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Abstract Stochastic computing (SC) is a digital design 
paradigm that foregoes the conventional binary encoding in favor 
of pseudo-random bitstreams. Stochastic circuits operate on the 
probability values of bitstreams, and often achieve low power, low 
area, and fault-tolerant computation. Most SC designs rely on the 
input bitstreams being independent or uncorrelated to obtain the 
best results. However, circuits have also been proposed that 
exploit deliberately correlated bitstreams to improve area or 
accuracy.  In such cases, different sub-circuits may have different 
correlation requirements. A major barrier to multi-layer or 
hierarchical stochastic circuit design has been understanding how 
correlation propagates  while 
meeting the correlation requirements for all its sub-circuits. In 
this paper, we introduce correlation matrices and extensions to 
probability transfer matrix (PTM) algebra to analyze complex 
correlation behavior, thereby alleviating the need for 
computationally intensive bit-wise simulation. We apply our new 
correlation analysis to two multi-layer SC image processing and 
neural network circuits and show that it helps designers to 
systematically reduce correlation error. 

Keywords - Stochastic computing; signal correlation; correlation 
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I. INTRODUCTION 

Stochastic computing (SC) is a digital logic design paradigm 
that performs computation using pseudo-random sequences of 
bits [1]. SC was originally proposed in the 1960s, but has seen 
a recent resurgence of interest due to its ability to implement 
computationally expensive functions such as digital filters [2] 
and low-density parity-check (LDPC) decoders [3] with lower 
area and higher soft-error tolerance than conventional binary 
approaches [1]. In SC, a stochastic number (SN) 

 is a sequence, or bitstream, of  successive s 
or s sampled from a binary random variable. In the basic 
(unipolar) case,  takes on a value  in the interval  
defined by the probability that any arbitrary bit  is , i.e., 

. Figure 1a shows a classic example of how SC 
achieves multiplication using a single AND gate, saving 
considerable area relative  to a conventional adder-based binary 
multiplier. Figure 2a-b show the circuits used to convert binary 
values to and from SNs, respectively. One inherent practical 
limitation of SC is that all operations are approximate and are 
susceptible to quantization errors and random fluctuation errors 
(RFEs) [4]. In general, these errors decrease as the bitstream 
length  is increased, creating a smooth tradeoff between 
accuracy and latency. 

Stochastic circuits are also susceptible to correlation error, 
which occurs when the correlation(s) between one or more 
pairs of inputs are different from the optimal amount of input 
correlation.  
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Fig. 1: Example of stochastic behavior of an AND gate: (a) With uncorrelated 
inputs of  and , computing the product . (b) With correlated inputs, 
computing . Here, the bitstream length is . 

 

Fig. 2: Other fundamental SC components: (a) Stochastic number generator 
(SNG), consisting of a random number source (RNS) and a comparator; (b) 
Stochastic-to-binary converter using a binary counter; (c) Multiplexer (MUX) 
computing scaled addition . 

    For example, the AND gate circuit in Fig. 1 requires 
independent (uncorrelated) inputs to perform accurate 
multiplication, and Fig. 1  
changes from  to  when the 
bitstream  is suitably correlated with . 

Observe that the primary difference between the two cases in 
Fig. 1a-b is the fact that the input bitstreams for the bottom 
case have the maximum possible overlap between the 1s. In 
prior SC research, correlation between pairs of bitstreams is 
most frequently measured using the stochastic cross correlation 
(SCC) metric, which assigns  to this maximum 
overlap (maximally correlated) case,   to the 
case with minimum overlap (sometimes called anti-correlated), 
and  to the uncorrelated case [5]. SCC, which is 
discussed further in Sec. II, is a piecewise-linear function that 
connects these three extrema, allowing bitstreams with partial 
correlation to be represented as well.  

In SC, bitstreams may become correlated for several reasons, 
such as circuit fan-in/fan-out or random number source (RNS) 
sharing among inputs. Unlike quantization error and RFEs, 
correlation error does not generally decrease with bitstream 
length  
structure and its input sources. 



 

 
 

Fig. 3: Roberts Cross edge detection (RCED) circuit, exploiting input 
correlation SCC= +1 to compute a scaled sum of absolute differences. 

To design accurate SC circuits despite undesired correlation, 
prior research has relied on adding extra hardware in the form 
of sequential correlators and decorrelators for (re-)generating 
input bitstreams [6][7][12]. Circuits that deliberately exploit 
correlation have shown promising results for some important 
SC applications, since they often lead to compact designs 
without expensive correlation manipulation hardware [5].  

For instance, in [8], Alaghi et al. propose the small edge 
detection circuit shown in Fig. 3, which computes the function 

 when the data inputs all 
have maximum correlation of  with respect to each 
other. The first-layer XOR gates perform absolute-valued 
subtraction; the second layer consists of a MUX scaled-adder. 
This RCED design saves considerable area over conventional 
SC implementations because the first layer is simple and 
employs maximally correlated input bitstreams that can share a 
single RNS. However, like the AND gate in Fig. 1, it exhibits 
correlation error if its inputs do not meet its input correlation 
specification. The AND gate multiplier requires , 
while the RCED circuit requires . Fig. 3 also shows 
how the intermediate signals from the first layer of XOR 
gates are partially correlated at some in-between value 

. With the notable exception of the MUX scaled-
adder, which is insensitive to correlation, nearly all known 
useful stochastic circuits require that the correlation between 
pairs of inputs be maintained at , , or  for 
the best accuracy, so using the pair of XOR-gate absolute-
subtractors as an input to any other design would likely result 
in correlation error. In general, such correlation degradation 
across circuit layers poses a major and poorly understood 
problem for modular, hierarchical stochastic circuit design. 

One notable example of prior work done in designing multi-
layer circuits that exploit correlation is [12]. Here, Abdellatef 
et al. design a multi-layer SC image processing pipeline 
consisting of median filtering, smoothing, edge detection, and 
thresholding. However, their design strategy is restricted to 
finding sub-circuits that either leave correlation completely 
unmodified or are entirely insensitive to correlation, otherwise 
re-correlators are added to correct partial correlation. Such an 
all-or-nothing strategy is often unnecessarily complicated and 
pessimistic, as designs receiving input correlations that are 
close to the ideal requirements (e.g.,  instead of 1) 
may still achieve sufficiently low error. To guide SC design, a 
mathematical model for quantifying correlation propagation 
and its error is highly desirable. 

Early attempts to perform mathematical SC correlation 
analysis utilized probabilistic transfer matrix (PTM) theory, 
first proposed in [9], partly because of its ability to model 
some aspects of correlation [5]. PTMs, intuitively, are an 
extension of Boolean truth tables that permit probabilistic 

inputs/outputs, and thus naturally bridge the gap between 
conventional Boolean analysis and SC. Existing PTM theory, 
however, has no general answer for how to specify the input 
correlation requirements of SCs, or how to extract the output 
correlation structure after applying PTMs. Therefore, in the 
literature the accuracy of stochastic circuits is determined 
almost exclusively by means of bit-level simulation, which is 
computationally expensive and provides little insight into the 
factors underlying correlation [4]. In this paper, we address this 
issue by introducing correlation matrices, which are matrices 
specifying all of the pair-wise correlations between a set of 
bitstreams. Our method is unique in its ability to handle circuits 
with any number of inputs and outputs, and with any 
input/output correlation structure. 

The main contributions of this work are: 

 The adoption of correlation matrices as explicit and 
concise representations of the correlations between 
stochastic bitstreams in multi-layer circuits. 

 An extension of PTM algebra that employs correlation 
matrices as a tool for correlated circuit analysis and 
synthesis, which reduces reliance on bit-level simulation. 

 An application of our correlation analysis to the design of 
multi-layer image processing and neural network circuits 
in order to reduce correlation error. 

II. BACKGROUND 

First, we briefly discuss methods of measuring correlation 
within stochastic circuits, as well as the relevant theory behind 
probability transfer matrices (PTMs). 

A. Correlation Measurement in SC 

Early attempts to understand the impact of correlation on SC 
primarily used conventional Pearson correlation from statistics 
[10]. However, in [5] Pearson correlation was shown to be 
suboptimal for SC due to its value dependence. By far the most 
widely used correlation measure in the SC context is the 
stochastic cross correlation (SCC) [5] defined by Eq. 1: 

(1) 

where  measures the likelihood of finding a pair of 
overlapping 1s, as in . For example, if the SNs are  

 and , then 
. Consequently, , because these 

bitstreams have maximum overlap of 1s. To gain some intuition 
about SCC, note that the numerators of both piecewise cases 
are the same. We can rewrite Eq. 1 as:  

 (2) 

    Here,  is a piecewise function that scales the SCC 
value to keep it in the interval .  

B. Probabilistic Transfer Matrices 

Next, we explain how PTMs may be used to model the 
behavior of stochastic circuits [9][5]. Suppose we have an n-
input combinational stochastic circuit that receives a vector of 
SNs, , and computes a set of  Boolean functions: 

. The resulting output  is a new k-element vector of SNs. 
We treat  and  (boldface) as vectors of the 
and SN probabilities, respectively, i.e. . 



 

 matrix  whose rows 
represent all possible circuit input patterns:  through 

, and whose columns represent all possible output 
patterns. The th entry of the PTM is the probability that the 
input pattern given by row  will produce the output pattern 
given by column . A PTM is therefore summarizes the 

. As an example, consider the MUX 
adder shown in Fig. 2c, which has a select input probability of 

. If  is constant and input  is independent of both MUX 
data inputs  and  (such as in RCED)
8-row Boolean truth table may be replaced by a 4-row PTM: 

 
 

PTMs generalize the concept of truth tables to circuits with 
probabilistic input-output values, including those that are 
correlated. If the MUX circuit were fed correlated inputs, then 
the input pattern  will occur more frequently than the 
pattern , so these rows of the PTM would have a 
higher impact on the output probability distribution.  

On their own, PTMs, like truth tables, make no assumption 
 signal distribution. To model this 

distribution, we must assign a probability value to each of the 
 rows. In the existing PTM literature, a separate 

 PTM containing all the joint input probabilities is used 
[9][5]. For example, a circuit with 2 inputs has the following 
length-4 input vector: 

 (4) 

As noted in [5],  implicitly holds information about 
correlation between circuit inputs. For instance, the vectors 

 and ,  transposed 
here for brevity, both refer to a pair random variables with 
marginal probabilities of 0.5, but they differ significantly in 
terms of SCC: The first has , while the second 
has  . Since  is a vector carrying external 
information about the input SNs, we distinguish it from 
ordinary circuit PTMs by designating it as a probability 
transfer vector (PTV). 

When combined with PTMs, PTVs are a powerful tool for 
analyzing the behavior of stochastic circuits. Consider an - 
input circuit with output function  and a  PTM . 
The   output PTV  can be expressed as a 
matrix-vector product between a PTM and PTV, thus: 

 (5) 

Intuitively, this product computes a weighted sum of the 
rows of the PTM, analogous to indexing into a Boolean truth 
table. An important consequence of Eq. 5 is that the PTMs of 
subsequent layers within a multi-layer circuit may be 
combined using matrix multiplication, as shown in [9]. 
Consider a two-layer circuit where  and  are the PTMs 
for the first and second layers, respectively. Then the overall 
circuit behavior is given by . This 
composition can be thought of as two iterations of Eq.     5, 
where we first compute  followed by 

. Therefore, if the input PTV  is known, the output 
PTV of any -layer combinational circuit may be found via  
successive matrix multiplications. 

III. EXTENSIONS TO PTM ALGEBRA 

A. Finding the Output Probabilities 

In Sec. II, we showed how to find an output PTV for a given 
input PTV. Now, we present a new method for transforming 
any PTV back into a vector of probabilities. This allows us 
to evaluate any function using exact PTM 
algebra instead of approximating it with bit-level simulation. 
Suppose we define a  matrix  such that the th row 
contains the -bit binary representation of the integer value 

. We call such a matrix a binary integer matrix (BIM). For 
example, the BIM for 2-bit binary integers is: 

 (6) 

BIMs are useful for PTM analysis because each row  of a 
PTV corresponds to the probability of seeing a specific binary 
bit pattern such as , and this pattern is given by the 
matching th row of a BIM. Formally, we write: 

. Given this relationship, we can use 
 to reduce (marginalize) PTVs back into probability 

vectors via matrix-vector multiplication. 

Theorem 1: Given an -input, -output stochastic circuit 
represented by the PTM , and a PTV  defining the circuit 
input, the input and output probability vectors are, respectively: 

 (7) 

 (8) 

As an example, by applying Eq. 7 to the two-input PTV in Eq. 
4, we see that the result is exactly equal to the vector of marginal 
probability distributions (by the law of total probability): 

 

If the input PTV is known, Theorem 1 is an exact alternative 
to circuit simulation for finding the output probabilities, even for 
circuits with many more than 2 inputs/outputs. However, in 
practical circuit analysis, often only  is known, not . 
Unfortunately, we cannot generally compute the inverse of Eq. 
7 or Eq. 8. Input PTVs cannot be found with only knowledge of 

, since  on its own does not include correlation infor-
mation. In Sec. III-B we explain how to find this information, 
then in Sec. IV we combine it with  to form the input PTV.  

B. Correlation Matrices & Mutual Correlation 

For a SC with  inputs, we must consider each of the  
possible input signal pairs individually for correlation analysis. 
We employ correlation matrices as a concise method of 
representing all such pairs. Thus, we define a correlation matrix 

 such that the th entry is . Correlation 
matrices are always symmetric, and their diagonal entries are 
always 1 because bitstreams are always fully correlated with 
themselves. For SC circuits requiring independent inputs,  is 
just the  identity matrix . A more complex example is the 
RCED edge detector in Fig. 3. It requires that all data inputs , 

(3) 



, , and be fully correlated (SCC = 1) with each other, 
however the select input must remain uncorrelated (SCC = 0) 
with all data inputs. We can express this input correlation 
requirement with the following correlation matrix:

                                               (9)

Typical stochastic circuit designs including RCED require 
all pairs of input bitstreams, or a subset of pairs, to maintain the 
same correlation value with respect to each other. We call this 
desirable property mutual correlation. For example, the set of 
data inputs to the RCED is mutually correlated
with , since the respective entries in the correlation
matrix (Eq. 9) are 1 for all pairs of bitstreams in this 
group.

Just as we were able to reduce a PTV to probabilities 
(Theorem 1), we can also extract the correlation information 
from a PTV, yielding a correlation matrix without having to 
perform bit-wise simulation:

Theorem 2: Given a PTV of size specifying a vector
of stochastic bitstreams , and their corresponding 
probability values , the correlation matrix is:

(10)

Observe that and can be found from using

Theorem 1, thus Eq. 10 in Theorem 2 depends only on . 
Eq. 10 extends the definition of SCC given in Eq. 2. The
summation term computes . It first identifies all possible 

ways bitstream can overlap with bitstream using the relevant
columns of a BIM. If bitstreams and overlap on the th 
pattern, the probability of this pattern occurring, , is added
to the total for . Theorem 2 can be used to find the exact

output correlation matrix of a circuit with an arbitrary PTM
using the output PTV . This knowledge can 

guide multi-level circuit design by allowing one to check if the 
output correlation matrix of a given layer matches (or is close 
to) the correlation requirements for the next layer.

IV. GENERATING INPUT PTVS

So far, we have shown how to extract the probability vector 
and correlation matrix information from a PTV using Theorems 
1 and 2. However, we also noted that these theorems have 
limited applicability unless is known 
ahead of time. To solve this problem, we now explain how to 
construct PTVs for several common types of correlation 
matrices. In each case, the PTV for correlation matrix is
treated as a function of the input probabilities, .

A. PTVs for Mutually Independent Inputs

In SC design, the most common correlation matrix is the 
identity matrix , which occurs when all bitstreams are 
mutually correlated at , i.e., are independent. For this 
case, we write the PTV as . Now consider such a PTV 
for a pair of inputs and . When sampling from bitstream

, there are two possible outcomes: and , with 
probabilities and , respectively (Bernoulli trials).

Likewise, the same is true for . Then, with denoting the 
tensor product operator used in PTM theory for modelling 
parallel circuit elements (see [9]), we can write:

(11)

Here, we utilize the well-known identity from probability
theory that if and are 
independent. The tensor product in Eq. 11 has the effect of
applying this rule to all four possible joint samples. For 
instance, the probability of sampling and is 

. This observation generalizes to the following 
equation for the PTV of any number of independent inputs:

(12)

B. PTVs for Mutually +1/-1 Correlated Inputs

Next, we show how to derive a PTV for a set of inputs
that are pairwise mutually correlated with , which 
we write as and , respectively. After
independent inputs, these are the most frequently used 
correlation matrices. To illustrate, Fig. 4 shows a group of three 
bitstreams of length correlated at , as well 
as their corresponding PTVs:

Fig. 4: Example of three correlated bitstreams and their PTVs. (a) (b) 
Here, , , .

From Fig. 4, we observe that both correlated PTVs are sparse 
vectors, and the locations of the nonzero entries depend on the 
relative magnitudes of and . To construct such
PTVs, first recall that the th row of a PTV corresponds to 
the probability of seeing the bit pattern represented by the th 
row of a BIM, i.e., . For the th
pattern, suppose we collected the probability values of the
inputs that are required be 0 and those that are required be 1
into two sets, and
respectively. For example, the index in the PTV of a -
input circuit has 

. Therefore, and . We utilize 
these two sets to state the following theorem:

Theorem 3: Given an input vector , of length , the PTVs 
for mutual correlation are:

(13)

(14)

    In the case of +1 mutual correlation, we can see from Fig. 4a 
that a 1 on the smaller of and will imply a 1 on the larger.



Thus, in this case. Similarly, 
a 0 on the larger bitstream implies a 0 on the smaller one, so 
we subtract , yielding: 

. Eq. 13 from Theorem 3 generalizes this min-
minus-max procedure, and accounts for the edge cases 

and 
by unioning the and sets with 1 and 

0, respectively, preventing the sets from being empty.
    For mutual correlation, note that the bitstreams in 
Fig. 4b contain no overlapping 1s, which is true if . We 
find that, with very few exceptions, inputs mutually correlated 
at can only have if . Under such input 
restrictions, the only nonzero rows of the PTV are those with 

representing the patterns 001, 010, 100, etc. These 
rows contain all of For 
example, . Eq. 14 implements 
this, with special cases for and .

C. PTVs for more Complex Correlation Matrices

Next, we introduce two identities that allow us to express a 
broader class of correlation matrices as PTVs. In practical
correlation analysis, the circuit inputs are not necessarily all 
mutually correlated at , 1, or . For instance, the 
matrix from our RCED example (Eq. 9) specifies that the 
data inputs are mutually correlated with , while the 
select input has with all other inputs. is an 
example of a broad class of block diagonal correlation matrices, 
a structure that appears commonly in SC design. A general 
block diagonal correlation matrix has the form

(15)

where are square correlation matrices (which may 
have different sizes) and is the number of sub-matrices. We 
can construct PTVs for such matrices by again employing the 
tensor product of standard PTM theory. If are 
the PTVs of the component correlation matrices, then the PTV 
of the full block matrix is:

(16)

In addition to block matrices, fractional SCC values often 
appear in practical circuit analysis. They occur naturally as 
signals propagate through multi-layer circuits. To handle such 
cases, we can use the fact that the SCC equation is (piecewise)
linear. Thus, if and are correlation matrices containing 
values that all have the same sign, and is a scalar, then
the following equation holds:

(17)

Equation 17 generalizes a result in [5] that circuits whose 
inputs have fractional SCC values compute functions that are 
linear combinations of the functions at and

. We now illustrate the utility of Eqs. 16 and 17 with an 
example: Suppose we wish to model the behavior of the RCED 
circuit when the data inputs are mutually correlated at 

instead of 1. This could occur if the RCED circuit is fed 
from a prior layer. The desired correlation matrix is:

(18)

In Eq. 18, the fractional correlation matrix is broken into a 
linear combination of a block correlation matrix and an identity 
matrix. We then use Eqs. 16 and 17 to find the PTV:

(19)

V. APPLICATION TO CIRCUIT DESIGN

    In this section, we use our PTM and correlation matrix results 
to show that apparently equivalent [11] designs can have very 
different correlation properties, and that this fact is useful for 
reducing correlation error in multi-layer circuits. Consider the 
MAJ gate shown in Fig. 5b, which outputs a 1 if a majority of 
its inputs are 1. It is known that the stochastic functions 
computed by MUX and MAJ are the same when the select input

(an arbitrary choice for MAJ) is set to 0.5 [11] both gates 
compute the weighted sum: . Despite this, the 
PTMs of these two circuits differ, as shown in Fig. 5c-d:

Fig. 5: MUX and MAJ circuits, and their respective PTMs. 

    Observe that when the select bit , a MAJ gate outputs 
1 if either data input is also 1, whereas the output of a MUX
under the same input conditions is sensitive to only one of the 
two data inputs. This hints that the two gates might affect 
correlation differently. To analyze this, we evaluated the 
impact of substituting MUX gates for MAJ gates within two 
different three-layer digital filtering circuits, shown in Fig. 6.
The first circuit, Fig. 6a-b, is a set of four RCEDs followed by 
an OR-gate max-pooling tree [13]. The second circuit, Fig. 6c,
is a new design of a multiply-accumulate (MAC) circuit,
followed by a rectified linear activation unit (ReLU) layer, 
which is a ubiquitous operation in modern neural networks
[14]. Under ideal correlation conditions, this MAC-ReLU
neural network circuit will compute

. The subtraction comes from the 
behavior of an OR gate with one inverted input [5], which we 
exploit to add the positive and negative weight terms together.
    For these experiments, we derived a set of three PTMs (one 
for each layer) for each circuit in Fig. 6, then a second set for 
the same two circuits but with the layer-2 MUX gates replaced 
with MAJ. We then sampled 100,000 random input vectors 
( ) for each circuit. In the case of RCED, these samples were 
randomly selected pixel patches from the popular image 
processing datasets MNIST (handwritten digits), and gray-
scaled CIFAR-10 (thousands of images in ten classes). For 
MAC-ReLU, we simply used data and weights selected from 
the uniform random distribution. Note that any simulation-
based approach would still require doing this sampling, 
followed by simulating bits on every sample. 

For each sample, we generated the input PTV according to 
the input correlation matrices for layer 1. These were block
diagonal for both circuits, so we utilized Eq. 16. Specifically, 



 

 
Fig. 6: (a) Three-layer image processing circuit: Layers 1 and 2 together are 4 
parallel instances of RCED; Layer 3 is a 2x2 max pooling layer. (b) Image 

-layer neural network circuit: 
Layers 1 and 2 together compute inner products:  and 

; Layer 3 computes . 

RCED requires a larger equivalent of  (Eq. 9), where the 
data inputs  are mutually correlated with  and the 
select input  is independent. On the other hand, the MAC 
circuit requires the following correlation matrix: 

 
                            (20) 

 
The block structure of  enables AND-gate multi-

plication between independent data and weight signals, yet 
keeps the data as correlated as possible for the subsequent 
ReLU unit. Given each input PTV, we computed the overall 
output PTV (Eq. 5) as well as the PTVs for all intermediate 
layers. This allowed us to examine both the output probability 
values with Theorem 1, and the intermediate correlation 
matrices via Theorem 2. We computed the output correlation 
error using the usual mean squared error formula: 

 (21) 

where  is the circuit output supposing that the input to 
 

requirements. For the intermediate correlation matrices, we 
measured the average of all off-diagonal entries across all 
samples as an estimation for how well  correlation is 
preserved. The results are summarized in Table 1. 

Circuit Dataset 
Avg. Corr 
at Layer 2 

Avg. Corr. 
at Layer 3 

 
 

RCED-MUX MNIST 0.8607 0.8572 0.03077 
RCED-MAJ MNIST 0.8607 0.8779 0.02670 
RCED-MUX CIFAR-10 0.2986 0.3257 0.05492 
RCED-MAJ CIFAR-10 0.2986 0.4792 0.04342 
MAC-MUX Uniform 0.8474 0.8458 0.05161 
MAC-MAJ Uniform 0.8474 0.9371 0.00875 

 Table 1: Experimental results for Fig. 6 comparing the average SCC 
values of all bitstream pairs entering Layers 2 and 3, and the resulting absolute 
error relative to the design with ideal correlation, for the RCED/MAC-ReLU 
circuits using either MUX or MAJ gates for scaled addition.  

Table 1 shows that switching from MUX to  MAJ gates 
increases the average  entering layer 3 for all cases. For 
the RCED circuit, the improvement is more dramatic for the 
CIFAR-10 dataset, likely because the distribution of MNIST 

pixel values is highly skewed toward 1 and 0, relative to 
CIFAR-10 (see [4] for a detailed comparison). We see that the 
value distribution influences correlation after the first RCED 
layer; layer 2 sees higher incoming SCC for MNIST than for 
CIFAR-10. Switching to MAJ therefore yields a higher relative 
performance improvement for CIFAR-10 than for MNIST 
(1.26x reduction vs 1.15x). Our MAC-ReLU circuit shows that 
switching to MAJ achieves almost 6x lower correlation error, 
down to less than 0.9%, suggesting that our new MAC-ReLU 
design with MAJ gates does not require re-correlation 
hardware. Overall, these experiments show that stochastic 
equivalent circuits can yield different correlation behaviors. 

VI. CONCLUSION 

    Correlation propagation through multi-layered stochastic 
circuits has been poorly understood in the past, especially for 
circuits with more than 2 inputs. In this paper, we introduced 
the use of correlation matrices to model the correlation 
requirements of relatively complex stochastic circuits with an 
arbitrary number of inputs and outputs. We then described how 
to translate these input correlation requirements into PTM 
form, and how use them to compute the output correlation 
matrix and output probabilities given known input 
probabilities. Finally, we applied our correlation analysis 
technique to two digital filtering circuits, including a novel 
neural network layer design. We showed that replacing the 
MUX-adder sub-circuit in these designs with an equivalent 
MAJ-adder reduced correlation error. This 
is an example of how matrix-based correlation propagation 
analysis can be used to guide design decisions for practical 
circuits with multiple layers and many inputs/outputs. 
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