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Abstract—Designing low-cost filterbanks is important due to
severe resource limitations imposed by hearing aid size. Here,
we develop a novel FIR filterbank employing stochastic
computing (SC). SC-based filters use (pseudo)-random bit-
streams to efficiently perform the core filtering operation. We
demonstrate that SC is well-suited to low-cost filterbank design
and compare our SC filterbank to a conventional sequential
binary (SB) design. We show that the SC design achieves the
same accuracy and latency as the SB one, with an exceptionally
large 70% reduction in chip area. The power consumption of
our proposed SC filterbank is 38-96% that of the SB design.

Keywords—filterbanks, hearing aids, stochastic computing,
FIR filters

1. INTRODUCTION

The World Health Organization estimates that 430 million
people have hearing loss that affects their quality of life [1].
Hearing aids provide a key solution to this problem. A major
component of a hearing aid is a filterbank; see Fig. 1a. The
filterbank decomposes the input sound into frequency bands
that are selectively amplified to match a specific pattern of
hearing loss or audiogram. For example, the audiogram in Fig.
1b indicates that the patient has severe high frequency hearing
loss and requires more amplification at the upper end of the
audio spectrum.

Filterbanks present many design challenges [2][3]. Not
only must their frequency response accurately match patient
audiograms, but they must also meet stringent constraints on
physical size, response time, and power consumption. Most
prior work [2][3] aims to reduce the filterbank’s
computational cost while meeting other hearing aid
requirements such as low power to enable long battery life [2].
One important class of filterbanks is composed of finite
impulse response (FIR) filters. FIR filters have linear phase
response which often makes them preferred over alternatives
like infinite impulse response (IIR) filters. However, FIR
filters are usually larger than IIR filters and rely on the
weighted addition operation which involves many costly
multiplications and complex design trade-offs. The efficient
implementation of FIR filterbanks using conventional (non-
stochastic) technologies has been studied for decades [2][3].

This work explores the role of an unconventional circuit
technology known as stochastic computing (SC) in filterbank
design. SC encodes data in randomized bit-streams called
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Fig. 1. (a) Basic structure of a filterbank for a digital hearing aid.; (b)
audiogram. Each datapoint in the audiogram indicates the least intense
(faintest) sound that a patient can hear at the given frequency.

stochastic numbers [4]. This encoding enables arithmetic
operations to be implemented with tiny logic circuits, e.g., a
single AND gate can perform multiplication. Such simple
elements lead to very low area which makes SC an appealing
candidate for filterbank design. Further, SC has other
advantages like high fault tolerance. However, SC has
relatively low accuracy due to its unusual number
representation.

It has been suggested that SC is insufficiently accurate for
digital filtering [5], but recent work [6][7] and this paper show
that this is not necessarily the case. And, as we also show here,
SC’s usual need for costly binary-stochastic data conversion
circuits is greatly reduced by the sharing of stochastic circuits
possible among filters in an SC filterbank.

The main contributions of this paper are:

1. The successful application of SC to hearing-aid FIR
filterbanks leading to a low-cost, accurate and flexible design.
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Fig. 2. Key SC elements. (a) AND gate acting as an SN multiplier where
Uy = py = 0.5 and p; = uyuy = 0.25. (b) Multiplexer (MUX) performing
scaled addition where uy = 0.75, uy = 0.5, ug = 0.5, and py = 1/2(uy +
Hy) = 0.625.

2. Cost and performance comparisons of our SC filterbank
design with a conventional non-stochastic design.

3. Demonstration of accurate audiogram matching with
SC FIR filterbanks on a representative audiogram.

The remainder of this paper is organized as follows. First,
Sec. II reviews SC FIR filter design basics and prior work.
Next, Sec. III introduces our SC FIR filterbank design which
is then evaluated in Sec. IV. Lastly, Sec. V summarizes the
main contributions and concludes the paper.

II. BACKGROUND

First, we review the basics of SC in relation to FIR filter
design.

A. Stochastic Computing

In SC, data is represented by a pseudo-random stream of bits
called a stochastic number (SN). An SN X = X, X, ... Xy has
a defining parameter Py = P(X; = 1) which is the probability
that an arbitrary bit X; of X takes value 1. X’s length N is
application-dependent; its numeric value uy is derived from
Py and depends on the SN format used. Generally, the
accuracy of py improves as N is increased.

The two basic formats for SNs are unipolar where puy =
Py, and bipolar where uy = 2Py — 1. The bipolar format
allows for negative-valued SNs. For example, with N =8, SN
X = 00100001 has an estimated unipolar value of +0.25 and
bipolar value of —0.5. Scaling can be used to accommodate
numbers outside the [0,1] and [—1,1] intervals.

Representing data probabilistically with SNs leads to
interesting and computationally efficient arithmetic circuits.
For instance, consider an AND gate with unipolar SN inputs
X and Y and output Z. The output bit-stream’s numerical
value uy is P, = P(X; AY; = 1) which, assuming X’s and
Y’s bits are statistically independent or uncorrelated, yields
P(X; = DP(Y; = 1) = pxpy. Thus, pz = pxpy implying
that an AND gate is a unipolar multiplier.

Fig. 2a illustrates unipolar SC multiplication where inputs X
and Y with puy = puy = 0.5 yield output Z with u, = 0.25.
Most SC circuits require uncorrelated SNs but, as we will see
in Sec. 111, correlation can sometimes be exploited to enhance
SC by introducing new operations or increasing accuracy

[6]71[8].

Addition in SC is scaled since SN values are derived from
probabilities confined to the [0,1] interval. To implement
scaled addition, a simple multiplexer (MUX) can be used, as
in Fig. 2b. Here, X with value uy = 0.75 and Y with y, =
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Fig. 3. Representative SC circuit performing weighted addition. The blocks
labeled “D” are register delay units (D flip-flops). Stage 1 is a preprocessing
step that prepares suitable SNs A, to A; for weighted addition. Stage 2
performs weighted addition using a MUX and then estimates the output Y’s
value using a counter.

0.5 are being added with the aid of a control SN S with ug =
0.5. In this configuration, both X and Y have a 50% chance of
being selected each clock cycle implying that half of Z’s bits
are expected to be propagated from X and the rest from Y.
Consequently, Z’s value is an evenly weighted sum of py and
Uy ,namely, u, = 1/2(uy + py) = 0.625. By adjusting yg,
other scaled (weighted) sums can be implemented by a mux.

While encoding data into SNs enables low-cost arithmetic
processing, generating the input SNs can be costly. A
stochastic number generator (SNG) is needed to convert an »n-
bit binary integer B to an SN X with Py = B/2™. An SNG is
commonly built around a comparator and a pseudo-random
number source (RNS) such as a linear feedback shift register
(LFSR) [4]. SC designs may need large numbers of SNGs,
which make them a major contributor to overall hardware
cost. In this work, we follow the recent preference for low-
discrepancy SNGs, which typically lead to more accurate
outputs than LFSRs [9].

B. SC FIR Filter Design
An M-tap FIR filter implements the operation

Ve = Zliw:?)l hix;_; Q)

where the {h;} are the constant filter coefficients, x; is the
input signal, e.g., a digitized audio stream, and y; is the
filtered output signal. The {h;} are the key filter design
parameters and are computed from the filter’s frequency
response specification with the aid of software tools like
MATLAB. Filters with more taps are larger, slower and more
costly, but tend to do better filtering. Unlike conventional
filters, SC-based FIR filters have been the topic of only a few
studies such as [5][7][10][11]. The SC approach we present
here is novel in that it applies is recent correlation-based
accuracy optimizations suggested in [6][7] to digital
filterbanks.

SC FIR filters are best explained with an example. Fig. 3
shows a 4-tap SC FIR filter that operates as follows. First,
SNGs convert the four inputs {x;, X;_1, X5, X;_3} to bipolar
SNs Xo to X3 where the SN values are set to py, = x;_;. Then,
if h; is negative, X; is negated by the inverter array, otherwise
X; is left unchanged. Because inverting a bipolar SN flips the
sign of the SN’s value, this step accounts for the sign of h;.
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Fig. 4. Frequency response of our proposed 12-bit precision SC filterbank.
As in [3], the subbands are spaced non-uniformly over the 0 to 8,000 Hz
audio spectrum.The noise at the bottom is due to many stopband frequencies.

Consequently, the inverter array’s output is A¢ to Az with
Ha; = sign(h;)x;_; . Finally, a 4-input mux whose select
inputs’ values are determined by the |h;|’s performs scaled
weighted addition on A to As. The mux’s output is Y with
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the latter being a suitably scaled version of the FIR filtering
equation (1). The scale factor 1/3}|h;| denotes a gain which is
accounted for later during audiogram matching. It is needed
since the output SN Y’s value is confined to the [—1,1]
interval.

After addition, the output SN 'Y must be converted back to
a conventional binary number. Since Y is a bipolar SN, an up-
down counter is used which increments when bit-stream Y
outputs a 1 bit and decrements when Y outputs a 0. The
counter’s output is fly, an estimate of Y’s value yuy = 2Py, —
1. The difference between the estimated output value i, and
exact output value puy is the error of the stochastic circuit. SC
errors fluctuate randomly and typically diminish with longer
SNs. Thus, there is a fundamental accuracy-latency trade-off
in SC.

III. STOCHASTIC COMPUTING FILTERBANK

Here, we first give the specifications of our non-uniform
filterbank. We then describe its proposed SC design.

A. Filterbank Specification

We consider a high-performance 16-channel FIR filterbank
like that of [3] whose frequency response (Fig. 4) is based on
the Bark scale [12]. Each of the 16 filters has 119 taps and the
coefficients are determined using MATLAB. The filterbank’s
nonuniform subband spacing has the advantage of matching
characteristics of human hearing, such as the fact that humans
can differentiate low frequency sounds better than high
frequency sounds [12]. Note there is little consensus on the
best spacing of the subbands, and the proposed SC design can
be flexibly applied to other subband spacings such as
symmetric spacing [2].

B. Stochastic Computing Filterbank Design

Fig. 5 shows our proposed SC filterbank. The input logic for
SN generation (which normally accounts for 90% of each
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Fig. 5. Proposed SC filterbank structure. The 16 filters share Stage 1
containing SNGs and the inverter array, while each filter has its own Stage 2
containing an SN MUX weighted adder and counter. The filterbank core
comprises all components except the memory block.

filter’s area) is referred to as Stage 1 and is shared amongst
all 16 filters thus saving considerable area and power. As seen
in Fig. 5, the filters’ processing and output logic called Stage
2 is not shared but is tailored to each filter’s individual
coefficients.

Prior studies on SC filters have suggested that extremely
long bit-streams are needed to achieve satisfactory accuracy
[51[13]. To combat this, our proposed filterbank design is
based on correlation-enhanced multiplexer (CeMux) filters
[7] which apply accuracy-enhancing correlation-changing
techniques from [6] to SC filters. These techniques center
around correlating the input SNs during generation as shown
in Fig. 6. Here, each SNG shares an RNS which leads to high
correlation in the generated SNs.

Normally, such correlation would degrade an SC circuit’s
accuracy because input correlation biases the output SN’s
value [8]. However, for mux-based circuits, correlation
amongst the input SNs reduces random fluctuations in the
output SN without biasing its value, thus improving accuracy
[6][7]. Like CeMux filters, our filterbank design also employs
a low discrepancy sequence generator as the shared (pseudo)
RNS which improves accuracy over using other RNSs [9].
Combined, these design features greatly enhance the
filterbank’s accuracy.

Besides exploiting correlation, our filterbank differs
significantly from the few previously proposed SC
filterbanks [10][13]. The design in [10] implements only the
multiplications in (2) using SC, whereas our design performs
both multiplication and addition with SC, thus achieving
much lower area. In [13], the authors propose an infinite
impulse response (IIR) filterbank for use in auditory
processing. FIR filters have desirable features that IR filters
lack, notably linear phase response. Our SC FIR filterbank is
most similar conceptually to the non-SC design in [3] where
a shared pre-computational unit similar in function to our
shared Stage 1, is used to reduce the computational cost.

IV. DESIGN EVALUATION

In this section, we compare our SC filterbank design to a
representative non-stochastic “sequential binary” (SB) design.
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Fig. 6. Details of shared Stage 1 (Fig. 5). Outputs X; are routed to filters
where coefficient h; > 0 while outputs X; are routed to filters where h; <
0. The comparators are core components of SNGs and the shaded n-bit
inverter ensures that all outputs X¢, ..., X}, X, ..., X115 are maximally
correlated to improve accuracy.

A. Design Goals and Assumptions

Our main design and evaluation tools are widely used with
non-stochastic digital systems: MATLAB for filter design,
Synopsys Design Compiler for logic design, timing, and
power analysis, as well as the open-source NanGate 45nm
standard cell library for area and power estimation and layout
synthesis. Our ability to directly compare with previously
proposed filterbank designs [2][3] is severely limited by big
differences in the chip technologies used, some of which are
proprietary.

The SC filterbank realizes the design described in Sec. 111,
while the SB filterbank is a sequential implementation of an
FIR filter that uses standard optimizations like the exploitation
of symmetric coefficients, as in [3]. Each filterbank contains
16 filters (subbands) that implement the FIR filter operation
(1) and have the overall passband/stopband frequency
response illustrated by Fig. 4. Stopband attenuation is a key
filter performance metric; generally, the higher the better.

Each design operates in real time and processes one audio
sample every 0.0625 ms, corresponding to a sampling
frequency of 16 kHz. The area, power and stopband
attenuation of the SC and SB designs are determined by the
precision (word length) n of each design. Here, n is varied
from 8 to 12 bits. The SN length N is set to 2™*2 bits which is
the shortest length that ensures that the SC filterbank’s
stopband attenuation is at least as high as the corresponding
SB design’s stopband attenuation. N is made a power-of-two
to maximize hardware efficiency.

B. Experimental Results

As in prior studies like [3], our results apply to the
filterbank’s “core” and do not include the memory cost
associated with storing past audio samples (see also Fig. 5).
The memory would likely be implemented with a dual port
RAM [3] and would be roughly the same size for both the SC
and SB designs. Instead, we focus on where the two designs
differ to highlight the computational performance and cost of
the SC filterbank. Table I summarizes our experimental
results, with accuracy represented by the lowest stopband
attenuation of the 16 bands.

TABLE L. FILTERBANK DESIGN COSTS

Proposed (SC) Conventional (SB)
Precision | Stopband Area | Power | Stopband | Area | Power
(bits) attenuation | (um?) | (uW) | attenuatio | (um?) | (uW)
(dB) n (dB)

8 27.1 7,928 220 25.0 28,255 | 631

9 30.7 9,538 287 28.5 34,473 | 854
10 374 10,978 | 440 33.7 41,055 | 1,020
11 42.9 12,515 | 655 40.2 44,973 | 1,107
12 47.0 14,037 | 1,161 46.1 49,414 | 1,206

One major conclusion is that SC can meet the accuracy
requirements of hearing aid filterbanks with much shorter bit-
streams than previously reported. In [5], it was concluded that
SNs of length 22™*1 are required for an SC filter to achieve
the same performance as a precision-level n SB design, where
n is the binary word length. In contrast, here we show that with

2™*2_bit SN, the SC filters in our filterbank achieve similar

performance to conventional n-bit SB filters. This significant
decrease in required bit-stream length is due to the correlation
techniques employed in the SC filters and the use of the low
discrepancy RNS. Ultimately, both the SC and SB filterbanks
can meet essentially the same frequency response targets in
terms of filter order, subband spacing, and stopband
attenuation, as represented by Fig. 4 and Table 1.

The accuracy of the SC filterbank is further indicated by
its ability to match a patient’s audiogram, which reflects such
factors such as subband spacing, number of subbands, and
stopband attenuation. Fig. 7 demonstrates this for the 12-bit
SC filterbank using a representative member of a standard
audiogram set [14]. The maximum matching error (MME) is
0.85 dB. Note that the normal target for MME is 3 dB or less
[2] which, as in this example, is fully met by the SC design.

A second major conclusion is that the SC design’s area is
consistently 70% lower than that of the SB design. This great
area efficiency is mainly due to the SC filterbank’s use of
cheap but accurate MUX-based weighted adders in place of
costly conventional multipliers and adders. Importantly, the
low area is also due to our proposed sharing of SN generators
illustrated in Fig. 5. If the SNGs were not shared, the area of
the SC design would be significantly higher.

Table 1 reveals that the SC filterbank’s power
consumption, is 38-96% that of the SB design for n < 12.
However, power consumption grows steadily with the
precision n due to the increase in SN length N = 2"*2, The
SC filterbank is always configured to process one audio
sample every 0.0625 ms, so longer SNs require a faster digital
clock, and therefore more power, to meet this constraint. The
SB design’s power grows more slowly with precision because
its power dissipation is only due to increasing circuit area. It
is unusual for an SC design to have similar power dissipation
to a conventional design, but it occurs here because both
designs are constrained to operate in real time with a latency
of 0.0625 ms. Hence, a potential limitation of SC filterbank
design is that the power consumption will continue to grow if
SN length is further increased when more accurate outputs are
desired.

There are several possibilities for improving the power
efficiency of the SC filterbank. First, since each SN bit is



75 1 =
—— target audiogram

gl N e filterbank audiogram fit

85

90 1

Intensity (dB)

954

100

0 1000 2000 3000 4000 5000 6000
Frequency (Hz)

Fig. 7. Audiogram matching results for 12-bit precision SC filterbank.

equally weighted, SC circuits are very resilient to bit-flip
errors, so techniques like voltage overscaling could be
employed to reduce power consumption [15]. Alternatively,
techniques like dynamic scaling [13] could increase the SC
filterbank’s accuracy for a given bit-stream length. Finally,
some authors have proposed using analog memory with SC
circuits to greatly mitigate the area and energy cost of memory
and SNGs in SC systems [16]. These power-saving
possibilities are worthy of further study due to the huge area
savings offered by the SC approach to filterbank design.

V. CONCLUSION

In this work, we successfully applied SC to the design of
hearing aid filterbanks. SC is unique in its reliance on
stochastic bit-stream number representation. We found that
the proposed SC design has 70% lower area than
conventional SB design, while achieving comparable
accuracy and the same latency. The SC filterbank’s power is
also much lower than the SB design’s power for lower
precision levels. Further, our proposed SC design is flexible
in that changing the subband number and spacing does not
significantly change the design’s cost. Overall, we find that
SC is an exciting and promising new direction for hearing aid
filterbank design.
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