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Abstract: In this work, we discuss the deconfinement phase transition to quark matter in hot/dense
matter. We examine the effect that different charge fractions, isospin fractions, net strangeness, and
chemical equilibrium with respect to leptons have on the position of the coexistence line between
different phases. In particular, we investigate how different sets of conditions that describe matter
in neutron stars and their mergers, or matter created in heavy-ion collisions affect the position of the
critical end point, namely where the first-order phase transition becomes a crossover. We also present
an introduction to the topic of critical points, including a review of recent advances concerning QCD
critical points.
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1. Introduction to Critical Points

In thermodynamics, a critical point refers to the end point of a phase equilibrium curve.
The presence of a critical point was first identified by Charles Cagniard de la Tour in 1822 [1].
He observed that, above a critical temperature, there was a continuous transition of elements
in a gun barrel from liquid to vapour. A couple of decades later, Faraday (1845) studied the
liquefying of gases, and Mendeleev (1860) [2] measured a vanishing point of liquid—vapour
surface tension naming it “Absolute boiling temperature” [3]. Finally, in 1869, Andrews
studied many different substances, establishing the continuity of vapour-liquid phases and
creating the name and modern concept of “critical point” [4]. In theoretical research, van
der Waals(1873) [5] contributed by providing an equation of state with a critical point for
the liquid—gas transition. Smoluchowski [6] and Einstein [7] (1908, 1910) explained critical
opalescence, the phenomenon by which a liquid at the critical point becomes opaque to
a collimated beam of laser light, which results from fluctuations becoming comparable in
size with the wavelength of light, and causing scattering. These led to Landau’s classical
theory of critical phenomena, Fisher, Kadanoff, and Wilson scaling, and, eventually, to a full
fluctuation-based formulation of renormalization group theory [8].

The question arises whether there exists a critical point associated with the phase ex-
pected to be found at high-energy density, namely chirally symmetric matter composed of
deconfined quarks and gluons, similar to the critical point of liquid-vapour transitions. Quan-
tum Chromodynamics describes the fundamental constituents of matter, quarks and gluons,
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as being almost massless, however, hadrons are massive. The mass of hadrons, which is
associated with the breaking of chiral symmetry, is the source of most visible mass in the
universe. The constituents of QCD carry color charge and experience the strong force, al-
though they are normally confined within the hadrons. High-energy collisions deconfine those
charges, producing the quark-gluon plasma. Finding the QCD critical point experimentally in
heavy-ion experiments is a formidable task currently being pursued at the Relativistic Heavy
Ion Collider (RHIC) [9,10]. Additional studies will be possible when dedicated facilities enter
into operation, such as Nuclotron-based Ion Collider fAcility (NICA) [11] and Facility for
Antiproton and Ion Research (FAIR) [12].

At zero baryon chemical potential, up = 0, baryons and antibaryons or quarks and
antiquarks are in chemical equilibrium (with respect to the strong, not the weak force) with
one another. In this case, at finite temperature, it is possible to determine the QCD pressure
and additional thermodynamic quantities numerically with controllable accuracy on the
lattice. Calculations at finite quark masses, in which case the chiral symmetry of QCD is not
exact, do not exhibit the presence of a critical point (at yp = 0). However, notable changes in
properties of matter with increasing temperature appear. The significant rise in pressure with
increasing temperature indicates the change in phase from a hadron gas to a quark-gluon
plasma. However, this transition is not sharp. In other words, there is no point at which those
phases coexist, despite one phase continuously transforming into another, which is referred to
as a crossover [13].

The approximate location of a critical point when pp # 0, may be found through
extrapolations performed by calculating coefficients of a Taylor expansion around g = 0 and
using assumptions from analyticity and convergence [14,15]. Complementary approaches
using holographic gauge/gravity correspondence to map the fluctuations of baryon charge in
the dense quark-gluon liquid onto a numerically tractable gravitational problem involving
the charge fluctuations of holographic black holes have been able to predict the position of the
QCD critical pointat T = 89 MeV , up = 724 MeV [16]. For other theoretical models that also
predict the existence and position of the QCD critical point see References [17-19].

Alternatively to up, QCD phase diagrams are also studied in the temperature-isospin
chemical potential, yj, plane. The later is advantageous due to the fact that lattice QCD
results are not afflicted by the sign problem at finite yj, as long as g = 0. When up # 0
or, equivalently, when there is a difference in the number of particles and anti-particles in
the system, the first-principle methods such as non-perturbative lattice QCD simulations
cannot be implemented [20-22]. Finite yj, zero up calculations have recently received a lot
of attention due to their relevance to heavy-ion collisions [23], compact stars [24-26] and
even to the evolution of the early Universe [27]. These calculations can be used to verify if
the predictions of effective models of QCD are reliable when compared with first principle
calculations [28-34]. In the case of QCD at finite isospin density, the first lattice simulations of
References [35,36] were performed using unphysical pion masses and/or unphysical flavor
content. The results from these first simulations were in qualitative agreement with the
different approaches to QCD [37-70]. More recently, lattice QCD results for finite isospin
density were implemented using an improved lattice action with staggered fermions at
physical quark and pion masses [71-74], their predictions being in very good agreement with
the results obtained from updated chiral perturbation theory [75-77] and Nambu-Jona-Lasinio
(NJL) models [78-81].

For up = 0, in the regime of small temperatures and small i}, the system is said to be
composed of so-called normal matter, NM, without pion condensation. Increasing only the
temperature, the system enters a phase in which chiral symmetry is partially restored and
quarks are deconfined, that is the expected quark-gluon plasma phase. On the other hand, for
low temperature and increasing yj, the system reaches the onset of the pion condensation, PC,
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phase through a second-order phase transition. The PC onset takes place at y; = m . For yj <
my there is a smooth crossover related to the chiral symmetry restoration and deconfinement
transitions, and the pion condensate vanishes for all temperatures. For pi; > m, one can find
a critical temperature at which there is a second order phase transition from the PC to the
QGP phase. In this case, there is a lattice QCD prediction for a pseudo-triple point, where the
NM, quark-gluon plasma, and PC phases meet [71,74]. There are also other calculations, such
as a recent work using the non-local Polyakov-loop-extended Nambu-Jona-Lasinio (PN]JL)
model [82], which is in excellent agreement with lattice QCD calculations for the QCD phase
diagram at finite ;.

In this work, we combine both approaches discussed above and study three-dimensional
QCD phase diagrams as a function of temperature, baryon chemical potential, and either
charge fraction, Y, or isospin fraction, Y;. The relation among the two charges is trivial only
when net strangeness is zero. A fixed fraction is achieved by self-consistently determining the
respective (charge or isospin) chemical potential. In this work, we consider two particular
cases, one in which strangeness is constrained to be zero (same amount of strange and anti-
strange particles, achieved by self-consistently determining the respective strange chemical
potential, y5), and one in which strangeness is free to vary (in which case ys = 0). We focus, in
particular, on how the end point of the first-order phase transition line changes for particular
cases associated with different astrophysical and laboratory scenarios.

2. Our Formalism

In order to study the effects of different conditions on the critical point, we first describe
the formalism that allows us to reproduce a deconfinement first-order phase transition that
eventually (at large temperatures) becomes a crossover. This phase transition is necessarily
tied to a chiral-symmetry restoration phase transition (independently of the transition order),
as they are connected through the effective masses of hadrons and quarks, in which the
respective order parameters for both kinds of phase transition appear (see Equations (67) in
Reference [83]). It is very important to note that such a formalism must contain the degrees of
freedom expected to be found on both sides of the coexistence line in order to fully determine
how conditions such as strangeness affect these degrees of freedom and, ultimately, moves
the coexistence line and critical end point to a different part of the QCD phase diagram. We
satisfy this requirement by making use of the Chiral Mean Field (CMF) model which is an
effective relativistic mean-field model that describes baryons, quarks, and leptons within the
same formalism [83]. It is based on a non-linear realization of the sigma model [84] within the
mean-field approximation.

The model has been shown to give a good description of the dense matter inside proto-
neutron and neutron stars [85,86]. This includes reproducing i) 2 solar masses neutron stars,
or even more massive ones when higher-order vector interactions are used [86], ii) radii that
agree with The Laser Interferometer Gravitational-Wave Observatory (LIGO) results [87]
provided throught the use of spectral equation of state, or both methods (throught the use of
spectral equation of state and universal relations [88,89]) when vector isovector couplings are
included (all 90% confidence) [90], and iii) The Neutron star Interior Composition Explorer
(NICER) results for radii (90% confidence) [91-94]. We have also analyzed the differences
that arise from the relaxation of the assumption of local conserved quantities, such as electric
charge and lepton fraction, to global quantities (the latter for the first time) [95]. We found
that, although such relaxation widens the phase transition as a function of baryon chemical
potential or free energy (less for the fixed lepton fraction case), there is no change in the
position of the critical point. This is a result of the dominance of thermal effects around the
deconfinement critical point which is not the case for the nuclear liquid-gas phase transition,
as discussed in detail in Reference [96]. Since in this work we focus on the discussion of
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critical points, we assume that the surface tension of quark matter is very large (of the order
of hundreds of MeV), in which case mixtures of phases do not appear and ours constraints
related to strangeness, charge, and isospin can be carried out locally. More complicated cases
will be studied in the future.

At low densities, the model was fit to nuclear saturation properties at zero temperature
and lattice QCD data at large temperatures. The latter includes a first order phase transition
at T = 270 MeV and a pressure functional P(T) similar to References [97,98] at vanishing
baryon chemical potential for pure gauge, a crossover at vanishing baryon chemical potential
with a transition temperature of 171 MeV (determined as the peak of the change of the chiral
condensate and the parameter for deconfinement), and the location of the critical endpoint (at
uB,, = 354 MeV, T, = 167 MeV for symmetric matter) in accordance with Reference [99]. In
the past, this formalism was used to simulate particle multiplicities, rapidity distributions, and
flow in heavy-ion collisions [100] and the differences among stellar matter vs. matter produced
in heavy-ion collisions in the vicinity of the deconfinement coexistence line, drawing analogies
with the nuclear liquid—gas phase diagram [96]. More recently, we used this formalism to
construct three-dimensional QCD phase diagrams up to a temperature T = 160 MeV, the other
two axes being the chemical potential (yp or i), and either the charge or isospin fractions
[101]. In this work, we go further by extending coexistence lines all the way to the respective
critical end points and discussing the effects of different conditions on the relative position
of the critical end points. In the following, we summarize the different situations under
consideration. We begin by defining a few relevant quantities.

The free energy per baryon under fixed charge and strangeness is defined as [102]

i =pp+Youg+Ysus, o)

where 11, p1, and g are the charge, isospin, and strange chemical potentials, respectively.
Alternatively, under fixed isospin and strangeness [101]

J=pp+ Yiur+ Ysps, )]

where, under the new constraints, the chemical potentials transform as y; = poq, yg =
up + %‘uQ, and p§ = pg — %‘uQ. These definitions reproduce the same equilibrium equations
described in Appendix A of Reference [101], independently of the chosen constraints. The free
energy per baryon i is the quantity which is the same in both phases in the case of a first-order
phase transition (both sides of the coexistence line). The charge fraction, Yo = %, isospin
fraction, Y] = é, and strangeness fraction, Yg = %, are defined as the baryonic (hadrons +
quarks) electric charge, isospin, and strangeness over the total baryon number. The relation
between charge and isospin fractions depends on the strangeness following Reference [101] is

1
YIZYQ—*-F*YS. (3)

3. Results

The different conditions we discuss in this work relate to systems created in very short-
lived heavy-ion collisions, where there is no sufficient time for significant net strangeness to
be produced, Ys = 0, and astrophysical conditions, where net strangeness is expected to be
produced, Y5 # 0. While matter generated in heavy-ion collisions and supernova explosions
is close to being isospin symmetric, matter in neutron stars and their mergers [103] is far
from that, possessing very low charge fraction. Some simple cases that approximate these
conditions are:

* Yp=0andYs =0 (equivalentto Y; = —0.5and Y5 = 0) ;
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* Yo=05and Ys =0 (equivalentto Y; = 0and Y5 = 0) ;

* Yp=0andYs #0;

e Yr=-05andYs #0;

° YQ=0.5andY57éO;

e Y;=0andYs#0;

d YQ = 7Y1epton and Y5 #0,

where in the last case electrons and muons were introduced in chemical equilibrium with
the baryons and quarks, y, = p,; = —pg. Note that, despite first appearances, conditions
3-4 and 5-6 are not equivalent. As already mentioned in Section 1, this is because the relation
between Y| and Yj is a trivial shift only when net strangeness is zero, but not otherwise.
See Reference [104] for a complete discussion of the chemically equilibrated case at finite
temperature.

Figure 1 shows three-dimensional deconfinement first-order phase-transition regions
calculated finding a discontinuity in the order parameter for deconfinement. The left panels
show values for the baryon chemical potential yp on the hadronic side, while the right panels
show values for jip on the quark side of the coexistence region. Their difference stems from
the fact that we are plotting them as a function of baryon chemical potential (not free energy
per baryon) and that g or y; is different in each phase. The different colors show calculations
performed by varying the charge fraction from 0 — 0.5 (shown as a function of Yj) and the
isospin fraction from —0.5 — 0 (shown as a function of Y;). The top panels were calculated
fixing the net strangeness to zero and, as a consequence, are a perfect 0.5 shift in the fraction
axis (see Equation (3)). The bottom panels had no strangeness constraint and, therefore,
present a finite net strangeness. As a result, the two pairs of surfaces are not only shifted but
also deformed relative to one another. This leads to more pronounced differences (from the
top panels) at large temperatures, where strangeness is abundant. The bottom panels also
show a chemically equilibrated line which, at low temperatures, follows a much lower value
of charge or isospin fraction in the quark phase.

At the largest temperature we show in Figure 1, 160 MeV, it is easy to see that the phases
are very similar, but no further analysis was made to find the exact position of the critical
end point. In some cases, our region went into the crossover phase, marking the steepest
change in order parameters (peak of susceptibility) instead of the position of the first-order
phase transition. The critical end point occurs when the pressure (grand-potential density)
as a function of the deconfinement order parameter, exhibits a single maximum (minimum)
instead of two. For a more focused exploration of the exact position of our critical end point,
we present in Figure 2 two-dimensional phase diagrams for deconfinement for the five of the
seven cases described in the previous section. These are the cases in which the free energy per
baryon equals the baryon chemical potential. From Equation (1) it is quite obvious that this
happens for Yg = 0. It also happens when Y; = 0, meaning that p1o = 0. This is the case no
matter if the strangeness is being constrained or not. In the chemical equilibrium case, the
total charge (Yg + Yiepton) is zero, implying once more fi = i, but we only investigate this for
the case with net strangeness, as this is the case associated with chemically-equilibrated stars.

Analyzing Figure 2 in more detail, one can see that both lower charge or isospin fraction
and the constraint of zero net strangeness weaken the phase transition, shifting the critical
end point to a lower temperature (and, as a consequence, to a larger yg). When combined,
these features cause the green curve to shrink and the green dot to be found more than 21
MeV below the beige inverted triangle, which represents the “opposite” case (Y; = 0 and
Ys # 0). A lower critical temperature means that the first order transition between the phases
becomes weaker faster with the increase of temperature compared to the other cases. This
can be seen in the size of the discontinuity in energy density or other derivatives of the grand
potential across the transition and it is related to how different or similar the two phases are.
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1500 ~0-5

Figure 1. IThree-dimensional QCD phase diagrams showing temperature, baryon chemical potential,
and either charge fraction (dark green/pink regions) or isospin fraction (light green/orange regions
regions). The left panels show the hadronic side of the coexistence line, while the right panels show the
quark side. The top panels show matter with zero net strangeness (Ys = 0), while the bottom panels
show matter with net strangeness (Ys # 0). The black lines on the bottom panels show charge neutral,
strange matter in chemical equilibrium with leptons.

The coexistence line for the chemically-equilibrated case is clearly more similar to the Yo = 0
cases at low temperatures (when 1 is more negative, see Figure 2 of [105]), and becomes
slowly more similar to the Ys # 0 at large temperatures, when strangeness is abundant.

Numerical values for the critical end point and for the T = 0 portion of the phase diagram
are given in Table 1. For some of the cases, the baryon chemical potential is different in each
phase which, again, traces back to Equation (3). The cases in which this happens, namely
Yo = 0.5 and Y7 = —0.5 in the presence of net strangeness, are shown in Figure 3, together
with the other cases with strangeness for comparison. Here the critical end point is only
distinguishable for the Y; = —0.5 case, in which the critical temperature is a bit lower and
the free energy per baryon larger than the other cases. It was shown in Reference [106], using
the NJL and the PNJL models to study instabilities in quark matter related to the liquid—
gas phase transition, that large isospin asymmetries (more negative Y7) and net strangeness
weaken the first-order phase transition, making it easier for it to become a crossover. This is
in partial agreement with what we found in this work (we found the opposite with respect
to strangeness). This difference is related to the fact that in our case the critical end point is
strongly affected by the presence of hadrons.

Concerning the general position of the lines in Figure 3, as discussed in detail in Ref-
erence [101] for the specific case of zero and large temperatures, larger charge fractions or
smaller isospin fractions (both meaning more balanced amount of protons and neutrons or
up and down quarks when not considering strangeness) push the phase transition to larger
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Y,=0,Y# 0
I Y,=0,Y # 0
— Y,=050rY,=0,Y=0
Y,=00rY,=-0.5, Y =0

— Yo=-Y Y #0

lepton °

1 1 1 1
400 800 1200
Ng[MeV]
Figure 2. Temperature versus baryon chemical potential for several cases with different fixed charge or

isospin fractions with and without net strangeness, plus the particular case of chemical equilibrium with
leptons. In all cases the baryon chemical potential equals the free energy per baryon.

150 |

;100 L YQ=0’YS¢0 .
é’ [ — Y, =05, Y #0
: I Y, =0,Y, #0
50 Y, ==05,Y,#0
- — Yo=- Ylepton ’ YS;é 0
0 [ 1 1 1 1 1 1 1 1 1 1 1 1
400 800 1200

~y

I [MeV]

Figure 3. Temperature versus free energy per baryon for several cases with different fixed charge or
isospin fractions but always with net strangeness, plus the particular case of chemical equilibrium with
leptons. Strangeness is not constrained.

baryon chemical potentials at a given temperature. This has to do with how much more this
change softens hadronic matter, so the quark phase becomes more energetically favored at
lower energy densities, which corresponds to larger baryon chemical potentials. The coex-
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Table 1. Summary of baryon chemical potential, free energy per baryon, and temperature at the critical
end point and the baryon chemical potential (in either side of the coexistence line) and free energy per
baryon at zero temperature under differing conditions of strangeness, fixed charge/isospin fraction or
in chemical equilibrium with leptons. All units are in MeV.

Cases By fler Ter 1BS 1BG o
Yo=0,Y; £0 240.1 240.1 168.5 1334.0 1333.0 1334.0
Y[ =0,Y. £0 2314 2314 168.8 13967 13968 1396.7

Yo =05, =0 3927 3927 1652 1382.0 1381.0 1382.0
Yo=0Y =0 727.1 727.1 1474 13290 1328.0 1329.0
Yo = 05,Y; £0 276 2440 168.8 1382.0 1381.0 1382.0
Yi = —05,Y: #£0 2959 3289 166.8 1322.8 13143 1322.8
Yo= —Vip Ys A0 2369 2369 1687 13455 13454 13455

istence line for the chemically-equilibrated case is clearly more similar to the Y5 = 0 and
Y; = —0.5 cases at low temperatures.

4. Conclusions

After an introduction to the topic of critical points, we discussed qualitative results for
critical end points reproduced by the CMF model. In order to do so, we first built three-
dimensional phase diagrams showing the deconfinement coexistence region as a function of
temperature, baryon chemical potential, and either charge fraction ,Yq, or isospin fraction,
Y;. We also analyzed different scenarios concerning zero or unconstrained net strangeness
fraction, Y5, and presented results for the particular case of weak chemical equilibrium with
leptons.

We then focused on different specific cases for combinations of Yo = 0, Yo = 0.5, Y] =0,
Y; = —0.5, weak chemical equilibrium, Y5 = 0, and Ys # 0. The isospin symmetric and the
large charge fraction cases present a later (in both baryon chemical potential and free energy
per baryon) phase transition at low temperatures. These cases correspond to matter created in
heavy-ion collisions or in supernova explosions. At large temperatures, all curves are close,
but some extend to significantly lower baryon chemical potentials and free energies. The ones
that do not, and therefore present a distinguished critical end point, are the non-strange cases,
once more corresponding to matter created in heavy-ion collisions. This feature had not been
investigated before within the CMF model.

For astrophysical conditions, corresponding to larger net strangeness content and nega-
tive isospin fraction (or low charge fraction), this means an earlier confinement phase transition
(lower value of baryon chemical potential and free energy per baryon) and a still strong transi-
tion that extends high in temperature. This is an encouraging result, as it has been shown that
strong first-order phase transitions can leave distinguishable signals in the post merger part
of gravitational wave signals from neutron star mergers [107].
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