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In this work, we study the effects of temperature on magnetic white dwarfs. We model their
interior as a nuclei lattice surrounded by a relativistic free Fermi gas of electrons, accounting for
effects from temperature, Landau levels and anomalous magnetic moment. We find that, at low
densities (corresponding to the outer regions of star), both temperature and magnetic field effects
play an important role in the calculation of microscopic thermodynamical quantities. To study
macroscopic stellar structures within a general-relativistic approach, we solve numerically the cou-
pled Einstein’s-Maxwell’s equations for fixed entropy per particle configurations and discuss how
temperature affects stellar magnetic field profiles, masses and radii.

I. INTRODUCTION

While the core of most white dwarf stars are ade-
quately modeled with one of the assumptions that the
temperature or the magnetic field can be disregarded,
some recent observations (Ref. [1–4]) have suggested that
a few white dwarfs may require the inclusion of both tem-
perature and magnetic field effects in the calculation of
the matter equation of state. In that light, we examine
for the first time the effects of including both tempera-
ture and magnetic field into the equation of state of white
dwarfs. We followed the relativistic formalism developed
in Ref. [5] to describe a finite-temperature free Fermi gas
under the influence of magnetic fields, including both,
the particle quantization into discrete orbits perpendicu-
lar to the local direction of the magnetic field [6] and the
anomalous magnetic moment [7, 8], which differentiates
between different particle spin projections. Whereas in
Ref. [5], we focused on nucleons and energy scales rel-
evant for magnetic neutron stars and particle collisions,
here, we focus on electrons (embedded in a lattice of Car-
bon nuclei) and energy scales relevant for white dwarfs.

The typical white dwarf effective temperature may
vary from 3, 000 to 140, 000 K and the core temperature
from 106 to 107 K [9]. The atmospheric magnetic field,
identified using Zeeman effect, can vary from 103 to 109

G [4, 10], with the central one being impossible to mea-
sure, but possible to estimate with works such as this one.
According to Ref. [11], as many as 20% of white dwarfs
have surface magnetic fields of B = 107 G or larger and,
according to Ref. [4], magnetic white dwarfs tend to be
more massive, possibly indicating accretion [12] or merg-
ers [13]. However, the uncertainty in the mass determi-
nation in magnetic white dwarfs is larger, because the
hydrogen lines used in the spectroscopic fits are modified
due to the magnetic field [14]. Finally, white dwarfs are
expected to have central mass density varying from 106

to 108 g/cm3 [9], although the magnetic field tends to
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decrease stellar central density, in a mechanism not too
different from rotation [15].

In this work, we study microscopic and macroscopic
properties of white dwarfs. Strong magnetic fields af-
fect the structure of the space-time metric, as they
are a source for the gravitational field through the
Maxwell energy-momentum tensor. As a consequence,
magnetized stars are anisotropic and require a general-
relativity treatment beyond the solution of the widely
used Tolman-Oppenheimer-Volkoff (TOV) equations [16,
17]. In this work, we model magnetic stars by solving
Einstein-Maxwell equations in a similar way to what was
done in Refs. [18, 19]. More precisely, we numerically
solve the coupled Einstein-Maxwell’s equation for a com-
pact object with a non-vanishing electric current. Such
system of equations is solved iteratively by expanding the
fields in appropriate Green’s functions [20].

We have chosen to show stellar configurations that
have central magnetic field strengths ∼ B = 1013 G. Sev-
eral works cite this number as the limit for white dwarf
stability, including spherical and axisymmetric solutions
of Einstein’s equations [21]. This limit also coincides with
the threshold extracted from the Virial theorem using
simple assumptions (see detailed discussion in Ref. [22]).
Note that larger limits were discussed earlier in the liter-
ature using Newtonian solutions [23] and, more recently,
using axisymmetric solutions of Einstein’s equations in
the context of a softer equation of state generated by the
inclusion of pycnonuclear fusion reactions [24].

In Ref. [25], we studied the effects of strong magnetic
fields, finite temperature, and rotation on neutron stars.
But in this case, no magnetic field effects were accounted
for in the equation of state, only in the numerical general-
relativity code, and the focus was on how the magnetic
field affected the diverse particle population of the neu-
tron star, not the equation of state or stellar mass-radius
relation. On the other hand, thermal effects of the equa-
tion of state for quark stars we studied using spherical
solutions in Refs. [26, 27]. In this work, we start by
reviewing the microscopic formalism used in Section II,
followed by the microscopic results in Section III, and
the macroscopic formalism and results in section IV. In
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Section V, we draw our conclusions and final discussion.

II. MICROSCOPIC FORMALISM

We model the interior of white dwarfs by starting with
a relativistic free Fermi gas of electrons and include ef-
fects of both temperature and magnetic fields. To incor-
porate low temperature (compared to the Fermi energy)
effects numerically, we split the integrals for each ther-
modynamic quantity into three parts with respect to the
Fermi momentum kz going from:

• 0 to
√

(µ− T )2 − m̄2;

•
√

(µ− T )2 − m̄2 to
√

(µ+ T )2 − m̄2;

• beyond
√

(µ+ T )2 − m̄2,

with µ being the electron chemical potential, T the tem-
perature, and m̄ the electron mass modified by the mag-
netic field. Naturally, the splitting only occurs when√

(µ− T )2 − m̄2 and/or
√

(µ+ T )2 − m̄2 > 0. This pro-
cedure is necessary, once the deviation from a step func-
tion distribution function occurs for low temperatures in
a very small range of Fermi energies.

For the equation of state, we assume the magnetic field
B to be (locally) pointing in the z-direction, so the elec-
trons acquire discrete orbits in the plane perpendicular
to the magnetic field B creating a quantization of the en-
ergy levels along the x- and y-directions (Landau quanti-
zation). In addition, when the anomalous magnetic mo-
ment (AMM) of the electrons is included, we allow an
asymmetry between the up and down spins of the elec-
trons. More details about the effects of magnetic field and
AMM on the free gas of fermions at finite temperature
can be found in Ref. [5] and references therein. These
are the expressions for number density, energy density,
parallel pressure (z-direction), perpendicular pressure (x-
and y- directions) and entropy density of spin one half
fermions with charge q, in our case, the electrons:

ne =
|q|B
2π2

∑
s=±1

∞∑
n=0

∫ ∞
0

dkz[f+(E, T, µ)− f−(E, T, µ)],

(1)

εe =
|q|B
2π2

∑
s=±1

∞∑
n=0

∫ ∞
0

dkzE × [f+(E, T, µ)

+ f−(E, T, µ)], (2)

P‖e =
|q|B
2π2

∑
s=±1

∞∑
n=0

∫ ∞
0

dkz
k2z
E
× [f+(E, T, µ)

+ f−(E, T, µ)], (3)

P⊥e =
|q|B2

2π2

∑
s=±1

∞∑
n=0

m̄(ν)

(
|q|ν√

m2 + 2|q|Bν
− sκ

)

×
∫ ∞
0

dkz
1

E
[f+(E, T, µ) + f−(E, T, µ)], (4)

se =
|q|B
2π2

∑
s=±1

∞∑
n=0

∫ ∞
0

dkz

[
(1− f+) ln

(
1

1− f+

)
+ f+ ln

(
1

f+

)
+ (1− f−) ln

(
1

1− f−

)
+ f− ln

(
1

f−

)]
, (5)

where it is understood that the parallel and perpen-
dicular pressures specify the components of the energy-
momentum tensor Tµν of matter in the local rest frame
of the system. In addition, the magnetization of charged
spin one half fermions, defined as the derivative of the
grand-canonical potential, is Refs. [5, 28]

Me = − ∂Ω

∂B
=
∂P‖e

∂B
=
P‖e − P⊥e

B
. (6)

In the expressions above, we used that κ = κiµB =
(1.16 × 10−3)(|q|/2me), with κi being the coupling
strength for the AMM and µB the Bohr magneton, the
Fermi energy of particles E =

√
k2z + m̄(ν)2, with kz be-

ing the particle momentum in the direction of the mag-
netic field and m̄(ν) =

√
m2 + 2ν|q|B − sκB the modi-

fied particle mass, and the Landau level ν = n+ 1
2 −

s
2
q
|q| ,

with n being the discretized orbital angular momentum
of the particle in the transverse plane, and s = ±1 the
spin projection of the particle along the direction of the
magnetic field. The distribution functions for particles
f+ and anti-particles f− are defined as:

f±(E, T, µ) =
1

e(E∓µ)/T + 1
. (7)

Compared to the degenerate electrons, the ions in the
white-dwarf (in our case Carbon nuclei) only contribute
significantly to the energy density of the system, given
their high mass and low momentum. A detailed descrip-
tion of the equation of state of white dwarfs as well as the
roles played by the ions and electron gas can be found in
Ref. [29]. Ignoring lattice effects the energy density of a
white dwarf can be written as

εB =
EB
V

=
MB

A/nB
= nB

MB

A
= 2nemB , (8)

where V is the volume of the system, EB the energy of the
nuclei approximated by their mass MB , A the number of
baryons in the constituent nucleus (in our case Carbon,
A = 12), nB the number density of baryons (which is
twice the electron number density ne due to charge neu-
trality and the isospin symmetry of carbon nuclei), and
mB the mass of each baryon. The baryon (mass) density
is defined as ρ = mBnB .

III. MICROSCOPIC RESULTS

We start by showing the electron parallel pressure as a
function of baryon density in the zero temperature case
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FIG. 1. (Color online) Parallel pressure as a function of
baryon density for several magnetic field strengths assuming
zero temperature (T = 0).

for several magnetic field strengths in Fig. 1. Hereinafter,
we refer to this pressure as P , as this is the thermody-
namical quantity related to the grand-canonical poten-
tial density through P‖e = −Ω. First, we can immedi-
ately note the effect of Van Alphen oscillations (Ref. [30]),
whose oscillatory behavior is related to the discrete na-
ture of the Landau levels; the first of these peaks occurs
when the Landau level ν changes from zero to one, which
happens at larger densities for larger magnetic fields. The
AMM turns each peak into a double peak, though this is
too subtle to be seen in the figures.

For the same density, there is a visible pattern that for
ν = 0 the pressure is lower at higher magnetic fields until
close to the first Van Alphen oscillation and as the mag-
netic field increases, it produces a slightly larger pressure
beyond the first Van Alphen oscillation, where the oscil-
lations are smaller and smoother due to the increasing
number of Landau levels. In addition, for larger densi-
ties, it can be verified that the magnetic field makes the
equation of state (Pe vs. εe) slightly stiffer. The AMM
has no other overall significant effect, except at extremely
lower densities, where it makes the equation of state a bit
softer. This is due to the fact that only spin down elec-
trons contribute to the zeroth Landau level, but they are
suppressed due to the AMM positive coupling strength
κi, decreasing the overall electron density. All results
calculated with finite magnetic fields shown in this work
include AMM effects, except when explicitly stated oth-
erwise.

Fig. 2 also shows parallel pressure as a function of
baryon density, except now with a large temperature
T = 108 K. The most notable difference is that the in-
creased temperature diminishes the magnetic field effects
and washes out the previously discussed Van Alphen os-

FIG. 2. (Color online) Parallel pressure as a function of
baryon density for several magnetic field strengths assuming
a fixed temperature of T = 108 K.

FIG. 3. (Color online) Parallel pressure as a function of
baryon density for several temperatures assuming a constant
magnetic field strength of B = 108 G (which is effectively
identical to the case with B = 0).

cillations, except for B = 1012 G and B = 1013 G.
As already shown in Ref. [31], in an approximation

without antiparticles, temperature effects significantly
increase the pressure (and the stiffness of the equation of
state) of white dwarf matter at low densities. In Fig. 3,
we reproduce this feature for low (effectively zero) mag-
netic fields within our full approach including antiparti-
cles. Note that for temperatures larger than 108 K, the
antiparticles would have a much more significant contri-
bution, but this might not be relevant for the interior of
white dwarfs. Fig. 4 shows that even for large magnetic
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FIG. 4. (Color online) Parallel pressure as a function of
baryon density for several temperatures assuming a constant
magnetic field strength of B = 1012 G.

fields, the temperature effects can still be observed at low
densities with the additional effect of the Van Alphen os-
cillations.

Fig. 5 shows the magnetization of electrons as a func-
tion of density. The large oscillations at low temperature
appear because the magnetization is the derivative of the
parallel pressure (with respect to B), and therefore high-
lights small changes in pressure, enhancing the previously
discussed Van Alphen oscillations. The oscillations wash
out as the temperature increases and the effects from
integer Landau levels become less important. The per-
pendicular pressure (shown in Fig. 6) is small (different
from zero only due to a small AMM correction) up to
where the first non-zero Landau level appears. This can
be seen in Eq. (4). As a consequence, up to this point,
the magnetization is simply M = P||/B. After that, the
magnetization oscillates going negative for baryon den-
sities nB > 1.13 × 105g/cm3 (for the chosen magnetic
field of B = 1012 G). Note that in Ref. [5] the enhanced
AMM of the protons (second term in the parentheses of
Eq. (4) balanced the first term in the parentheses reduc-
ing the perpendicular pressure amount subtracted from
the parallel pressure, resulting in a positive magnetiza-
tion. In principle, the fact that the magnetization goes
negative does not imply instability, since there are more
contributions to the pressure, such as the pure magnetic
field contribution (discussed in the next section), which
is positive in the perpendicular direction.

Fig. 6 shows the parallel and perpendicular pressures;
which are different as expected. As already mentioned,
the perpendicular pressure is small up to the point where
the first non-zero Landau level appears. This can be
clearly seen in Fig. 6. From Eq. (6), it can be seen that
the pressure in different directions differs by a factor that

FIG. 5. (Color online) Magnetization as a function of baryon
density for several temperatures assuming a constant mag-
netic field strength of B = 1012 G.

FIG. 6. (Color online) Both parallel and perpendicular pres-
sures as a function of baryon density assuming zero tem-
perature (T = 0) and a constant magnetic field strength of
B = 1012 G. The solid lines include anomalous magnetic mo-
ment (AMM) effects, while the dashed lines exclude it.

depends on the magnetization.
Fig. 7 shows the entropy per baryon as a function of

baryon density for several fixed temperatures. For higher
temperatures, the particles have higher entropy at any
density. In compact stars, the temperature increases to-
ward the center; a good way to simulate this effect is to
fix the entropy per baryon and then calculate the tem-
perature as a function of density. This is shown in Fig. 8
with two different values of entropy per baryon chosen in
order to reproduce a realistic and more interesting sce-
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FIG. 7. (Color online) Entropy per baryon as a function of
baryon density for several temperatures assuming there is no
magnetic field (B = 0).

FIG. 8. (Color online) Temperature as a function of baryon
density for two different values of entropy per baryon, assum-
ing there is no magnetic field (B = 0). The ρ axis has been
extended to show the full range covered in the next section.

nario. Fig. 9 and Fig. 10 are the same as Fig. 7 and
Fig. 8, respectively, except now for a large magnetic field
strength of B = 1012 G. The Van Alphen oscillations are
prominent at lower temperatures. Note that the effect of
anti-particles (properly accounted for in this work) be-
comes noticeable for some temperature between 108 and
109 K.

FIG. 9. (Color online) Entropy per baryon as a function of
baryon density for several temperatures, assuming B = 1012

G.

FIG. 10. (Color online) Temperature as a function of baryon
density for two different values of entropy per baryon, assum-
ing a constant magnetic field strength of B = 1012 G. The ρ
axis has been extended to show the full range covered in the
next section.

IV. MACROSCOPIC FORMALISM AND
RESULTS

In order to obtain results for macroscopic stellar prop-
erties, such as mass and radius, in the case of magnetic
stars, we have to simultaneously numerically solve the
Einstein and Maxwell equations. We now briefly de-
scribe the structure equations for a general relativistic
magnetized compact object. We begin by writing an axis-
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symmetric metric given by

ds2 =− e2νdt2 + e2(ζ−ν)(dr2 + r2dθ2) +

e−2νG2r2sin2θ(dφ−Nφdt)2, (9)

where the coordinates are xµ = (x0, x1, x2, x3) =
(t, r, θ, φ) and the metric functions ν, ζ,G and Nφ depend
on the coordinates (r, θ). The metric potentials are found
by solving Einstein’s equation coupled to Maxwell’s equa-
tion in a curved space-time, these are respectively written
as

Gµν = 8πTµν , (10)

and

Fαβ;β = 4πjα. (11)

where Gµν is Einstein’s tensor, Tµν the energy-
momentum tensor, jα the four-current, and the Maxwell
tensor Fµν is given by

Fµν = Aν,µ −Aµ,ν , (12)

where Aµ is the electromagnetic four potential. We note
that comas and semi-colons have their usual meaning.

The matter-energy distribution is given by the energy-
momentum tensor, which in this case is given by the sum
of contributions coming from fermion matter that form a
perfect fluid and that of the electromagnetic energy. We
can therefore write

Tµν = TPFµν + TEMµν , (13)

where TPFµν denotes the perfect-fluid contribution, and
TEMµν is the electromagnetic contribution. These are
written as

TPFµν = (ε+ P )uµuν + Pgµν , (14)

TEMµν =
1

4π

(
FµαF να −

1

4
gµνFαβFαβ

)
. (15)

Finally, we need to ensure hydrostatic equilibrium in the
star. The equilibrium condition may be obtained by
the vanishing divergent of the energy-momentum tensor,
which lead us to

1

(ε+ P )
P,i + ν,i − (ln Γ),i −

1

(ε+ P )
fi = 0, (16)

where Γ is the Lorentz factor and fi represents the
Lorentz force and is given by

fi = Fiαj
α = jtAt,i + jφAφ,i. (17)

To fully define the problem we need to connect the
macroscopic structure, defined by the above equations,
to the miscroscopic realm. This is done via the equation
of state (P = P (ε, T )) and by defining a current function.
In this work we adopt the following current function:

jφ = f0(ε+ P ), (18)

FIG. 11. (Color online) Magnetic field profile inside the most
massive star of a sequence produced with current constant
f0 = 10−3 in the polar direction as a function of energy den-
sity.

with f0 being a current function that can be used to con-
trol the magnitude of the magnetic field. This choice of
current leads to the formation of purely poloidal mag-
netic field, which is what we desire to study.

The set of equations described above is solved numer-
ically by an iterative scheme that employs expansion in
Green’s functions. For a full description of the numerical
technique employed, we refer the reader to [20]

It has been shown that including or not magnetic field
effects in the equation of state when calculating certain
macroscopic neutron star properties, such as mass, has
little effect [32]. On the other hand, quantities related
to the central stellar density that can change the parti-
cle population can be significant [15]. In this work, as
the particle population does not contain exotic matter
(whose appearance depends on density), we use equa-
tions of state without magnetic field effects in the gen-
eral relativity code to generate magnetic field profiles (as
a function of energy density) and mass-radius relations.
In reality, the correct procedure would be to produce a
2-dimensional equation of state and allow the general rel-
ativity code to determine for a given central density and
current function what is the magnetic field for a given en-
ergy density (as done in Refs. [15, 32] for neutron stars).
However, as we restrict ourselves in this section to con-
figurations that only reach a central magnetic field of
B ∼ 1013 G, less than the critical field Bcrit = 4.4× 1013

G in which the electron cyclotron energy equals its rest
mass, this is not necessary.

Figs. 11 and 12 show magnetic field profiles inside the
most massive star of the sequence in the poloidal and
equatorial directions. In Fig. 12 one can clearly see the
effect of the Lorentz force reaching an extremum within
the star rather than being monotonic; this manifests as
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FIG. 12. (Color online) The same as in Fig. 11 but in the
equatorial direction.

the bump in the graph at low density. In both direc-
tions, the magnetic field strength is larger for a given
energy density for larger entropies per particle (and tem-
perature), although only the S/A = 0.2 case presents a
clearly visible difference at large temperatures. In this
case, we see an increase of 1% in the equatorial direction
and 1.8% in the poloidal direction at ε = 0.1 MeV/fm3

and T = 1010 K. See Ref. [33] for a detailed discussion
between magnetic field strengths and equation of state
stiffness in neutron stars with fixed currents. Here we
have fixed the current constant f0 to the value of 10−3.

Fig. 13 shows the mass-radius diagram for families of
white dwarfs in different temperature scenarios, with and
without magnetic fields effects and assuming a current
constant f0 = 10−3 that generates the magnetic field pro-
files shown in Figs. 11 and 12. The figure shows that this
strength of magnetic field is not enough to change stellar
masses and radii. Nevertheless, the larger entropy per
particle configuration generates, due to thermal effects,
larger and more massive stars, increasing from a maxi-
mum mass of 1.397 M� to 1.419 M� with radii ∼ 1000
km.

Our results can be better put into context by looking at
Fig. 9 of Ref. [34], which shows that white dwarf masses
are not modified by central magnetic fields B . 1013 G,
but seem to increase exponentially with magnetic fields
beyond that. Note that, as shown in several figures of
Ref. [35], if we had used a Newtonian approach instead
of ours, there would be an much larger (and nonphysical)
mass change due to magnetic field effects.

FIG. 13. (Color online) Mass-radius diagram for sequences
of stars produced within several temperature scenarios. Lines
marked with an asterisk denote sequences with magnetic field
effects generated by fixing a current constant f0 = 10−3.

V. CONCLUSIONS AND DISCUSSION

In this work, the equation of state for magnetic white
dwarfs was modeled by using a finite temperature rela-
tivistic free Fermi gas of electrons embedded in a lattice
of Carbon nuclei. We included effects coming from Lan-
dau level corrections, as well as from anomalous magnetic
moment spin splitting. To our knowledge, this is the first
time that simultaneous effects of including both tempera-
ture and magnetic field in the equation of state for white
dwarfs was investigated.

Focusing first on microscopic quantities, we saw that
high temperatures tend to overpower the effects of mag-
netic fields expected to be seen in white dwarfs. At lower
temperatures, the magnetic field effects are more pro-
nounced with very visible Van Alphen oscillations. When
looking at macroscopic quantities, the strong magnetic
fields we considered were not large enough to change
properties such as stellar masses and radii, although a
finite temperature magnetic field profile in different di-
rections of the star was extracted.

In the future, we intend on using these profiles to eval-
uate realistic magnetic field effects in, for example, pyc-
nonuclear fusion reactions, and possibly on the crystalline
structure of white dwarfs.

We would like to finalize by commenting on the realism
of our choices. The choice of maximum magnetic field,
B = 1013 G, is meant to examine the most extreme sce-
narios (similar to Ref. [36]) but that may still be observed
in white dwarfs. As for electron entropy per baryon,
S/A = 0.003 is in line with realistic upper bounds of
white dwarf temperatures, topping out between T = 108

K and T = 109 K, the range in which a young white
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dwarf would exist as it was recently the core of a star
undergoing the triple alpha process. S/A = 0.2 tops out
close to T = 1010 K and is meant to probe the extreme
limits of white dwarfs.

The data presented in this work is available upon re-
quest and can be obtained by contacting the correspond-
ing author.
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