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Abstract

The effects of solid-liquid interface anisotropy and kinetics on crystallization of highly
undercooled titanium melts are studied by coupling molecular dynamics and phase-field
simulations. Unlike previous models and to consider the actual physics of crystal growth, the
phase-field parameters, representing interface mobility, solid-liquid transformation barrier, and
interfacial energy gradient, are temperature dependent. The parameters are determined by a
combination of molecular dynamics simulations and classical thermodynamic calculations based
on the temperature-dependent solid-liquid interface properties and kinetic coefficient. We
investigated Ti dendritic growth as a benchmark example to demonstrate that the phase-field model
presented in this work is more compatible with the experimental data and theoretical models in
comparison to the earlier models with constant model parameters. The capillary fluctuation method
is used to determine the solid-liquid interface energy and its anisotropy for undercoolings up to
400 K. Similar to theoretical models, the average solid-liquid interface energy decreases with
temperature, and the preferred dendrite growth direction shifts from <100> to <110> direction as
the undercooling increases. Phase-field simulations also show other favorite growth directions,
implying that there is a competition between the interface anisotropy and kinetics of the solid-

liquid interface.
Keywords: Al. Computer simulation, A1. Dendrites, Al. Solidification.

*Corresponding author: zacem@mines.edu (M. Asle Zaeem)

Page 1 of 23



1. Introduction

In solidification, formation and evolution of solid-liquid (SL) interface affect the
microstructures and properties of solidified metals and alloys [1]. The solid-liquid interfacial
energy and its anisotropy and solidification kinetics are some of the key factors affecting different
stages of solidification, such as nucleation, pattern selection, and final morphology [2]. Phase-field
(PF) modeling of solidification for a few single element metals and binary alloys has highlighted
the sensitivity of PF results to anisotropic SL interfacial properties [3-5]. Most of the PF models
in literature [6-8] are developed to simulate slow solidification with small undercooling, and
employing them for investigating rapid solidification results in some deviations from the

experimental predictions [9, 10].

Inaccuracy of the PF model to predict velocity-undercooling behavior for solidification of
highly undercooled Ni melt was attributed to the formulation of PF model by Bragard et al. [9].
They showed that one-dimensional (1D) steady-state solution of PF equations presents a concave
behavior as undercooling exceeds a limit. Therefore, they modified the energy term such that, for
a large undercooling, the velocity-undercooling relationship fits to the same linear behavior as for
small undercooling. Kavousi et al. [10] used the same method to modify the PF model so the results
for solidification of pure Ti get closer to experiments [11, 12]. Despite the brilliance of this
technique, it does not modify the PF model based on a physical phenomenon; also, this method
requires obtaining 1D steady-state solution of the PF model for the material of interest to quantify
the power-law driving force function in the PF model. Besides, experimental studies suggest that
the Gibbs free energy maintains a linear relationship with undercooling unless it exceeds 0.2 times
the melting point, which was not the case for the aforementioned experiments [11-14] and PF

studies [11, 12].

The second problem with PF simulations of highly-undercooled metals is the fact that PF
parameters are determined based on interfacial properties at the melting point, while some previous
studies showed that the SL interface energy changes with temperature [15, 16]. Determining the
SL interfacial energy using experimental methods is an intensive and difficult process. Grain
boundary groove, developed by Gunduz and Hunt [17], is the most common technique used to find
the interfacial energy in alloys. In this method, the SL interface is equilibrated with a grain

boundary under a temperature gradient, such that it establishes a planar SL interface except close
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to the grain boundary. Thus, the interface energy is obtained by measuring the equilibrium shape
of the groove’s profile [3]. This method has been used to estimate the SL interface energy for
different binary [18, 19], and eutectic [20, 21] systems. This method cannot be used to obtain the
interface energy for pure metals, and they are mostly obtained by extrapolating the relationship
between concentration and SL interface energy [22]. Homogeneous nucleation in undercooled
conditions is another method used by Turnbull in the 1950s to determine SL interfacial energy
[23]. This method is based on the nucleation theory where the interface energy is estimated by
calculating nucleation frequencies of small droplets. The existence of inevitable heterogeneous
nucleation sites leads to deviation in results associated with this method in comparison to other
experimental techniques and theoretical predictions [22, 24]. Although the homogenous nucleation
method can calculate the interface energy at the critical undercooled temperature, to the best of
our knowledge, there is no experimental study that reports the temperature-dependent SL interface

energy.

The challenges in direct calculations of interfacial properties, especially for the
temperature-dependent values, have made atomistic modeling a popular choice for calculating the
target material properties [2] and investigating the mechanisms governing different stages of
nucleation process [25-27] . Capillary fluctuation method (CFM) is a computational technique to
calculate the interface energy [28, 29]. In this method, interface free energy is estimated based on
the spectrum of interfacial fluctuations. Repeating the simulations for multiple orientations along
the interface normal enables obtaining the stiffness for various orientations which are used to
obtain the mean SL interfacial energy and the corresponding anisotropy terms [28, 29]. CFM has
been used to study the temperature-dependent interface energy for Cu-Zr [16] and Cu-Ni [30]
binary systems. Critical nucleation theory (CNT) is another method to obtain the interface energy
of undercooled melt [31, 32]. But this method does not provide any information about the
anisotropy values. In the quest for determining temperature-dependent interface energy, Wu et al.
combined the CFM and CNT to obtain the anisotropic interface energy of Al at a wide range of
temperatures [33]. Laird et al. estimated the SL interface energy in an undercooled Lennard-Jones

melt based on the Gibbs-Cahn integration method [34].

In this study, we develop a new PF model considering temperature-dependent model

parameters. The dependence of material properties on temperature is obtained by molecular
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dynamics (MD) simulations. First, details of PF model are provided and the PF parameters are
determined as a function of temperature. The temperature-pressure coexistence curve is calculated
followed by CFM calculations of the interfacial energy. Then, MD calculations of Gibbs-
Helmholtz equation are performed to test the validity of nonlinear relationship between the Gibbs
free energy and temperature proposed by Bragard et al. [9] . Finally, PF simulations of
solidification are performed. The PF model is validated by comparing velocity-undercooling
relationship to the experimental data. The competing effect of undercooling and anisotropy on

dendritic morphology is investigated.

2. Phase-Field Model

Instead of direct tracking of the SL interface, phase-field model introduces a variable called
order parameter (¢) to describe the interface between the two phases [35]. Order parameter takes
constant values in solid and liquid, 1 and 0, respectively, and changes with a sharp but continuous
function along the interface. The time evolution equations of ¢ and temperature (T) are used to
describe the solidification of metals. The governing equation for the order parameter is obtained

by taking the functional derivative of the Ginzburg-Landau type free energy, F, given by Equation
(D.

F = [ [fawd,T) + 22 09 2] av . (1)

faw($,T) =w(T)g(P) +q(T, ) . 2)

First term on the right-hand-side of Equation (1) is the bulk free energy (f,,,), and the second term
describes the excess free energy due to the interface, where € is a parameter related to the
magnitude of the interface energy. As given by Equation (2), f;,, consists of two terms; the first
term is the double-well Ginzburg-Landau free energy function, w(T)g(¢), where g(¢) =
¢2(1 — ¢)? is the double well function and w(T) is the temperature-dependent height of the well.
All the PF models in literature consider the well-size to be constant [6, 7, 36], but the process of
atom addition to a cluster is diffusion controlled. For a thermally activated jump between the

neighboring sites, jump frequency (v) can be described as [37]:

Q
v oo T 3)
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where Q is the activation energy, and kg is the Boltzmann constant. Therefore, for a constant
activation energy, jump frequency will reduce by a decrease in temperature. While in PF
formulation, the effect of temperature on the jump frequency is neglected, and the well’s height is
estimated based on material properties at the melting point. To address the temperature dependence
of jump frequency in the PF model, we consider that the well’s height used in PF equations
undergoes a correction, as shown in Equation (4). This equation results in an increase of the well’s

height with temperature such that it dictates the desired change in jump frequency.
T
w(T) = wy, T “4)

The second term in Equation (2), q(T, ¢), represents the temperature-dependent free energies of
both solid and liquid phases. In the classical thermodynamics, two assumptions are made for the
SL phase transformations for a small undercooling. First, difference between the entropies of solid
and liquid phases in an undercooled system can be assumed to take an equal value at the melting
point (T,,). Besides, the enthalpy of fusion (L) is assumed to be independent of temperature [1].
Based on our MD simulation results, which will be presented in Figure 5, assuming a linear
relationship between the solid or liquid enthalpies with temperature is valid for undercooling as
large as 0.2 times the melting point [23]. Therefore, the resulted difference between free energy

densities of the solid and liquid phases in the previous PF models is:
L
faw(@ =1) — faw(d = 0) :ﬁ(T_Tm)- (5)

Taking the free energy of the liquid phase as reference state and considering h(¢) = ¢3(10 —
15¢ + 6¢?) as the smoothing function for temperature-dependent energy term, the final form of

bulk free energy becomes:
faw(p T) = w(T)g (@) + h(p) 7 (T = T) . (©)

Second term in the right-hand-side of Equation (1) describes the excess free energy due to
interface. The dependence of € on orientation and temperature is described based on the anisotropic
temperature-dependent SL interface energy following the thin interface analysis. Thin interface
analysis maps PF equations to the classical sharp-interface equations for solidification [38]. This

allows linking the phase field parameters €, w, and M, which are directly related to the interface
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energy, well-height, and interface mobility, respectively, to the material properties that are

calculated from MD simulations such as SL interfacial free energy and kinetic coefficient [6].

_ &(T)
() = 25 2v2In3, (7)
~y _ E(T,A)Yw(T)
y(Tn) ==, (8)

1 _ 1 Tm/wd Ly e(TA) [RECEIO)

u@) - 3v2 e(TALoM(T,A)  Dcp (/2w(T) “0  Vg(@) dg . ®)

D is the thermal diffusivity, c, is the specific heat, and {, is the interface thickness which is set to

be larger than the microscopic capillary length (d,) described by

do =2 (10)

_L—O_

Yo 1s the orientation-averaged SL interface energy. For a crystal with cubic symmetry, the SL
interfacial free energy (y) as a function of orientation and temperature can be represented by the

following equation [39]:

YT, ) = yo(T) [1+8,(T) (Zynf —2) +8,(T) 3 Ty + 66nindnd —17/7)] , (11)

where n; are the components of the unit vector normal to the interface plane (1), and 61 and o2 are
the anisotropy parameters. In this study, we will consider y,, 61 and &2 to be a function of
temperature and use MD simulations to quantify them. Similarly, the kinetic coefficient follows a
similar equation given by [40]:

1 1
ok E(l +3g, —4g, Y n}). (12)

Uo 1s the average kinetic coefficient, and &, is the corresponding anisotropy parameter.

The final form of evolution equations for ¢ and T are given by:

)
M(T,0) at

R'() 72 (T = T) + Noise($) .

a(er o) T02L)  o(ero)e (1.6)32) ,
( 2 _ 22— w()g'() -

=V.(e(T,0)°V¢) + 3y ox (13)
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at

DVZT+i—2h’(¢)Z—f. (14)
3. Results and Discussion

We perform atomistic-informed PF simulations of solidification of Ti to investigate
accuracy of the developed temperature-dependent MD-PF framework for dendrite growth. This
section starts with the details of MD simulations for obtaining the material properties, followed by
PF simulations to investigate the solidification of highly-undercooled Ti. All MD simulations are
performed using the LAMMPS software (Large-scale Atomic/Molecular Massively Parallel
Simulator) [41], and MEAM interatomic potential developed by Kavousi et al. [42] is used to
describe the atomic interactions. In development of this potential, the accuracy of high temperature

kinetic and interfacial properties was targeted.

3.1. Molecular dynamics simulations to calculate temperature-dependent material properties
CFM is used to obtain the dependence of SL interface energy on temperature. Employing
CFM requires prior knowledge of the temperature(T)-pressure(P) coexistence curve. Each point
on the coexistence curve is obtained through a series of simulations. The first simulation starts
from a system with 10x10x120 unit cells (24,000 atoms), where central half of the system is
melted. For each desired pressure, the system is equilibrated for 1000 ps through the isothermal-
isobaric (NPT) ensemble at an initial guess for temperature (To). It is then followed by an
isenthalpic (NPH) ensemble for ~10 ns. NPH ensembles do not allow the total enthalpy change,
therefore the energy must be directed through temperature change. If the difference between To
and the average temperature of the last 2 ns of NPH ensemble (T1) exceeds 4K, then the simulation
will restart using Ti as the initial working temperature for Nose-Hoover thermostats. As an
example presented in Figure 1(a), a system with P=-7 GPa required 4 sets of calculations such that
the difference between convergence temperature drops below 4K. The error bars are obtained
based on standard deviation of the temperature during the last 2 ns of the NPH ensemble. Figure
I(b) summarizes the coexistence line obtained for Ti which is obtained directly from MD
calculations. The calculated errors for MD simulation datapoints in Figure 1(b) are given in Table
1. Based on Clausius—Clapeyron equation, the slope of coexistence curve for two condense phases

on the temperature-pressure diagram is given by [43]:
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dP _ Ly

ar ~ TAv'

(15)

Av is the volume change during phase transformation. Later, we will show that the enthalpy of

fusion has a weak dependency on temperature. Therefore, the dashed line in Figure 1(b) is obtained

using the pressure-dependent enthalpy of fusion and volume change, which are estimated by a

series of separate MD simulations. There is a good agreement between the direct calculations of

coexistence line and predictions of Clausius—Clapeyron equation for the interface temperature

higher than ~1750 K.
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(a) Temperature change over the number of iteration at P=-7GPa, and (b) temperature-

pressure coexistence curve calculated by MD simulations and Clausius—Clapeyron equation.

Table 1. The temperature-pressure coexistence line values for pressures between 4 and -9 GPa.

The error is estimated based on the standard deviation of the temperature during the last 2 ns of

the NPH ensemble.
P (GPa) | 4 2 0 -1 -2 -3 -4 -5 -6 -7 -8 -9
T (K) 2054 | 2005 | 1942 | 1915 | 1879 | 1843 | 1806 | 1764 | 1722 | 1674 | 1617 | 1563
+7.8 | £58 |45 |45 | £6.7 | £4.5 +4 +5.1 +4
6 7

CFM estimates the SL interface energy based on its fluctuations. In this method, the

interface stiffness, y + d?y/d 62, is related to the amplitude of interface fluctuations based on

Equation (18). In this equation, bW is the interface cross-section area, k is the mode number, and

A(k) is the Fourier amplitude used to determine the fluctuations of instantaneous interface position
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h(x) from its average value (h), Equation (16). Details of MD simulations and the analysis

performed to define the accurate position of interface are discussed in our previous works [10, 44].

h(x) = (h) = X Alk) e, (17)

2 2 _ kBT
y+dcy/do* = WA (18)

As presented by Equation (11), the interface energy is an anisotropic property and therefore
MD simulations are performed for multiple SL interface orientations, presented in Table 2. {}
denotes the interface normal orientation, and <> denotes one of the interface's in-plane
crystallographic orientations. Using the interface stiffness calculated by each MD simulation and
expressions presented in Table 2, one can calculate the mean SL interface and the corresponding

anisotropy parameters.

Figure 2 summarizes the parameters entering Equation (11) obtained by the best fit to MD
data for the temperature range between 1643 K and 1943 K. The calculated SL interface energy
at melting point is 0.169 J/m?, which is close to the experimental value of 0.164 J/m? [45]. As a
validation of our temperature-dependent SL interfacial free energy calculations, Thomson-

Spaepen (TS) relationship is used, given by [46]:
Y = alS, (NV2) 73T, (19)

where a=0.71 for body-centered cubic crystals, AS,,, denotes the entropy of fusion, N is Avogadro
number, V,,, is the molar volume of the solid phase, and T; is the interface temperature. Despite
~10% difference between the MD simulation results and the predictions of analytical TS
relationship in Figure 2, the slope of SL interface energy change with temperature for both methods

is very close.

Table 2. The expressions for the SL interface energy and stiffness for various interface orientations

as given by Equation (11).

Interface orientation Interface free energy expression Interface stiffness expression
(100) {001} Yo [14+0.4 61+0.57 82] yo[1-3.6 61— 11.43 &2]
(110) {110} v0[1-0.1 81-0.93 &2] yo[14+ 3.9 81+ 11.07 82]
(001) {110} v0[1-0.1 81-0.93 &2] yo[1-2.181+26.07 &2]
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(170) {111} v0[1-0.27 81 +1.02 8] yo[1+ 2.4 81— 20.32 52]

(112) {111} v0[1-0.27 81 +1.02 82] yo[1+ 2.4 81—20.32 &2]
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Figure 2. Temperature-dependent interface energy and anisotropy parameters. The error bars are

based on 95% confidence intervals.

In obtaining the solid-liquid interface free energy for each point on the pressure-
temperature coexistence line, we considered both the effects of pressure and temperature. The
variations of both T and P may have significant effects on the solid-liquid interface equilibrium of
the system. We used the Clausius-Clapeyron equation (Equation (15)) to determine the relationship
between pressure and temperature. However, our PF simulations and the experimental works that
are used for validating the PF model are non-pressurized solidification problems, and the
undercooling is the sole driving force for the phase transformation. Thus, we should ensure that
the effect of pressure on the calculated solid-liquid interface energy is negligible. We use the
method developed by Frolov and Mishin [47], where the solid-liquid surface stress is calculated
with the solid-liquid interface free energy and its variation with the interface area. The relationship

between these two quantities is given by:
=y+A4%Z (20)
T = y 94 )

where 7 is the average surface stress given by 7 = (144 + 7,2)/2. Based on the magnitude of
derivative of interface free energy with respect to the interface area (A), T and y can be different

in sign and magnitude. y is always a positive number [10], while T can be larger than y, smaller,
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or even a negative number, and their difference is an important factor in the nucleation theory. In
the nucleation of solid particles from a liquid, the difference between the chemical potentials of
components inside the phases is proportional to y — t. By applying the Cahn’s adsorption equation
[48] to the nonhydrostatic case of a planar solid-liquid interface, Frolov and Mishin related the
total excess free energy due to the solid-liquid interface to the number of atoms (N), volume (V),
and total virial stress (o;; + 6;jp) which consists of the average stress tensor and pressure [47].

The final expression that they proposed for calculating the solid-liquid surface stress is given by:

[(o1j+8ip)V] N1 [V]
det| (ojj+6;jp)vS NS VS
S [(O'ij+5ijp)V/NV] . Y 0” Nt oyl (21)
Y A Axdet(’l\\',’; K?)

The square brackets refer to obtaining the average properties inside a region thick enough to
contain the interface, and s and / refer to the values obtained inside the bulk solid and liquid phases,
respectively. Studies in the literature suggest that when y and 7 have the same order of magnitude,
the effect of pressure on the solid-liquid interface energy is negligible [47, 49]. We analyzed the
MD results to calculate the variations of T with temperature. As shown in Figure 3, the surface
stress decreases with the decrease in temperature. Despite the difference between the y and t
obtained by MD, their difference is not as large as the essential threshold (one order of magnitude)
for considering the dependance of y on pressure. Thus, we can conclude that the effect of pressure
on the interface energy values is negligible, and we can use the solid-liquid interface energies,

given by Figure 2, in the PF modeling of solidification.
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Figure 3 Temperature-dependent solid-liquid interface stress obtained by MD simulations.

Kinetic coefficient (i) for solidification is another material property that affects the
solidification microstructure. Free solidification method is a well-known technique to estimate this
property using MD simulations. In this study, we use the available value reported in our previous
work [10]. Equations (4), (7)-(9) are used to determine the PF parameters, based on the MD-

calculated material properties.

3.2. Temperature effect in PF modeling of highly undercooled system

Before making further discussions on the results of our proposed PF model, we use MD
simulations to test the validity of our model versus another PF model which was used for
investigating rapid solidification of pure material developed by Bragard et al. [9]. As discussed
previously, Bragard et al. [9] assumed that a linear relationship between the temperature and free
energy does not hold as the undercooling increases. Therefore, they proposed changing their PF
model free energy formulation from a linear to temperature dependent power-law form, where the
power is obtained based on the 1D steady-state solution of order parameter evolution equation.
Specifically, in a 1D system where the reference frame translating with velocity V,, along the +x
direction, Equation (13) can be rewritten as:

T _ 222 ey — R ()L
20— 228 wg'(§) - W ($) 22 AT, (22)
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In PF modeling, the order parameter holds a constant value inside bulk phases and changes
monotonically at regions close to the SL interface. Equation (23) is the equilibrium 1D solution of

the order parameter equation [50].

¢ = %(1 — tanh (%{p)) . (23)

For each undercooling, there is only one specific value of 1}, which makes the order parameter
given by Equation (23) a valid solution for Equation (22) [9]. We employed bvp4c solver in
MATLAB [51] to solve the aforementioned boundary value problem. Figure 4 presents the
variation of interface velocity with the undercooling, when the PF parameters are calculated based
on the fixed and temperature dependent material properties. For constant material properties, there
is a perfect linear relationship between the velocity and undercooling when A47<150. As the
undercooling exceeds 150 K, the system fails to keep the linear correlation. In order to mitigate
this shortcoming, Bragard et al. [9] proposed altering the temperature-dependent term in free
energy function to follow V7 1(AT) (inverse of the function V},), such that the PF results are
mapped onto the dashed line in Figure 4. Based on the hypothesis of Braggard et al., 150 K
undercooling is the threshold for the transition of Gibbs free energy, i.e. undercooling behavior for
Ti. On the other hand, the experimental study [23] on different materials, such as Ni, Co, Fe, Ag,
Au, etc., suggests Gibbs free energy maintains a linear relationship with undercooling unless AT
exceeds 0.2 times the melting point. Therefore the 150 K threshold suggested by Bragard’s model
(0.077 x melting point) does not meet the experimental requirements. We use MD simulations to

have a deeper understanding on this matter.
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Figure 4. Variation of the steady-state velocity of a planar 1D interface with undercooling for
constant and temperature-dependent PF parameters. The dashed lines are linear fits for small

undercooling.
Using the Gibbs-Helmholtz relation, given by Equation (21), one can obtain the difference
between free energies of the solid and liquid phases (4G) for metallic systems.

ST —HL (T
AG(T) = T [ D g, (24)

T2

T’ is the integration variable, Ty, is the melting temperature, HS, and H' are the enthalpies of solid
and liquid phases, respectively. For the temperature range of 1643 to 1943 K, MD simulations are
performed to determine the enthalpy of both solid and liquid phases using an NPT ensemble.
Figure 5(a) presents that both H®, and H follow an almost linear relationship with temperature,
with a weak dependency of their difference on temperature. Mean enthalpies obtained from the
simulations are used to estimate AG based on Equation (22). Figure 5(b) compares the AG
calculated directly from MD with the linear approximation given by Equation (5), where L, is the
enthalpy of fusion at melting point based on the predictions of interatomic potential. Aligned with
our expectations based on experimental studies, AG — T linear relationship is held for
undercooling up to 300 K, which is equivalent to 0.15xT,,. Therefore, altering the free-energy
functional form in the PF model is not supported by the physics of solidification. Meanwhile, a

similar process, presented in Figure 4, is repeated with solving Equation (22) using the temperature
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material properties. The results suggest that the limit for a linear dependency between V — AT is

extended for up to 200K undercooling.
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Figure 5. The variation of (a) enthalpy of solid and liquid, and (b) difference between the free

energies of the solid and liquid phases with temperature.

3.3. Phase-field modeling of dendritic growth

In order to validate the PF model, we performed three-dimensional (3D) PF modeling of
solidification and compared the predicted solidification-undercooling behavior, with the analytical
Lipton-Kurz-Trivedi (LKT) model [52], and two sets of experiments by Walder and Ryder , and
Algogo et al. We have also compared results of the current framework with the one developed by
Karma and Rappel (KR model) [38]. During the solidification process, undercooling is the driving
force for the phase transformation. When the solidification velocity increases, experimental data
deviate from the linear behavior and present a parabolic relation with the undercooling. Results
presented in Figure 6 suggest that both PF models can accurately predict the desired relationship
with undercooling when AT<200 K. Once the undercooling increases, Karma and Rappel PF
model underestimates the solidification velocity and fails to predict the experimentally observed
parabolic relation between velocity and undercooling. This was expected from the 1D steady-state
PF solution, as shown in Figure 4. While the current PF models predict the velocity-undercooling

much closer to the experimental results.
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Figure 6. The variation of interface velocity versus the undercooling obtained from the PF model

by Karma and Rappel [38], the current PF model, two sets of experiments by Walder and Ryder
and Algoso et al. [11, 12], and analytical LKT model [52].

During the crystallization, the latent heat release increases temperature of the solid-liquid
interface T;, above the undercooling temperature [53]. Gibbs-Thomson, given by Equation
Error! Reference source not found., is an analytical model which relates T; to the shape of the
interface, material properties, and solidification condition [54].

T, 1 ~ 0%y (R) Va
T, =Ty — TMZi=1,2R_i[V(n) + =] -

067 | u(ay

(25)

Second term on the right-hand side of Equation Error! Reference source not found. represents
the local change of the interface equilibrium temperature due to the curvature of interface, also
known as capillary undercooling. Last term on the right-hand side of Equation Error! Reference
source not found. represents the non-equilibrium (kinetic) interface undercooling that drives the
solidification. The undercooling due to curvature is only considerable for very small undercooling.
Despite the smaller dendrite tip radius at large solidification velocities, capillary term is still
negligible when the solidification velocities are large which leaves kinetic undercooling as the
dominant undercooling term. Neglecting the effect of curvature undercooling, one obtains a linear
relationship between the velocity and undercooling, where the slope gives the kinetic coefficient.

This equation is used to determine the kinetic coefficient by performing MD simulation of planar
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growth under different solidification conditions [29, 55]. On the other hand, the experimental
studies in Figure 6 suggest that for the large undercooling, V-AT relationship is parabolic, and one
expects the deviation of PF results from the GT equation as the solidification velocity increases.
Figure 7 shows for 47<150 K, PF results are close to the GT relation. As undercooling increases,
the difference between PF and GT results increase.
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Figure 7. Comparison of the interface temperature obtained based on the current PF model with
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the analytical Gibbs-Thomson equation.

It has been mentioned in the literature that dendrites tend to grow along the crystallographic
direction with the highest interfacial energy [56-58]. Equation (11) describes how the interface
energy changes by crystallographic orientations. Based on this equation, when the §; is large and
&, is small, disregarding &, sign, dendrites grow along <100> direction. For §, < 0, the decrease
of &; increases the probability of growth direction transition from <100> to <110>. Therefore,
based on the anisotropy values from MD calculations, presented in Figure 2, one may expect to
observe <100>-oriented dendrites when the undercooling is small, and identify the transition of
growth direction from <100> to <110> as driving force, undercooling, increases. PF simulation
results based on MD-calculated anisotropies are presented in Error! Reference source not
found.. With 6,>0 and 6; >0, growth of <100> dendrites was expected for 47=100 K.
Considering having a negative §,, we did not distinguish any differences between the growth rate

in <100> and <110> directions for the PF simulation at 47=300 K. There are 2D-PF studies in the
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literature showing that both small anisotropy and slow solidification velocities affect the

morphology types and increase the probability of seaweed structure formation [59-61].

For two target undercoolings of 100 K and 300 K, we ran different model simulations
considering §; € (0.03,0.05) and &, € (—0.002,0.002). The results suggested that when the
driving force was small and solidification velocity was slow, the anisotropy parameter plays an
important role in determining the dendrite morphology. However, as the solidification velocity
increases, the anisotropy parameter does not have a noticeable effect on dendrite morphology.
When AT =300 K, the variations of §; and §, did not have a significant effect on orientations of
dendrites as in the case with AT=100 K. Therefore, to have discussions on the preferred growth
direction, we need to consider both the capillary and kinetic effects. Mapping of the dendrite
morphology to the values of 6, and §; , used in multiple PF simulations [6, 62, 63], is not enough
for predicting the preferred growth direction, and considering both the temperature-dependent SL

interface anisotropy parameters and solidification driving force (or velocity) is required.

8§,=0.044
5,=-0.0014

5,=0.037
5,=0.0018

AT=100 K AT=300 K

Figure 7. The dendrite morphology predicted by PF simulations based on MD-calculated
anisotropies for 100 K and 300 K undercoolings.

4. Conclusion

In this study, we coupled MD and PF modeling using temperature-dependent material
properties to investigate the solidification of metals. The literature PF models’ limitations on
predicting the rapid solidification of metals are addressed by establishing temperature-dependent

anisotropic SL interfacial properties based on MD simulations and governing equations for
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diffusion from classical thermodynamics. We employed CFM for the points on pressure-
temperature coexistence line to calculate the temperature-dependent variations of SL interface
energy and anisotropy parameters. As predicted by the analytical models, the interface energy
presents an almost linear relationship with temperature. Height of the double-well potential is also
modified to be temperature-dependent in order to dictate the decrease of jump frequency when the
working temperature decreases. After validating the proposed PF model by comparing the
simulation velocity-undercooling with experimental data, we investigated the effect of MD-
calculated capillary anisotropy on dendrite shape and growth direction. Based on MD simulations,
it was predicted that for smaller undercooling, dendrites would be <100> oriented. As the
undercooling increases, dendrite orientation shifts from <100> to <110>. While the PF results
indicated that anisotropy is not the sole characteristic that should be considered in predicting
growth direction; the solidification driving force is another component that should be taken into

account.
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