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The parameterization of a physical or empirical model from a set of highly
accurate but expensive calculations or measurements to generate less precise
but cheaper predictions is common in many disciplines. In computational
materials science and informatics-enabled design of materials, the cluster
expansion (CE) method provides a direct approximation of the free energy of a
lattice, or any other thermodynamic variable, in terms of a discrete cluster
function, making it one of the most widely used approaches for phase diagram
calculations, including order–disorder phase transitions. In this article, we
review the theoretical developments that culminated in the formulation of the
CE method, numerous statistical techniques currently used to fit and optimize
the parameters of the CE model, the convergence of the CE method with
modern machine learning and data science techniques, and recent develop-
ments that push the field beyond the conventional CE, including for structural
alloy design.

INTRODUCTION

The cluster expansion (CE) method is a widely used
and valuable technique to describe the thermody-
namics and cooperative phenomena, e.g., the order–
disorder transition, of complex, multicomponent sys-
tems.1–4 The method expands a lattice model free
energy as a linear combination of the free energies of
individual finite-size clusters of sites within the lattice
structure. The CE formalism sets up a mathematical
framework in which any scalar property of the crystal,
e.g., formation energy, electronic bandgap, and elastic
strain energy, can be represented in terms of multisite
correlation functions.5,6 The conventional cluster
expansion in its compact form expands a property of
a lattice per unit cell, PðrÞ, as a linear combination of
correlation functions �/a,

PðrÞ ¼
X

a

maJa
�/aðrÞ; ð1Þ

where the sum is over all the sets (also called
‘‘orbits’’) of symmetrically equivalent clusters of

sites, denoted by a; i.e., the sum in Eq. 1 is over
symmetrically distinct clusters a. The multiplicity
ma is the number of clusters in set a per unit cell (or
the number of symmetrically equivalent clusters in
an orbit), and Ja represents the effective cluster
interaction (ECI) coefficients. The cluster of sites a
can be any subset of sites in the lattice. Symmetri-
cally equivalent clusters are those that can be
mapped onto each other as a result of the applica-
tion of an intrinsic symmetry operation of the
lattice, and belong to the same orbit (Fig. 1). The
cluster correlation function is defined as the average
of the product of the spin variables ri, defined for
each site i in the cluster,

�/aðrÞ ¼
1
Na

X

b�a

Y

i2b
ri

 !

ð2Þ

where the sum is over all subclusters b contained
within cluster a, and Na is the number of subclus-
ters in cluster a (Fig. 2). The spin variables are also
known as occupation variables since they describe
the type of atom that ‘‘occupies’’ a given site. The
correlation functions are identical for symmetrically
equivalent clusters. Much of the utility of the CE
method stems from the fact that the cluster
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correlation functions encompass the symmetry of
the space group of the underlying lattice and form a
complete orthogonal basis set.2,3 Accordingly, any
function of configuration can be expanded into this
complete orthogonal basis set.

The CE formalism is a restricted variational
principle that consists of minimizing a free energy
functional where the exact entropy is approximated
by a linear combination of entropies of finite clusters
included in a given maximum cluster (or basic
figure).4,7,8 The accuracy of a particular cluster
expansion depends on the degree of convergence
from the truncation of the infinite sum in Eq. 1 to a
sum over a finite number of clusters. Successively
larger clusters lead to better approximations, but
the number of independent (model) variational
parameters, i.e., number of distinct correlation
functions, increases sharply with the maximum
cluster size, leading to practical limitations for
variational optimization.

The popularity of the CE method stems from the
major advantage of dealing with localized effects
that cannot be properly encapsulated with a mean-
field theory approach; For example, the method

produces flexible models that can include short-
range correlation effects with arbitrary complexity.
However, the method falls short near critical points,
where the correlations become infinitely long.
Accordingly, the cluster expansion is best suited to
study first-order transitions and to explore the
critical behavior of phases with substitutional
disorder.

With the progress of accurate electronic structure
calculations, the CE method has made a significant
contribution to the first-principles computation of
alloy properties.9–17 Density functional theory
(DFT)18,19 is the workhorse of modern computa-
tional materials research, but it is computationally
expensive and in practice limited to a relatively
small number of atoms. The CE has enabled DFT-
based simulations and understanding of multicom-
ponent systems and systems with chemical disorder
that at any given point of computational maturity
lie beyond what is possible using direct DFT
calculations. The standard approach is to determine
the set of ECI coefficients by minimizing the
difference between the total energies of a set of
crystal structures with different ionic

Fig. 1. (Left) Four distinct sets (or orbits) of pair clusters highlighted in a prototype square lattice. Symmetrically equivalent pair clusters belong to
the same orbit and are marked with the same color. Green, purple, red, and yellow correspond to nearest, second nearest, third nearest, and
fourth nearest orbits of pair clusters. The multiplicity of a clusterma is defined as the number of clusters in the same orbit, e.g., four for the nearest
and second nearest orbits in the square lattice. (Right) Two distinct set of three-body clusters highlighted in a prototype square lattice.
Symmetrically equivalent three-body clusters are marked in the same color. Note that in all cases the pair or three-body cluster includes the
central site (Color figure online).

Fig. 2. (Left) Two different basic figures (or maximum clusters) shown in different colors on a prototype square lattice. The subclusters included
in each basic figure are connected by solid lines, whereas those not included in the maximum cluster are connected by dashed lines. (Right)
Representation of all the subclusters that are included in each basic figure.
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configurations calculated using a first-principles
method and the prediction of the truncated cluster
expansion,9,12 but many other approaches have
been developed, and several are reviewed herein.

Many of the developments in the field since the
formalization of the CE method in 19843 have been
on the intertwined decisions of where to truncate
the infinite sum in Eq. 1, which extends to the
number of sites to include as well as to their relative
distances, and which clusters of the same size but
different relative distances to include (Fig. 3).
Although initially the selection of these clusters
was by trial and error, constraints and heuristics
were introduced rapidly12 and formal frequentist
statistics with techniques that nowadays we would
recognize as ‘‘data science’’ were established in the
early 2000s.20 More recent developments include
Bayesian methods that can implement knowledge or
assumptions about the system via physics-informed
priors,21,22 which can substantially reduce the
amount of data required to train CE models. The
convergence of modern machine learning and
related fields with the CE method has brought
powerful additions to the methodology; For exam-
ple, compressed sensing23 has been used to optimize
the size and configuration of clusters in a Bayesian
framework,24 and nonlinear interpolation tools to be

used with neural networks and other machine
learning algorithms have been developed, providing
more resolution by implementing symmetry-
adapted cluster functions.25

In this review, we present the basic formalism
underlying the CE method and provide an overview
of its development starting from the early model of
Bragg and Williams and through the generalized
CE. We discuss the formulation of the original
cluster variation method (CVM), where the varia-
tional parameters are based on probability distri-
butions, and compare it with the formulation of the
general CE in which the cluster correlation func-
tions are the variational parameters. The chrono-
logical organization provides insight into the
practical issues of improving the accuracy of a
cluster expansion by selecting the best set of
clusters, and how the search for accuracy resulted
in the application of techniques from frequentist
and Bayesian statistics and the development of
special quasirandom structures (SQS). Moreover,
we review various extensions to the standard CE
formalism to account for lattice distortions and
relaxations, thermodynamics of point defects, and
diffusion calculations. The seminal paper by Kiku-
chi was published seven decades ago, and during
that time the vocabulary and notation have changed

Fig. 3. Clusters in a prototype square lattice, ranked in importance according to heuristic cluster selection rules. Cluster diameter, i.e., the
maximum distance between any two sites in the cluster, increases along the vertical axis from top to bottom. Cluster size, i.e., the number of sites
in the cluster, increases horizontally from left to right. A given cluster can be included in the expansion of Eq. 2 only if more important clusters
have already been included, which extends to clusters with smaller diameters and all the subclusters of the given cluster. Adapted from Ref.26.
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and even now are not completely homogenized. We
make our best effort to show all the formulae in
consistent notation to emphasize relationships and
facilitate comparisons, and we include compendia of
abbreviations and variables. The literature on both
methodological advances and applications of the CE
is extensive, hence it is impossible for any review to
be complete. Much has been omitted, particularly
regarding applications, but the formalism develop-
ment and implementations reviewed here are illus-
trative and we hope will serve as a starting point for
the interested reader.

This article is organized into four sections follow-
ing this ‘‘Introduction:’’ a chronological review of the
CVM and its development into the CE is given in
‘‘Cluster Variation Method’’ section, the application
of the CE method to predict thermodynamic prop-
erties and order–disorder phase transitions is out-
lined in ‘‘Development and Applications of the
Cluster Expansion Method’’ section, a review of
extended formulations of the CE that go beyond the
standard formulation is described in ‘‘Beyond the
Conventional Cluster Expansion Method’’ section,
and a discussion of current trends and future
directions is presented in ‘‘Outlook and Conclu-
sions’’ section. In ‘‘Original Development’’ section,
we review various developments that led to the
formulation of the CVM and its evolution towards
the CE method, and in ‘‘Cluster Variation Method
within the Variational Principle’’ section, we
describe the CVM from the perspective of the
variational principle while briefly discussing differ-
ent optimization approaches to be adopted for
different variational parameters in the CVM and
in the CE. In ‘‘Cluster Inversion Technique’’ section,
we trace the origin of the cluster inversion tech-
nique that allowed the interpolation in cluster space
of thermodynamic quantities, in ‘‘Optimal Clusters’’
section we discuss the development and formaliza-
tion of goodness of fit metrics for CE models using
frequentist and Bayesian frameworks, in ‘‘Chemical
Disorder and Special Quasirandom Structures’’
section, we review the development and use of
SQSs, and in ‘‘Code Implementations’’ section, we
list several implementations of the cluster expan-
sion formalism in standalone or integrated com-
puter codes such as the Alloy Theoretic Automated
Toolkit (ATAT)27 and the Atomic Simulation Envi-
ronment (ASE).28 In ‘‘Long-Range Order’’ section,
we review a CE formalism that integrates the long-
range ordering into the cluster function expansion,
in ‘‘Atomic Relaxations’’ section, we review the
reciprocal representation of the CE, which facili-
tates incorporation of atomic relaxations into the
cluster correlation functions, in ‘‘Lattice Vibrations
and Distortions’’ section, we review various CE-
based frameworks that take into account atomic
vibration and lattice distortion effects in the free
energy expansion, and in ‘‘Defects’’ section, we
review a local CE formalism that can take into

account vacancy formation and expand a kinetically
resolved energy barrier for vacancy-mediated diffu-
sive hops.

CLUSTER VARIATION METHOD

Original Development

The original concept of a cluster expansion was
built upon similarities with the theory of ferromag-
netism7,29–31 to describe the order–disorder transi-
tion in an Ising model.32,33 Bragg and Williams32

revealed the thermal statistical nature of atomic
arrangements in an alloy by considering the long-
range ordering in a lattice and the thermal agita-
tions that counter it. They described the potential
energy in terms of a degree of order g, i.e., long-
range order parameter, to understand the order–
disorder transition in alloys (see Table I for the
detailed formalism). Subsequent work by Bethe33

and Kramers and Wannier30,31 included the short-
range order effects on dynamic equilibrium of
atomic configuration (or spin configuration) in a
lattice by introducing a ‘‘neighbor order’’ parameter
1 (see Table I for the detailed formalism). Those
authors provided the first model that described the
variation of potential energy in a lattice in terms of
neighbor pair correlations, although the model is
limited to one- and two-dimensional lattices. Bragg
and Williams described the order–disorder transi-
tion according to the average state of order through-
out the lattice, i.e., long-range order, but the model
by Bethe could describe the local fluctuations of
atomic arrangements for a given long-range order
parameter. Subsequent work such as the ‘‘general-
ized quasichemical method’’ focused on improving
the approximation of the configurational energy,
i.e., successive approximations of the free energy of
the crystal, by including larger clusters as basic
figures.34–37

Kikuchi generalized and extended the Bethe
model so as to describe order–disorder phenomena
with better accuracy for three-dimensional lat-
tices.1 This effort led to the formulation of the
CVM by Kikuchi and coworkers38–41 based on the
variational principle for the free energy, in which
the free energy is minimized with respect to vari-
ations of basic figures of sites (clusters). In this
framework, the free energy Fcvm can be expressed in
terms of the cluster distribution qa,

Fcvm ¼
X

a�b

X

a

qaVa þ kTaa

X

a

qa ln qa

( )
; ð3Þ

where Va is the contribution of cluster a to the
internal energy and aa is the coefficient of cluster a,
which weighs its contribution to the configurational
entropy (see Table I for the detailed formalism). The
outer summation is over all subclusters a included
in the basic figure b, while the inner summations
are over all configurations of cluster a. Within the
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Table I. Chronological development of the CVM formalism

Bragg and Williams’s model

gðT;VÞ ¼ 1 � f4rð1�rÞðexpð VkTÞ�1Þþ1Þg1=2�1

2rð1�rÞðexpð VkTÞ�1Þ

V ¼ V0g;
dV0

dT ¼ 0
g: order parameter (g ¼ 1 complete order and g ¼ 0 complete disorder)
r: fraction of positions of order in the crystal block
T: temperature; k: Boltzmann constant
V: increase of potential energy due to one atomic replacement moving from an ordered to a disordered position.
V0: maximum potential energy change due to atomic replacement moving from order to disorder, corresponding to g ¼ 1
This model considers an effective average Hamiltonian variation Vðg;TÞ and disregards local fluctuations in degree of
order g at different points.
Ref. 32.

Bethe’s model
E ¼ E0 þ 1

4NzVð1 � 1Þ; V ¼ 1
2 ðVaa þ VbbÞ � Vab

g ¼ tanh zd a; 1 � 1 ¼ 2 sinhðz�2Þd
sinhð2z�2Þd cosh zd

a

g: long-range order parameter
1: order of neighbors (1=1 perfect order among neighbors and 1=0 perfect disorder)
z: number of neighbors of each atom; N: total number of atoms
V: difference of interaction energies between two equal and two unequal neighbors; E0: arbitrary constant
Vaa, Vbb: interaction energies between two equal neighbor atoms
Vab: interaction energy between two unequal neighbor atoms
d: effective interaction factor with the outer shell (this factor accounts for the pair interactions beyond the first shell)
This model distinguished between two different types of order; the order of neighbors, i.e., short-range order, and the order
of a crystal as a whole entity, i.e., long-range order. Including the neighbor order parameter in the energy expansion
enables capturing the local fluctuations in atomic ordering.
Ref. 33.

Kikuchi’s original CVM
Simple cubic lattice:

S ¼ k½9
P3

i¼1 biyi ln yi � 7
P2

i¼1 xi ln xi � 3
P6

i¼1 cizi ln zi�;
E ¼ 3

P3
i¼1 bi�iyi

Face-centered cubic lattice:

S ¼ k½6
P3

i¼1 cizi ln zi � 2
P5

i¼1 aixi ln xi � 5
P2

i¼1 xi lnxi�;
E ¼ 6

P3
i¼1 ci�izi

S: entropy per atom; E: energy per atom; �i: nearest neighbor bond energy
ai; bi; ci: number of different configurations having the same probability,
For Simple cubic lattice:
xi; yi; zi: probability of point, bond, and square configurations (basic figure: square)
For Face-centered cubic lattice:
xi; zi; xi: probability of point, bond, and tetrahedron configurations (basic figure: tetrahedron)
This model extends Bethe’s model to three-dimensional lattices and uses a combinatorial technique for counting the
number of atomic arrangements.
Original approach of Ref. 1.
Extension of CVM to other basic figures and lattices can be found in Refs. 38–41b

Generalized CVM
Scvm ¼

P
a�b

aaSa; Sa ¼ �k
P

a qa ln qa

Sa: entropy of cluster a; aa: geometric coefficient of cluster aP
a�b

: only sums over clusters a that are included in the maximum cluster b

qa: probability density function of cluster a; k: Boltzmann constantP
a: sum over all configurations of clusters a

aa ¼
P
a�b

ð�1Þnb�na ; qcvm ¼
Q
a�b

qaa
a

nb;na: number of sites in cluster b and aQ
a�b

: only multiply over clusters a that are included in the maximum cluster b
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CVM, basic clusters are defined as the largest
clusters, and subclusters are distinct clusters into
which a basic cluster can be decomposed (Fig. 2).

In principle, the CVM is a mean-field variational
method for which the free energy functional is derived
in terms of a truncated number of clusters, while their
interactions with the system are considered via a mean
field. The major improvement of the CVM with respect
to the generalized quasichemical model was the estab-
lishment of a general rule for selection of the basic
figures or clusters of sites that improves the quality of
the free energy expansion.38 Clusters of the same
number of sites can have different dimensionality; for
example, four sites can be in a line (one dimension), a
square (two dimensions), or a tetrahedron (three
dimensions). A question persisted of whether the
dimensionality for a given number of lattice sites
played a role in the quality of the expansion, but this
was settled when several studies indicated that it is
better in general to increase the number of sites in the
cluster while keeping its dimensionality low; e.g., it is
better to include a three-point basic cluster rather than
a square basic cluster in addition to pair clusters40,41

(Fig. 3).

The CVM can expand the free energy in terms of
basic figures of arbitrary sizes, but the methodology
is cumbersome for large cluster sizes in three-
dimensional lattices, which led to the development
of a heuristic known as the ‘‘combinatory factor’’
approach.1,38 Within this approach, the free energy
functional is minimized with respect to the proba-
bility distribution of the basic clusters, subject to
proper constraints (Eq. 10). The underlying con-
straint is that the distribution of clusters is to
remain unchanged after adding a lattice point to the
system. This heuristic approach formulates the
configuration distribution in terms of combinatorial
factors, which ensures the correct distribution of the
basic cluster and its subclusters, e.g., both spins and
pairs.

A reformulation of the CVM by Barker42 and later
by Morita8,43 derived from the exact variational
principle of statistical mechanics7 provides a sim-
pler approach to calculate the entropy of an arbi-
trary cluster a of size na. This approach reduces the
task of calculating the entropy based on combina-
torial factors to essentially counting the number of
clusters in the crystal unit cell. These developments

Table I. continued

Generalized CVM

Within the generalized CVM framework, the exact entropy is approximated by a linear combination of entropies of finite
clusters (Sa) derived from the basic cluster, i.e., the largest cluster, denoted by b. The underlying assumption is that, for
any cluster not included in the basic cluster, q ¼ 1 at any temperature. The CVM formalism ensures that the probability
density q is exact at T ! 1.
Ref. 55b

Sanchez, Ducastelle, and Gratias’s CE formalism

F ¼ NkT �
P
a

P
s
maJas </a0s > a þ

P
a
ba
P
r�a

qa ln qa

� �
;

ba ¼ maaa
</as > ¼

P
r2a

qa/as

F: Helmholtz free energy
N: number of lattice points in the crystal; k: Boltzmann’s constant; T: temperature
aa: geometric coefficient of cluster a (defined in the generalized CVM formalism above)
ma: number of a-type clusters per unit cell
Jas: the interaction energy coefficients
</as > : multisite correlation functions (see Eq. 4)
qa: probability distribution function for symmetrically equivalent clusters of type a (see Eq. 6)
The CE formalism introduced a set of multisite correlation functions that forms an orthogonal and complete basis set to
represent the thermodynamic functions, e.g., entropy, free energy, and the Hamiltonian. The correlation function
description within the CE formalism provides two major advantages compared with the CVM: (1) it provides a systematic
approach to determine the number of independent variational parameters in the CVM approximation by a subcluster
decomposition of the maximum cluster (or the basic cluster), and (2) it leads to a simpler computational approach for free
energy minimization in terms of independent correlation functions instead of Lagrange multipliers minimization of free
energy with respect to dependent cluster distribution functions with intricate symmetry constraints among them.
Ref. 3.

a. Valid for the first approximation of Bethe’s model, where the neighbor order parameter is determined by the first shell only.b. An
infinitely large basic figure in CVM coincides with the long-range order parameter g defined in the Bragg and Williams formulation.
Similarly, the infinitely large multisite correlation factor in the CE is the same as the long-range order parameter.** Models of
ferromagnetism and the quasichemical models are not summarized in this table. Refer to Refs. 7,30,31,34–37
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provided a general understanding that successive
inclusion of larger clusters would result in an
improved approximation of the free energy, but
the central problem of how to truncate the expan-
sion, i.e., how to choose the best basic figures in the
CVM, remained unsolved.

Two decades later, Kikuchi gave several tutorials to
de Fontaine, Sanchez, and collaborators about the
CVM methodology (see, e.g., Ref. 44), and this even-
tually resulted in the restructuring of the CVM by
Sanchez and collaborators into what is now known as
the CE method.2,3,45–48 The CE formalism has two
major advantages with respect to the generalized
CVM. First, Sanchez and de Fontaine discovered that
the number of independent variables for a given CVM
approximation is the total number of subclusters into
which the basic cluster can be decomposed, i.e., all
subclusters plus the basic cluster.2 This treatment
resolved the previous ambiguities about the relation-
ship between basic clusters and convergence of CVM
raised earlier by Barker and Guggenheim.42 In other
words, they found that increasing the basic cluster
size does not necessarily result in a more accurate
CVM approximation unless it adds to the number of
distinct subclusters. Second, Sanchez, Ducastelle, and
Gratias discovered that the cluster distribution func-
tions can be written as a linear combination of newly
introduced ‘‘correlation functions.’’3 They showed that
the correlation functions form an orthogonal basis in
the multidimensional space of discrete spin or occu-
pation variables. Accordingly, instead of minimizing
the free energy with respect to the probability distri-
bution of clusters (Eq. 10) while applying intricate
constraints among different cluster configurations
through the Lagrange multipliers approach, the free
energy functional is minimized with respect to inde-
pendent correlation functions (Fig. 4). As a result, the
CE formalism enabled the handling of large clusters,
which seemed formidable using the heuristic combi-
natorial factor technique, and paved the way to
incorporate second and third nearest neighbor pairs
and multisite clusters into the free energy expansion.

Within the CE formalism, any configuration of spin
(or occupation) variables on a crystalline system with
N lattice points is fully specified by the N-dimensional
vector r ¼ ½r1; r2; . . . ; rN �. The occupation variable
that characterizes lattice site i, ri, can take values
�m, �ðm� 1Þ, ..., �1, (0) for an M-component system
with M ¼ 2m (or 2mþ 1). Within this framework, a
complete set of orthogonal cluster functions /as is
constructed in terms of the first M discrete Chebyshev
polynomials, HðriÞ, as follows:

/asðri; ri0 ; . . . ; ri00 Þ ¼ HnðriÞHn0 ðri0 Þ . . .Hn00 ðri00 Þ; ð4Þ

where cluster a is defined by the set of lattice points
fi; i0; . . . ; i00g and s ¼ fn;n0; . . . ;n00g represents the set
of indices for the order of the polynomial (more
details can be found in Ref. 3). The Ising model
Hamiltonian H takes a particularly simple form
when expressed on the basis f/asg:

�ðkTÞ�1H ¼
X

a

X

s

Jas/as; ð5Þ

where Jas is an interaction energy coefficient. The
multisite correlation functions are defined as the
expectation values of the orthogonal cluster functions
(or basis functions) defined in Eq. 4, </a0s > a � �/as.
< � � �> a indicates the average over the basis functions
defined in Eq. 4 for all clusters a0 that are symmetri-
cally equivalent to cluster a, i.e., clusters that belong to
the same orbit. As opposed to the original formulation
of the CVM where a particular space group symmetry
is imposed through cumbersome linear constraints on
cluster distribution functions fqag, the symmetry can
be expressed straightforwardly in terms of the multi-
site correlation functions. This is because any two
clusters related by symmetry operations are charac-
terized by a unique set of correlation functions �/as.
Accordingly, the cluster probability distribution func-
tion qb for a given cluster of type b (where symmetri-

cally equivalent clusters b0 belong to the same type or
orbit) consisting of nb lattice points is given by

qb ¼ M�nb 1 þ
X

a�b

X

s

</a0s > a/as

" #
; ð6Þ

where the sum is carried over all nonempty clusters
a contained within cluster b.

Cluster Variation Method Within
the Variational Principle

The free energy functional can be expressed in
terms of the probability distribution function as
follows:

FðqÞ ¼UðqÞ � TSðqÞ ¼ �kT < log
exp �HðCÞ

kT

� �

q
>

UðqÞ ¼
X

C

qHðCÞ

SðqÞ ¼ � k
X

C

q logq;

ð7Þ

where q is the probability distribution function of
configuration C, H(C) is the Hamiltonian of config-
uration C, UðqÞ and SðqÞ are the energy and entropy
functionals in terms of the probability distribution
function, k is the Boltzmann’s constant, and T is the
temperature. The equilibrium distribution qex is the
Boltzmann distribution that results in the exact free
energy of the system

qex ¼
exp �HðCÞ

kT

� �

Z

Z ¼
X

C

expð�HðCÞ
kT

Þ;
ð8Þ

where Z is the partition function. Due to the
convexity of the logarithm function, i.e.,
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Fig. 4. Comparison of variational parameters in the CE and CVM. (Top) In the CE framework, the cluster functions f/ag form a complete
orthogonal basis for the free energy expansion, allowing unconstrained variational optimization. (Bottom) In the CVM, the cluster (probability)
distribution functions fqag form a nonorthogonal basis with intricate constraints among distribution functions (indicated as gðqa1 ; qa2 Þ), which arise
from retaining the correct distribution of clusters by adding lattice points to the system. The constrained variational optimization in the CVM
becomes formidable due to the existence of intricate relations among the basis vectors.
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< logX > � log<X > , the free energy functional for
any arbitrary distribution q is larger than the exact
free energy,

FðqÞ 	 �kT log

� exp �HðCÞ
kT

� �

q

�
¼ �kT logZ: ð9Þ

Therefore, the variational principle can be written
as

Fex ¼ min
q

X

C

qH þ kT
X

C

q log q;
X

C

q ¼ 1

( )
:

ð10Þ

Equation 10 shows that the exact free energy is the
minimum of FðqÞ over all admissible states, with
normalization

P
C q ¼ 1. Within any approximation

to minimize Eq. 10, only a subset of all admissible
states is considered, which are characterized by a
finite number of variational parameters; For exam-
ple, the Bragg–Williams method32 is the earliest
approximation in which the probability density
function factorizes over site probabilities,
qBW ¼

Q
i qi, where qi is the probability function of

different occupations of site i. Since
P

C qBW ¼ 1, the
Bragg–Williams approximation represents a subset
of admissible states. Bethe’s model33 and the Bethe–
Guggenheim model49 are next-level approximations
that account for the correlations between pairs of
sites. The probability density function is approxi-

mated as qBG ¼
Q

< ii0 > qii0Q
i
qp�1
i

, where p is the first neigh-

bor connectivity, and i and i0 label pairs of sites. This
is the simplest combinatorial factor representation
of the pair distribution function, which was gener-
alized and extended in the CVM.

The CVM approximation extends the factoriza-
tion of the probability density function to a set of
larger clusters and considers the correlations among
all subclusters that are included in a given maxi-
mum cluster or basic figure. For a basic cluster a,
qa ¼

Q
b�a ~qb, where ~qb represents the contribution

of subcluster b contained within a. Therefore,
qCVM ¼

Q
a q

aa
a , with the geometric coefficient of

cluster aa defined in Table I. The approximation in
the CVM stems from assuming that ~qc ¼ 1 for any
cluster c that is not contained in (or is not a
subcluster of) the basic cluster a. Within this
framework, earlier developments by Bragg and
Williams and by Bethe are in fact special cases of
the generalized variational method of the CVM.

The CE formalism provides an alternative
approach for variational minimization of free energy
in terms of correlation functions instead of cluster
probability distribution (see Table I for the free
energy equation in terms of correlation functions).
Therefore, the free energy is obtained according to
the following equations:

F ¼ NkT½ �
X

a

X

s

maJas </a0s

> aþ
X

a

ba
X

r�a

qa lnqa

#
;

qa ¼ M�na 1 þ
X

b�a

X

s

</b0s > b/bs

" #
; ð11Þ

0 ¼ @F

@ </as >
:

DEVELOPMENT AND APPLICATIONS
OF THE CLUSTER EXPANSION METHOD

Cluster Inversion Technique

The CVM was originally developed to approxi-
mate the entropy as a linear combination of multi-
site cluster entropies. Because it provides a direct
approximation for the free energy, many early
studies used the CVM to compute phase dia-
grams,50–54 where the energy parameters entering
the CVM free energy were determined by reproduc-
ing available experimental thermodynamic data
and equilibrium concentrations in the experimental
phase diagrams.

The advent of accurate electronic structure cal-
culations enabled the determination of the ECIs
from first principles, for example using DFT.18,19

These calculations, coupled with the availability of
increasingly cheaper and faster computation over
the past several decades as well as robust and
widely available codes, have enabled a revolution in
computational materials science. Nevertheless, they
are constrained by the size of the unit cell and the
number of chemical species. The cluster inversion
technique (also known as structure inversion) of
Connolly and Williams9 provided a way to simulate
the effect of chemical disorder on thermodynamic
quantities of interest by interpolating from calcula-
tions (or even measurements) of ordered structures
in the orthogonal space of the CE formalism.

In this technique, the ECIs are obtained by
directly inverting the following linear algebra equa-
tion (rewritten from Eq. 1),

PJ ¼ P; ð12Þ

where the scalar property P is calculated for as
many structures as the number of truncated cluster
coefficients J, and P is a matrix containing the
cluster correlation functions. The structure inver-
sion method is a determined linear problem and has
been used for phase diagram calculations, for exam-
ple, in Ref. 56. Later studies showed that solving the
overdetermined linear problem of Eq. 12, where the
number of data points, e.g., formation energies of
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various atomic configurations in a lattice, is larger
than the model parameters (the ECIs), through a
least-squares procedure or a similar method, is a
more efficient and accurate approach for determin-
ing the ECIs.10,12 Within the aforementioned
approach, the central task of constructing a cluster
expansion consists of generating an initial set of
training data and calculating a fit to ECIs. The
predictive capability of the CE can be assessed in
different ways, some of which are discussed in
‘‘Optimal Clusters’’ section. Several studies utilized
the CE method alongside first-principles calcula-
tions for computing phase diagrams; for example,
see Refs. 9,11–16. Due to the generality of the CE
method to describe any scalar lattice property, some
studies have used it to approximate other crystal
properties such as the short-range diffuse intensity
distribution for binary ordered alloys,5 the interplay
between magnetic properties and chemical order-
ing,57 and the electronic bandgap.6 Some studies
utilized the cluster expansions for low-symmetry
systems such as thin films, surfaces, and nanopar-
ticles.21,58–61

Optimal Clusters

The CE is in principle exact if all possible clusters are
included in the expansion, but its success is due to the
fast convergence with a finite and relatively small
number of compact clusters. Initially there was little
understanding of the artifacts induced by the trunca-
tion of the expansion at a maximum cluster, and the
selection of clusters was often done ad hoc for each
system. Other sources of error were not well charac-
terized either, such as the uncertainty in the first-
principles data used in the fit. Additionally, the effects
of atomic relaxations due to atomic size mismatch or
more subtle phenomena sometimes resulted in the
model’s being unable to correctly predict the quantity
being expanded for structures that were used to fit the
model, such as in the case of the Cu–Pd system.62

Sometimes this is called the ‘‘parrot test’’ since any
acceptable model should accurately predict data points
that were used in its training (repeat them back). In one
of the first attempts to remove human judgment from
the CE, Garbulsky and Ceder introduced additional
constraints on the ECI12 that optimized the CE orthog-
onal space itself. Two of these constraints are (cf. Eq. 1)

X

a

maJa
�/aðrÞ � PjðrÞ þ Dj ; ð13aÞ

X

a

maJa
�/aðrÞ 	 PjðrÞ � Dj ; ð13bÞ

where the subscript j denotes a particular atomic
configuration that is used to fit the model and Dj is the
error bar of data point PjðrÞ, thus the model is
optimized with respect to the number and order of the
clusters used in the expansion. When the constraints

are implemented in the CE, convergence can be
obtained with between 10 and 20 ECIs obtained from
between 30 and 50 atomic configurations.

Traditional techniques from frequentist statistics
were first applied in a systematic way to the
optimization of the CE by van de Walle and Ceder.20

It can be seen in Eq. 13 that two distinct challenges
exist: selection of optimal clusters and selection of
optimal atomic configurations. Cross-validation,63,64

along with certain heuristics such as the inclusion
of clusters of lower order before those of higher
order, was used to determine the optimal clusters
with minimum human intervention, although some
input, such as the size and the order of the largest
cluster to consider, is still required since the
number of ECIs is in principle infinite (Fig. 3).
Cross-validation consists of leaving one (or more)
data points at a time out of the dataset used to fit
the model parameters (typically called the ‘‘training
set’’ in machine learning settings), then using the
model to sequentially predict the values of the data
point(s) that was (were) left out (typically called the
‘‘validation set’’), and using the errors of the predic-
tions to determine how well a model ‘‘generalizes,’’
that is, how well it predicts values that are not in its
training set. In the case of the clusters to include in
the CE, the cross-validation score is used to find the
best combination of clusters that satisfies the
heuristics and user input. The energies of the
atomic configurations are not known a priori, so
cross-validation cannot be used to select the best
configurations, but it is shown in Ref. 20 that the
trace of the covariance matrix of the ECI can be
used to estimate the variance of the energies
predicted from a CE and hence identify the config-
uration that maximizes the reduction of the trace.
These ideas are implemented in ATAT.27

Bayesian statistics65 have also been used in
conjunction with the CE method and are particu-
larly appropriate for systems with low symmetry
such as nanoparticles and surfaces that with the
traditional methodology would require a large num-
ber of ECIs and hence a large training dataset. The
main difference between the Bayesian and frequen-
tist interpretations of probability is philosophical,
but it has real-life consequences: while frequentism
assumes that model parameters have true values
that can be determined from data (even if there is
uncertainty or noise), Bayesianism holds that there
is a probability distribution for the range of values
of the model parameters determined by the data
that has been observed. In practice, the key differ-
ence between these two approaches is that in
Bayesian inference the probability distribution of
the values of a parameter is updated each time a
new observation is made or new data become
available, and consequently a probability distribu-
tion (called the ‘‘prior’’) is required even before any
data has been observed. Following the methodology
developed by Mueller and Ceder,21 consider a
training dataset consisting of a vector of output
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values y and a matrix of input values X where the
jth element of y is the quantity of interest with
atomic configuration j and the elements of X are
given by

Xja ¼ ma
�/jaðrÞ: ð14Þ

The probability density for the optimal ECI is
QðvjX;yÞ, where the variable v is defined over all
the possible values of the ECI, and QðvjX;yÞ can be
estimated from Bayes’ theorem65 if a prior QðvjXÞ
is known or can be estimated. The key insight in
Ref. 21 is that property predictions are close to those
that can be predicted by a simple model and the
prediction of the simple model can be used as the
prior; For example, the energy of an alloy can in
principle have any real value, but in reality it will be
close to the average of the energy of the pure
substances, and the implementation of this knowl-
edge in the model can drastically reduce the amount
of data required to converge the CE. More recently,
the Bayesian approach has been used to study
nanostructures66,67 and has been combined with
compressed sensing for high-throughput computa-
tional thermodynamics.24

Advanced machine learning techniques have been
employed in an attempt to transcend the linear
interpolation embedded in the standard CE; For
example, Natarajan and Van der Ven utilized a
neural network, leveraging its nonlinearity to
describe distinct local orderings in a lattice.25 While
neural networks are widely used for describing
atomic potentials, Natarajan and Van der Ven
implemented them within the CE formalism by
using the correlation functions as inputs to the
neural network. Instead of describing the crystal
energy as a linear expansion of correlation func-
tions, the neural network can represent the lattice
site energy with a nonlinear function of multisite
correlation functions. Their framework obviates the
truncation error in the linear cluster expansion and
can describe complex, multibody interactions by
involving smaller clusters.

Chemical Disorder and Special Quasirandom
Structures

One of the most useful advantages of the cluster
inversion technique is that the properties of alloys
with chemical disorder (which are challenging to
study using DFT) can be predicted using Eq. 12
even when only ordered structures (which are
readily studied using DFT) are used in the system
of linear equations. It can be proved by induction
that, for a random binary alloy,

< �/as > D ¼ ðxA � xBÞna ; ð15Þ

where xA and xB are the normalized concentrations
of A and B atoms, na is the number of sites in cluster
a, and ‘‘D’’ denotes that the structure is chemically
disordered. This derivation reveals that the first few

interaction coefficients of the CE have a natural
interpretation for binary alloys. The zeroth order is
the value of the expanded quantity (energy, etc.) for
a disordered system with an equiatomic composi-
tion, the first-order coefficients carry the effect of
composition (þ1 for xA ¼ 1 and �1 for xA ¼ 0), and
the second-order coefficients carry the effect of
ordering (from þ1 for probabilistic certainty that
atoms of the same chemical species will be found in
a given orbit to �1 for probabilistic certainty that
atoms of the same chemical species will not be found
in a given orbit). The cluster inversion technique
has been influential in the development of compu-
tational methods to study chemically disordered
systems,68 several of which are discussed next, but
has also been used in experiments, for example, for
the interpolation of phonon density-of-states curves
of several binary alloys.69–72

Consider Eq. 15 for the case xA ¼ xB ¼ 0:5. In a
state of perfect disorder, all the correlation func-
tions vanish except for the zeroth order, but this is
difficult to achieve in periodic systems, particularly
if the repeating cell (supercell) has a small number
of atoms. Given an arbitrary configuration of atoms,
how well the configuration approaches randomness

can be quantified by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
</a0s >

2
a

p
. Zunger et al.

generated structures in which the positions of the
atoms in a finite repeating cell were selected
randomly and noticed that, although the standard
deviations of the correlations decreased as the size
of the supercell increased, they did not decrease
rapidly.73 They introduced the concept of the SQS,
which is an atomic configuration that minimizes the
correlation functions for a given structure and size.
In practice, a structure for which all the correlation
functions vanish might not exist, but minimizing
the correlation functions of smaller clusters (in
terms of both the number of sites in the cluster and
its physical size) even at the expense of bigger
clusters results in better approximations of ran-
domness because smaller clusters have a greater
impact on the quantity being expanded if the CE is
to converge.

An SQS can be designed for any composition and
degree of order, so the work of Zunger et al. opened
new research directions in computational materials
science, both in the development of methods to
generate SQS structures and in applications for
predicting the properties of alloys with chemical
disorder, particularly from first principles.74 Sev-
eral SQSs developed early on are likely overrepre-
sented in the scientific literature, e.g. body-centered
cubic,75 hexagonal close-packed,76 and face-centered
cubic.77 Historically, SQSs have been generated by
producing an exhaustive enumeration of structures
and correlation function values that are then used
to select the best one, but modern methods of
designing SQSs take advantage of probabilistic
global optimum search algorithms, e.g., Ref. 78.
The thermodynamic and electronic structure
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properties of many classes of disordered materials
have been calculated via SQSs, such as chemical
disorder in semiconductors,79 metals,80 per-
ovskites,81 and high-entropy alloys (HEAs).82 Mag-
netic disorder has been simulated using magnetic
SQSs in transition-metal nitrides83 and magnetic
unaries.84 A comparison between the electronic
structure of isotropic equiatomic FeV calculated
using the mean-field theory coherent potential
approximation (CPA) and a small SQS is presented
in Ref. 85.

Structural Alloy Design

For many structural applications, the alloy design
requires a profound knowledge of the role of defects
in the mechanisms of deformation, precipitate
hardening, and solid-solution strengthening. The
inherent capacity of the cluster expansion frame-
work to describe an arbitrary degree of configura-
tional order (or disorder) makes it a useful model for
studying the interactions of alloying elements, alloy
composition, and structural defects. In particular,
cluster expansions can be straightforwardly
employed to represent the energy of a system in
the presence of antiphase boundaries (APBs),
because APBs, unlike many other defects, do not
break the underlying lattice symmetry. An APB is a
planar defect that can be characterized as a collec-
tion of antisite point defects on the same parent
lattice as the perfect system. These planar defects
are generated by dislocation slips during order–
disorder transitions in many structural alloys. The
combination of retained lattice symmetry in the
presence of APBs and the role of (partial) ordering
in their formation makes CE a useful means to
study the thermodynamics and energy of formation
of APBs. This is because the CE formalism explicitly
considers the configurational disorder and requires
a distinct underlying lattice. Of critical importance
is to study the planar defect energy of an APB,
because it is a measure of resistance to dislocation
motion, with a low-energy APB associated with a
high likelihood of dislocation slip. Thereby, many
studies focus on enhancing APB energy, achieved
via impurity solute addition, for example, as a
strengthening strategy.

A number of studies have used CE as a high-
fidelity surrogate model to perform Monte Carlo
simulations of APB equilibrium, where direct quan-
tum-mechanical-based Monte Carlo simulations
become intractable. van de Walle and Asta pio-
neered the use of CE to parameterize the configu-
rational dependence of energy in hcp-based Ti-Al
alloy.86 They obtained short-range order parame-
ters from Monte Carlo simulations performed on the
CE-parameterized alloy energy, which were then
used to obtain the diffuse antiphase boundary
(DAPBs) energies.86 In another study, Sun et al.
employed CE to directly calculate the energy of
Ni3Al in the presence of an APB and study the effect

of nondilute Ti and Hf impurities on APB ener-
gies.87,88 Dodaran et al. studied the effect of multi-
ple alloying elements and temperature on the APB
energies of the c0 precipitates (L12-ordered struc-
tures) in Ni-based superalloys.89 The ATAT toolkit
has an implementation of the DFT-based CE that
can be combined with Monte Carlo sampling to
study APBs in arbitrary crystal structures and alloy
compositions.88

Natarajan and Van der Ven recently introduced
an extended CE formalism that can be utilized to
quantify a generalized stacking fault energy in
alloys.90 This new approach can significantly benefit
the design of many structural alloys, where under-
standing the interrelation of chemical disorder in
the alloy and the stacking fault energy can elucidate
crystal growth and plastic deformation mecha-
nisms. A more detailed description of this frame-
work is presented in ‘‘Defects’’ section.

Unlike APBs, other types of planar defects break
the underlying symmetry of a perfect lattice.
Accordingly, to employ the CE in the presence of
planar defects, additional considerations are needed
to define the cluster expansion framework. In what
follows, we review a number of studies that have
employed the CE to study surface problems, includ-
ing adsorbates ordering, surface segregation and
ordering, and surface phase diagrams,58,91–95 as
well as precipitation with coherent and incoherent
interfaces.96–106 Detailed chemical and structural
characterization of surfaces is essential in struc-
tural alloys for a microscopic understanding of the
stability of surface phases. Aside from structural
applications, a detailed understanding of surface
behavior is needed in many applications such as
substrates for thin-film growth, surface reactions,
and catalysis. Understanding the thermodynamics
and kinetics of precipitation in structural alloys is
essential to fully understand precipitate hardening
and its mechanisms. Precipitate–solid solution
interfaces play a crucial role in the mechanical
properties of an alloy.

To employ the CE framework to study surfaces, a
CE for the surface (or surface-cluster expansion) is
constructed in addition to the CE for the bulk. As
expected by the broken symmetry at the surface,
larger numbers of ECIs are needed to describe the
surface energy with the same level of approximation
(or truncation) as the bulk CE; For example, Drautz
et al.58 used a CE framework to study the compe-
tition between the tendency for Al segregation and
ordering in the Ni–Al system, where ordering is
induced by the symmetry breakage at the surface.
They showed that the 24 ECIs used to describe the
bulk Al–Ni system split into 400 inequivalent ECIs
at the surface, although many have negligible ECIs
and can be disregarded (see details in Ref. 58). In
another study, Han et al. employed a CE framework
to simultaneously study the segregation and surface
ordering tendency due to the presence of oxygen
adsorbates on the (111) surface of dilute Ru in Pt.
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They used a coupled cluster expansion framework,
in which the energy of the system is defined by two
coupled binary disorder subsystems, namely the
alloy surface (Pt or Ru occupation of sites) and the
adsorbate layer (oxygen adsorbed or not).92 Another
study by Lerch et al. extended the CE framework to
include an arbitrary number of H adsorbate sites on
Ir(100) surface.93

For precipitation study in alloys via the CE
framework, one should consider the misfit strain
energy (if any) aside from the interface energy
arising from the broken symmetry at the interphase
interface; For example, studies in Refs.
98,99,101,102 employed a mixed-space CE to study
the thermodynamics and time evolution of the
distribution of precipitate shapes and sizes in Al-
Zn alloy. The mixed-space CE combines a pair
cluster expansion transformed to the reciprocal
space with a many-body cluster (i.e., three-body or
higher) expansion in the real space. Pair cluster
representation in the reciprocal space enables a
converged description of even long-range pair inter-
actions. More details are described in ‘‘Atomic
Relaxations’’ section. The mixed-space CE is used
in Monte Carlo or kinetic Monte Carlo simulations,
respectively, to understand the effect of tempera-
ture on the size and shape of precipitates or their
kinetics. In these studies, the mixed-space CE
includes an additional constituent strain energy
term, which is defined as the strain energy of bulk
Al and Zn needed to maintain the coherency along
the interface. The strain energy term is calculated
by deforming the bulk fcc Zn and Al from their
equilibrium lattice constants to a common lattice
constant. This term describes the anisotropic long-
range coherency strain energy. Studies in Refs. 100
and 105 employ the standard CE formalism to
account for the chemical disorder effects without
explicitly including the interface and strain ener-
gies in the CE framework. Instead, the interface
and misfit strain effects are included via other
means, such as the parameters of a phase-field
model105 or direct DFT calculations.100

Code Implementations

There are various code implementations of the
cluster expansion formalism, which differ mainly in
the fitting procedure for obtaining the ECIs. ATAT,27

which implements the CE fitting procedure according
to the approach in Ref. 12 as part of an automated
phase diagram calculation framework from first-prin-
ciples data, was one of the first open-access implemen-
tations of the CE for phase diagram calculations, and is
constantly being extended.107,108 The Cluster
Approach to Statistical Mechanics (CASM) code imple-
ments a parameterization of the CE that incorporates
the lattice-dynamical degrees of freedom in addition to
the configurational variation in the standard CE109,110

(see Eq. 19 in ‘‘Lattice Vibrations and Distortions’’
section). The Piecewise Polynomial Potential

Partitioning code (P4)111 implements the coarse-
grained cluster expansion as part of ATAT (see Eq. 21
in ‘‘Beyond the Conventional Cluster Expansion
Method’’ section). More recent implementations of the
CE, such as the Integrated Cluster Expansion Toolkit
(ICET)112 and the CLuster Expansion in Atomic Sim-
ulation Environment (CLEASE),113 which is inte-
grated with ASE,28 enable advanced statistical
techniques for the ECI training and validation proce-
dures, such as linear regression algorithms (with and
without regularization), Bayesian regression, feature
selection, and cross-validation (Table II).

Integration with CALPHAD

The calculation of phase diagrams (CALPHAD)
method114 is widely used in industry and academia
to calculate phase equilibria in multicomponent
systems. The method is mature and robust, with
both proprietary and open-source codes and data-
bases. Its mathematical formalism115 introduces
terms to account for interactions between chemical
species that depend on each of the components
(unaries) of the system, and this increases the
sensitivity of the model dramatically with the
number of components, limiting the practical appli-
cability of CALPHAD to binaries and ternaries. The
databases consist of experimental or computational
data that can be used to describe the Gibbs free
energies of each individual phase in a compound.
Experimental data are typically too sparse to accu-
rately characterize the free energies of the relevant
phases, including metastable ones, so must be
augmented with results from first-principles calcu-
lations, empirical models, or machine learning
models.116 While CALPHAD is not as inherently
compatible with DFT calculations as the CE method
(see ‘‘Cluster Inversion Technique,’’ ‘‘Optimal Clus-
ters,’’ and ‘‘Chemical Disorder and Special Quasir-
andom Structures’’ sections), it can integrate the
predictions of any model, including DFT.78,117,118

BEYOND THE CONVENTIONAL CLUSTER
EXPANSION METHOD

Long-Range Order

One major practical issue with the CE method is
the truncation of cluster variables to a finite-size
cluster. While in principle an infinitely large cluster
represents the long-range order in the CVM approx-
imation, in practice a truncated cluster expansion is
used. Smaller clusters such as the pair or three-
body clusters are a good representation of short-
range order in the solid. However, by restricting the
cluster variation parameters to an arbitrary finite-
size cluster, the long-range ordering parameter is
overlooked, which is the major variational param-
eter in earlier developments such as the Bragg–
Williams model (Table I). To overcome this issue,
Laks et al.6 presented a general model that combi-
nes the long-range order parameter with a finite-
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size cluster expansion to describe any lattice prop-
erty. To this end, a general correlation function is
defined in terms of multisite correlation functions
�/f ðrÞ and the long-range order parameter g; For
example, the general correlation function for the
pair basic figure f is defined as

�Pf ðx; gÞ ¼ ð2x� 1Þ2 þ g2 �/f ðrÞ � ð2Xr � 1Þ2
h i

; ð16Þ

where �Pf ðx; gÞ is the generalized correlation func-
tion, �/f ðrÞ is the multisite correlation function (or
the average of spin products of all subclusters in
figure f), x is the normalized concentration of the
binary alloy, and 2Xr � 1 is the Fourier transform of
the spin variables ri measured at zero (more details
can be found in Ref. 6).

Atomic Relaxations

Another practical limitation of the conventional
CE technique is that it converges slowly for relaxed
crystal structures, and this reduces its utility in the
study of atom size-mismatched alloys (alloys with
chemical species that have very different atomic
radii). However, the effects of atomic relaxation are
too important to neglect, particularly for alloys with
large size-mismatch effects. To incorporate relax-
ations into the CE formalism, Laks et al.119 intro-
duced a reciprocal-space representation of the CE,
in which the individual real-space interaction
energy coefficients Jf (where f represents the cluster
type) are replaced by a single reciprocal-space
function JðkÞ. While in real space the ECIs of
different figures are not related, a ‘‘smoothness’’
condition imposed upon the single reciprocal-space
function allows to minimize the gradient of JðkÞ,
which results in a requirement that pair

interactions decrease rapidly for large distances
and a requirement that pair figures that are not
rigorously necessary to improve the fit are assigned
an ECI of zero. This results in a major reduction in
the number of coefficients to be fit within the CE
formalism and the consequent rapid convergence of
the reciprocal-space CE. In addition, it can correctly
predict the energies of arbitrary relaxed structures.
The following equations represent the recast of the
CE for pair interactions into reciprocal space. The
conventional CE:

ECEðrÞ ¼ N
X

f

mfJf
�/f ðrÞ ; ð17Þ

where mf is the degeneracy of cluster f per site and
the sum is over f, all the pair type interactions. The
reciprocal CE:

ECEðrÞ ¼ N
X

k

JðkÞjr̂ðk; rÞj2 ;

r̂ðk; rÞ ¼ 1

N

XN

l

rlðrÞeik:Rl ; ð18Þ

JðkÞ ¼ 1

2

XN

n

J0;ne
ik:Rn ;

where k runs over the first Brillouin zone, and JðkÞ
and r̂ðk; rÞ are the Fourier transforms of the
interaction energy coefficients (ECIs) and spin
products, respectively. Later, a mixed-based cluster
expansion in which a deterministic and direct map
from a first-principles configuration Hamiltonian to
an Ising-like Hamiltonian was developed.120

Table II. Comparison of available implementations of the CE formalism and its extensions

Software CE optimization scheme Characteristics

ATAT 1. Bayesian regression and cross-validation; 2. Least-
squares fitting

1. Reproduces energy values included in the fit;
mitigates truncation problem; 2. Minimizes the

mean-squared error
ICET 1. Least squares, LASSO, Bayesian ridge regression;

2. Recursive feature elimination
1. Applies different l1 regularization schemes; 2.

Eliminates less important ECIs starting from a full
set of parameters

CLEASE 1. l1 and l2 regularization, Bayesian compressive
sensing; 2. Genetic algorithm

1. Applies different l1 regularization schemes to
promote sparsity; 2. Cluster selection based on a

genetic algorithm.
CASM Combines the vibrational degrees of freedom involved

in structural phase transitions with configurational
disorder in multicomponent solids to approximate the

Hamiltonian.

Goes beyond conventional CE by including deforma-
tion in clusters.

P4 Builds a coarse-grained CE to integrate the vibra-
tional degrees of freedom involved in structural phase

transitions with configurational disorder in multi-
component solids.

Goes beyond conventional CE by coarse-grained
parameterization of free energy on an augmented

lattice.
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Lattice Vibrations and Distortions

The variational parameters in the standard CE
framework are rigid cluster figures, which can only
describe the Hamiltonian dependence on the occu-
pation variation of an ideal lattice structure. On the
other hand, prediction of finite-temperature ther-
modynamic properties, thermal conductivity, and
structural phase transitions depends on describing
the variation of free energy in terms of atomic
displacements in addition to configuration varia-
tion. Thomas and Van der Ven110 developed a
cluster-based model in which individual clusters
are free to undergo deformation and the potential
energy is expanded in terms of deformed clusters as
follows:

E ¼ E0 þ
X

a

Eað ~UðaÞÞ; ð19Þ

where E0 is the constant energy term, Eað ~UðaÞÞ is the
contribution of cluster a to the total crystal energy,

and UðaÞ is the deformation of cluster a. An arbitrary
deformation of cluster a is described as a linear
combination of 3Na � 6 terms (invariant under rigid
translations or rotations of the crystal and similar to
normal modes of vibrations) that are measured with
reference to the ideal lattice structure. An earlier
development by Geng et al.121 provided a hybrid
cluster expansion for local structural relaxation by
combining pair potential models with the CE
method. To expand upon the conventional CE based
on a fixed ideal lattice, each site is characterized not
only by its occupation variable but also by its
displacement vector. This model was used to expand
the pair interactions based on hybrid cluster expan-
sion, while multibody terms were expanded using a
standard CE formalism.121

Kadkhodaei, Hong, and van de Walle122 provided
an alternative approach to encompass finite-tem-
perature atomic displacement effects in the free
energy expansion. They introduced a coarse-grained
cluster expansion framework which is built upon an
‘‘augmented lattice,’’ Laug (Fig. 5). In addition to the
high-symmetry ideal sites, the augmented lattice
includes sites that correspond to local distortions of
the ideal lattice, which implicitly permits cluster
deformations. The local vibrations in the vicinity of
lattice distortions (where the vicinity of distortions
is defined by the Wigner–Seitz cells of the aug-
mented lattice and denoted as fr) are continuously
sampled using a coarse-grained formulation of the
free energy (consisting of a constrained vibrational
free energy F


r for each configuration r) as follows:

F ¼ �kT ln
X

r2Laug

e�F

r=kT ;

F

r ¼ �kT ln

Z

r2fr
e�VðrÞ=kT ; ð20Þ

where VðrÞ is the potential energy in terms of
atomic position r. Within this nested framework,
the constrained vibrational free energy is expanded
using cluster figures on the augmented lattice as
follows:

F

r ¼

X

a

maJaðTÞ<
Y

i2a
ri > a0 ; ð21Þ

where ma is the number of symmetrically equivalent
clusters a, JaðTÞ are cluster interaction coefficients
that are temperature dependent, and the average
<
Q

i2a ri > is the correlation function of cluster a on
Laug. The sum in Eq. 21 is over symmetrically
distinct clusters a, while the average is over clusters
a0 that are symmetrically equivalent to a.

Defects

The original development of the CE is based on a
perfect lattice structure, which neglected the pres-
ence of point defects such as vacancies. Van der Ven
and Ceder123 developed a perturbative approach to
model the equilibrium vacancy concentration and
the short-range order among vacancies and other
chemical species in alloys. They invoked a local
cluster expansion as a perturbation to the standard
CE of the energy, assuming that vacancy concen-
tration is sufficiently dilute to neglect the interac-
tions among vacancies. They parameterized the

effective vacancy formation energy DEeff
i with a

local CE according to

DEeff
i|fflffl{zfflffl}

perturbativelocalCE

¼ EV
i ðrÞ �

1

2
EA

i ðrÞ � EB
i ðrÞ


 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

standardCEw=ovacancies

;

where EV
i ðrÞ is the energy of the crystal with

configuration r but with a vacancy occupying site

i, and E
A=B
i ðrÞ is the energy of the crystal with

configuration r but with site i occupied by A (or B).
Van der Ven et al.124 also utilized the concept of
local cluster expansion to extend the standard CE to
describe the activation energy barriers for ionic
migrations in configurationally disordered solids.
They introduced a kinetically resolved activation
(KRA) barrier, DEKRA, which describes the average
of activation barriers for all possible diffusive hops
of an ion at a given site. As the DEKRA depends on
the local configuration around the migrating ion but
is independent of hop direction as it averages over
all ionic hops, it can be described using a cluster
expansion in terms of kinetic effective cluster
interactions (KECI) Ka and cluster correlation func-
tions �/a:

DEKRA ¼ K0 þ
X

a

Ka
�/a: ð22Þ
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A later study by Zhang and Sluiter125 presented a
method that ensures that strictly local CEs, e.g., for
KRA energy barriers, yield only positive energy
barriers in vacancy-mediated diffusion in substitu-
tional alloys.

Natarajan and Van der Ven introduced the con-
figurationally resolved planar fault (CRPF) energy
notion, which enables extension of the standard CE
formalism to quantify the dependence of generalized
stacking fault (GSF) energies (a class of planar
defects) on chemical disorder in alloys.90 Within this
framework, an arbitrary GSF with a glide vector of
r is obtained upon application of a combination of
three glide vectors, r1, r2, and r3, which coincide
with the elementary transnational vectors of the
underlying lattice, with r1, r2, and r3 representing
the configurations associated with each glide vector,
respectively. Accordingly, the energy of the GSF,
Eðr; d; rÞ, is decomposed into an average configura-
tional energy, Eaveðr; r1; r2; r3Þ, and a CRPF energy,
ECRPFðr� r1; d; r1Þ, which characterizes the local
excess energy arising from the planar defect:

Eðr; d; rÞ ¼ ECRPFðr� r1; d; r1Þ

þ Eaveðr; r1; r2; r3Þ :
ð23Þ

Here, d represents the magnitude of the separation
perpendicular to the glide plane by which the
crystal is cleaved at the GSF. Eave relates the
defected system energy to the energies of the three
nearest orderings r1, r2, and r3 relative to the

perfect crystal configuration r, and ECRPF is the
excess energy arising from a translation of r� r1

and a separation of d that map the defected
configuration to the r1 configuration. This energy
decomposition is valid under the assumption that
the local ordering of atoms far away from the fault
plane is unaffected by the glide.

OUTLOOK AND CONCLUSION

Various trends are apparent in the historical
development of the CE formalism, and we expect
several of them to continue. One of them is the
movement towards generalization: the improved
modeling of more phenomena based on more rigor-
ous mathematics. An example of this is the evolu-
tion from nonorthogonal bases computed from
cluster distribution functions in the CVM,1 to full
orthogonal bases originating from discrete Cheby-
shev polynomials that describe distinct clusters in
the CE,3 to the tensorial cluster expansion devel-
oped in Ref. 126. The modeling of phenomena that
break crystal symmetries, such as relaxations from
atom size mismatch or thermal displacements,
remains a challenge, but these broken symmetries
are crucial for understanding and predicting the
finite-temperature properties of many functional
and structural materials. The cluster expansion of
an anharmonic Born–Oppenheimer potential
energy surface such as that developed in Ref. 110
and the coarse-grained cluster expansion of Ref.
122, which incorporates an augmented lattice that

Fig. 5. Illustration of the Piecewise Polynomial Potential Partitioning (P4) method to embed finite-temperature lattice distortions in a coarse-
grained CE formulation. (Top row) The augmented lattice consists of atomic positions related to the collective distortions of the unstable lattice in
addition to the ordinary basis points. Some of the symmetrically distinct pair clusters on the augmented lattice are marked with different colors.
(Bottom row) Sampling of various configurations on the augmented lattice describes occupation variation as well as vibrational distortions (Color
figure online).
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includes lattice distortions, are distinct steps in this
direction. Future variations might take advantage
of recent progress in the group-theoretic represen-
tation of phonon modes in crystalline materials127

or the graph-theoretic use of marginalized graph
kernels to measure similarity among atomic config-
urations.128 Several systems are prone to benefit
from advances in this area, among which magnetic
systems129,130 and HEAs131 are perhaps at the
forefront.

Another trend is the formalization and optimiza-
tion of penalty functions, which results in increas-
ingly better predictions for a given number of
clusters and computations, starting with the inclu-
sion of algebraic constraints12 and moving on to
statistical techniques to improve predictions such as
cross-validation20 and Bayesian priors,21,22 which
can significantly reduce the amount of data required
to train a CE model. Much of the theory is well
established, but code implementations are not
always user-friendly. ATAT27 is one of the most
mature codes and provides a consistent framework
to construct cluster expansions from first principles
as well as SQS support, tensorial cluster expan-
sions, etc. and it interfaces with popular DFT codes
such as the the Vienna Ab Initio Simulation Pack-
age (VASP) and Quantum Espresso (QE). Other
codes are in earlier stages of development, but we
expect some consolidation and code that is more
easily extendable to a variety of more complicated
systems.

The third trend is the proliferation of data,
particularly computational data generated via
DFT, which is highly compatible with CE
approaches. Most of these data are of high quality
and the datasets are ‘‘small,’’ often generated by
individual research groups to investigate targeted
systems or phenomena, and ontologically different
from what has been termed ‘‘Big Data’’ (see, e.g.,
Ref. 132 for an enumeration of the ontological
differences). There is currently an important effort
and investment by governments and companies to
develop computational pipelines, collaboration
infrastructure and logistics, data standards, etc. to
encourage and allow the community to share and
reuse computationally expensive calculations. One
example is the Materials Project,133 which is part of
the Materials Genome Initiative, a major program
of the US government to accelerate the pace of
materials discovery.134 These projects aim to create
large datasets of ‘‘small’’ data that can take advan-
tage of recent developments in computation and
data science precipitated by ‘‘Big Data,’’ and a
transparent example is the high-throughput com-
putational design of materials,135 which is quickly
approaching maturity. The CE method has already
been integrated into several pipelines and is used in
conjunction with data science techniques such as
data mining,136 and we expect even closer integra-
tion in the future.

The fourth trend is the convergence of cluster
techniques and machine learning, which can go in
both directions. Technologies that have recently
become widespread such as neural networks have
been combined with the CE, learning for example
the correlation functions produced by arbitrary local
atomic orderings,25 or as part of active learning
pipelines.137 The CVM has found uses in areas such
as computer vision and the theory of error-correct-
ing codes,138–140 which share with CVM in crystal
lattices the requirement that marginal probabilities
need to be computed. These probabilities can be
represented by probabilistic graphical models such
as Bayesian networks and Markov random fields
(see, e.g., Ref. 141 for a description of both). At a
fundamental level, the ideas behind CE are not too
different from those of methodologies that are used
for machine learning: to map inputs into a high-
dimensional feature space that can more clearly
separate the points and perform an interpolation.
This is true of support vector machines (SVMs),142

neural networks,143 and others. While the CE
methodology has been preferred in the past several
decades over the CVM due to its mathematical
simplicity, new developments such as physics-in-
formed neural networks (PINNs)144 which respect
the laws of physics stated as time-dependent and
nonlinear partial differential equations might find
implementations in CVM. It is easy to predict that
cluster-based methods will continue to find applica-
tions in computational materials science and will
continue their coevolution with machine learning
and data science.
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ABBREVIATIONS AND VARIABLES

Abbreviations

APB Antiphase boundaries
ASE Atomic Simulation Environment (see

Ref. 28)
ATAT Alloy Theoretic Automated Toolkit (see

Refs. 27,107,108)
CASM Cluster Approach to Statist ical

Mechanics (see Refs. 109,110)
CLEASE C L u s t e r E x p a n s i o n i n A t o m i c

Simulation Environment (see Ref. 113)
CE Cluster expansion
CVM Cluster variation method
DAPB Diffuse antiphase boundary
DFT Density functional theory
ECI Effective cluster interaction
HEA High-entropy alloy
ICET Integrated Cluster Expansion Toolkit

(see Ref. 112)
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KECI Kinetic effective cluster interaction
KRA Kinetically resolved activation
PINN Physics-informed neural network
P4 Piecewise Polynomial Potent ia l

Partitioning (see Ref. 111)
QE Quantum Espresso
SQS Special quasirandom structure
SVM Support vector machine
VASP Vienna Ab Initio Simulation Package

Variables

C A cluster configuration
Fcvm Free energy in the cluster variation

method (CVM) (defined in Eq. 3)
FðqÞ Free energy functional in terms of the

probability distribution function q
F

r Constrained vibrational free energy (see

Eq. 21)
H Ising model Hamiltonian
Ja Effective cluster interaction (ECI)

coefficient for cluster a
JðkÞ Fourier transform of J (see Eq. 18)
Ja A vector of ECIs collected for different

configurations
Ka Kinetic effective cluster interaction (see

Eq. 22)
Laug An augmented lattice that includes local

distortions of the ideal lattice in
addition to the ideal (high-symmetry)
lattice (see Eq. 20)

M Number of components (typically
distinct chemical species) in a crystal
lattice

N Number of sites (lattice points) in a
crystal lattice

Na Number of subclusters in cluster a (see
Fig. 2)

PðrÞ A property of the lattice expanded as a
function of the collection of spin
variables r (defined in Eq. 1)

P A vector of the scalar property of a
l a t t i c e c o l l e c t e d f o r d i f f e r e n t
configurations

QðvjX;yÞ Bayesian probability density for an ECI
over its possible values v trained with
dataset X;y

SðqÞ Entropy functional in terms of the
probability distribution function q

T Temperature
UðqÞ Internal energy functional in terms of

the probability distribution function q
Va Contribution of cluster a to the internal

energy in the cluster variation method
(CVM)

X A matrix of dependent variables (‘‘input
values’’) used in a training or test
dataset (each row corresponds to an
output value in y, see Eq. 14)

Z Partition function

aa Weight of the cluster a towards the total
configurational entropy in the cluster
variation method (CVM)

f A basic figure
i; i0; i00; _s An individual lattice site
k Boltzmann constant
m A possible value for ri; it can take the

value of any integer between �M=2 and
M/2 except for 0 if M is even, and any
integer between �ðM � 1Þ=2 and ðM �
1Þ �2 including 0 if M is odd

ma Multiplicity of cluster a, i.e., the number
of symmetrically equivalent clusters a

n;n0;n00; _s Individual indices used in a Chebyshev
polynomial Hn

na The number of lattice sites in cluster a
nb The number of lattice sites in cluster b
s The set of indices fn;n0;n00; _sg for the

order of the Chebyshev polynomial Hn

used in building a cluster function /as
(see Eq. 4)

xA; xB Normalized concentration of atom of
type A (B) in an alloy

y A vector of dependent variables (‘‘output
values’’) used in a training or test
dataset (see also X)

�Pf ðx; gÞ Generalized correlation function for
basic figure f in terms of concentration
x and long-range order parameter g,
(see, e.g., Eq. 16)

P Matrix of cluster correlation functions
HnðriÞ Discrete Chebyshev polynomial of order

n as a function of the spin variable ri
a; b; c Clusters of lattice sites, relationships

between them are explained for each
model in the text (see Figs. 1 and 2)

a0 A set of clusters that are symmetrically
equivalent to cluster a, i.e., clusters that
belong to the same orbit as cluster a

fr Vicinity of lattice distortions in an
augmented lattice Laug (see Eq. 20)

g Long-range order parameter
qa Cluster (probability) distribution

function in the cluster variation
method (CVM)

qex Equilibrium probability distribution
function

ri The spin or occupation variable of site i,
associated with the type of atom at site i
in a cluster, e.g., in a binary alloy, +1 if
site i is occupied by atom A and �1 if
occupied by atom B

r The vector of spin variables for all the N
sites in the crystal

r̂ðk; rÞ Fourier transform of r (see Eq. 18)
1 The neighbor order parameter in the

Bethe model; 1 ¼ 1 for perfect neighbor
order and 1 ¼ 0 for perfect neighbor
disorder
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/as The cluster function corresponding to
cluster a and polynomial order s (defined
in Eq. 4)

�/aðrÞ The multisite or cluster correlation
function for the collection of spin
variables r corresponding to cluster a
(defined in Eq. 2)
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