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ABSTRACT ARTICLE HISTORY
We consider initial boundary value problems for one-dimensional diffu- Received 9 April 2021
sion equation with time-fractional derivative of order « € (0, 1) which are Accepted 26 July 2021
subject to non-zero Neumann boundary conditions. We prove the unique-
ness for an inverse coefficient problem of determining a spatially varying
potential and the order of the time-fractional derivative by Dirichlet data
at one end point of the spatial interval. The imposed Neumann conditions KEYWORDS

are required to be within the correct Sobolev space of order a. Our proof ~ Inverse coefficient p"’ble,m".
is based on a representation formula of solution to an initial boundary ~ actional diffusion equation;
value problem with non-zero boundary data. Moreover, we apply such a uniqueness

formula and prove the uniqueness in the determination of boundary value AMS SUBJECT

at another end point by Cauchy data at one end point. CLASSIFICATIONS
35R30; 35R11

COMMUNICATED BY
E. Francini

1. Introduction

We consider the following initial boundary value problem for a one-dimensional time-fractional
diffusion equation:

dfu(x, t) = 8£u(x, H+puxt), 0<x<1,0<t<T,
oxu(0,t) =0, dyu(l,t)=gt), 0<t<T, (1)
u(x,0)=0, 0<x<l.

Here and henceforth let 9, = %, 85 = %, and we define for absolutely continuous g on [0, T

1 g d
dygt) = m/() (t— s)fu‘d—‘i(s) ds, 0<t<T,

that is, the fractional derivative of order o, 0 < o < 1, and of Caputo type (see, e.g., Podlubny [1]).
The first equation in (1) is a time-fractional diffusion equation of subdiffusion type modelling, for
example, anomalous diffusion in heterogeneous media. For some applications, see, e.g., Metzler and
Klafter [2].

In this article, we are concerned with the question of uniqueness for the inverse problem:
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2 W. RUNDELL AND M. YAMAMOTO

Let g = g(t) be given for 0 <t < T. Given data u(0, t) for 0 <t < T or u(1,t) for 0 < t < T, does they
uniquely determine o € (0,1) and p(x), 0 < x < 1?2
In place of (1), we can also consider

dfu(x, t) = 8§u(x, H+pulxt), 0<x<1,0<t<T,
o,u(0,t) = d,u(l,t) =0, O0<t<T, (2)

u(x,0) =alx), 0<x<l.

Uniqueness for this type of inverse problem for (2) with & = 1, that is, for the initial boundary value
problem for the heat equation, was considered by, for example, Murayama [3], Suzuki and Murayama
[4]. For the case with 0 < a < 1, we refer to Cheng, Nakagawa, Yamamoto and Yamazaki [5], Li,
Zhang, Jia and Yamamoto [6]. Also see Jin and Rundell [7], Jing and Peng [8], Jing and Yamamoto [9],
and survey chapters Li, Liu and Yamamoto [10], Li and Yamamoto [11], Liu, Li and Yamamoto [12].
Both for the cases of « = 1 and 0 < & < 1, the uniqueness for (2) requires a quite strong condition
to be imposed for the initial value a(x).

On the other hand, for the inverse problem for (1) with a zero initial value but g £ 0, we refer to
Pierce [13] who proved the uniqueness for « = 1 with the quite mild assumption g = 0.

For fixed o € (1,2), Wei and Yan [14] established the uniqueness in determining p(x) with g €
C?[0, T] imposing additional conditions.

For the inverse problem for (1) with 0 < « < 1, see Rundell and Yamamoto [15]. The purpose of
this article is to complete [15] within a weaker class of solutions in suitable Sobolev space in time. For
the case of 1 < o < 2, we can argue in a similar manner but we concentrate on the case 0 < o < 1.

For the mathematical formulations, we need to introduce function spaces and relevant operators;
all functions considered are assumed to be real-valued. Let L2(0, 1) be a usual Lebesgue space and let
(-,-) and || - || denote the scalar product and the norm respectively in L?(0, 1), and let (-, -)x be the
scalar product in other Hilbert spaces X when we so specify.

We define the fractional Sobolev space H*(0, T) on the interval (0, T) (see, e.g.[16], Chapter VII)
with the norm in H* (0, T):

1

T 2 3

|u(®) — u@s)|” :

lull e 0,1y = (IIuIILz(OT)+/ / TR dtds) .

We further define the Banach spaces

{u e H*(0, T); u(0) = 0}, % <a<l,
Hyo (0, T) = |ve H2(0,T); f; OL g < oo} a=1
H*©0,T), 0<a< %

with the following norm:

1
VIl ze 0,195 O<a<la#s,

IvllH, 0,1 = 3
« (0 T o) 1
e i —dt) , a=1
( HI0,T) Jo 5 2

We define the Abel (Riemann-Liouville) fractional integral operator

t
Jég(t) = ﬁ/@ (t—s)o‘_lg(s) ds, 0<t<T,0<a<]l.

Henceforth by x ~ y, we mean that there exists a constant C > 0 such that C~!y < x < Cy for all
quantities x, y under consideration.
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In Gorenflo, Luchko and Yamamoto [17], Kubica, Ryszewska and Yamamoto [18] (Theorem 2.1),
it is proved that J* is an isomorphism between L?(0, T) and H, (0, T). We define

g = (" 'g forge Hy(0,T) =J*L*(0, T).
Then also by Theorem 2.5 in [18], we see

107 gllz20,m) ~ NgllH,0.1)s & € Ha(0,T),
g =dvg ifge W (0, T) satisfies g(0) = 0 and t"‘_l% € L*(0, 7).

In other words, 9 is an extension of the Caputo derivative d¥ to Hy (0, T).
Thus throughout this article, in place of (1) we consider

0u(x, t) = Zu(x,t) + pu(xt), 0<x<1,0<t<T,
oxu(0,£) =0, du(l,t)=g(1),0<t<T, (4)
u € Hy (0, T; L*(0,1)).

We assume

pq=<0, p,g#0 onl[0,1], p,qe C[0,1]. (5)

Then we can prove

Proposition 1.1: Let g € Hy(0,T) and let 0 < a < 1. Then there exists a unique solution upq =
Up (x, 1) € Hy (0, T;12(0,1)) N L*(0, T; H*(0, 1)) solving (4).

In (4), we interpret u(x, -) € H, (0, T) as an initial condition: if ¢ > %, then the Sobolevembedding
yields H, (0, T; L?(0, 1)) € H*(0, T; L*(0, 1)) C C([0, T]; L*(0, 1)) and so this means that u satisfies
the initial condition in a usual sense. However for a < %, the time regularity does not admit such a
usual initial condition and alternatively the third equation in (4) is required. For the class of solutions
with the Hy-regularity in ¢, it is sufficient to assume the same regularity in ¢ for boundary data g(¢),
that is, g € Hy (0, T). Moreover for o > %, the condition means that g(0) = 0, which is a natural
compatibility condition at x = 0 and t = 0. We emphasize that since the order of time derivative
appearing in the equation is up to o < 1, it is natural to work within ‘«-time differentiability’, and
not in the C! nor H!-class.

We can relax the condition on the signs of p, g in (5), but for simplicity of the arguments, we keep
the condition p,g < 0,5 0 on [0, T].

For the initial boundary value problems with the zero boundary values, we refer to Gorenflo,
Luchko and Yamamoto [17], Kian and Yamamoto [19], Kubica, Ryszewska and Yamamoto [18],
Kubica and Yamamoto [20], Luchko [21], Sakamoto and Yamamoto [22]. On the other hand, for
initial boundary value problems with non-zero boundary data, there are not many works and we
refer only to Yamamoto [23] in the case of less regular boundary data, and one can consult the ref-
erences therein. On the other hand, the proof of Proposition 1.1 can be done directly, thanks to the
one-dimensionality, and see Section 2.

Now we are ready to state the main result of this article.

Theorem 1.2: We assume (5) and0 < a, B < 1,
g € Hmax{a,ﬂ}(o, T)) g ‘_/'_é 0 in (0> T) (6)
Then either up(0,t) = ug5(0,1) for 0 <t < T or upe(1,t) = ugp(l,t) for 0 <t < T, yields

a=f#, px)=4qx),0<x<]l.
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By the regularity shown in Proposition 1.1 and the trace theorem, we notice that the data 1, 4 (0, t),
etc. can make sense in L2(0, T). We stress that the condition g 0 in (6) for the boundary input is
quite generous.

In the multidimensional spatial cases, our approach does not work. Our method relies on the
inverse spectral problem, data for which are closely related to the Dirichlet-to-Neumann maps. As
for works on Dirichlet-to-Neumann maps, we refer to Kian, Oksanen, Soccorsi and Yamamoto [24],
Li, Imanuvilov and Yamamoto [25] for example. The formulation of inverse problems in terms of
Dirichlet-to-Neumann maps requires many measurements, in general. As for other types of inverse
problem in general dimensions with a single measurement, see Kian, Li, Liu and Yamamoto [26].

The article is composed of four sections. In Section 2, we prove Proposition 1.1 and a key rep-
resentation formula of the solution u, 4 to (4). Section 3 is devoted to the proof of Theorem 1.2 on
the basis of the representation formula in Section 2. In Section 4, we provide one application of the
representation formula to prove the uniqueness in determining a boundary value at x = 1 by Cauchy
dataatx = 0.

2. Proof of Proposition 1.1 and a representation formula
2.1. Proof of Proposition 1.1
Recalling (5) we define an operator Ay, in L?(0, 1) by

Apw(x) = —‘C‘;—’;(x) —pwkx), 0<x<l,

D(Ap) = {W € HZ(O, 1); i—;’(O) = ?1_1;‘(’(1) — 0} .

Then A, possesses eigenvalues 0 < A} < A < ---. Let ¢y, n € N be the associated unique eigen-
function for A, ¢, € D(Ap) satisfies Ay, = Ay, in (0, 1) and we make the normalisation ¢, (1) =
1. Moreover, it is known that {¢,,, ¢,,) := fQ On(%)@m (x) dx = 0 for n £ m and we set the associated
norming constants as

pni=llgall®, neN

We define

V1) = tpa (6, 1) — % g (D),
faot) = —Z9%(t) +g(0) + 5p(0g(t), 0<x<1,0<t<T.

Then (4) is equivalent to

3v(x, 1) = Z2v(x, 1) + p()v(x, t) + f(x, 1), 0<x<1,0<t<T,
0xv(0,t) = 9,v(1,t) =0, O0<t<T, (8)
v € Hy(0, T; L2(0, 1)).

Since g € H, (0, T), we see that v € H, (0, T; L2(0, 1)) if and only if u € H, (0, T; L*(0, 1)).

From g € H,(0,T) and p € C[0, 1], it follows that f € L?(0, T; L?(0, 1)). Thus it is sufficient to
prove the unique existence of solution v € Hy (0, T; L2(0, 1)) N L2(0, T; H2(0, 1)) to (8). This follows
from [18, 22] for example. We note that in [18, 22], the zero Dirichlet boundary condition is consid-
ered and the case of the zero Neumann boundary condition can be treated in the same way. Thus the
proof of Proposition 1.1 is complete.
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2.2. Therepresentation formula.
For y1, y2 > 0, we define the two parameter Mittag-Leffler function:

o k

z
Epp@=Y ————, zeC.
p C(yik + )

This is an entire function of order 1 in z € C (e.g. [1, 27]). Then

Proposition 2.1 (representation formula): Let 0 < o < 1, p satisfy (5) and g € H, (0, T). Then
(o) 1 t
Upa (%) =) . ( f (t = ) Ega (=hn(t — 9)*)g(s) ds) Pn(x) )
w1 Pn 0

in Hy (0, T; L2(0,1)) N L2(0, T; H2(0, 1)).

Proof of Proposition 2.1.: By [22] for example, we have the representation
o0 1 t
vixt) =) - ( / (t = ) Ega (=An(t = ) f(9), @) ds) n(x) (10)
n=1 """ 0

in H, (0, T; L2(0, 1)) N L2(0, T; H?(0, 1)). Here we note Equations (7) and (8).
We set (C[0, T] := {h € C[0, T]; h(0) = 0}.
First we prove (9) for g € oC'[0, T]. We have to calculate the right-hand side of (10).

t
/ (t = 9 Baa(=hn(t = ) (), )
0
t x2
- / (t— S)ailEa,a(_)\n(t - S)a)af‘g(s) ds <?> §0n>
0

t 2
+ / (t— S)a_lEa,oz(_}‘«n(t - S)a)g(s) ds <1 + %P) §0n>~ (11)
0
We set
t
S:= / (t — ) By g (—An(t — 5)*)3%g(s) ds.
0

Forg e oCL0, T], by (3) we see that 95'g coincides with dZ g:
o J (04 _ o g
060 =0 = o |- E e
Therefore, change of the order of integration yields

— 1 ' a—1 a ) _ a 98
= m/ (t =9 Eqa(—=Au(t — ) )</ (s—8&" dé(é)ds)

1
ra-—a)

_ dg 1 =4 a—1 o —o
—/ de S)m <f N° Ega(=Aun®)(t —§ —1n) d’?) dé.

E@) ([ (t = 9% By (—hn(t — %) (s — &)~ ds) d
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For the last equality we used the change of variables s — 1 by n = t — 5. Moreover,
1 =t a—1 o —a 4

T 1" Eqa(=Aun™)(t =& —n)"dn = Eg,1 (=An(t — §)%)

rad—aw) Jo
(e.g. formula (1.100) (p . 25) in [1]). Hence, again applying integration by parts, we obtain

td
S= [ S Bar e - £ de
o dé

d
— Eaa (—hn(t — §)) d&.

t
ay1E=t
— (8 Ean(—hn(t — ]2 — /0 86) gz B

Now, by the definition of the Mittag-Lefller function in view of the power series, the termwise
differentiation yields

d
EEa,l(_)\n(t —6)%) = Aa(t — S)a_lEa,a(_)\n(t -8, 0<é&<t<T. (12)

Therefore, using g(0) = 0 by g € oC'[0, T], we have

t
S= g(t) - / An(t — s)ailEa,a(_)”n(t - S)a)g(S) ds.
0

Substituting this into the above, we obtain
t 52
/ (t— S)Q_lEa,a(_)”n(t - 5)a)<f('> 5), Pn)sds = —g(l‘) <73 (pn>
0

t 2 2
+ / (t = 9 Ega (—hn(t — 5)*)g(s) ds (<)¥n?7 ¢n> + <1 +5p <pn>> .
0

Here by integration by parts, we calculate

.x2 xz xz
An?s On)+ ?P’ On ) = An®n +p‘/)m?

d?p, ** de, x* =l 1 de,
_<__dx2 , ?>_ [— i (x)?i| +/0 Xy ()dx

x=0

1
= [an(x)]iz(l) - /(; ©n(x) dx=1- (@n, 1).
Hence

x2 x2
<}\n?’ §0n> + <1 + ?P: §0n> =1—A{gn, 1) +(Lgy) =1,

so that
t
/0 (t - S)ailEa,a(_)”n(t - 5)a)<f(" 5)’ (p“> dS

x2 t
= —<? wn>g(t) +/O (t — 9" Egq(—Au(t — )*)g(s) ds.
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Substituting this into (10), since { \/%Qﬂn}neN is an orthonormal basis in L?(0, 1), we see

o0 1 2 o l t
s == <% ¢n>g<t)¢n<x) Db /0 (t = 9 Euar(—2n(t = ))g(s) dspn ()
n=1 n=1

=——g(t>+2 ( / (t = )" Ega (=2 (t—s)“)g(s)ds) @n ().

Sinceu = v+ %g(t), we have proved (9) for g € oCHo, T].

Next we have to prove (9) for g € Hy (0, T). In Equations (7) and (10), we write f := f; and v :=
vg respectively in order to specify the dependence on g. Since oC'0, T] := {h € C'[0, T]; h(0) = 0}
is dense in Hy (0, T) (e.g. Lemma 2.2 in [18]), for each g € H, (0, T), we can find a sequence g; €
0C'0, T], € € N such that gy —> g in Hy (0, T) as £ —> oc. Then, since 8%g, —> 9%g in L?(0,T)
(e.g. Theorem 2.4in [18)), it follows that fy, —> f; in L?(0, T). Therefore, applying the well-posedness
for the initial boundary value problem (e.g.[17], Theorem 4.1 in [18, 22]), we see that vg, —> v, in
H, (0, T; L2(0,1)) N L?(0, T; H2(0, 1)).

As we already proved, for g € (C'[0, T] we have

o 1 t 2
E ,0_ / (t— S)D(_IEa,a(_)\n(t - S)O[)gﬁ () d5§0n - %gﬁ t) — Vg (13)
n J0

in the space H, (0, T; L?(0, 1)) N L?(0, T; H>(0, 1)).

On the other hand, let & € L?(0, T). Then one can prove by the asymptotic behaviour of ¢, for
large n € N (e.g. Section 2 of Chapter 1 of Levitan and Sargsjan [28]), that there exists a constant
0o > 0 such that

pn > po forallm e N. (14)

Henceforth C > 0 denotes generic constants which are independent of n and choices of i, g, t € (0, T).
Let ¢ € C3°((0,1) x (0, T)). Then by integration by parts

1
(O ¥ (5 9) = —{An@n, Y (-59)) = (Apfpm Y(,9) = (‘PmApl/f(’aS))'

ﬂ

Therefore,

o] t
<Z 1z ( / (t = ) Ega (= hn(t — )*)h(s) ds) Pn %”>
0

1 Pn
o0
L

Hence, also by (14) and the Cauchy-Schwarz inequality, we have

00 t
<Z i </ (t— 5)0171Ea,<x(_)»n(t - S)Q)h(s) dS) Pn> w>
=l Pn 0

t
f (t — 9" Egq(—Au(t — )*)h(s) ds
0

L2((0,1)x(0,T))

<f (t = )" Egq (= An(t — $)*)h(s) ds, ((pn, Apr (-, t)>L2(01)>

1
On 2o

L2((0,1)x(0,T))

ll@nll
1Ap¥ 20, s120,1)) ——
L2(0,T) Pn

o
<CZ—
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o0

|
< CY I8 B (<) * hll2o1y-

n=1""

Here and henceforth we set (g1 * g2) () := fotgl(t — 5)g2(s) ds. By a bound of E, o (—Xi,ns*) (e.g.
Theorem 1.6 (p . 35) in [1]), we have |Ey o (—A,s*)| < C for all n € N and s> 0. Hence, Young’s
inequality yields

5% Eg . (=Ans®) * hll 20,1y < 5% Easa (= Ans) 10,1y 10l 220y < CllAl 20,19

Since C™1n? < A, < Cn? foralln € N (e.g. [28]), we can obtain

o0 t
<Z S (/ (t = 9% Eo (—=An(t — $)*)h(s) d5> én> l/’>
—l Pn 0

L2((0,1)x (0,T))

x
1
<C)_ kg < Clklzorn

n=1

for all v € C5°((0,1) x (0, T)).
Therefore, setting h := g — gy, we see that

x2

o 1 t
> = 9 Bt = 909 s = )
— Pn Jo 2

o 1 t 5
— Z E/o (t— s)ﬂt—1Ea,a(_)»n(t —9)%)g(s)dsg, — %g(t) in (C$°((0,1) x (0,T)))
n=1

as { — oo.
In view of (13), the convergence is in H, (0, T; L*(0, 1)) N L*(0, T; H?(0, 1)), and both limits in (13)
and the above must coincide. Hence,

o 1 t 2
Vg(x: t) = Z ,0_ /(; (t— 5)a71Eot,oz (=An(t — S)Dt)g(s) dsg, — %g(t)
n=1 "

in He (0, T;L%(0,1)) N L*(0, T; H*(0,1)). Since upq(x,1) = ve(x, 1) + %Zg(t) by (7), the proof of
Proposition 2.1 is complete. u

We conclude this section with the following lemma.

Lemma 2.2: Let K, 4 (x, t) be defined by

o o) [ o ¥n ()
Kpo(x,1) = Y == f S B (—hps™) ds = Y T (1 = Eg1 (—Ant™))
w1 Pn Jo = AnpPn

forallx € [0,1] and t € [0, T].

Then,

(i) The series is uniformly convergent in x € [0,1] and t € [0, T], and Kp4(x,-) € L°°(0,00) and is
analytic in t > 0 for all x € [0, 1].
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(ii)
§
/ Upa (X, 1) dt = (Kpo(x,-) xg)(§) forallx € [0,1] and & € [0, T].
0
Proof of (i).: In view of (12), we have

t 1 (9d 1
/ E By o (—Ans®) ds = — f L Bt (hns™) ds = (1 = Eax(—Anf®).  (15)
0 An t ds ’ An ’

Hence,
1
Kpa(%,8) = ) ——(1 = Eqa(=Aat*)gn(x), 0<x<1,£>0.
ot AnPn

From Theorem 1.6 (p.35) in [1], we know that there exist constants C > 0 and 6 > 0 such that

|Eg1(—2n2%)| < C foralln e Nandz € ¥ :={z € C; |Argz| < 6p}.

0
We fix a small § > 0 arbitrarily. Since [|¢n o (0,1) < ClIlA7 @ulli2(0,1) With 0 < 6 < 2, applying the

Sobolev embedding Theorem and recalling p, = |l¢, ||]212 o1y Ve have
1.8 1,8
leallcron = Clgall g g ) < CIAS " @ullizon = Chi /o

Hence, by (14), we obtain

C
<

= An/Pn

1,9
(1 = Eg 1 (—=2n2)) @ (x) At g<x<1,zev,

Pnhn

and so
o o0

1 1 1
Y10 = B (A2 gm0 < CY <CY —— <00, 0sx<l,zeX.

3_
n=1 ni-n n=1 Xﬁ n=1 n2

(16)
Here we used A, ~ #n? (e.g.[28]). Since Ey 1 (—X,z%) is analytic in z € X, we can complete the proof
of (i). |

Proof of (ii).: Since the series in (9) is convergent in L?(0, T; H2(0, 1)), by H?(0, 1) C CJ[0, 1], we see
that

t 0 1
Upa (x,t) = /0 (Z —(t— 5)0[71Ea,a(_)\n (t— S)a)(pn(x)> g(S) ds

w1 Pn

is convergent in L2(0, T; C[0, T]). Therefore,

3 3 t [ X
/ Upar () dt = / { / (§ i(t—s)“—lEa,a<—An<t—s)“)w(x))g(s)ds}dt
0 0 0

n=1 """

for all fixed x € [0, 1]. Exchanging the orders of the integrals and changing the variables t — n: =
t — s, we obtain

3 t
/ ( / (t — )" Eg o (—An(t — )*)g(s) ds) dt
0 0
& 3 & E—s
= / (f <t—s)“—lEa,a(—An(t—s)“)dt)g(s)ds= f (/ n“—lEa,a<—Ann“)dn)g(s>ds.
0 s 0 0

Hence by (15), we have verified (ii) and the proof of Lemma 2.2 is complete. [ |
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3. Proof of Theorem 1.2

We recall (5).
Let

2
Agw(x) = —jx—zv(x) —gxwkx), 0<x<l,

) dw dw
DAy = {w e H*(0,1); a(O) = a(l) = 0} .

Welet 0 < 1 < 2 < ---, denote all the eigenvalues of the operator A, and let ¥, n € N be the
corresponding eigenfunction for i, thatis ¥, € D(Ay) satisfies Ay, = ¥y in (0, 1) and we take
the normalisation of the eigenfunctions to be 1,,(1) = 1. Given this, we set o, := ||V, |?, for n € N.
Similarly to the analysis of Lemma 2.2, we define

o0
1 t
Kgp(1,t) = E —f sﬂ_lEﬂ,lg(—unsﬂ)ds, t> 0.
n=1 On Jo

It is sufficient to prove the theorem with data upq(1,t) = u4(1,1), 0 <t < T. For the other case at
x = 0, replacing the conditions ¢, (1) = ¥,(1) = 1 by ¢,(0) = ¥,,(0) = 1, we can repeat the whole
argument and thus omit the details for this case.

Since foé Upo (1, 1) dt = foS ugp(L,t)dt by upe(1,1) = ugp(1,t) for 0<t<T, in view of
Lemma 2.2, we see

(Kpo(L,-) xg)(§) = (Kgp(l,-) x9)(), 0<&<T,
that is,

(Kpu —Kgp)(L,) %)) =0, 0<t<T.

Since g = 0, we apply the Titchmarsh convolution theorem (e.g.[29]), so that there exists o > 0 such
that

Kp,a(Lt) = Kq,ﬂ(l,t), 0<t<ty.
Lemma 2.2 implies that K, o (1, ) and Ky g(1, t) are analytic in ¢ > 0, and so
0 'S}

Y (= Bag(ht) = Y

n=1 nPn n=1

(1—Eg1(—uath)), t>o.

nOn

By the asymptotics of Ey,1 (—7) and Eg 1 (—n) for large > 0 (e.g. Theorem 1.4 (pp . 33-34) in [1]),
we have

Ey1(—hnt®) = ! L to(d
WA T (1 ) At f20

and

Eg1(—untP) = ! ! +0 !
P T R A=y P T\

for all large t > 0. Hence
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1 1 40 1
MUnOn Mnt‘g t2h

I
2
~
T _
=
1M

Assume that > B. Then

| R 1 - 1
_ O —
INCE) Z)\,,pn Tt B <t2“ﬂ) Ta —ﬁ) ; K (tﬁ>

n=1

for large ¢ > 0. Letting t — 00, we obtain

Pl - ) = wion

Since o, = [|¥,4]|> > 0, this is impossible. Hence & < B. By an entirely similar argument we see that
a < B is impossible and so conclude that @ = .

Now we move to complete the proof of the theorem. We see

o 1 o
Y —FEui(=hnt®) =Y ——Eo1(—ptnt®), t>0. (17)
=l AnPn ot nOn

Now we can argue similarly to [5]. Using

1
AnPn

C
Ea,l(_)\nta) =< )L_, neN, t>0,

n

we see that the series in (17) are convergent uniformly in [0, 00). Therefore we can take the Laplace
transforms termwise to have

Z / e Ey 1 (—Ant®) dt = Z

/e“Eal( wat*ydt, ¢ >0.

o AnPn 1 HnOn
By formula (1.80) (p . 21) in [1], we obtain
1 Ol* o0 afl
¢ > 0.
npnf +)\ X::Hnan§ +Mn

Dividing by ¢%~! and setting n = ¢%, we have

o0 o0

1 1 1 1
> => , n>0. (18)
o AnPn M+ Ay ) MnOn 1 + Un

Since A, ~ n? and p, ~ n? for large n € N, we see that both sides of (18) are convergent uniformly
in any compact setin C \ ({—An}peN U {—tn}nen) and are analyticin C \ ({—A,}pen U {—tn}tnen).
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Assume that A, &€ {ty}nen for m € N. Then we can choose a small circle C,,;, centred at —A,,; and
{—tn}nen is not included in the disk centred at —A,, bounded by C,,,. Integrating on C,, and applying
the Cauchy theorem, we have

2ma/—1 _
AmOm

which is impossible. Hence A, € {in}nen for each m. Similarly u,, € {An}yen for each m e N.
Therefore

O)

An=Mn, neN. (19)
By (18), we have
i ( ! ! > ! 0 € C\ {—2yn}
- =U, n - N-
- AnPn AnOn) N+ Ay e

Again integrating on Cy,, we obtain

(1)
A \pn  On ’
that is,
op=0, neNlN. (20)

Now, using (19) and (20), we apply the Gel'fand-Levitan theory (e.g. [30]), and we can obtain p(x) =
q(x) for 0 < x < 1. The application is similar to [3-5], and so we omit the details. Thus the proof of
Theorem 1.2 is complete.

4. Application of the representation formula

The representation formula Proposition 2.1 is useful for qualitative analyses of fractional equations.
Here we explain one application.
Welet0 < o < 1and we fixp € C[0,1], < 0on [0, 1]. Let

ofu(x, t) = 8§u(x, )+ pulxt), 0<x<1,0<t<T,
u(0,t) = 0,u(0,t) =0, 0<t<T, (21)
u € Hy (0, T; L*(0,1)).

Then we are interested in the question: can we conclude u(x,t) = 0for0 <x<1land 0 <t < T?

This is a kind of unique continuation property under the assumption u € H, (0, T; L?(0, 1)) which
can be interpreted as that an initial value of u is zero. This kind of unique continuation was proved
by Chengetal. [31] foro = %, Lin and Nakamura [32] for & € (0, 1) and Lin and Nakamura [33] for
a € (0,1) U (1,2) for general time-fractional partial differential equations. Their proofs are based on
the techniques of pseudo-differential operators.

For o = 1, we can prove the unique continuation without any information of initial conditions,
and the corresponding unique continuation is proved for a one-dimensional time-fractional equation
by Li and Yamamoto [34]. More precisely, if u is in a suitable class and satisfies

fu(x, t) = Bfu(x,t), 0<x<1,0<t<T,
u(0,t) = 0,u(0,t) =0, 0<t<T,

then u(x,t) =0for0<x<landO0<t<T.
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However, such unique continuation not requiring any initial conditions, is not known for general
case in multidimension.

In this section, for the one-dimensional case (21), we provide a simpler proof than [31-33], which
relies on the representation formula Proposition 2.1.

Proposition4.1: Letu € Hy (0, T;L*(0,1)) N L*(0, T; H2(0, 1)) satisfy (21) and dxu(1,-) € Hy (0, T).
Then u(x,t) =0,0<x<1,0<t<T.

By the definition of H, (0, T) given in Section 1, if 0 < o < %, then H, (0, T) = H¥(0, T) and in
(21) the condition u € Hy (0, T; L?(0, 1)) does not require anything for the behaviour of the solution
unear t = 0. In other words, we need not pose any conditions at t = 0 to u.

For % < a < 1, the condition & € Hy (0, T; L?(0, 1)) requires (., 0) = 0 in the sense of trace.

It seems that we can remove a condition d,u(1,-) € Hy (0, T), but we here omit the details.

Proof: We set g := dxu(1,-) € Hy(0,T). Then u satisfies (4) and u(0,t) = 0,0 <t < T. Lemma 2.2
(ii) implies

(Kpa(0,) xg)(H) =0, 0<t<T.
By the Titchmarsh theorem on the convolution (e.g.[29]), there exist ¢;, £ > 0 such that

h+t=T,
Kp,a (0> t) = 0) 0 <t=<t, (22)
g =0, 0<t<t.
Assuming that #; > 0, we will derive a contradiction, which proves ¢t; = 0, that is, g = 0 in (0, T).
The argument is similar to the proof of Theorem 1.2.

The analyticity of K, 4 (0, t) in t > 0 yields K, 4 (0,t) = 0 for all £ > 0.
Since limy—, oo Eg,1(—A4t*) = 0 (e.g. Theorem 1.6 (p . 35) in [1]), we have

llm Kpa(O t) = Z %f:) 0.
— AnPn

Hence

an() Ea1(—hnt®) =0, t> 0.
AnPn

This series is convergent in L (0, 00) and so we can take the Laplace transform term by term. In view
of formula (1.80) (p . 21) in [1], we obtain

(Pn(O) 21
AnPn 2% + An

=0, Rez=>0.

Then, dividing by z#~! and setting n = 2%, we have

0 1
Z%() =0, Ren>0.
AnPn N+ An

Similarly to (16), we can verify

s o0 o,

=t AnPn
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and so we can continue analytically in 7 as much as possible to obtain

)

¥n(0) 1

— =0, e C\{—x .
— MnpPn 1+ Ao n \{ n}neN

Choosing a small circle I'; centred at —X; such that the interior of the disk bounded by I'; does not
contain —X, with n > 2 and integrating on I'y, in terms of the Cauchy theorem, we see

0
@1( )2;1 T—o,
A101

that is, ¢1(0) = 0. Since Clé%(x) + (p(x) + 2)e1(x) = 0,0 <x < 1and d—&%(O) = 0, we have ¢ (x) =
0 for all 0 < x < 1, which is impossible.

Then we can conclude that f; = 0. By (22), we reach g(t) = 0 for 0 <t < T. Thus the proof of
Proposition 4.1 is complete. |
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