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ABSTRACT. We prove a potential automorphy theorem for suitable Galois representations

I'p+ — GSpiny, . (Fp) and T'p+ — GSpiny, ;(Q,), where I'p+ is the absolute Galois
group of a totally real field F*. We also prove results on solvable descent for GSp,,, (Ap+)

and use these to put representations I'p+ — GSpin,, ;(Q,) into compatible systems of
GSpiny,, ;1 (Q;)-valued representations.

1. INTRODUCTION

Given a connected reductive group G defined over a number field F', the Langlands program
predicts a connection between suitably algebraic automorphic representations of G(Ar) and
geometric p-adic Galois representations Gal(F/F) — “G(Q,) into the L-group of G. Strik-
ing work of Kret-Shin ([24]) constructs the automorphic-to-Galois direction when G is the
group GSp,,, over a totally real field F'*, and 7 is a cuspidal automorphic representation of
GSp,,, (Ap+) that is essentially discrete series at all infinite places and is a twist of the Stein-
berg representation at some finite place. In this paper we will establish a partial converse,
proving a potential automorphy theorem, and some applications, for suitable GSpin,, -
valued Galois representations. Before discussing our main results, we will put the work of
Kret-Shin in context.

Their construction builds on two monumental works. First, it depends on the construction
of automorphic Galois representations when G = GLg,,1/F™", and 7 is cuspidal, regular
algebraic, essentially self-dual, and square-integrable at some finite place: extending work
of Kottwitz, Clozel ([13]) constructed the relevant Galois representations, and the essential
properties for the purposes of [24] were proven by Harris-Taylor ([20]) and Taylor-Yoshida
([37]).! Second, it requires Arthur’s endoscopic classification of representations ([1]), which
among other things describes the discrete automorphic spectrum of Sp,, (Ag+) in terms
of self-dual discrete automorphic representations of GlLg,1(Ap+). These two marvelous
developments allow (e.g., [24, Theorem 2.4]) the construction of SOy, 1-valued Galois repre-
sentations associated to cuspidal automorphic representations of G = Sp,,, that are discrete
series at infinity and Steinberg at some finite prime (and indeed more generally).

Taking into account all of those advances, there remains a significant gap between the the-
orem of [24] for GSp,, and the previously-known result for Sp,,. We briefly summarize
the difficulty. Let I'p+ = Gal(FT/F7), and fix an isomorphism ¢: C = Q,. A theorem
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IThere is an extensive and deep literature devoted to eliminating the square-integrability condition: we
mention as a sampling work of Bellaiche, Caraiani, Chenevier, Clozel, Harris, Kottwitz, Labesse, Shin, and

Taylor, which in turn relies on other deep automorphic advances, particularly work of Waldspurger and Ngb.
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of Tate shows that any representation I'p+ — SOg,41(Q,) lifts to a GSpin,, ,,(Q,)-valued
representation, which is then determined up to a central twist. Thus one hopes to start
with the automorphic representation 7 of GSp,,,(Ap+) under consideration, consider an au-
tomorphic component 7 of its restriction to Sp,,(Ap+), construct the Galois representation
Trw: Tt — SO2,41(Q,) associated to 7, and then choose the “right” lift to GSpin,,,(Q,).
As it stands, there is no technique internal to the theory so far described that allows one to
do this: even if one can choose a lift with Clifford norm matching the central character of 7,
there remains at each place v such that 7, is unramified a +£1 ambiguity in whether the con-
structed Galois representation matches the Satake parameter of 7, (not to speak of the other
finite places). No elementary twisting argument can resolve this, and Kret-Shin address the
problem by realizing the composition spin(rz,) of the desired rz, with the (faithful) spin
representation spin: GSpin,,,; — GLy» inside the cohomology of a Shimura variety for a
suitable inner form of GSp,,. The principal challenge of their paper consists of the subtle
analysis of the cohomology of this Shimura variety.

We now return to the setup of our paper. The deepest inputs for our potential automorphy
theorems are the potential automorphy theorem of Barnet-Lamb, Gee, Geraghty, Taylor of [3]
(and, for the strongest statement, a recent improvement due to Calegari, Emerton, and Gee in
[10]) and Arthur’s work ([1]). We develop these and their relationships with the construction
of [24] to prove the following two potential automorphy results, one for mod p and one for
p-adic representations. Here and throughout the paper, we let std: GSpin,, | — GLgj41
denote the standard representation, and we let N: GSpin,, . ; — G,, denote the Clifford
norm.

Theorem 1.1 (See Theorem 4.8). Let p be a prime, p > 4n + 4, and let 7: T'p+ —

GSpiny,, ., (F,) be a continuous representation satisfying the following hypotheses:

e The restriction std(T) is irreducible.

|FF+<up>
e 7 is odd (see Hypothesis 5.1).

Then there exist a totally real Galois extension Lt /F* and a cuspidal automorphic repre-
sentation T of GSp,, (Ap+), satisfying the hypotheses (St) and (L-coh) of [24], such that a
suitable GSpin,,, ,-conjugate of the representation rx,: T+ — GSpiny,,1(Q,) constructed
by [24] reduces mod p to 7|r , .

P

We note that this theorem makes no “Steinberg” local hypothesis; the first step in its proof is
to show (Theorem 3.4) that 7 admits a geometric lift 7: ['p+ — GSpiny,,;(Z,) that at some
auxiliary finite place looks like the Langlands parameter of the Steinberg representation (up
to twist). Theorem 3.4 relies on using the lifting method of Khare-Wintenberger ([22]) and a
comparison of deformation rings for the groups GSpin,,, ,;, SO2,41, and GLg,11, ultimately
invoking a finiteness result from [3] that itself comes from combining R = T' theorems with
the method of [22]. Having constructed this lift r, we can run the method of the proof of our
p-adic potential automorphy theorem, which we now state. For details of the terminology,
see §2 and [10].

Theorem 1.2 (Theorem 4.9). Let r: I'p+ — GSpin,, ,(Z,) be a continuous representation

whose Clifford norm is a geometric character N(r): I'p+ — Z;. Assume the following:
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o p>dn+4.
e 7 is odd.

e For some finite place vs; of Ft, the Frobenius semisimple Weil-Deligne representation

associated to r|pF .15 equivalent to a twist of the Steinberg-type Langlands parameter

(equivalently, P(rlr . ) is a Steinberg parameter for Spy, (FyL)).

Vst
VSt

e There exist a quadratic CM extension F/F* and a character ju: T p+ — ZZ such that
— F does not contain Gy, and std(7)|r,,, is irreducible.

— (std(r)|ry, 1) is polarized, and for some (any) choice of prolongation

p(Std(f)h‘F’ /‘L> : FF+ — g2n+1 (ZP)7
p(std(r), ,u)|pF+ is globally realizable for each v|p. Here Gany1 denotes the Clozel-

Harris-Taylor group scheme, see Section 2.

Then there exist a totally real Galois extension LT /FT and a cuspidal automorphic repre-
sentation © of GSps,(Ap+) satisfying the hypotheses (St) and (L-coh) of [24] such that Tz,

is equivalent to r|r . as GSpiny, ,(Q,)-representations.

The hypothesis on places above p, which we should note forces the Hodge-Tate cocharac-
ters of 7|r_, to be regular, includes the cases where std(r)[r_, is Hodge-Tate regular and

potentially Udiagonalizable in the sense of [3]. In that case the theorem statement admits
a straightforward modification with no need for an auxiliary extension F or mention of
prolongations.

The strategy here is to combine the potential automorphy theorem of [10] with [1] to realize
the projection P(r): [p+ — SOg,11(Z,), after restriction to some L*, as the representation
rr, associated to a cuspidal automorphic representation of 7 of Sp,,(Az+). Then we show
that m can be extended to a cuspidal automorphic representation 7 of GSp,,(A+) that
satisfies the hypotheses of the main theorem of [24], and finally we check that a suitable

twist of 7 in fact corresponds to our original 7|r | .

In §5, we discuss an application of our potential automorphy theorem. Recall that for GL,,,
a method due to Taylor ([36]) based on combining potential automorphy theorems with
Brauer’s theorem from finite group theory allows one to realize a representation r: I'p+ —
GLn(@p), assumed to satisfy the hypotheses of the GL,, potential automorphy theorem, as
part of a (strictly) compatible system of f-adic Galois representations. We apply Theo-
rem 4.9 to prove an analogous result for GSpin,,, H(@p)—representations. This may be the
subtlest part of our work. Taylor’s method relies on solvable descent, which depends on a
combination of cyclic (prime degree) descent, established in [2], and knowledge that in the
relevant cases the descended automorphic representations themselves have associated Galois
representations. We establish instances of solvable descent for GSp,, (Az+), bootstrapping
as before from the case of GLg, 1. For our principal result, Theorem 5.1, we only need the
solvable descent of an invariant automorphic representation in a setting where the associ-
ated Galois representation is already known to descend; we treat this problem in Theorem

5.2. We conclude the section with a complementary result (Corollary 5.3) when only the
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automorphic representation is known to be invariant: then cyclic descent still holds in our
setting, but solvable descent is complicated, as for GLy, by the possibility of invariant Hecke
characters that do not descend.

The other difficulty in extending Taylor’s argument is that of course no Brauer argument can
be made directly with GSpin,, , ,-valued Galois representations. The particular possibilities
for the algebraic monodromy groups of the representations 7z, constructed by [24] make
possible a case-by-case analysis, with the “generic” case of full GSpin,,,, ; monodromy relying
on applying Brauer’s theorem to spin(r). (That said, we emphasize that the potential
automorphy theorem being applied is still for r: I'p+ — GSpin,,, +1(@p), not for spin(r);
indeed, the latter will typically not satisfy the hypotheses of GLy» potential automorphy
theorems.) Theorem 5.1 combines these ideas to construct the desired compatible system:

Theorem 1.3. Let r: I'p+ — GSpiny, (Z,) satisfy the hypotheses of Theorem 1.2. Then

Jor all primes € and choices of isomorphism v,: C 5 Q there is a continuous representation
7, Dp+ — GSping, ., (Q;) such that:

e For all but finitely many primes v at which v is unramified, the semisimple conjugacy
class of 1=2r(Fr,)* agrees with that of v, 'r,,(Fr,)®.

e For all primes v|l, r,, is de Rham, and its Hodge-Tate cocharacters are determined
up to conjugacy by those of r: for each embedding 7 : Ft — Q,, determining a place
ol of F, and inducing w,'t: F* — Q, and a corresponding place ¢j(v)|p of F'T,
we have the equality L[lu(m\ppjﬁ) = L_llu(r]th( >,LL[17') of conjugacy classes of

Le v
GSpiny,, . (C)-valued cocharacters.

Let us remark that our theorems rely crucially on [24], which in turn relies crucially on
Arthur’s book [1]. See [24, p. 7] for a discussion of the status of Arthur’s results: since the
publication of Arthur’s book, Moeglin and Waldspurger have completed the stabilization of
the twisted trace formula in [28] and [29].

Finally, we remark on what we cannot prove at present. While our mod p potential automor-
phy result imposes no Steinberg local condition, the p-adic potential automorphy theorem
does, and we do not know how to circumvent this. Certainly a corresponding improvement
in the results of [24], constructing 77, for all L-cohomological cuspidal automorphic repre-
sentations of GSp,, (Ar+), would allow us to extend these results to that generality. Even
with such an extension, generalizing the results of §5 would be a more serious task, because
our proof of Theorem 5.1 relies on the Steinberg local condition to control the algebraic
monodromy groups of r and of its f-adic companions.
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2. NOTATION AND CONVENTIONS

Let F be a field. Fix an algebraic closure F of F and write I'p for the absolute Galois group
Gal(F /F) of F. If Fis a number field, then for each place v of F, we fix an embedding
F — F, into an algebraic closure of F,, which gives rise to an injective group homomorphism
I'p, = I'p. For any finite place v, let k, be the residue field of v and let Fr, € I'y, be the
arithmetic Frobenius. If H is a group (typically the points over a finite field or a p-adic field
of a reductive algebraic group), and there is a continuous group homomorphism r : I'r — H,
we will sometimes write 7|, for r|r,, , the restriction of r to the decomposition group I'r,.
If H acts on a finite-dimensional vector space V', we write r(V') for the I' m-module induced
by precomposing this action with r. (Typically H will be a reductive algebraic group and

V will be its Lie algebra equipped with the adjoint action of H.) Let k : I'p — Z: be the
p-adic cyclotomic character and & be its reduction modulo p. We will always assume p # 2,
and our main theorems will make stronger hypotheses on p.

Let n > 1 be an integer, let SOg,,1 be the odd orthogonal group of rank n, which for
convenience we will take to be defined by SOg,41(R) = {g € SLay1(R) : g - g = 1} for
any ring R. In fact, we will always be free to enlarge the ring of definition and consider this
group to be defined over the ring of integers O in a sufficiently large finite extension of Q,,
and in particular we will assume this is in fact the split form of the group. Let GSpin,,
be the corresponding general spin group, so there is an exact sequence of algebraic groups

1 — Z — GSpiny, ,; — SOgps1 — 1

where Z = G, is the center of GSpin,, ;. Let N : GSpiny, ; — G,, be the Clifford norm.
Note that GSpin,,,;(C) is the Langlands dual of GSp,,. Let std : GSpiny, ; — GLa,41 be
the composition of P with the standard representation of SOs,41. Let spin : GSpiny, ; —
GLg» be the spin representation. For a homomorphism 7 : I" — GSpiny,, . ;, we will frequently
consider the composites P(r) : I' = SOsqp, 41 and std(r) : I' = GLap41.

We recall the definition of the Clozel-Harris-Taylor group scheme G,, over Z which is defined
as the semidirect product (GL, x GL;)x {1, 7} where 5(g,a)7 = (a('g9) ™', a), and the similitude
character v : G, — GL; given by v(g,a) = a and v(j) = —1. The groups G, will arise in the
following setting. Suppose we have a homomorphism r: I'r — GSpin,,_, (R) for some field F
and some ring R. Let F’/F be a quadratic extension of F', and define p(r): T'r — Gont1(R)
as the composite

P(r)xresps

FF SOQn+1 (R) X Gal(F'/F) — g2n+1(R>,

where the last map sends g € SOs,,11(R) to its image in GLg,,1(R) and sends the nontrivial
element of Gal(F’'/F') to j. By our choice of definition of SOq,41(R), p(r) is a well-defined
homomorphism. We will refer to p(r) as the standard prolongation of std(r) with respect to
the extension F’/F (compare [10, §1.5]).
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Let T" be a maximal torus of a reductive group G over an algebraically closed field. A
cocharacter pu € X, (7)) is said to be regular if < p, a >%# 0 for all roots o of T in G.

We assume that the reader is familiar with Galois deformation theory and will use the stan-
dard terms and results of Galois deformation theory freely throughout this paper. The reader
may refer to [3, Section 1] and [5] for the details. We recall here some deformation-theoretic
terminology. Given a topologically finite-generated profinite group I', a finite extension E/Q,
with ring of integers O and residue field &, a reductive algebraic group G defined over O and
a continuous homomorphism 7 : I' — G(k), let Rg ; be the universal lifting ring representing
the functor sending a complete local noetherian O-algebra R with residue field & to the set
of lifts 7 : T' — G(R) of 7. We will always leave the O implicit, writing only RY, and at
various points in the argument we enlarge O; see [3, Lemma 1.2.1] for a justification of (the
harmlessness of) this practice. We write RE ® @p for Ra 5 ®o @p for any particular choice

of O, and again by [3, Lemma 1.2.1], RE ® @p is independent of the choice of E.

Suppose moreover that x: G — G, is a homomorphism of group schemes over O, and
6 : T — O* is a continuous character whose mod p reduction equals x(7) : I' — k*. Then
we write RE 0 (again, leaving O implicit) for the quotient of RY representing the functor
sending a complete local noetherian O-algebra R with residue field & to the set of liftings
r: ' - G(R) of 7 with fixed similitude character 0, i.e. x(r) = 6. We will apply this
convention when the character x is the Clifford norm N: GSpin,, . ; — G,,, and when it is
the character v: Go,11 — G, defined above.

When K/Q, is a finite extension and I' is I'x, we moreover consider quotients of RE 9
having fixed inertial type and p-adic Hodge type. The fundamental analysis here is due
to Kisin ([23]), and the state of the art, and our point of reference, is [5], and we refer
there for details. We will index p-adic Hodge types of deformations r: 'y — G(O) by
collections pu(r) = {u(r,7)},. k g, of (conjugacy classes of) Hodge-Tate co-characters, and

. 0, . . . .
write RE “0) for the Z,-flat quotient of RE # whose points in finite local E-algebras are

precisely those of RE ¥ that are moreover potentially semi-stable with p-adic Hodge type
wu(r). We likewise consider the quotients with fixed inertial type o, RE ’H’E(T)’J, referring to

5, §3.2] for details.

We fix, once and for all, a field isomorphism ¢ : C = @p. This will be used in associating p-
adic Galois representations to automorphic representations. We will typically note the use of
this isomorphism explicitly, with one exception: for type Ay Hecke characters x: A% /F* —

C* of a number field F', we will continue to write y: I'pr — @; for the p-adic Galois
character associated to x (and similarly for characters of localizations F,*). Thus, we leave
the isomorphism ¢ implicit and the global (or local) reciprocity map implicit; we have done
this to simplify the notation, since we do not expect it to cause any confusion. These local
and global reciprocity maps are normalized as in [24], which is to say geometric Frobenii
correspond to uniformizers.

3. A LIFTING THEOREM

We prove a geometric lifting theorem for GSpin,,, . (IF,)-valued representations analogous to
[3, Theorem 4.3.1] or [10, Theorem 4.2.11]. We will use a special case of this theorem in
84 as a first step in establishing our mod p potential automorphy theorem. In this section
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we will prove something rather more general than what is needed for §4, although we have
not attempted to optimize the results. The lifting theorem has global hypotheses—that the
mod p representation be odd and irreducible, essentially—and then a local hypothesis on the
existence of suitable de Rham lifts at places above p. A similar theorem, with less restrictive
local hypotheses, follows from [16, Theorem A], but the methods of that paper cannot yield
the minimal lifts produced here via potential automorphy (nor of course can it show they
are potentially automorphic).

We will freely make use of the definition of “globally realizable” components of potentially
semistable local deformation rings from [10, Definition 2.1.9], and we refer the reader there
for details. Let K be a totally real field, and let 7 : I'+ — GSpin,, (k) be a continuous
representation, where £ is the residue field of the ring of integers O in a finite extension £ of

Q, (which we will feel free to enlarge without comment). Fix a geometric lift  : I'je+ — Z;
of No7: '+ —>F;.

Hypothesis 3.1. Assume that 7 satisfies the following hypotheses. There exists a CM
quadratic extension K /K™, not containing (,, such that

(1) The restriction std(7) is irreducible.”

‘Fm )
(2) The prime p satisfies p > 4n + 4.

(3) The representation 7 is odd, meaning that for all infinite places v of KT, with cor-
responding conjugacy class of complex conjugations ¢, € '+, 7(¢,) is a Chevalley
involution in GSpiny,,, i.e. dim g4 )=l = (dimg)/(dimb), where g = 509,11
is the commutator subalgebra of the Lie algebra of GSpin,, ;, equipped with an
action of I'g+ induced by 7 and the adjoint representation, and b C g is any Borel
subalgebra of g.

(4) For each vlp, there is a lift r,: Tgs — GSpiny,, ., (Z,) of 7|+ such that
e Nor, = 9|FK+'

e 1, is de Rham, with some p-adic Hodge type u(rv) and some inertial type o,, and

there is an irreducible component C(r,) of R, Saslro), ““*11/p] containing 7, that,
under the map of lifting rings
0,0,u(rv )00

Spec =0 s Spec RD 5K/K+Hu‘( p(rv)),p(00)

induced by the standard prolongation (Wlth respect to K/K™), maps to a glob-
ally realizable component C(p(r,)). Here dx/k+ is the unique nontrivial quadratic
character of I'i+ that is trivial on I'k.

e In particular, the previous item implies that, for each embedding 7 : K —
Q,, the Hodge-Tate cocharacters u(std(r,),7) are regular, and consequently the
Hodge-Tate cocharacters u(r,, T) are regular.

Remark 3.2. If we were basing our arguments on the less general results of [3], then here
we would instead assume std(r,) is regular and potentially diagonalizable in the sense of

2We note that this is strictly stronger than assuming Tlr Kp) is irreducible. Compare [17].
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[3, §1.4]. We would then have a version of the above hypotheses without mention of the
extension K, and we would choose K not containing ¢, such that std(7)[r,, , remained
irreducible, and such that all finite primes above p, where 7 ramifies, or where 6 ramifies
are split in K/K*. Then we would obtain a version of Theorem 3.4 below by invoking [3,
Theorem 4.3.1] instead of [10] in the arguments below. To see that this potentially diagonal-
izable case is contained in our current arguments, we would choose C(r,) to be a potentially
crystalline component (if std(r,) is potentially crystalline, then so is r,, but r, could con-
ceivably lie at an intersection of crystalline and semi-stable components), mapping into a
potentially crystalline component containing the potentially diagonalizable point p(r,). Any
potentially diagonalizable point lies on some globally realizable component ([10, Remark
2.1.14]), which (by the argument given to justify this assertion) is moreover a potentially
crystalline component. Since potentially crystalline deformation rings are regular, there are
no other potentially crystalline components passing through p(r,). Hence, whatever poten-
tially crystalline component C(r,) we chose must map to a globally realizable component
C(p(ry)), namely the unique potentially crystalline component passing through p(r,).

Let S be a finite set of primes of F'* containing the primes above p and all primes where 7
or 0 is ramified. To complement our assumption on the existence of r, for v|p, we have the
following lemma:

Lemma 3.3. For all places v € S not above p, there is a lift ry: T+ — GSmenH(ZD) of
f|pK+ having N (r,) = 9|FK+.

Proof. Since p # 2, the natural map of lifting rings RE,(?) — Rﬁf is an isomorphism

|FK+ K+

(see Lemma 3.5 for more details), so it suffices to find a lift of P(F\FK:). Such a lift exists
by Booher’s thesis ([6]). O

We now state the main result of this section:

Theorem 3.4. Retain the assumptions of Hypothesis 5.1. Let S be a finite set of places of
K™ such that S contains all places above p and all places where 6 or T is ramified. Fiz lifts
ry and components C(ry) for v|p as in Hypothesis 5.1, and fix lifts v, for v € S\ {v|p} as in
Lemma 3.3. Then 7 has a lift r : I'g+ — GSpin2n+1(@p) unramified outside S such that

o N(r)=40.

e For each v € S not lying above p, 7|, := 1“|FKJr and r, lie on a common irreducible

v

component of Spec(REff ® @p).

e For each vlp, rl|, lies on C(ry), and in particular is potentially semistable with the
given Hodge-Tate cocharacters and inertial types.

The rest of this section will be dedicated to the proof of Theorem 3.4, using a version of
the lifting argument of Khare-Wintenberger ([22]). We reiterate that we let O be the ring
of integers in a finite extension E of Q,, enlarged if necessary so that all of the above
data are defined over O. We will define global deformation conditions for 7, P(7), and the
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standard prolongation p(7) with respect to K/K*. Recall that p(F) : [+ — Gopi1(F,) is
the composite

P(T)xresk

Tyt SO2,11(F,) x Gal(K/K™') = Gopi1(F,).

Then we will show that there are natural finite maps between the corresponding deformation
rings and use the Z,-finiteness of the deformation ring for the group G, 41 to conclude that
the deformation ring for the group GSpin,, , is Z,-finite; this, combined with a standard
calculation of its Krull dimension (as in [5]), will imply that it has a Q,-point.

Recall from the discussion in §2 that for each v € S we can consider the lifting rings R-’ 0

g
0,6 . .
Rpgy,» and B o0 / “*For v € S not above p, choose an irreducible component C(r,) (resp.

_ — 0 — .
C(P(ry)), C(p(ry))) of RE\LQ ® Q, (resp. RIDJ(F)lv ® Q,, Rp(f)f‘:/K+ ® Q,) containing 7, (resp.
P(r,), p(ry,)) such that under the natural maps

Spec R ® Q, — Spec RP A © Q, — Spec Rp(;)ﬂ(/m ® Q,,
C(r,) maps to C(P(r,)) and C(P(r,)) maps to C(p(ry)).

Similarly, for v|p, the fixed inertial type and fixed p-adic Hodge type of r, induces corre-
sponding data for P(r,) and p(r,), and the fixed component C(r,) maps to components

C(P(ry)) of R, ’“ (re))-Pler) ®@p and C(p(r,)) of R K/KJ”M( P Dp(en) ®@p (the latter as in
the theorem hypotheses).

We now define three global deformation rings, for 7, P(7), and p(7), by considering lifts that
locally lie on the irreducible components we have just specified. More precisely, following
the formalism of [5, §4.2], we let RESY, be the quotient of the universal, unramified outside
S, fixed Clifford norm 6, deformation ring for 7 corresponding to the fixed set of components
{C(ry)}ves. We similarly define R§E", corresponding to the local components {C(P(r,))}
and RE™ corresponding to the local components {C(p(r,))} (and fixed polarization dx k).
These rings all exist by absolute irreducibility of the respective residual representations, and
by the discussion in [5, §4.2] ([5, Lemma 3.4.1] plays a key role here). By construction, there
are natural (O-algebra maps

umv univ univ
— Rgp' — RGSpin.

Lemma 3.5. The map REY — RSV is surjective, and the map R§EY — REEY, is an
1somorphism.

Proof. The tangent space of RE™ is a subspace of H'('g+ 5, p(7)(gls,,1)) and the tangent
space of RENY is a subspace of Hl(FK+75,P(f)(502n+1)). For p # 2, gly,,, is a semisim-
ple SOg,41-module (the inclusion s0y,+1 C gly, . is split by X — X’;X ), so a fortiori
P(7)(8095,41) is a I'g+ g-direct summand of P(7)(gly,,,). It follows that the natural map
HY(Tg+ g, P(7)(802,41)) = H'(Tg+ s, p(7)(gloyy 1)) is injective; the dual map is surjective,
and we conclude by Nakayama’s lemma that the map on universal deformation rings without
local conditions is surjective. It then follows immediately that RELY — RENY is surjective as

well.
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The canonical map R$yY — REY;, is induced by a corresponding map on global deformation
rings without local conditions; the latter is an isomorphism because it induces isomorphisms
H{(Tg+.5,7(502,11)) — HY(Tg+.5, P(T)(502041)) (one of these copies of 509,41 is the derived
Lie algebra of GSpin,, ;, while the other is the Lie algebra of SOg,1; the natural map
between them is an isomorphism since p is not 2), which for ¢ = 1 and ¢ = 2 means that it
identifies both the tangent spaces and obstruction spaces for the two deformation functors.
The local lifting rings without local conditions are similarly isomorphic, and this implies that
the specified components of the local lifting rings are isomorphic. That RENY — Rénsi;in is
an isomorphism now follows. (We remark that, as the referee points out, the proof of this
lemma applies for all p # 2.) O

We now complete the proof of Theorem 3.4:

Proof of Theorem 3.J. By our assumptions on 7, the representation p(7) (strictly speak-
ing, the pair (std(7)|r,,dx/k+) with its prolongation p(7)) satisfies the assumptions of [10,
Theorem 4.2.11], so (std(7)|r,, 0k /x+) lifts to a potentially automorphic compatible system
({sa}r: 0k/K+) (here A is indexed over places of a suitable number field, or over field isomor-
phisms C = @;). The method of proof of loc. cit. implies that the deformation ring RE:Y
is O-finite, since that is the means by which lifts are shown to exist. Not to impose on the
reader to have to inspect the proof, we can simply take the conclusion of loc. cit. and then

invoke [10, Lemma 1.5.27].

Lemma 3.5 then implies that REYY; | is O-finite. We claim that REEY,, has Krull dimension at
least one. Indeed, this follows from [5, Theorem B]: the assumptions there are satisfied since
we have assumed that 7 is odd, std(7)|x(,,) is irreducible (which under our assumption on p
implies that H°(T g+, 7(509,,1)(1)) vanishes), and the Hodge-Tate cocharacters are regular.
Thus ‘é“si;in has a @p—point, which proves our theorem. 0

4. POTENTIAL AUTOMORPHY OF MOD p AND p-ADIC REPRESENTATIONS

In this section we will prove two potential automorphy theorems, one for GSpin,, ;(F,)-
valued representations, and one for GSpin,,, ., ,(Z,)-valued representations. For the first we
will begin by applying a version of Theorem 3.4, but in fact we can and do get away with
a somewhat simpler result, relying on [3] rather than the refinement in [10]. Our p-adic

potential automorphy theorem will however require [10] for its most general statement.

4.1. The mod p case. Let F'* be a totally real field, and let 7 : I'p+ — GSpin,,, . ,(F,) be a
continuous mod p representation satisfying the following slight relaxation of the conditions
(1), (2), and (3) of Hypothesis 3.1 (we replace K by F'* since eventually we will apply the
result of §3 to some finite extension K of this F'1):

Hypothesis 4.1. Assume that 7 satisfies the following:
(1) std(7)[r,., () 18 absolutely irreducible.

(2) p>4n+4.
(3) 7 is odd.
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In essence, we retain the irreducibility and oddness hypotheses from §3, but not those on the
existence of sufficiently nice local lifts. In this section, we use the results in [3] and [24] to
prove that 7 is potentially automorphic in the sense that over a finite totally real extension
of F*, 7 is the mod p reduction of the Galois representation attached in [24] to a suitable
automorphic representation of GSp,,,.

Let S be a finite set of finite places of F'* including the places above p, the places where 7
is ramified, and one other auxiliary place vg; that is not above p. Choose a CM quadratic
extension F' of F'* that is linearly disjoint from F* (7, u,), and in which all primes in S split.
For each v € S, let E,/F, be a finite extension over which 7|, becomes trivial. We may and
do also assume that when v = vg; the residue field of E, has order ¢/ where f is even (this
is inessential but convenient) and ¢ is the characteristic of the residue field of F. By [14,
Lemma 4.1.2], there is a finite totally real extension K+/F7 linearly disjoint from F(7, u,)
such that for each place v of S and each place w of K above v, the extension E,/F, is
isomorphic to K[ /F,. Set K = FK*. Continuing to write S for the finite places of K™
above S, we have the following result:

Proposition 4.2. There is a choice of lift 0: '+ — Z; of N o 77|1~K+ and a lift r: D+ —
GSping, . 1(Z,) of Tlr,.. with N or =0 such that

e For all places v|vsy (which recall does not lie above p), the point corresponding to 7“|FKJr

. . . 0.0 . .
lies on the same irreducible component of RH’ as a representation whose associated
v

Weil-Deligne representation is an unramified twist of the local Langlands parameter
of the Steinberg representation.’

e For all vlp, the restriction 7“|p s potentially crystalline with regular Hodge-Tate

cocharacters, and std(r|r +) is potentzally diagonalizable.

Proof. Under Hypothesis 4.1, the hypotheses of Theorem 3.4 are clear except for the local
conditions at finite primes. In light of Remark 3.2, it suffices to construct local lifts of
T|x+ satisfying the conditions in the Proposition. Note that by the choice of KT, Tlr,.. is
everywhere unramified and is trivial at the places in S. Consider a place v|p of K. Choose
a set of integers {si,S2,...,s,} such that for all ¢ # j, we have s; # =+s;, and all s; are
non-zero. Let T" be a maximal torus of GSpin,, ,, so that we can write a based root datum
for GSpin (with respect to 7" and a suitable choice of Borel; see, e.g., [31, §2.8]) as

AN SN/ L=l Ay~ ;
ngl Xi & Z(xo + =5E) ZGZ%QX
A* = {x; — Xz‘-l—l}?:ll U{xn}
@Z (N + SIEYAY

A, = {)\,» — A it u{2a),
where the pairing is given by (x;, \;) = 5i,j for all 7, 7.

3By this we just mean the principal parameter in the sense of [19, §6]; it is the expected local Langlands
parameter of the Steinberg representation.
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Now define a T'(Zy)-valued lift r,: I+ — GSpiny,,(Z,) of 7|, by

=TI+ o 57)
=1
where [k] denotes the Teichmiiller lift of & (as v|p varies, we may take the same integers s;;
but what is essential is that s = > | s; be independent of v|p). Then we see easily that r,
lifts 7,, is potentially crystalline with regular Hodge-Tate cocharacters, std(r,) is potentially
diagonalizable, and N(r,) = (k- [R]7})Xi=1%. Set s = > | 5;. We define : T'g+ — O* by
0 = k- [k]° - [N(r)]. In particular, N(r,) = 9’FK+ for all v|p.

Now for each v|vs; we define a lift r, of 7|p it (which is trivial) with the desired properties,
including now that the norm be the character 0 just defined. Namely, let o, be an element
of Gal(K e /K T) that maps down to the arithmetic Frobenius in Gal(K,;"™ /K;), and
let 7, be a topological generator of the pro-cyclic group Gal(K %™ /K1) (so we have
f/2

0,10, = 79"). Define p, : Gal(KH9me | K+) — SLy(O) by py(0,) = (qo q—gﬂ) (recall
11
0 1
is a principal SLy (for instance, with respect to a choice of pinning for our based root datum
for GSpiny,,, ;). Then r,o is a Steinberg parameter with N(r,o) = 1, and it remains to
introduce a twist to get the correct Clifford norm. Since 9|FK . is unramified with

O(Fr,) = ¢;lg,"] =1 (mod p),
there exists an unramified character o, : T'y+ — Z) such that a,(Fr,)* = 0(Fr,). We then
define r, to be 7,0 - a,, so that now N(r,) = N(r,o)-a? = 0|r e A straightforward

that fis even), and p,(7,) = ( ) We initially set 7,9 = @op,, where ¢: SLy — Spin,,, 4

computation shows that r, is robustly smooth in the sense of [5] (or ‘very smooth” in the
sense of [3]).

The lifts r, we have just defined for v|p and v|vg; satisfy the desired local conditions and
have Clifford norm equal to the restriction of 6. For other places v € S, recalling that
T |FK . is trivial, we can simply let , be an unramified twist (as in the Steinberg case, to get

the correct central character) of the trivial representation.” Thus, we can apply Theorem

3.4 (and in fact its simpler variant based on Remark 3.2) to deduce the existence of a lift
r: D+ g = GSpiny,,,,(Z,) of |r_, such that for all v € S, r|p lies on the same irreducible

component of Spec(Rflv ® @p) as r,, and for v|p also has the same p-adic Hodge type as r,.
The proof of the proposition is complete. OJ

For each v[p and each embedding 7: K — Q,, we let pu(r|,, 7): G,, — GSpin,,,, be the
Hodge-Tate cocharacter (properly, a conjugacy class of cocharacters) of r|,; this equals the
Hodge-Tate cocharacter u(r,, ) for the r, constructed in the proof of the Proposition.

We will now apply the potential automorphy theorem of [3] to the representation std(r) :
g+ — GL2p41(Q,). We begin with a remark on the normalization of the construction of

40ne could certainly refine this argument to achieve more control over our eventual lifts at places in S
away from p and vgt, but we have no need to do so.
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automorphic Galois representations, which is summarized in [3, Theorem 2.1.1] and proven
by work of many people, with the result we need contained in [35, Theorem 1.2, Remark
7.6]. These references imply that for every regular L-algebraic self-dual cuspidal automorphic
representation IT of GLg,11(Ag+), there is an associated rp,: I'g+ — GL2n+1<@p) such
that for all v not above p, the Weil-Deligne representation associated to T‘H7L|FK . 1s, up to

Frobenius semisimplification, isomorphic to the local Langlands parameter (in the standard
unitary normalization, not the “arithmetic” normalization) of IL,. Moreover, for v|p, rH7L|pK .

is de Rham (and crystalline if II, is unramified) with labeled Hodge-Tate weights read off
from Il according to the usual recipe, which we will now outline. If M is a number field, G
is a connected reductive group over M, and 7 is an automorphic representation of G(Ay,),
then for each choice of field embedding e¢: M — C, inducing an infinite place of M (that we
will also denote by €) and an identification M, = C, we consider the restriction ¢, : Wg; —
LG(C) of the archimedean L-parameter. Precisely when 7, is L-algebraic (in the sense of [9,
§2.3]), this homomorphism is induced by a pair of algebraic cocharacters, z s z#(me€) zv(7e:€)
of a maximal torus inside the dual group GV, and we thus associate to the pair (7, €) the G-
conjugacy class of cocharacters p(m, €). A conjectural Galois representation r,, associated
to m should then have the property that for any field embedding 7: M — @p, which induces
M, — @p for some v|p, and which via ¢ induces an embedding ¢ = :~'7: M — C, the Hodge-
Tate cocharacter pu(ry |y, 7) and p(m, €) define the same GY-conjugacy class of cocharacters.
We will use these notions and notation in what follows in the cases G' = Sp,,,, GSp,,,, GLay11.

Proposition 4.3. There exist a totally real extension LT/K™ and a reqular L-algebraic
self-dual cuspidal automorphic representation 11 of GLany1(Ap+) such that std(r)|r, , = rm,.
Moreover, the automorphic representation 11 satisfies the following properties:

(1) For each embedding € : LT — C, inducing an embedding 7 := te: LT — @p together
with a place v|p of L, the cocharacter u(Il., €) coming from the archimedean L-
parameter ¢, is conjugate to the Hodge-Tate cocharacter pu(std(r)|,, ).

(2) 11, is isomorphic to a twist of the Steinberg representation of Glig,+1(LY) for any
finite LT -place w|vsy.

Proof. The existence of the field L™ and the cuspidal automorphic representation IT follow
from [3, Theorem C], where the assumptions are clearly satisfied by std(r). The first enu-
merated item is part of [35, Theorem 1.2]. For the second item, since II is cuspidal, IL,, is
generic for all places w, and therefore local-global compatibility ([35, Theorem 1.2(i)]) and
[3, Lemma 1.3.2] imply that std(r)|p " is a smooth point on its (generic fiber) local lifting

ring. Since r|p - lies on the same 1rreduc1ble component as the restriction r,|p - of the
Steinberg-type lift constructed in Proposition 4.2, so do std(r)|r Lt and std(r,)|r Lt (since

the canonical map from the GSpin,, ; to the GLg,41 deformatlon ring of course preserves
irreducible components). The latter is visibly a smooth point, so by [3, Lemma 1.3.4 (2)]
(due to Choi) the inertial restrictions std(r)|; o and std(r,)| Ly are isomorphic. It follows

from the local Langlands correspondence for GLgn_H(L ) that H is an unramified twist of
the Steinberg representation of GLay,11(Ly,). O
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Remark 4.4. The extension L*/K™* may be chosen with the following properties: for any
fixed finite Galois extension K®°4/K* and any finite set U of places of K, the extension
L* can be taken to be linearly disjoint from K®°9 over K+, and such that the primes in
U all split completely in LT /K™. The former assertion is part of [3, Theorem C], whereas
the latter requires a small additional argument and is explained in the last paragraph of the
proof of [10, Theorem 2.1.16].

In the next result we use Arthur’s endoscopic classification, which for our purposes proves the
local Langlands correspondence for Sp,, (L) (for all places w; of course, for infinite places
this is due to Langlands) and describes the discrete automorphic spectrum of Sp,,,(Az+)
in terms of self-dual isobaric automorphic representations of GLg,.1(Az+). We will try to
phrase the following argument in a way that will help the uninitiated reader to parse the
main results of [1]. In what follows, for an admissible smooth representation (or admissible
(g, K)-module) 7 of either GLg,11(L}") or Sp,,(L.}), we will write ¢, for the local Langlands
parameter associated to 7 in, respectively, [20] or [1].

Proposition 4.5. There is a cuspidal automorphic representation m of Sps,(Ar+) with the
following properties:

(1) For every place v of LT,
on, = stdogy, .

(2) For each embedding € : L™ — C inducing as before an embedding T : LT — Q,
together with a place v|p of L™, the cocharacters p(me,€) and p(P(r)|,, 7) are conju-
gate in SOgyq1. Moreover, w. is a discrete series representation of Spy,(LT), with
infinitesimal character p(me, €).

(3) For any finite L -place w|vs;, the local component m,, is isomorphic to the Steinberg
representation of Spy,, (Lt).

Proof. Since I1 is self-dual cuspidal automorphic, it corresponds to a simple generic parameter
in the sense of [1]. By [1, Theorem 1.4.1] there is a unique elliptic (and in fact simple)
endsocopic group G with a discrete automorphic representation 7 of G whose system of
unramified Hecke eigenvalues gives rise to those of II; and since 2n+1 is odd, G is necessarily
the split group Sp,,,/L*. Simply by definition, IT thus gives rise to a parameter ¢ € U(G),
in the sense of [1, §1.4]. By [1, Theorem 1.4.2], the local Langlands parameters ¢y, factor
through SOy, 11 C GLg,,1, and then the central results [1, Theorem 1.5.1, Theorem 1.5.2]
establish the local Langlands correspondence for G and show that the descent 7 of II (the
multiplicity here is one, in fact) is everywhere locally compatible with this local Langlands
correspondence, which yields part (1) of our Proposition.

The relation between ¢r, |w_, and wu(P(r)|y, ) in (2) follows from (1), part (1) of Proposition
4.3, and the fact that SOgnJ:l—valued cocharacters are SOq,,1-conjugate if they are GLg,1-
conjugate. The fact that 7. is in the discrete series with the claimed infinitesimal character
is then a standard consequence, since there are no other possibilities for the extension from

We to Wk of this (regular and tempered) parameter.
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Now we consider a place w|vs; and show (3). As II,, is a twist of a Steinberg representation,
and the parameter ¢y, takes values in SOgy,41, II,, must itself be the Steinberg representation:
self-duality forces it to be at most a quadratic twist of Steinberg, and then trivial determinant
forces the twist to be trivial. Thus the parameter ¢, has std(¢,,) equal to the Steinberg
parameter for GLy, 1. It was shown in [27, Proposition 8.2] that the Steinberg representation
Sty of Sps, (L) has this same parameter. Thus 7, and St,, lie in the same local L-packet
Iy, (in the notation of [1, Theorem 1.5.1]). This parameter is bounded, and Arthur shows
([1, Theorem 1.5.1(b)]) that the packet is thus in bijection with the group denoted S, (the
component group of the centralizer of the parameter). This group is visibly trivial, so the
L-packet contains a single element, and therefore m,, = St,,. 0

The following argument is complicated slightly by the fact that we do not know at the
outset the expectation ([7, II1.10.3]) of how to compute the central character w, from the
local L-parameters of 7 (except at archimedean and unramified primes).

Proposition 4.6. There is a cuspidal automorphic representation @ of GSps,,(AT) satisfying
the following properties:

(1) For any place v of Lt that is either archimedean or for which 7, is unramified (in
these two cases the corresponding L-parameters ¢z, are defined), P o ¢z, = ¢n, .

(2) The representation 7 is L-cohomological in the sense of [24]. More precisely, for
each embedding € : LT — C, which identifies the algebraic closure of Lt with C and
induces (via 1) an embedding T : Lt — Q, together with a place v|p of LT, (7, e)
equals (7|, 7).

(8) For any place wl|vsy of LT, the local component T, is a twist of the Steinberg repre-
sentation of GSp,,(L).

Proof. Let &y be a finite-order Hecke character of L™ extending the central character wy,
and set @ = @y - |- |*, where s = > | s; is the integer appearing in the definition of § = N (r)
in Proposition 4.2. Then @ clearly also extends w,. By the argument of Langlands-Labesse
(for SLy in [25] and generalized in [31, Proposition 3.1.4] using an argument of Flicker
from [18]), there is a cuspidal automorphic representation 7 of GSp,, (Ar+) with central
character wz = @ and extending 7 (i.e., 7 is a constituent of the restriction 7|sp, (a,))-
Part (1) follows from [31, Corollary 3.1.6]. We claim that for all e: LT — C, 7, is L-
cohomological with the claimed infinitesimal character. Indeed, the only quasi-cocharacter
of T" C GSpin,,,; (notation as in Proposition 4.2) lifting p(m,€) and having norm equal
to z — 2% s = > | s, is the (genuine) cocharacter denoted (in the root datum notation
introduced above) >, s;(A; + 22), and equal to u(r|,,7). This must be the infinitesimal
character (7, ¢€), so we see that 7. is L-algebraic and (because it extends 7.) essentially

discrete series. We will check that 7, is moreover “L-cohomological” in the sense of [24], i.e.
that 7 - ])\Oln(n:l) is cohomological in the sense of [24, Definition 1.12] ()¢ corresponds to

the similitude character of GSp,,). Since 7. is discrete series with infinitesimal character
p(me, €), it is &, -cohomological ([8, Theorem V.3.3]), where &,(r, ¢, is the highest-
weight p(m, €) — p representation of Sp,,(C), and p is the half-sum of positive roots for the
choice of root basis used also to parametrize highest weights. We need an extension € of
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Eu(me.)—p t0 GSPy,, (C) such that (letting K be a maximal compact subgroup of Sp,,(R))

(n41)

o) A0,

From the definition of this cohomology group, and the fact that m. ® £ has non-zero
(sp,,(C), K)-cohomology, this reduces to checking that we can find an extension &Y of
&pirerc)—p Such that € and 7. - || me

have to check this on R%; C Zgsp, (R) since —1 € K. We choose € to be the representation

with highest weight p(7,€) — p + W)\o € Xo(T) (the Ay term corrects the failure of p

to be integral for GSp,,,). The claim is now proven, since this highest weight representation
n n+1)

H*(gﬁp%z(c)a K - ZGSpgn (R)7 ﬁ-e .

have the same central character; note that we will only

has the same infinitesimal character as 7, - |Ao|

Now we prove (3). By Proposition 4.5, part (3), 7, is Steinberg for any finite LT-place
w|vs;. Consider the representation 7, := m, X @y, of the subgroup H,, := Sp,,(L$)-Z(L}) C
GSp,, (L), where Z denotes the center of GSp,,, (such a representation makes sense because
@ extends w,). We also let St,, denote the Steinberg representation of GSp,, (L+). We want,
for a suitable twist Sty,-a (i.c., twisting by GSp,,, (L) 20, L% 5 C*), to compare Sty-a to
In dGSpQ“(Lm( ) for which we will simply write Ind(7,) in what follows. First we note that
the restriction Sty |ir, is isomorphic to St,, extended trivially along Z (LY), as is clear from
the definition of the Steinberg representation. Next, since @, |+ is trivial (as @, extends
wx,, ), there exists a character «, in fact L} /(L}*)?* = [GSp,, (L)) : H,] distinct characters,

satisfying o? = @,,. Then, for each such «, Frobenius reciprocity and Schur’s lemma imply
that

HomGSp%(Lm(SNtw -, Ind(7,)) = Hompy,, (7w, Tw),

is one-dimensional. Again by Frobenius reciprocity 7, is a Jordan-Holder constituent of the
(easily seen to be semisimple) representation Ind(7,,), and since (by definition of the Steinberg
representation) all GSp,,, (L. )-conjugates of 7, are isomorphic, another application of Frobe-
nius reciprocity shows that Homgg, 7+ (Ind(7,), Ind(7,)) has dimension [GSp,, (Ly,) : Hay]-
It follows that

Ind(7,) @ Stw Q,

a2 =wqy

and therefore for some such «, 7, is isomorphic to S~tw Q. 0

The main result of [24] now implies the existence of a Galois representation
rz =1z, : 't — GSpiny,,(Q,)

satisfying most of the expected properties, including that P(rz) = P(r), N(rz) = @ (abu-
sively writing @ for the Galois character associated to @ by global class field theory), and rx
is locally compatible with 7 at almost all (unramified) places. This 75 is nearly the Galois
representation we want, but first we need to relate N(r) to the Hecke character @

5The definition of “cohomological” used in [24] for a general real reductive group H uses
(Lie(H(C)), K% Zy (R))- cohomology7 where K% is the identity component of a maximal compact subgroup
Kp of H(R). For H = GSp,,,, K} is a maximal compact subgroup of Sp,,, (R).
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Corollary 4.7. At all places v of L*, the central character wy, is computed in terms of ¢x,
according to the expected description in [7, III.10.53]. The representation rz is conjugate to
r®9 for a continuous Galois character 6 : I'f — Z(Q,), and we can choose & in Proposition
4.6 to be the Hecke character corresponding to N (r) under global class field theory, so that
5 =1.

Proof. Recall the local Langlands desideratum that if ¢, is the L-parameter of 7, then wy,

should be computed as follows: lift ¢, to a GSpin,, ;(C)-valued parameter ¢, , and then
restrict _
N(¢y,)orec,': (LT)* — C*

to pia(Ly ). The Weil-Deligne representation associated to rz|r , (for v above p this must
be taken in the sense of Fontaine: see, e.g., [5] for a descriptionv for representations valued
in general groups) provides such a lift 5%,6 and then (since, by [24, Theorem A], N(rz)
corresponds to @) N (aﬂv) corresponds to @, under local class field theory; but by construction
&, extends wy,, so the first claim is proven. Since r and 7z both lift P(r), they are twists:
r= =2 r ® 4§ for some character 6: I';+ — Z (@p). As they both have Clifford norm with the
same Hodge-Tate weights, ¢ is finite-order. It follows, since N (rz) = §%- N(r), that the Hecke
character corresponding to N(r) also extends w,, hence that we can choose @, and thus 7,
in Proposition 4.6 such that & corresponds to N(r) under global class field theory. 0

Choosing @ corresponding to N (r), constructing 7 as in Proposition 4.6, and then if necessary
using Corollary 4.7 to twist 7 by the Hecke character corresponding to §~1, we obtain our
first main result:

Theorem 4.8. Let 7 be as in the beginning of this section, satisfying Hypothesis 4.1. Then
T is potentially automorphic, i.e., there exists a totally real Galois extension L*/Ft and
a cuspidal automorphic representation T of GSp,,(Ar+) that is L-cohomological and twist
of Steinberg at some finite prime, such that a suitable GSpin,,  -conjugate of the Galois

representation rz : I+ — GSpiny, 1 (Q,) constructed in [24] lifts 7|+

We remind the reader that in our initial choice of L™, we have the flexibility provided by
Remark 4.4.

4.2. The p-adic case. Note that Theorem 4.8 makes no local hypothesis on 7 at finite
primes. We can prove an analogue of Theorem 4.8 for p-adic representations if we assume
they satisfy a Steinberg-type local condition at some finite prime. The argument given above
implies this with little modification:

Theorem 4.9. Let F'* be a totally real field, and let r: I'p+ — GSpiny,,. 1(Z,) be a contin-
uous representation, unramified outside a finite set S of primes containing all v|p, having
geometric Clifford norm N(r), and satisfying:

e p>2(2n+1).
e 7 is odd.

6At v above p, this claim makes use of local-global compatibility of TH’L|FL ,- Since 2n + 1 is odd, this is

proven in [4, Theorem A].
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e For some finite place vs;, of ', the Frobenius semisimple Weil-Deligne representation
associated to 7”|1" 15 equivalent to a twist of the Steinberg-type Langlands parameter

’U

(equivalently, P(r \p ) is a Steinberg parameter for Spo, (Fif)).

Ust
Ust

e There exist a quadratic CM extension F/F* and a character ju: Tp+ — Z; such that

— F does not contain Gy, and std(7)|r, ., is irreducible.

— (std(r)|rp, 1) is polarized, and for some (any) choice of prolongation

p(td()[rp, 1) Tt — Gonia (Zy),

p(std(r), u)lr . is globally realizable for each vlp.

Then there exist a totally real Galois extension L™ /F* and a cuspidal automorphic represen-
tation 7 of GSp,,(Ar+) that is L-cohomological and locally at primes above vg; isomorphic
to twists of the Steinberg representation, such that vz, = r|p .. The extension LT may be
chosen to avoid any fized finite Galois extension F™°/F+ and to be split at all places above
S (and in particular above vg ).

Remark 4.10. As previously noted, the local hypothesis at v|p is strictly weaker than as-
suming std(r|p +) is regular and potentially diagonalizable. We note that the definition of

globally realizable in [10] has already fixed a CM extension, and we have tried to phrase
the statement of the theorem in order to allow flexibility in this choice of extension. It is
possible, for instance, to replace an initially given F' with one that is split at places above

S\ {vlp}-

Y

Proof. The polarization condition implies std(r)|r, = std(r)|r, ® u|r,, since of course
std(r)|r, arises from P(r). Under the hypothesis on r|p ) this implies plr, = 1 (else

std(r)|r, would be induced from a finite extension). By oddness (which by [10, Lemma
1.5.3] is automatic), we conclude that y¢ = 6p/p+, and then we may ({10, Remark 2.1.9])
take our prolongation that is globally realizable at places above p simply to be the familiar
composite

P(r)xresp

et SO9,41(Z,) x Gal(F/FT) = Goni1(Z,),

the standard prolongation p(r) defined in §2.

The prolongation p(r) satisfies the hypotheses of [10, Corollary 4.2.12], so we find a CM
extension L/F (with totally real subfield L™) and a cuspidal automorphic representation
II;, of GLa,+1(AL) that is polarized and regular L-algebraic such that ry, , = std(r)|r,.
Moreover, we may assume that L™ /F7 is split at the primes in S and linearly disjoint from
the fixed F*°4: indeed, once we know std(r)|r, is potentially automorphic, we deduce from
[3, Theorem 5.5.1] (the potentially diagonalizable hypothesis there is only to invoke the
potential automorphy theorem of loc. cit.) that it belongs to a compatible system of odd,
regular, weakly irreducible (as in [10]) polarized representations of I', and then [10, Theorem
2.1.16] shows that we can indeed choose L/F (and II;) such that L™ /F* is split at all primes
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above S.” Next, we note that II$ = I, (where ¢ is complex conjugation), so I, descends
to a (regular L-algebraic) cuspidal automorphic representation IT of GLg,1(Ar+); it has
an associated Galois representation that restricts to the irreducible std(r)|r,, so twisting if
necessary we may in fact assume ry, = std(r)|r,, . We take this IT in Proposition 4.3, and
from this point on the proof of our theorem is identical to the proof of Theorem 4.8; note
that both N(r) and std(r) being geometric suffices to imply that r is geometric: this follows
from work of Wintenberger and Conrad (see [15, Theorem 6.2]). O

5. SOLVABLE DESCENT AND COMPATIBLE SYSTEMS

Potential automorphy theorems for the group GLy imply, by Taylor’s Brauer induction
argument ([36, §5.3.3]), that one can often put a single p-adic representation I'r+ — GLy(Q,)
into a compatible system (over this exact field F'*, not merely over the extension LT where
it is shown to be automorphic). In this section we will give a variant of Taylor’s argument
that applies to a single GSpin,, +1(@p)—valued representation. We postpone the proofs of
the necessary solvable descent result to Theorem 5.2, and we first explain how to apply

them and our potential automorphy theorem to put certain GSpin,, ;(Q,)-valued Galois
representations in compatible systems:

Theorem 5.1. Let r: I'p+ — GSpiny, (Z,) satisfy the hypotheses of Theorem 4.9. Then

Jor all primes € and choices of isomorphism v,: C 5 Q there is a continuous representation
7, Dp+ — GSping, ., (Q;) such that:

e For all but finitely many primes v at which v is unramified, the semisimple conjugacy
class of t1r(Fr,)® agrees with that of v;'r,,(Fr,)*.

o For all primes v|l, r,, is de Rham, and its Hodge-Tate cocharacters are determined
up to conjugacy by those of r: for all embeddings T: F* — Q,, determining a place
o[l of F*, and inducing u;'t: F* — Q, and a corresponding place v;(v)|p of F7,

the conjugacy classes of LZIM(TLAFFJHT) and L_l,u(7"|1~F+ 1, 'T) coincide.
v )

For any connected reductive group G, we call a family, indexed by isomorphisms ¢,: C — Q,
of G(Qy)-valued representations satisfying the above two conditions a weakly compatible
system of GG-valued representations of I'p+.

Proof. We write G, for the Zariski closure of the image of r, and we write GV for the identity
component of G, (and we use analogous notation for other Galois representations). Let F°
be the fixed field of the preimage r~'(G2(Q,)). By Theorem 4.9, there exist

e a totally real field L™, which may be assumed to be Galois over F* and linearly
disjoint from the composite of F(y,) and the fixed field of 7, and split at all places
above vgy;

e and a cuspidal automorphic representation 7 of GSp,,,(A;+) that is L-cohomological,
and at all places v above vg; is isomorphic to a twist of the Steinberg representation,
such that r;, = r|pL+.

"Here we are feeding the conclusion of [10, Corollary 4.2.12] back into one of its essential ingredients in
order to obtain a slightly stronger result.
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We then have an associated compatible system {r7,}, indexed by field isomorphisms
Lo @l = C. Moreover, 7., lifts rr,,, where as previously we denote by 7 a (cuspidal
automorphic) constituent of 7|sy, (a,,) and 77, Ip+ — SO9,.1(Q;) the associated Galois
representation. The algebraic monodromy groups G, are independent of : each is re-
ductive with a regular unipotent element in the image, hence is irreducible with monodromy
group equal to one of the following: all of SOy,,1; the image ¢(SLs) of a principal SLo;
or G when n = 3. Independence of ¢ of the formal character (or even just the rank) of
maximal tori in the algebraic monodromy groups (a result of Serre; see, e.g., [26, Proposi-
tion 6.12]) implies the claim. It follows then that G, is also independent of ¢, since the
r%,, moreover have compatible Clifford norms, and component groups are again by Serre’s
work independent of ¢ (26, Proposition 6.14]). More precisely, in the three cases for G, ,
we see that G, satisfies Spiny,; C G,.,, C GSpiny,,, ¢(SLa) C G, C ¢(GLa) (here
@: SLy — Spin,,, ., is extended to ¢: GL2 — GSpiny,,; by an 1somorphlsm between the
centers), or Gy C Grﬁ,% C Gg X Z (here Go, being simply-connected, is identified with its lift
to Spin,, and Z is the center of GSpin,, which intersects G trivially because G is adjoint).
In all cases, G, is determined by its image in G, ,, /Ggffér C G,,. This subgroup is the

TWL

full G,, if and only if the Clifford norm N(rz,,) has infinite image; otherwise, this subgroup
is finite and is isomorphic to (G, ,, ), completing the proof that G, , is independent of £.

By Theorem 5.2 below, for any intermediate extension L™ > K+ D F* with L* /K™ solvable,
T|FK . is automorphic; more precisely, there exist cuspidal automorphic representations 7 g+
of GSp,,,(Ag+) (L-cohomological and twist of Steinberg at all places above vg;) such that
T = 7’|pK . (we are justified in writing “=" since the representation constructed by Kret-
Shin is unique up to GSpin,,,, ;-conjugacy).

Consider the composite spin(r): Tp+ — GL»(Q,). Writing the trivial representation of
Gal(L*/F*) as a linear combination

_ Gal(Lt/FT)
1= ZHJI dG (L+/L}) (1/13)

for some intermediate extensions L;L such that Gal(L*/ Lj) is nilpotent for each j, some
characters ¢;: Gal(L"/L}) — C*, and some (possibly negative) integers n;, we see that as
virtual representations

spin(r Zn] Ind Bt (spln( I +) ® ;).

J

We now define, for every prime ¢ and every choice of isomorphism ¢,: C = Q,, the virtual
(-adic representation

r .
R, = E n; Indrf;r (spm(rﬁﬁw) ® ;).
j 7 !
We have to check three things:

e The {R,,},, form a (weakly) compatible system of actual representations.

e With the previous point established, each R,,: I'p+ — GLgn (@l) will, up to conjugacy,

factor as spin(r,,) for some r,,: I'p+ — GSpin,, (Q;).
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e The r,, form a compatible system of GSpin,,  ;-valued representations, containing
r=r, (when ¢, = ¢).

Since spin(r) is not in general irreducible, it seems easiest to give the following ad hoc
argument, treating the different possible algebraic monodromy groups of spin(r) separately.
If n = 3 and Gp(y = G, then as in the discussion of the groups Grﬁw, we see that Go C

G, C Gg X Z. Thus r can be identified with the pair (P(r),x) valued in (G2 x Z)(Q,). The
spin representation restricted to G is the direct sum of the trivial representation and std(r),
so spin o 7 is isomorphic to (std(r) ® x) @ x. Thus it suffices to put std(r) and the character
X in strictly compatible systems, which can be done by combining the potential automorphy
result [10, Corollary 4.2.12] with the proof of [3, Theorem 5.5.1] (see the character calculation
in the third paragraph of loc. cit.), and to check that each member of the compatible system
containing std(r) factors through Go and is weakly compatible in the Gy sense with P(r).
The factorization through G follows from the proof of [11, Theorem 6.4], noting that all
members of the 7-dimensional compatible system are Hodge-Tate regular.® Thus we have
7,: Tp+ — GSpin,(Q,) for all ¢, each having the form r,, = (7,,,x,,), where 7,, factors
through G, C Spin,, and x,, is a character valued in the center of GSpin,. We know that the
std(7,,) form a GL7-compatible system, and that the x,, form a one-dimensional compatible
system. To see that {r,},, is a GSpin,-compatible system, it suffices by [24, Lemma 1.3]
to check GL- compatlbﬂlty after composition with the three representations N, std, and
spin. N(r,) = x7, is compatible, std(r,,) = std(r,) is compatible, and spln(m) = R, is
compatible, so the case G'p(y = G2 is complete.

Le

If Gpy = PGLy, then SLy C G, C GL3, and we can simply regard r as the composite porg
of a principal homomorphism ¢: GL; — GSpin,,,; (a principal SLy extended to the identity
map between the centers) and some ro: I'p+ — GLQ(@p). There is a compatible system 7,
containing rp, and then we can construct the desired GSpin,, ,-valued compatible system
as pory,,.

We now consider the remaining case, where G, contains Spin,, ;. Merely for technical
convenience, we replace r by its twist by some power of the cyclotomic character, ensuring
that G, = GSpin,, ., (or equivalently that N(r) has infinite order); it suffices to prove the
theorem for this twist, since we can untwist each member of the resulting compatible system
to deduce the theorem for the original r. In any case, since G, contains Spin,,, ;, spin(r)
is irreducible, as is spin(r|r,, ) for any finite extension K*/F*. By the independence-
of-{ observation above, it also follows that spin(rz,_, ) is irreducible for any ¢, and any
LT D K D Ft with LT/K™ solvable. Again, the character calculation in the proof
of [3, Theorem 5.5.1] then immediately implies that the virtual representation R,, is an
actual representation and is moreover irreducible. (Note that [24, Theorem A] does not
establish local-global compatibility at all unramified primes: by (ii) of loc.cit., the semisimple
conjugacy class of t 71 R(Fr,)® agrees with that of ¢, ' R,,(Fr,)® at those places v such that
for all 7, 7~TLj+ is unramified at v and v is not above 2 or any rational prime that is ramified

in Lj. This is why we only have compatibility of Frobenii at all but finitely many places v
at which r is unramified.)

8 Alternatively, we could avoid the elaborate group theory of [11] and use the full strength of the conclusion
of [3, Theorem 5.5.1], that the compatible system is strictly pure. Then using the fact that std(r)|pF+ is a
VSt

Steinberg parameter, the simpler argument of [27, Corollary 7.3] suffices.
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We now show that each R,, factors through GSpin,, ;. Since RLe]pL . is isomorphic to
spin(rz,,), we may after GLan-conjugation assume these are equal. Since LT /F* is Galois,
any element g of the image of R,, normalizes spin(GSpin,, ;) C GLgn, hence normalizes
spin(Spin,, ;). Since Spin,, ; has no non-trivial outer automorphisms, g acts on Spin,,
as h-conjugation for some h € Spin,,, ;. Thus gh™!-conjugation is trivial on Spin,,,, hence
(by irreducibility of the spin representation) gh™' is a scalar in GLgn. As spin carries the
center of GSpin,,, | ; isomorphically to the scalar matrices in GLa», we conclude that g belongs
to spin(GSpiny,,, ;).

It follows that R,, factors as spin(r,,) for some r,,: I'p+ — GSpin,,,,;(Q;). Moreover, since
RLe’r‘L . is isomorphic to spin(rz,,), each member of the compatible system {R,,},, of I'p+-
representations satisfies Gg,, = GSpiny,, ;.

That the collection {r,,},, forms a compatible system in the sense of GSpin,, , ;-valued rep-
resentations will now follow from [24, Lemma 1.3] and the fact that N,std,spin form a
fundamental set of representations of GSpin,, ;. Indeed, by construction the spin(r,,) are
compatible; N(r,,) can be read off (see [24, Lemma 0.1]) as the similitude character of
the essentially self-dual representation R,,, and these are also clearly compatible. To see
compatibility of the representations std(r,,), note that by a standard plethysm

n
R ® N(r,)”" = @ A std(r,,).

i=0
The representations on the left-hand side of this isomorphism, for varying ¢,, form a compat-
ible system, so the direct sum on the right-hand side does as well. At the same time, std(r)
is already known to belong a compatible system by [3, Theorem 5.5.1], and consequently so
does each A’std(r). Let us denote these compatible systems by {A7,,},,. By uniqueness of
the compatible system containing a given representation, we deduce an isomorphism

n n
@ A'std(r,,) & @ A'T,,.
=0 1=0

Since std(r,,) and 7,, both have algebraic monodromy group SOq,,1, all of these wedge powers
(as 7 varies) are irreducible of different dimensions, and we conclude that std(r,,) = 7,, for
all ¢4. In other words, the representations std(r,,) do indeed form a compatible system.

This concludes the proof of the theorem, modulo Theorem 5.2. O

The following theorem is, for GLy, a standard consequence of cyclic prime degree descent
and the existence of automorphic Galois representations.

Theorem 5.2. Let F'* be a totally real field, and let r: T p+ — GSpiny,.1(Q;) be a continu-
ous representation such that for some finite totally real extension L™ /F*, rlr,, 4s equivalent

to rz,, for some isomorphism v,: C = Q, and some cuspidal automorphic representation 7
of GSp,,,(A+) satisfying:

(1) 7 is L-cohomological with respect to the base-change {p+ of an irreducible algebraic
representation & of GSp,,,(F).
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(2) At some finite place vs, of F*, Ty, 1s isomorphic to a twist of the Steinberg repre-
sentation of GSpy,(Ly, ) = HvIch GSp,, (L).

Then for any intermediate field L™ > K™ O F*t such that LT /K" is a solvable Galois
extension, there exists a cuspidal automorphic representation T+ of GSpy,, (Ag+), with T+
L-cohomological with respect to Ex+ and isomorphic to a twist of the Steinberg representation
above vsy, such that rz . ., = rlr, .

Proof. By induction we reduce to the case of LT /K™ cyclic of prime degree, showing at each
step that there is a cuspidal automorphic representation 7+ of GSp,,, (Ax+) satisfying the
analogues over Kt of conditions (1) and (2) (i.e., the hypotheses of [24, Theorem A]), and
such that the associated f-adic representation T,y 18 equivalent to r|pK L

Let m be any cuspidal automorphic constituent of 7~r|sp2n(AL .y, and let II be the functorial
transfer of 7 to a cuspidal automorphic representation of GLg,11(Az+). The cuspidality of
IT follows from [24, Corollary 2.2]. Moreover, II,, is isomorphic to the Steinberg represen-
tation for all w|vg, ([27, Proposition 8.2]), and it is regular L-algebraic with archimedean
L-parameters std o rec,,(7) for all w|oo (see the discussion surrounding [24, Theorem 2.4]).
Likewise, the Satake parameters of II are those of © composed with std, so by the strong
multiplicity one theorem ([21]) II? = II. Cyclic descent of prime degree ([2]) implies that
IT descends to a cuspidal automorphic representation Ix+ of GLo, 1 (Ag+). It follows that
Mg+ is regular L-algebraic with the same archimedean L-parameters (under the identifi-
cation Wi+ = Wi+ for all wlv|oo) as II, and that g+ ., is isomorphic to a twist of the
Steinberg representation. We claim that II+ may be chosen to be self-dual. The description
of the fibers of cyclic base-change in [2] implies (by self-duality of IT) that IIx+ is essentially
self-dual: g+ = I}, ® for some Hecke character ¢ of K. By [32, Theorem 2.1], 1,(—1)
is independent of v|oco, and so by [35, Theorem 1.2], as formulated in [3, Theorem 2.1.1],
ITx+ has an associated Galois representation (B P Ty — GLQnH(@l). Both T, p e and

std(r|r, ., ) descend std(rz,,,), so (by irreducibility) there is a character n: Gal(L*/K™) — Q'
such that rp = std(r|r, ., ) - n. Thus

K+l

Y

Tl\_/IK_A,_,Lg = Std(r’FK-»,-) : 7771 = Std(T’FKJ,-) ’ 7771 = THK_A,_,LZ & 7772'

Replacing Tg+ by its twist I+ ® n~ (note that 7 is finite-order, so we may view it as a
Hecke character), we may and do assume that [1x+ is self-dual and that r_, ,, = std(r|r, . ).

Now, by [1], there is a cuspidal automorphic representation my+ of Spy,(Ag+) transferring
to Ilg+, and more precisely satisfying the conclusions of Proposition 4.5. We can then
apply Proposition 4.6 to lift mx+ to a cuspidal automorphic representation of 7+ satisfying
the conclusions of loc. cit., and in particular having an associated Galois representation
T#, a0t D+ — GSpiny,,,(Q,). Finally, we compare P(r|r, ) with P(rz . ). Since their
compositions with std are isomorphic, it follows from [24, Proposition B.1] that P(r|r, . )
is SO, 41-conjugate to P(rz . ,,). Conjugating, we may assume these two SOg,;-valued
representations are equal.

Thus 7‘|FK L OX = TR for some character y: I'g+ — @ZX , which is finite-order since its
Hodge-Tate weights are all zero. Regarding y as a Hecke character, we can then replace
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T+ with T+ ® x 71, and (having made this replacement) we as desired have arranged that
Thpt,, = 7|r,.., and that T+ still satisfies the hypotheses of [24, Theorem A]. O
This concludes the proof of Theorem 5.1, but the following complementary result on auto-
morphic descent may be of some interest:

Corollary 5.3. Let L™ /K™ be a solvable extension of totally real fields. Let T be a cuspidal
automorphic representation of GSp,,, (Ap+) satisfying the hypotheses of [24, Theorem AJ, i.e.

L-cohomological of some weight & and a twist of the Steinberg representation at some finite
place wgy. Assume that 7 = 7 for all o € Gal(LT/K™). Then there is a Gal(LT/K™)-

wmvariant finite-order character x: I'p+ — @ZX and a cuspidal automorphic representation
i+ of GSps,,(Ag+) that is unramified at primes below those where 7, x, and LT/K™ are
unramified, isomorphic to a twist of the Steinberg representation at the place below wsi, and
L-cohomological with weight descending that of o, such that T+ descends ™ ® x in the
following sense: for the three kinds of places just specified the local L-parameters are defined,
and in each case the local L-parameter of T+ restricts to that of T ® x.

In particular, if LY /K™ is cyclic, we may descend x and therefore descend 7 itself.

Remark 5.4. For cyclic extensions, all invariant Hecke characters descend, but the corre-
sponding property fails for solvable extensions. A template for the present corollary is a
theorem of Rajan ([33, Theorem 1]) establishing an analogous result for general cuspidal
automorphic representations of GLy over any number field. In particular, Rajan’s results
show that not every 7 as in the corollary can descend (even for n = 1), since if 7 descends, its
twist by an invariant (but non-descending) character will not descend (but will still satisfy
the hypotheses of the corollary): see the uniqueness claim in [33, Theorem 1].

Proof. For all 0 € Gal(LT/K™), 7 has an associated Galois representation rzs ,,: I'r+ —
GSpiny, 1(Q;), which is equivalent to 77, and to rZ, by the uniqueness assertion of [24,
Theorem A] (see also Proposition 5.4 of loc. cit.). For each o € '+, let A, be an element
of GSpiny,,;(Q;) such that 2, (h) = Agrz, (h)A;' for all h € T'p+. We may and do
assume that for all o € I'f+, A, = rz,,(0), and that A, is defined in general by fixing its
values on a fixed set of representatives o in I'x+ of Gal(LT/K™) and then extending to

L+ by Agn = Az An = Asrz,,(h) for h € T'p+. Since the centralizer of rz,, is the center
Z C GSpiny,.,, the assignment c: (0,7) — AJ1A, A, takes values in Z(Q,) ~ Q,, and

therefore o ++ A, is a continuous homomorphism I'g+ — SOg,;1(Q;) whose restriction to
[p+is P(rz,,).

Moreover, ¢ formally satisfies the 2-cocycle relation, and by our normalization of the A,, ¢(-, )
is constant on 'y +-cosets, and in particular is continuous with finite image. It can therefore
be regarded (via an identification Q/Z =% p(Q;)) as a cohomology class [¢] € H*(I'kx+, Q/7Z)
for the discrete Galois module Q/Z. By a theorem of Tate ([34, Theorem 4]), this cohomology
group vanishes. Writing ¢ as a coboundary then allows us to adjust the choice of A, such
that o — A, defines a continuous homomorphism 7x+: I'g+ — GSpin,,.;(Q;) such that

for some finite Galois extension L™ of L™, rg+|r_, equals 7z ,,|r_, . (The reason we do not

obtain this equality already for I';+ is that we do not know that the function realizing c
as a coboundary factors through Gal(L*/K™), and indeed it may not.) Since (as noted
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in the previous paragraph) P(rg+[r ,) = P(rz,), we at least have rg+|r,, = 7z, ® X
for some character y, necessarily factoring through Gal(L*/L"). Conjugating by elements
o € Gal(LT/K™), we see that rz,, ® x?~! is equivalent to rz,, for all 0 € T'g+. Since

the image contains a regular unipotent element, we deduce from [24, Proposition 5.2 that
X7 = x for all o € Gal(L*T/K™).

Thus, T ® x and rx+ satisfy the hypothese of Theorem 5.2, and the automorphic represen-
tation g+ produced by loc. cit. satisfies the conclusions of the present corollary. 0
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