilov and Yamamoto [25] for example. The formulation of inverse problems in terms of
Dirichlet-to-Neumann maps requires many measurements, in general. As for other types of inverse
problem in general dimensions with a single measurement, see Kian, Li, Liu and Yamamoto [26].

The article is composed of four sections. In Section 2, we prove Proposition 1.1 and a key rep-
resentation formula of the solution up,α to (4). Section 3 is devoted to the proof of Theorem 1.2 on
the basis of the representation formula in Section 2. In Section 4, we provide one application of the
representation formula to prove the uniqueness in determining a boundary value at x = 1 by Cauchy
data at x = 0.

2. Proof of Proposition 1.1 and a representation formula

2.1. Proof of Proposition 1.1

Recalling (5) we de"ne an operator Ap in L2(0, 1) by





Apw(x) = −d2w

dx2 (x) − p(x)w(x), 0 < x < 1,

D(Ap) =
{
w ∈ H2(0, 1); dw

dx (0) = dw
dx (1) = 0

}
.

Then Ap possesses eigenvalues 0 < λ1 < λ2 < · · · . Let ϕn, n ∈ N be the associated unique eigen-
function for λn: ϕn ∈ D(Ap) satis"es Apϕn = λnϕn in (0, 1) and we make the normalisation ϕn(1) =
1. Moreover, it is known that 〈ϕn,ϕm〉 :=

∫
' ϕn(x)ϕm(x) dx = 0 for n #= m and we set the associated

norming constants as

ρn := ‖ϕn‖2, n ∈ N.

We de"ne

{
v(x, t) = up,α(x, t) − x2

2 g(t),

f (x, t) = − x2
2 ∂

α
t g(t) + g(t) + x2

2 p(x)g(t), 0 < x < 1, 0 < t < T.
(7)

Then (4) is equivalent to






∂αt v(x, t) = ∂2x v(x, t) + p(x)v(x, t) + f (x, t), 0 < x < 1, 0 < t < T,
∂xv(0, t) = ∂xv(1, t) = 0, 0 < t < T,
v ∈ Hα(0,T; L2(0, 1)).

(8)

Since g ∈ Hα(0,T), we see that v ∈ Hα(0,T; L2(0, 1)) if and only if u ∈ Hα(0,T; L2(0, 1)).
From g ∈ Hα(0,T) and p ∈ C[0, 1], it follows that f ∈ L2(0,T; L2(0, 1)). Thus it is su$cient to

prove the unique existence of solution v ∈ Hα(0,T; L2(0, 1)) ∩ L2(0,T;H2(0, 1)) to (8). This follows
from [18, 22] for example. We note that in [18, 22], the zero Dirichlet boundary condition is consid-
ered and the case of the zero Neumann boundary condition can be treated in the same way. Thus the
proof of Proposition 1.1 is complete.
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2.2. The representation formula.

For γ1, γ2 > 0, we de"ne the two parameter Mittag–Le%er function:

Eγ1,γ2(z) =
∞∑

k=0

zk

#(γ1k + γ2)
, z ∈ C.

This is an entire function of order 1 in z ∈ C (e.g. [1, 27]). Then

Proposition 2.1 (representation formula): Let 0 < α < 1, p satisfy (5) and g ∈ Hα(0,T). Then

up,α(x, t) =
∞∑

n=1

1
ρn

(∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g(s) ds

)
ϕn(x) (9)

in Hα(0,T; L2(0, 1)) ∩ L2(0,T;H2(0, 1)).

Proof of Proposition 2.1.: By [22] for example, we have the representation

v(x, t) =
∞∑

n=1

1
ρn

(∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)〈f (·, s),ϕn〉 ds

)
ϕn(x) (10)

in Hα(0,T; L2(0, 1)) ∩ L2(0,T;H2(0, 1)). Here we note Equations (7) and (8).
We set 0C1[0,T] := {h ∈ C1[0,T]; h(0) = 0}.
First we prove (9) for g ∈ 0C1[0,T]. We have to calculate the right-hand side of (10).

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)〈f (·, s),ϕn〉 ds

= −
∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)∂αs g(s) ds

〈
x2

2
,ϕn

〉

+
∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g(s) ds

〈
1 + x2

2
p, ϕn

〉
. (11)

We set

S :=
∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)∂αs g(s) ds.

For g ∈ 0C1[0,T], by (3) we see that ∂αs g coincides with dαs g:

∂αs g(s) = dαs (s) = 1
#(1 − α)

∫ s

0
(s − ξ)−α

dg
dξ

(ξ) dξ .

Therefore, change of the order of integration yields

S = 1
#(1 − α)

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)

(∫ s

0
(s − ξ)−α

dg
dξ

(ξ) dξ
)

ds

= 1
#(1 − α)

∫ t

0

dg
dξ

(ξ)

(∫ t

ξ
(t − s)α−1Eα,α(−λn(t − s)α)(s − ξ)−α ds

)
dξ

=
∫ t

0

dg
dξ

(ξ)
1

#(1 − α)

(∫ t−ξ

0
ηα−1Eα,α(−λnηα)(t − ξ − η)−α dη

)
dξ .
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For the last equality we used the change of variables s → η by η = t − s. Moreover,

1
#(1 − α)

∫ t−ξ

0
ηα−1Eα,α(−λnηα)(t − ξ − η)−αdη = Eα,1(−λn(t − ξ)α)

(e.g. formula (1.100) (p . 25) in [1]). Hence, again applying integration by parts, we obtain

S =
∫ t

0

dg
dξ

(ξ)Eα,1(−λn(t − ξ)α) dξ

=
[
g(ξ)Eα,1(−λn(t − ξ)α)

]ξ=t
ξ=0 −

∫ t

0
g(ξ)

d
dξ

Eα,1(−λn(t − ξ)α) dξ .

Now, by the de"nition of the Mittag–Le#ler function in view of the power series, the termwise
di!erentiation yields

d
dξ

Eα,1(−λn(t − ξ)α) = λn(t − ξ)α−1Eα,α(−λn(t − ξ)α), 0 < ξ < t < T. (12)

Therefore, using g(0) = 0 by g ∈ 0C1[0,T], we have

S = g(t) −
∫ t

0
λn(t − s)α−1Eα,α(−λn(t − s)α)g(s) ds.

Substituting this into the above, we obtain
∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)〈f (·, s),ϕn〉s ds = −g(t)

〈
x2

2
,ϕn

〉

+
∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g(s) ds

(〈
λn

x2

2
, ϕn

〉
+
〈
1 + x2

2
p, ϕn

〉)
.

Here by integration by parts, we calculate
〈
λn

x2

2
, ϕn

〉
+
〈
x2

2
p, ϕn

〉
=
〈
λnϕn + pϕn,

x2

2

〉

=
〈
−d2ϕn

dx2
,
x2

2

〉
=
[
−dϕn

dx
(x)

x2

2

]x=1

x=0
+
∫ 1

0
x
dϕn
dx

(x)dx

= [xϕn(x)]x=1
x=0 −

∫ 1

0
ϕn(x) dx = 1 − 〈ϕn, 1〉.

Hence
〈
λn

x2

2
, ϕn

〉
+
〈
1 + x2

2
p, ϕn

〉
= 1 − 〈ϕn, 1〉 + 〈1,ϕn〉 = 1,

so that
∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)〈f (·, s),ϕn〉 ds

= −
〈
x2

2
, ϕn

〉
g(t) +

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g(s) ds.
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Substituting this into (10), since { 1√
ρn
ϕn}n∈N is an orthonormal basis in L2(0, 1), we see

v(x, t) = −
∞∑

n=1

1
ρn

〈
x2

2
, ϕn

〉
g(t)ϕn(x) +

∞∑

n=1

1
ρn

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g(s) dsϕn(x)

= −x2

2
g(t) +

∞∑

n=1

1
ρn

(∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g(s) ds

)
ϕn(x).

Since u = v + x2
2 g(t), we have proved (9) for g ∈ 0C1[0,T].

Next we have to prove (9) for g ∈ Hα(0,T). In Equations (7) and (10), we write f := fg and v :=
vg respectively in order to specify the dependence on g. Since 0C1[0,T] := {h ∈ C1[0,T]; h(0) = 0}
is dense in Hα(0,T) (e.g. Lemma 2.2 in [18]), for each g ∈ Hα(0,T), we can "nd a sequence g, ∈
0C1[0,T], , ∈ N such that g, −→ g in Hα(0,T) as , −→ ∞. Then, since ∂αt g, −→ ∂αt g in L2(0,T)

(e.g. Theorem2.4 in [18]), it follows that fg, −→ fg inL2(0,T). Therefore, applying thewell-posedness
for the initial boundary value problem (e.g.[17], Theorem 4.1 in [18, 22]), we see that vg, −→ vg in
Hα(0,T; L2(0, 1)) ∩ L2(0,T;H2(0, 1)).

As we already proved, for g, ∈ 0C1[0,T] we have

∞∑

n=1

1
ρn

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g,(s) dsϕn − x2

2
g,(t) −→ vg (13)

in the space Hα(0,T; L2(0, 1)) ∩ L2(0,T;H2(0, 1)).
On the other hand, let h ∈ L2(0,T). Then one can prove by the asymptotic behaviour of ϕn for

large n ∈ N (e.g. Section 2 of Chapter 1 of Levitan and Sargsjan [28]), that there exists a constant
ρ0 > 0 such that

ρn ≥ ρ0 for all n ∈ N. (14)

HenceforthC> 0 denotes generic constants which are independent of n and choices of h, g, t ∈ (0,T).
Let ψ ∈ C∞

0 ((0, 1) × (0,T)). Then by integration by parts

〈ϕn,ψ(·, s)〉 = 1
λn

〈λnϕn, ψ(·, s)〉 = 1
λn

〈Apϕn, ψ(·, s)〉 = 1
λn

〈ϕn,Apψ(·, s)〉.

Therefore,
〈 ∞∑

n=1

1
ρn

(∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)h(s) ds

)
ϕn, ψ

〉

L2((0,1)×(0,T))

=
∞∑

n=1

1
ρn

〈∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)h(s) ds,

1
λn

〈ϕn, Apψ(·, t)〉L2(0,1)
〉

L2(0,T)

.

Hence, also by (14) and the Cauchy–Schwarz inequality, we have
∣∣∣∣∣∣

〈 ∞∑

n=1

1
ρn

(∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)h(s) ds

)
ϕn, ψ

〉

L2((0,1)×(0,T))

∣∣∣∣∣∣

≤ C
∞∑

n=1

1
λn

∥∥∥∥

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)h(s) ds

∥∥∥∥
L2(0,T)

‖Apψ‖L2(0,T;L2(0,1))
‖ϕn‖
ρn
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≤ C
∞∑

n=1

1
λn

‖sα−1Eα,α(−λnsα) ∗ h‖L2(0,T).

Here and henceforth we set (g1 ∗ g2)(t) :=
∫ t
0 g1(t − s)g2(s) ds. By a bound of Eα,α(−λnsα) (e.g.

Theorem 1.6 (p . 35) in [1]), we have |Eα,α(−λnsα)| ≤ C for all n ∈ N and s> 0. Hence, Young’s
inequality yields

‖sα−1Eα,α(−λnsα) ∗ h‖L2(0,T) ≤ ‖sα−1Eα,α(−λnsα)‖L1(0,T)‖h‖L2(0,T) ≤ C‖h‖L2(0,T).

Since C−1n2 ≤ λn ≤ Cn2 for all n ∈ N (e.g. [28]), we can obtain
∣∣∣∣∣∣

〈 ∞∑

n=1

1
ρn

(∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)h(s) ds

)
ϕn, ψ

〉

L2((0,1)×(0,T))

∣∣∣∣∣∣

≤ C
∞∑

n=1

1
n2

‖h‖L2(0,T) ≤ C‖h‖L2(0,T)

for all ψ ∈ C∞
0 ((0, 1) × (0,T)).

Therefore, setting h := g − g,, we see that

∞∑

n=1

1
ρn

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g,(s) dsϕn − x2

2
g,(t)

−→
∞∑

n=1

1
ρn

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g(s) dsϕn − x2

2
g(t) in (C∞

0 ((0, 1) × (0,T)))′

as , → ∞.
In view of (13), the convergence is inHα(0,T; L2(0, 1)) ∩ L2(0,T;H2(0, 1)), and both limits in (13)

and the above must coincide. Hence,

vg(x, t) =
∞∑

n=1

1
ρn

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g(s) dsϕn − x2

2
g(t)

in Hα(0,T; L2(0, 1)) ∩ L2(0,T;H2(0, 1)). Since up,α(x, t) = vg(x, t) + x2
2 g(t) by (7), the proof of

Proposition 2.1 is complete. !

We conclude this section with the following lemma.

Lemma 2.2: Let Kp,α(x, t) be de!ned by

Kp,α(x, t) :=
∞∑

n=1

ϕn(x)
ρn

∫ t

0
sα−1Eα,α(−λnsα) ds =

∞∑

n=1

ϕn(x)
λnρn

(1 − Eα,1(−λntα))

for all x ∈ [0, 1] and t ∈ [0,T].

Then,

(i) The series is uniformly convergent in x ∈ [0, 1] and t ∈ [0,T], and Kp,α(x, ·) ∈ L∞(0,∞) and is
analytic in t> 0 for all x ∈ [0, 1].
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(ii)
∫ ξ

0
up,α(x, t) dt = (Kp,α(x, ·) ∗ g)(ξ) for all x ∈ [0, 1] and ξ ∈ [0,T].

Proof of (i).: In view of (12), we have
∫ t

0
sα−1Eα,α(−λnsα) ds = 1

λn

∫ 0

t

d
ds

(Eα,1(−λnsα)) ds = 1
λn

(1 − Eα,1(−λntα)). (15)

Hence,

Kp,α(x, t) =
∞∑

n=1

1
λnρn

(1 − Eα,1(−λntα))ϕn(x), 0 ≤ x ≤ 1, t > 0.

From Theorem 1.6 (p.35) in [1], we know that there exist constants C> 0 and θ0 > 0 such that

|Eα,1(−λnzα)| ≤ C for all n ∈ N and z ∈ / := {z ∈ C; |Arg z| < θ0}.

We "x a small δ > 0 arbitrarily. Since ‖ϕn‖Hθ (0,1) ≤ C‖A
θ
2
p ϕn‖L2(0,1) with 0 < θ < 2, applying the

Sobolev embedding Theorem and recalling ρn = ‖ϕn‖2L2(0,1), we have

‖ϕn‖C[0,1] ≤ C‖ϕn‖H 1
2+δ(0,1)

≤ C‖A
1
4+ δ

2
p ϕn‖L2(0,1) = Cλ

1
4+ δ

2
n

√
ρn.

Hence, by (14), we obtain
∣∣∣∣

1
ρnλn

(1 − Eα,1(−λnzα))ϕn(x)
∣∣∣∣ ≤ C

λn
√
ρn
λ

1
4+ δ

2
n , 0 ≤ x ≤ 1, z ∈ /,

and so
∞∑

n=1

1
λnρn

|(1 − Eα,1(−λnzα))ϕn(x)| ≤ C
∞∑

n=1

1

λ
3
4− δ

2
n

≤ C
∞∑

n=1

1

n
3
2−δ

< ∞, 0 ≤ x ≤ 1, z ∈ /.

(16)
Here we used λn ∼ n2 (e.g.[28]). Since Eα,1(−λnzα) is analytic in z ∈ /, we can complete the proof
of (i). !

Proof of (ii).: Since the series in (9) is convergent in L2(0,T;H2(0, 1)), byH2(0, 1) ⊂ C[0, 1], we see
that

up,α(x, t) =
∫ t

0

( ∞∑

n=1

1
ρn

(t − s)α−1Eα,α(−λn(t − s)α)ϕn(x)

)

g(s) ds

is convergent in L2(0,T;C[0,T]). Therefore,
∫ ξ

0
up,α(x, t) dt =

∫ ξ

0

{∫ t

0

( ∞∑

n=1

1
ρn

(t − s)α−1Eα,α(−λn(t − s)α)ϕn(x)

)

g(s) ds

}

dt

for all "xed x ∈ [0, 1]. Exchanging the orders of the integrals and changing the variables t → η: η =
t − s, we obtain
∫ ξ

0

(∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g(s) ds

)
dt

=
∫ ξ

0

(∫ ξ

s
(t − s)α−1Eα,α(−λn(t − s)α) dt

)
g(s) ds=

∫ ξ

0

(∫ ξ−s

0
ηα−1Eα,α(−λnηα) dη

)
g(s) ds.

Hence by (15), we have veri"ed (ii) and the proof of Lemma 2.2 is complete. !
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3. Proof of Theorem 1.2

We recall (5).
Let






Aqw(x) = −d2w
dx2

(x) − q(x)w(x), 0 < x < 1,

D(Aq) =
{
w ∈ H2(0, 1);

dw
dx

(0) = dw
dx

(1) = 0
}
.

We let 0 < µ1 < µ2 < · · · , denote all the eigenvalues of the operator Aq and let ψn, n ∈ N be the
corresponding eigenfunction forµn, that isψn ∈ D(Aq) satis"esAqψn = µnψn in (0, 1) and we take
the normalisation of the eigenfunctions to be ψn(1) = 1. Given this, we set σn := ‖ψn‖2, for n ∈ N.
Similarly to the analysis of Lemma 2.2, we de"ne

Kq,β(1, t) =
∞∑

n=1

1
σn

∫ t

0
sβ−1Eβ ,β(−µnsβ) ds, t > 0.

It is su$cient to prove the theorem with data up,α(1, t) = uq,β(1, t), 0< t<T. For the other case at
x = 0, replacing the conditions ϕn(1) = ψn(1) = 1 by ϕn(0) = ψn(0) = 1, we can repeat the whole
argument and thus omit the details for this case.

Since
∫ ξ
0 up,α(1, t) dt =

∫ ξ
0 uq,β(1, t) dt by up,α(1, t) = uq,β(1, t) for 0< t<T, in view of

Lemma 2.2, we see

(Kp,α(1, ·) ∗ g)(ξ) = (Kq,β(1, ·) ∗ g)(ξ), 0 < ξ < T,

that is,

((Kp,α − Kq,β)(1, ·) ∗ g)(t) = 0, 0 < t < T.

Since g #≡ 0, we apply the Titchmarsh convolution theorem (e.g.[29]), so that there exists t0 > 0 such
that

Kp,α(1, t) = Kq,β(1, t), 0 < t < t0.

Lemma 2.2 implies that Kp,α(1, t) and Kq,β(1, t) are analytic in t> 0, and so

∞∑

n=1

1
λnρn

(1 − Eα,1(−λntα)) =
∞∑

n=1

1
µnσn

(1 − Eβ ,1(−µntβ)), t > 0.

By the asymptotics of Eα,1(−η) and Eβ ,1(−η) for large η > 0 (e.g. Theorem 1.4 (pp . 33–34) in [1]),
we have

Eα,1(−λntα) = 1
#(1 − α)

1
λntα

+ O
(

1
t2α

)

and

Eβ ,1(−µntβ) = 1
#(1 − β)

1
µntβ

+ O
(

1
t2β

)

for all large t> 0. Hence

∞∑

n=1

1
λnρn

− 1
#(1 − α)

∞∑

n=1

1
λnρn

1
λntα

+ O
(

1
t2α

)



APPLICABLE ANALYSIS 11

=
∞∑

n=1

1
µnσn

− 1
#(1 − β)

∞∑

n=1

1
µnσn

1
µntβ

+ O
(

1
t2β

)

for large t> 0. Letting t → ∞, we obtain

∞∑

n=1

1
λnρn

=
∞∑

n=1

1
µnσn

.

Assume that α > β . Then

− 1
#(1 − α)

∞∑

n=1

1
λnρn

1
λntα−β + O

(
1

t2α−β

)
= − 1

#(1 − β)

∞∑

n=1

1
µnσn

1
µn

+ O
(
1
tβ

)

for large t> 0. Letting t → ∞, we obtain

1
#(1 − β)

∞∑

n=1

1
µ2
nσn

= 0.

Since σn = ‖ψn‖2 > 0, this is impossible. Hence α ≤ β . By an entirely similar argument we see that
α < β is impossible and so conclude that α = β .

Now we move to complete the proof of the theorem. We see

∞∑

n=1

1
λnρn

Eα,1(−λntα) =
∞∑

n=1

1
µnσn

Eα,1(−µntα), t > 0. (17)

Now we can argue similarly to [5]. Using
∣∣∣∣

1
λnρn

Eα,1(−λntα)
∣∣∣∣ ≤ C

λn
, n ∈ N, t > 0,

we see that the series in (17) are convergent uniformly in [0,∞). Therefore we can take the Laplace
transforms termwise to have

∞∑

n=1

1
λnρn

∫ ∞

0
e−ζ tEα,1(−λntα) dt =

∞∑

n=1

1
µnσn

∫ ∞

0
e−ζ tEα,1(−µntα) dt, ζ > 0.

By formula (1.80) (p . 21) in [1], we obtain

∞∑

n=1

1
λnρn

ζ α−1

ζ α + λn
=

∞∑

n=1

1
µnσn

ζ α−1

ζ α + µn
, ζ > 0.

Dividing by ζ α−1 and setting η = ζα , we have

∞∑

n=1

1
λnρn

1
η + λn

=
∞∑

n=1

1
µnσn

1
η + µn

, η > 0. (18)

Since λn ∼ n2 and µn ∼ n2 for large n ∈ N, we see that both sides of (18) are convergent uniformly
in any compact set inC \ ({−λn}n∈N ∪ {−µn}n∈N) and are analytic inC \ ({−λn}n∈N ∪ {−µn}n∈N).
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Assume that λm #∈ {µn}n∈N form ∈ N. Then we can choose a small circle Cm centred at −λm and
{−µn}n∈N is not included in the disk centred at−λn bounded byCm. Integrating onCm and applying
the Cauchy theorem, we have

2π
√

−1
λmρm

= 0,

which is impossible. Hence λm ∈ {µn}n∈N for each m. Similarly µm ∈ {λn}n∈N for each m ∈ N.
Therefore

λn = µn, n ∈ N. (19)

By (18), we have
∞∑

n=1

(
1

λnρn
− 1
λnσn

)
1

η + λn
= 0, η ∈ C \ {−λn}n∈N.

Again integrating on Cm, we obtain

2π
√

−1
λn

(
1
ρn

− 1
σn

)
= 0,

that is,

ρn = σn, n ∈ N. (20)

Now, using (19) and (20), we apply the Gel’fand–Levitan theory (e.g. [30]), and we can obtain p(x) =
q(x) for 0< x< 1. The application is similar to [3–5], and so we omit the details. Thus the proof of
Theorem 1.2 is complete.

4. Application of the representation formula

The representation formula Proposition 2.1 is useful for qualitative analyses of fractional equations.
Here we explain one application.

We let 0 < α < 1 and we "x p ∈ C[0, 1], ≤ 0 on [0, 1]. Let





∂αt u(x, t) = ∂2x u(x, t) + p(x)u(x, t), 0 < x < 1, 0 < t < T,
u(0, t) = ∂xu(0, t) = 0, 0 < t < T,
u ∈ Hα(0,T; L2(0, 1)).

(21)

Then we are interested in the question: can we conclude u(x, t) = 0 for 0< x< 1 and 0< t<T?
This is a kind of unique continuation property under the assumption u ∈ Hα(0,T; L2(0, 1))which

can be interpreted as that an initial value of u is zero. This kind of unique continuation was proved
by Cheng et al. [31] for α = 1

2 , Lin and Nakamura [32] for α ∈ (0, 1) and Lin and Nakamura [33] for
α ∈ (0, 1) ∪ (1, 2) for general time-fractional partial di!erential equations. Their proofs are based on
the techniques of pseudo-di!erential operators.

For α = 1, we can prove the unique continuation without any information of initial conditions,
and the corresponding unique continuation is proved for a one-dimensional time-fractional equation
by Li and Yamamoto [34]. More precisely, if u is in a suitable class and satis"es

{
∂αt u(x, t) = ∂2x u(x, t), 0 < x < 1, 0 < t < T,
u(0, t) = ∂xu(0, t) = 0, 0 < t < T,

then u(x, t) = 0 for 0< x< 1 and 0< t<T.
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However, such unique continuation not requiring any initial conditions, is not known for general
case in multidimension.

In this section, for the one-dimensional case (21), we provide a simpler proof than [31–33], which
relies on the representation formula Proposition 2.1.

Proposition 4.1: Let u ∈ Hα(0,T; L2(0, 1)) ∩ L2(0,T;H2(0, 1)) satisfy (21) and ∂xu(1, ·) ∈ Hα(0,T).
Then u(x, t) = 0, 0< x< 1, 0< t<T.

By the de"nition of Hα(0,T) given in Section 1, if 0 < α < 1
2 , then Hα(0,T) = Hα(0,T) and in

(21) the condition u ∈ Hα(0,T; L2(0, 1)) does not require anything for the behaviour of the solution
u near t = 0. In other words, we need not pose any conditions at t = 0 to u.

For 1
2 < α < 1, the condition µ ∈ Hα(0,T; L2(0, 1)) requires µ(., 0) = 0 in the sense of trace.

It seems that we can remove a condition ∂xu(1, ·) ∈ Hα(0,T), but we here omit the details.

Proof: We set g := ∂xu(1, ·) ∈ Hα(0,T). Then u satis"es (4) and u(0, t) = 0, 0< t<T. Lemma 2.2
(ii) implies

(Kp,α(0, ·) ∗ g)(t) = 0, 0 < t < T.

By the Titchmarsh theorem on the convolution (e.g.[29]), there exist t1, t2 ≥ 0 such that





t1 + t2 = T,
Kp,α(0, t) = 0, 0 ≤ t ≤ t1,
g(t) = 0, 0 ≤ t ≤ t2.

(22)

Assuming that t1 > 0, we will derive a contradiction, which proves t1 = 0, that is, g = 0 in (0,T).
The argument is similar to the proof of Theorem 1.2.

The analyticity of Kp,α(0, t) in t> 0 yields Kp,α(0, t) = 0 for all t> 0.
Since limt→∞ Eα,1(−λntα) = 0 (e.g. Theorem 1.6 (p . 35) in [1]), we have

lim
t→∞

Kp,α(0, t) =
∞∑

n=1

ϕn(0)
λnρn

= 0.

Hence
∞∑

n=1

ϕn(0)
λnρn

Eα,1(−λntα) = 0, t > 0.

This series is convergent in L∞(0,∞) and so we can take the Laplace transform term by term. In view
of formula (1.80) (p . 21) in [1], we obtain

∞∑

n=1

ϕn(0)
λnρn

zα−1

zα + λn
= 0, Re z > 0.

Then, dividing by zα−1 and setting η = zα , we have

∞∑

n=1

ϕn(0)
λnρn

1
η + λn

= 0, Re η > 0.

Similarly to (16), we can verify
∞∑

n=1

ϕn(0)
λnρn

< ∞,
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and so we can continue analytically in η as much as possible to obtain

∞∑

n=1

ϕn(0)
λnρn

1
η + λn

= 0, η ∈ C \ {−λn}n∈N.

Choosing a small circle #1 centred at −λ1 such that the interior of the disk bounded by #1 does not
contain −λn with n ≥ 2 and integrating on #1, in terms of the Cauchy theorem, we see

ϕ1(0)
λ1ρ1

2π
√

−1 = 0,

that is, ϕ1(0) = 0. Since d2ϕ1
dx2 (x) + (p(x) + λ1)ϕ1(x) = 0, 0< x< 1 and dϕ1

dx (0) = 0, we have ϕ1(x) =
0 for all 0< x< 1, which is impossible.

Then we can conclude that t1 = 0. By (22), we reach g(t) = 0 for 0< t<T. Thus the proof of
Proposition 4.1 is complete. !
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