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ABSTRACT
We introduce Xtract, an automated and scalable system for bulk
metadata extraction from large, distributed research data reposito-
ries. Xtract orchestrates the application of metadata extractors to
groups of �les, determining which extractors to apply to each �le
and, for each extractor and �le, where to execute. A hybrid com-
puting model, built on the funcX federated FaaS platform, enables
Xtract to balance tradeo�s between extraction time and data trans-
fer costs by dispatching each extraction task to the most appropriate
location. Experiments on a range of clouds and supercomputers
show that Xtract can e�ciently process multi-million-�le reposito-
ries by orchestrating the concurrent execution of container-based
extractors on thousands of nodes. We highlight the �exibility of
Xtract by applying it to a large, semi-curated scienti�c data repos-
itory and to an uncurated scienti�c Google Drive repository. We
show that by remotely orchestrating metadata extraction across
decentralized storage and compute nodes, Xtract can process large
repositories in 50% of the time it takes just to transfer the same data
to a machine within the same computing facility. We also show
that when transferring data is necessary (e.g., no local compute
is available), Xtract can scale to process �les as fast as they are
received, even over a multi-GB/s network.
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1 INTRODUCTION
The abundance of �les accumulated within science and engineer-
ing organizations may, both individually and collectively, contain

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
HPDC ’21, June 21–25, 2021, Virtual Event, Sweden
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8217-5/21/06. . . $15.00
https://doi.org/10.1145/3431379.3460636

data of great value. However, poor organization and inadequate
documentation frequently make these �les inaccessible. Standard
�le systems and object stores do little more than de-duplicate �les;
users need methods for inferring �le contents and for linking re-
lated �les, both to simplify navigation of large collections and to
enhance awareness of contents and semantics.

Automatedmethods for extracting or inferring information about
�le contents and relationships can support and complement the
FAIR (�ndable, accessible, interoperable, and reproducible) data
principles. Ideally, every �le created within an organization would
be described in a standardized manner and in so much detail that it
could trivially be discovered and repurposed for interdisciplinary
or cross-institutional research [32] throughout the research lifecy-
cle [15]. But in practice, �les are often created without thought for
future reuse. Thus, as a prerequisite to FAIR data, organizations
must �rst mine latent information from their �les, and from this
information, synthesize a desired level of semantic meaning. We
call the union of the mined information and the semantic meaning
metadata, and the process of acquiring it metadata extraction.

Metadata extraction grows more di�cult as data sizes, types, and
sources increase; storage becomes more distributed; and computa-
tional methods for learning about �les change. Therefore manual
metadata extraction must give way to automated methods capa-
ble of handling large, distributed data collections containing id-
iosyncratic �le formats [9, 17] and spanning multiple storage sys-
tems [22]. However, existing metadata extraction methods either
operate entirely locally (e.g., on a personal �le system) or require
that data be moved to a central location (e.g., to the cloud). But nei-
ther approach is satisfactory in the general case: the former because
computational capabilities at data repositories may be lacking or
inadequate, and the latter because of the high costs of moving large
quantities of data. A hybrid approach in which metadata extraction
can be performed on either centralized or decentralized systems,
depending on context, can reduce costs.

Scienti�c data generation processes, and therefore metadata ex-
traction workloads, are inherently bursty, and can bene�t from
decentralization to utilize available computing resources. Further,
once an experiment is completed and the data are to be added
to a repository, many terabytes of �les can all require metadata
extraction at once–necessitating the large scale application of ex-
tractors across potentially disparate resources. The Function-as-a-
Service (FaaS) computing model is predicated on elastically scaling
resources to accommodate bursty workloads, and federated FaaS
enables seamless execution across distributed computing infras-
tructure spanning administrative domains. Therefore, we propose
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the following research question: can FaaS infrastructure enable the
creation of scalable, e�cient, decentralized metadata extraction work-
�ows for large, distributed scienti�c data?

We present Xtract, a bulk metadata extraction system that or-
chestrates the extraction and synthesis of metadata by dispatching
and executing lightweight and specialized metadata extractors on
�les in a target repository. Xtract is unique in that it completely
decouples data locality from computation, enabling deployment
of performant metadata extraction work�ows across a continuum
of decentralized computing resources. This decoupling is made
possible by the use of funcX, a federated FaaS platform, to invoke
metadata extractors on remote computers. Xtract abstracts data
location and movement (when optimal), decisions as to which ex-
tractors to apply, and the orchestration of extractors across �les on
disparate computing resources.

This paper extends our prior work [23, 24] by creating a system
that leverages federated FaaS to construct scalable, e�cient, de-
centralized metadata extraction work�ows on scienti�c data. The
contributions of our work are:

• Xtract, the �rst distributed metadata extraction system that
leverages FaaS to scalably crawl and extract metadata from
large, distributed collections of �les.

• Performance evaluation of remote metadata extraction on
research cyberinfrastructure, showing a 20% speedup over
leading extraction tools.

• Design and evaluation of an algorithm to reduce extraneous
�le transfers and transfer time.

• Demonstration that Xtract can scale to process 2.5 million
�le groups with materials science extractors deployed to
over 2048 workers on a supercomputer.

• Application of Xtract to a large scienti�c data repository,
the Materials Data Facility (MDF), and to a scienti�c Google
Drive account.

The remainder of this paper is as follows. §2 describes unique
requirements of scienti�c metadata extraction and our case study
repositories. §3 describes the Xtract design and §4 presents its
architecture and implementation. §5 explores performance and
scalability in scienti�c case studies. §6 and §7 discuss related work
and summarize our contributions, respectively.

2 BACKGROUND
Metadata extraction is a problem that extends across scales and dis-
ciplines. We �rst formalize metadata extraction as an optimization
problem with customizable constraints, and then review several
scienti�c use cases that require scalable extraction, while also illu-
minating the constraints, or challenges, of each.

2.1 Terminology
We de�ne automated metadata extraction as the application of
computing tools to data to both extract and synthesize descriptive
or summary information. For example, in the case of an image
represented by a TIFF �le, metadata extraction operations could
include extracting information contained in tags (e.g., objective
used, exposure), determining the size of the �le, computing the
average color of the image, and applying a machine learning model
to extract ‘entities’ (for some de�nition of entity).

For clarity in exposition, we de�ne the terms �le, metadata,
group, and storage system. We assume that the data of interest are
organized as a set of �les, where the �le is the basic unit of data
storage. A �le, 5 , has two components: 5 .1, the (potentially empty)
sequence of bytes that represent the �le’s contents; and 5 .<, the
(potentially empty) set of associated metadata. A group identi�es
zero or more �les that have some logical relationship: for example,
all �les associated with an experiment, or all �les created on a
particular day. A group 6 has two components: its �les, 6.5 , and
a (potentially empty) set of group-speci�c metadata, 6.<, and we
acknowledge that 6.< and 5 .< can contain overlapping elements.
Group membership is non-exclusive: a �le may be contained in
more than one group.

Each �le resides in a storage system: for example, a �le system,
object store, or database. Each �le is located on a single storage
system, but the �les that form a group may span multiple stor-
age systems. For example, a group corresponding to a microscopy
experiment might comprise two �les: a microscopy image and a
spreadsheet containing descriptive information, located on a stor-
age cluster and on Google Drive, respectively. A storage system B
may also have associated metadata, denoted B .<.

An extractor is a function 4 that when applied to a group 6, with
its associated �les 6.5 and metadata 6.<, may update the group
metadata 6.< and/or the metadata associated with one or more of
the �les in the group.

2.2 Bulk Metadata Extraction
We de�ne bulk metadata extraction to be the task of applying a set of
extractors to many �les: for example, all �les located on a particular
storage system. Let ' (for repository) be such a collection of �les
and next be a function that when applied to a group 6 and set of
extractors ⇢ returns the extractor that should be applied next to the
group: i.e., 4 = next(⇢,6). Bulk metadata extraction then proceeds
as follows: 86 2 ', repeatedly �rst evaluate 4 = next(⇢,6) and then
apply 4 (6), until next (⇢,6) = ;. (We de�ne extraction in terms of
groups rather than �les for simplicity; in practice, an extractor can
update 5 .<, 6.<, neither, or both)

Let⇠ be the set of all computing resources available for metadata
extraction. Running an extractor 4 on a group 6 on a particular
2 2 ⇠ incurs various costs, of which we consider two here: the
time required to transfer 6 to 2 , ?CA (2,6), and the time required
to run 4 (6) on 2 , ?4G (2, 4,6). Depending on context, we may then
want to select the extractors to apply and the locations to run those
extractors so as tomaximize somemeasure of utility of the extracted
metadata (a complex issue [13]) subject to limits on incurred costs.
Here, we assume a �xed set of extractors and focus simply on �nding
a mapping of extractors to compute resources that minimizes the
total incurred costs:

min
02�

’
62⌧

’
42⇢ (6)

?CA (2,6) + ?4G (2, 4,6)

where ⇢ (6) is the extractors to be applied to a group 6, and � is the
set of all possible allocations of extractor invocations to available
compute resources.

This scheduling problem is NP-complete [29] and thus we ex-
plore various heuristics in the following.
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2.3 Use Cases
We examine three real-world research repository examples that
bene�t from automated metadata extraction, and discuss the rela-
tive utility expectations and cost from each. Table 1 summarizes
characteristics of these repositories.

The Materials Data Facility (MDF) [5] is a centralized hub
for publishing, sharing, and discovering materials science data.
MDF stores over 19 million �les (61 TB of data) from di�erent
research groups, covering many disciplines of materials science,
containing a diverse range of �le types. However, the expansive
range of materials data held byMDF canmake it di�cult for users to
�nd data relevant to their work, so utility is rooted in the quality of
metadata elements to make data �ndable and accessible. MDF data
are primarily stored at Argonne National Laboratory (ANL) and
the National Center for Supercomputing Applications (NCSA), and
are accessible via Globus. Close proximity to large-scale computing
resources makes transfer costs relatively low for extractors applied
at the designated computing resources.

TheCarbon Dioxide Information Analysis Center (CDIAC)
compiled an emissions dataset from the 1800s through 2017. The
dataset contains more than 330 GB in 500 000 �les, with over 10 000
unique �le extensions. The archive contains little descriptive meta-
data and includes a number of irrelevant �les, such as as debug-cycle
error logs and Windows desktop shortcuts. We can increase the
utility of these data by making them more easily discoverable by
the wider research community.

Individual researchers and research groups may store data
in many locations, including laptops, cloud storage (S3, Google
Drive), and computing facilities. Data are accessible via di�erent
protocols, such as HTTP and Globus. The utility of these data can
be enhanced by making it possible for researchers to search them,
track versions, and link data and publications. Choices of computing
locations can be in�uenced by computing allocations that change
over time and by the use of storage systems (e.g., Google Drive)
that are not mounted on computing resources, necessitating data
transfer prior to extraction. We analyze here the semi-scienti�c
repository of a graduate student’s Google Drive account.

Table 1: Characteristics of our example data repositories.

Repository Size (TB) Files Unique Extensions
MDF 61 19 968 947 11 560
CDIAC 0.33 500 001 152
Individuals 0.005 4K 71

3 XTRACT
Xtract is a bulkmetadata extraction system that provides on-demand
metadata extraction fromheterogeneous scienti�c �le formats using
remote and distributed computing infrastructure. Xtract performs
end-to-end metadata extraction by applying a series of extractor
functions to groups of �les in a repository. The order of processes
by which Xtract extracts metadata is as follows:

• Users interact with the Xtract service to initiate metadata
extraction on a repository of data.

• Xtract invokes the crawler to traverse the �les stored in a
target repository, determine which �les need to be grouped,
and create an initial metadata record for each group.

• Xtract determines a dynamic extraction plan for �le groups,
including a set of extractors that will likely yield metadata.
Note: the plan may be updated as metadata are obtained
from allocated extractors.

• Xtract determines where extractors should be executed for
each �le and dispatches executor invocations to remote com-
puting endpoints for execution.

• The remote endpoint receives the path to the �le to be pro-
cessed; if the �le is not accessible locally, it initiates a down-
load. It then applies the extractor to each �le group before
sending the updated metadata back to Xtract.

• At the conclusion of a group’s extraction plan, the validator
updates the metadata record to a user-speci�ed format, and
initiates the transfer of metadata to an external location.

We next describe each component of Xtract in more detail.
Xtract User Interface. Xtract o�ers an asynchronous inter-

face via which users can register �le grouping functions, metadata
extractors, extractor containers, and compute and data endpoints;
authenticate with cloud or compute providers; execute extraction
and validation jobs; monitor the status of extraction jobs; and re-
trieve or deposit the extracted metadata. Users specify an extraction
job to start the extraction process. A job includes a list of target
repositories (and access credentials), paths specifying the root di-
rectories to be processed, a list of compute endpoints to be used,
and a �le grouping function (which may be “single �le group”).

Crawling. The crawler lists the contents of a remote storage
system to identify what �les need to be processed, and to extract
minimal �le system metadata (e.g., �le name, size, creation date).
Once a directory is crawled and all �les identi�ed, the grouping
function is invoked in order to assign all �les that need to be pro-
cessed together to a single metadata object.

In addition to �le groups, Xtract de�nes an additional level of
grouping, called families. Families are used to reduce unnecessary
transfer costs. For instance, if a �le belongs to group A and group B,
it may be more e�cient to process both groups at the same location
so as to not transfer the same �le multiple times. We discuss our
family generating algorithm in §4.3.1.

Extraction Orchestration. Xtract manages the metadata ex-
traction process by applying a set of extractors to a �le group. After
crawling, Xtract dequeues each group and identi�es an initial set
of extractors to be applied, as identi�ed by the crawler’s grouping
function, and selects an appropriate computing resource on which
to execute the extractor. If Xtract opts to invoke the extractor on
the machine on which all �les in the group reside, then it serial-
izes and transmits a ‘family’ (containing a list of individual �les)
and extractor function(s) directly to that machine for processing.
Alternatively, if any �les in the group are stored only on another
machine, Xtract initiates the transfer of those �les from their host
machine to the one conducting the extraction, and then proceeds
as when the data are available locally.

Extractors. Extractors are functions that take a �le group as
input and generate a dictionary of extracted and synthesized meta-
data for that group. Xtract includes 12 extractors (listed in §4) for
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Figure 1: Overview of the Xtract architecture.

myriad data types commonly used in science and engineering. Users
may also de�ne and add their own custom extractors. Extractors
are implemented as a Python function or Bash shell script. Each
extractor has an associated container (e.g., Docker) to encapsulate
a runtime environment for that extractor and to provide access to
libraries not otherwise available on the computing resource (e.g.,
Tensor�ow or materials science packages). Containers also ensure
that extractors can be deployed on di�erent target systems.

Endpoints. Xtract requires a data substrate to access and move
data between resources as well as compute substrate to remotely
execute extractors. We call these remote Xtract sites endpoints,
where an endpoint contains both a data and compute layer. The
data layer abstracts the remote storage system (e.g., �le system,
object store) and makes data accessible to the endpoint. Xtract’s
extractors can both access data stored in the data layer and write
data from another endpoint. The compute layer represents the
computing allocations available to process �les. The compute layer
is tasked with allocating compute resources (e.g., local cores, HPC
nodes, or cloud instances), invoking the metadata extractors on the
�les, and sending results back to the Xtract service.

Validation (and Transformation). The validation step en-
sures that resulting metadata have all required attributes; it can also,
optionally, transform the metadata into a schema more amenable
for subsequent use. Validation enables users with di�erent metadata
requirements, for example because they work in di�erent domains,
to leverage metadata produced by the same extractors. Xtract users
specify the validation/transformation method to be applied; it pro-
cesses supplied metadata and sends a valid JSON document to a
user’s Globus endpoint.

4 ARCHITECTURE AND IMPLEMENTATION
Xtract is implemented as a service exposing a REST API for user
interactions. It follows a microservices architecture in which each
of the core components is deployed as a web service and exposes
an API for coordination between services. Figure 1 presents an
overview of the Xtract architecture.

4.1 System Components
The Xtract service receives extraction job requests via the REST
interface and �rst records the job in an AWS Relational Database
Service (RDS) instance. It then invokes the crawler to begin pro-
cessing the target repository. Simultaneously, Xtract reads from
the crawler’s completed queue—implemented with AWS Simple
Queue Service (SQS)—and determines an extraction plan for each
�le group. While much of the extraction plan focuses on determin-
ing which extractors to apply to which �les, it also determines on
which resources each extraction should be executed. If any �le in a
group has di�erent source or destination endpoints, a task is placed
onto an internal prefetcher queue to orchestrate required trans-
fers. Xtract then sorts all �les into same-endpoint, same-extractor
batches (coined Xtract batches), reads the container location and
endpoint information for a �le’s extraction location, and then fur-
ther batches multiple of the Xtract batches (coined funcX batches)
and sends them to the funcX service. funcX serializes and dispatches
each batch to its relevant endpoint. Xtract then polls funcX to re-
trieve task results from the endpoint. Based on the results, Xtract
determines if additional steps should be added to the extraction
plan. If not, it places the results onto a shared validation SQS queue.

The crawler is implemented as an elastically-scalable microser-
vice that is invoked by the Xtract service through a REST API. The
input to the crawler includes a list of remote endpoints, the paths to
be recursively crawled, authentication headers, �le grouping rules
to aggregate metadata objects, and any source-speci�c information
such as the top-level URL for HTTPS-accessible data, Google Drive
API tokens for Google Drive, or Globus Auth access tokens for
Globus. The crawler service deploys a pool of crawl worker threads
and a shared work queue for each metadata extraction job, and
starts new EC2 resources, if needed (i.e., if current instances are
overloaded). The shared work queue is initialized with the root
paths speci�ed in the extraction job. Worker threads retrieve a path
from the queue, perform a list operation on it, apply the grouping
function to discovered �les, and add newly-discovered directories
to the work queue. Xtract supports a number of grouping func-
tions, as granular as placing each individual �le into its own group,
and as broad as placing entire directories and subdirectories into a
single group. In order to keep the crawler service operating with
minimal overhead, and to account for repositories without local
compute, grouping functions consider only metadata available from
the crawler (e.g., �lenames, extensions, paths, size). The crawler
bundles the initial metadata into a universally readable family ob-
ject, serializes it, and places it onto an SQS queue for return to the
Xtract service. The crawler exposes a modular interface for crawl-
ing remote repositories with implementations for Globus, S3, and
Google Drive, using their respective APIs, and remote POSIX �le
systems (using a Python function that is executed via an endpoint’s
compute layer).

The prefetcher is responsible for managing the movement of
data between endpoints when required. The prefetcher reads tasks
directly from a dedicated queue (populated by the Xtract service).
For each �le transfer job, the prefetcher �rst authenticates with
the data layer on both the source and destination endpoints of
each �le, places the �les into a batch, and then initiates the batch
Globus Transfer of �les between them. The prefetcher polls each
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Listing 1: Example code of an extractor to extract keywords
from documents stored in Google Drive
def keyword_extract(event ):

import shutil

from xtract_sdk.downloaders import GoogleDriveDownloader
# A Python function located in the extractor �s container

import xtract_lib

# Load transfer credentials and list of families

creds = event[�creds�]

family_batch = event[�family_batch�]

# Apply the keyword extractor to all families

for family in family_batch.families:

kw_mime = family.files [0][�mimeType �]

is_pdf = True if �pdf� in kw_mime.lower() else False

path = family.files [0][�path�]

# Invoke the extractor library in the container

mdata = xtract_lib.extract_keyword(path , pdf=is_pdf)

# Package the metadata back into the �family � object

family.metadata = mdata

# Remove the associated file , if necessary

if family_batch.delete_files:

shutil.rmtree(family.base_path)

return {�family_batch �: family_batch}

transfer task until it is completed, and then places the task back
onto Xtract’s queue for further processing.

The extractor library contains information about each extrac-
tor and the endpoints on which they can execute (e.g., extractors
whose containers are only available in Docker may not be run on
Singularity-only systems). When users register a custom extractor
they provide an extraction function in Python or Bash, a path to
a container, and a list of endpoint IDs on which the function is
able to run. These function:container:endpoints address tuples are
registered with funcX to create FaaS functions to be used by the
Xtract service. The funcX function ID, container ID, and endpoint
ID are then stored in Xtract’s RDS database. Listing 1 shows an
example extractor function that extracts metadata from a �le stored
locally on a compute endpoint. We provide an xtract_sdk Python
SDK to simplify access to remote �les and packing and unpacking
metadata objects.

The endpoints provide a computing and data fabric to abstract
the complexities of accessing and using remote and heterogeneous
hardware. Xtract leverages two existing technologies to create its
endpoints–funcX [7] and Globus [6]. funcX endpoints provide a
mechanism to dynamically provision computational resources and
manage execution of metadata extractors within containers. Each
endpoint also includes a reference to a container library such that
extraction containers can be started on the machine. Depending
on the target machine, the container library can either be retrieved
from a remote location or is immediately accessible via a shared
�le system. Globus endpoints enable remote data management,
including being able to list, move, and share �les and folders. If
Globus endpoints are deployed on two remote computers, Xtract
can request that �les be moved from one endpoint to another. While
endpoints also support direct download from cloud repositories

such as Google Drive and AWS S3, they do not yet support transfer
of �les to other non-Globus endpoints.

The validation service is implemented as an asynchronous mi-
croservice that can validate and transform metadata subject to a
user’s set of schemas: e.g., the ‘passthrough’ validator that converts
a metadata dictionary into valid JSON, and the MDF validator that
adapts extracted metadata to one of 12 schemas. As metadata are
processed, they are transferred to an endpoint of the user’s choos-
ing for post-processing (e.g., ingestion into a search index). The
validation service acts on metadata objects as they are added to the
result queue. These objects are dequeued, processed in accordance
with the user’s requirements, and then are queued for transfer to
an external �le system for client post-processing.

Xtract’s security model ensures that bulk metadata extraction
operations are performed on behalf of an authenticated and au-
thorized user. Xtract uses Globus Auth [28] for authentication and
authorization. Users must provide valid authentication tokens with
appropriate authorization to initiate crawls, extractions, and vali-
dations. Xtract is registered as a Globus resource server, allowing
users to authenticate using a supported Globus Auth identity (e.g.,
institution, Google, ORCID) and enabling various OAuth-based au-
thentication �ows (e.g., native client) for di�erent scenarios. Xtract
has associated Globus Auth scopes via which other clients (e.g.,
applications and services) may obtain authorizations for program-
matic access. To support Google Drive repositories we retrieve a
user’s Google OAuth token and use it in conjunction with appropri-
ate Globus Auth tokens to both access data and perform extractions.

Xtract extractors are isolated in containers to ensure they cannot
access data or devices outside their context. In particular, we use
both Docker and Singularity containers to encapsulate extractors
and enable their execution at various computing resources. Within
the container, each function executes within its own local Python
namespace to avoid program state changes between invocations.

TheXtractClient facilitates REST communication between user
programs and the Xtract service. Listing 2 illustrates how a user
with two crawlable computing resources (one capable of running
a funcX endpiont) can authenticate, register and execute func-
tions, and track the progress of a two-endpoint metadata extrac-
tion. In this listing, the store_path=None indicates that endpoint
globus_ep_2 lacks a compute layer; Xtract will then automatically
move the �les to another endpoint with a valid funcX endpoint id.

4.2 Extractors
We brie�y summarize several extractors, their use cases for this
work, and the types of �les (or �le components) on which they are
meant to operate. We describe these extractors and present detailed
performance information in a previous paper [23].

The MaterialsIO set of extractors [3] can process multiple
common formats used in materials science. The set of extractors
wraps the MaterialsIO �le parsing library, which contains a number
of parsers for atomistic simulations, crystal structures, electron mi-
croscopy outputs, density functional theory (DFT) calculations, and
images. Since many �le types generally used in materials science
are processed in groups (e.g., VASP �les generated from atomistic
simulations), we have written a grouping function that executes at
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Listing 2: Example code of someone registering an Xtract ex-
tractor, invoking an extraction job, andmonitoring progress.

from xtract_sdk import XtractClient

import keyword_extract

# Xtract Client: authenticate via Globus/Google Auth

xmc = XtractClient(cache_credentials=True ,

resources =[�GLOBUS �])

# Register an extractor

ext_id = xmc.register_extractor(func=keyword_xtract ,

container_id=�<UUID >�)

# Globus endpoints with and without computing layer

globus_ep_1 = {�ep_id �: <UUID >,

�read_path �: /science/data ,

�store_path �: /tmp/xtract ,
�available_gb �: 32}

globus_ep_2 = {�ep_id �: <UUID >,

�read_path �: /other_science/papers ,

�store_path �: None}

# FuncX endpoints

fx_ep = {�ep_id �: <UUID >,

�container_path �: /path/to/containers}

# Submit , then check crawl and extraction status

task_id = xmc.submit(headers=auth_headers ,

grouper=�extension �,

resources =[{�globus �: globus_ep_1 ,

�funcx �: fx_ep},

{�globus �: globus_ep_2 ,

�funcx �: None }])

print(xmc.get_crawl_status(task_id ))
print(xmc.get_extract_status(task_id ))

crawl-time and matches groups of �les to a MaterialsIO extractor.
All MaterialsIO extractors share a container runtime.

The images extractor extracts metadata from arbitrary images
(e.g., plots, maps, and photographs) that are stored in common for-
mats (e.g., .png, .jpg, .tif ). The image extractor dynamically builds a
work�ow for each image by �rst determining its class (e.g., plots,
photographs, diagrams, and geographic maps). In order to generate
these classi�cations, we �rst extract a number of features from
the image, including color histograms, and predict its class using a
pretrained support-vector machine (SVM) model. If the image is a
photograph, we apply the ImageNet extractor mentioned in the fol-
lowing. If the �gure is a map, we apply object-character recognition
(OCR) software to determine its geographic coordinates, and return
location tags (e.g., “South America”, “Montgomery, Minnesota”).

The tabular extractor processes data in common row-column
formats, such as spreadsheets and database tables, that may contain
a header of column labels. Metadata can be derived from the header,
rows, or columns. Aggregate column-level metadata (e.g., mean
and maximum) often provide useful insights.

The keyword extractor identi�es uniquely descriptive words
in unstructured free text documents such as READMEs, academic
papers (e.g., .pdf and .doc �les), and abstracts. It uses word em-
beddings to curate a list of the top-n keywords in a �le, and an
associated weight corresponding to the relative relevance of a given
keyword as a proper descriptor for that document

The library also contains extractors beyond those analyzed in
this work. These include hierarchical for NetCDF and HDF �les,

null-value to determine null-values in tabular data, Python and
C for isolating comment and function names from programs, semi-
structured for data in .json and .xml formats. BERT to extract key
entities from text, and ImageNet to recognize objects in images.

4.3 Optimizations
Xtract applies three optimizations to reduce metadata extraction
costs: the creation of family objects to reduce the number of times
a �le is transferred, batching to amortize network and startup costs,
and o�oading tasks to other compute sites to use idle resources.

4.3.1 Families: Transfer Minimization. During crawling, �le group-
ings are not necessarily disjoint: one �le can belong to multiple
groups. This, however, creates problems when deciding where to
send each �le group for extraction, as a �le belonging to multiple
groups may need to be transferred to disparate places, thus incur-
ring unnecessary transfer costs. In order to avoid these costs, we
introduce a collection data type called a family.

A family contains one or more groups whose individual �le
sets intersect. Because some directories are large, automatically
considering all �les to be members of the same family is detrimental
to parallelization (i.e., the worker drawing that extraction task will
certainly become a straggler). Thus we set a user-con�gurable
maximum group size B > 0. Thus, we can minimize transferring
the same �le twice, or inversely, transfer a �le and then invoke all
of its groups’ extractors on it.

In order to facilitate building families with minimal overhead,
we developed the min-transfers algorithm that leverages Karger’s
Randomized Min-Cut algorithm [11]. The input to the algorithm is
a multigraph ⌧ =< + , ⇢ > of each directory across all �le systems,
where each node E 2 + is a �le and each weighted edge 4 (E8 , E 9 ) 2 ⇢
represent how often �les 58 and 59 appear in separate subgraphs. In
simpler terms,F4 represents the number of times the �le may be
redundantly transferred. We isolate ⌧ into its connected subgraph
components 6 =< +6, ⇢6 >2 ⌧ , as each connected component, by
de�nition, shares no E (and therefore no 5 ) with other 6.

For each connected component 6 2 ⌧ , we run Karger’s Min-
Cut to determine an approximate minimum cut, producing two
subgraphs. We recursively run Min-Cut on each subcomponent
until 86 2 ⌧, |⇢6 |  B . At this point, all �les (E) in a still-connected
subcomponent are labelled as a family, and considered a single meta-
data extraction task object. See Algorithm 1. As each group is pack-
aged as minimum-transfer families, the crawler asynchronously
enqueues it for processing by the Xtract service.

To calculate the e�ciency of our approach, we start with the
$ (⇢) = $ ( |+ |2) complexity in the worst case when all �les are
in a group with each other �le. In the worst case, only one node
is removed on each iteration, which means it can take |+ | � A �
1 iterations to get the largest component of the graph down to
maximum scalar group size A . Therefore, this algorithm operates in
$ ( |+ |2 ⇤ ( |+ | � A � 1)) ⇡ $ ( |+ |3) time.

4.3.2 Batching. Batching enables Xtract to amortize the overheads
associated with transmitting thousands of function invocation re-
quests to an endpoint. Xtract batches tasks at two levels: �le families
and extraction requests. First, Xtract batching combines families
that use the same extractors into a single funcX task. This reduces
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Algorithm 1: Min-Transfers
Inputs: G=<V, E>: �le system graph

families = list()

// Step 1: Make queue of connected components
connected_components = get_connected_components(G)

// Step 2: Iteratively run Karger’s min-cut in each component
for each comp in connected_components:

if |2><? .+ |  |( |:
families.append(comp)
continue

else:
newcomp_1, newcomp_2 = karg_mincut(comp)
connected_components.put(newcomp_1)
connected_components.put(newcomp_2)

// Step 3: return a list of families
return families

the cost of transmitting many families through funcX, through the
endpoint, and to the extractor, and back, across all subtasks in the
task. These batches are transparent to funcX. Second, we exploit
funcX batching to reduce the number of funcX web service re-
quests. Here, we create batches of tasks to be executed and submit
each batch individually to funcX. funcX expands the batch into a
set of individual function invocations. We also use funcX’s batch
polling functionality to retrieve the status and output of completed
functions. Batching at both levels enables us to not only amortize
costs at the function execution level, but maximize �le throughput
through the Web services.

4.3.3 O�loading. Xtract can o�oad tasks to other idle resources in
order tomaximize total task throughput. To determine the resources
on which extraction should occur, Xtract uses a rule-set that varies
between metadata runs and relationships of (i) how long it would
take to move a group to a given remote computer and (ii) how
long extraction is expected to take, given information about the
�le’s size and extraction time, on a given computer. These rules are
implemented as user-con�gurable modes: o�oad = bytes (ONB)
and random (RAND). In ONB, each computer is given a size limit
(either max or min); if a computer is fully occupied with work, all
�les on that computer that are larger (for max) or smaller (for min)
than the size limit are transferred to another, allowing Xtract to
leverage idle resources. In RAND, a speci�ed % of �les are selected
at random to move from a ‘main’ machine (e.g., cluster) to worker
machines (e.g., cloud instances). Xtract invokes batch �le transfers
before extractors are serialized and shipped, and only sends the
extractors upon con�rming that transfers completed successfully.

5 EVALUATION
We examine Xtract’s performance in terms of scalability, through-
put, latency, and application to real-world research data repositories.
We also evaluate our batching, �le fetching, and o�oading optimiza-
tions, and themin-transfers algorithm. To showcase the �exibility of
our design, we leverage a diversity of research cyberinfrastructure.

5.1 Experiment Testbed
Xtract services are hosted on an m4.16xlarge AWS EC2 instance
with 256 GB RAM and a 2.4 GHz Intel Xeon® E5-2676 v3 (Haswell)
processor, located in the us-east-1 availability zone (Northern Vir-
ginia, USA). Other instances such as the PostgreSQL RDS database
and SQS queues are also located in us-east-1. We use four com-
pute resources: Theta supercomputer, River Kubernetes cluster,
Jetstream, and University of Chicago Midway cluster.

Theta is a 11.7-peta�op Cray XC40 system comprised of second-
generation Intel Xeon Phi “Knight’s Landing" (KNL) processors. Its
4392 nodes each have a 64-core processor with 16 GB MCDRAM,
192 GB DDR4 RAM, and are interconnected via high speed In�ni-
band. Data are stored on Theta’s Lustre �le system.

River is a Kubernetes cluster housed at the University of Chicago.
The cluster has 70 nodes, eachwith 48 cores and 256GBRAM.Nodes
are connected with a 10 Gbps network and the cluster is accessible
via two 40 Gbps links to the campus science DMZ.

Midway is a campus cluster with 572 nodes and 16 016 cores. It
has both Intell Broadwell (28 core, 64 GB RAM) and Skylake (40
cores, 96 GB RAM) nodes. Tightly-coupled nodes are connected
with 1000 Gbps In�niband interconnect, loosely-coupled nodes are
connected with 40 Gbps GigE. We use the Broadwell partition.

Jetstream [25, 27] is an open research cloud composed of two
homogeneous clusters, at Indiana University and the Texas Ad-
vanced Computing Center. Each cluster has 320 Dual Intel E-2680v3
(Haswell) nodes, each with 24 cores and 128 GB RAM. Jetstream
uses 40 GigE for network aggregation, and has 100 Gbps connec-
tions to Internet2. Jetstream includes nine di�erent cloud virtual
machine types ranging from 1–44 vCPU. We use m1.large (10 vCPU,
10 GB RAM) instance types in the TACC cluster.

We also leverage Petrel [4] as a data store. Petrel is a data service
hosted at ANL that provides user-managed storage allocations to
the research community. It is an eight-node cluster with a Ceph �le
system o�ering 3 PB of storage. Access is provided via Globus. It
has no connected compute resources.

For experiments with Apache Tika [17], we deploy an air-gapped
Tika server locally with = incoming processing threads, where = is
the number of funcX workers being evaluated on that machine. As
Tika has no built-in data fabric, we use Xtract to move �les between
resources, when appropriate.

5.2 Scalability and Throughput
E�ectively processing metadata from the data sizes present in mod-
ern science requires that Xtract scale to a large number of concur-
rent extraction processes. To evaluate this, we analyze the strong
and weak scaling of the Xtract service using endpoints deployed
on ANL’s Theta supercomputer.

Strong scaling measures performance when the total number of
extractors applied to a set of �les is �xed; weak scaling measures
performance when the average number of extractor invocations is
�xed. As crawling time is negligible compared to overall execution
time, we focus here on only the metadata extraction process. We
evaluate crawler scaling in §5.4. Each experiment measures the total
time required to complete the bulk metadata extraction task, from
the request to the Xtract service to the result being returned. This
time includes the time for the Xtract service to dequeue families,
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Figure 2: Strong and weak scaling of ImageSort and Materi-
alsIO metadata extraction tasks.

construct extraction plans, and push requests to funcX; funcX to
deploy families and functions to funcX workers on each endpoint;
and each funcX worker to invoke the function on the �le and
return the results. To evaluate Xtract’s scalability we use just two
extractors: the short-duration ImageSort extractor that classi�es
images as one of �ve types (photograph, diagram, plot, geographic
map, and other) and the long-duration MaterialsIO extractor.

We apply these extractors to two representative datasets. For
the image extractor, we use the 2014 Common Objects in Context
training dataset of 80 000 images (14 GB) [14]. For MaterialsIO
we use a subset of the MDF dataset: 200 000 �le groups (1.1 TB),
chosen uniformly at random. We use an Xtract batch size of two
for ImageSort and eight for MaterialsIO, and a funcX batch size of
16 (i.e., Xtract sends batches of 16 requests to funcX).

5.2.1 Strong Scaling. Figure 2(a) shows the completion time of
200 000 extractor requests with an increasing number of worker
containers on Theta. For ImageSort, completion time decreases until
2048 workers are deployed, after which the short task execution
time limits performance. For the longer MaterialsIO extraction,
we see that the completion time decreases until 4096 workers are
employed. We conclude that Xtract is primarily limited by the rate
at which funcX delivers tasks and data to an endpoint.

5.2.2 Weak Scaling. To evaluate weak scaling we employ concur-
rent extraction tasks where each worker, on average, receives 24
ImageSort and MaterialsIO extraction tasks. We see in Figure 2(b)
that Xtract maintains good throughput for both the ImageSort and

Figure 3: Xtract latency breakdown across all components
(boxes) and the communication costs between them. Uni-
directional arrows imply we measure data �ow latency in
just one direction (downstream), whereas bi-directional ar-
rows imply the sum of latency in both directions (down-
stream and upstream).

MaterialsIO extractors on up to 2048 workers, but that the longer-
duration task (MaterialsIO) again scales better than its shorter Im-
ageSort counterpart as the number of workers increases to 4096.

5.2.3 Throughput. We observe a maximum extraction throughput
(successful extraction invocations per completion time) to be 357.5
for ImageSort and 249.3 for MaterialsIO, respectively, on Theta.

5.3 Latency
A decentralized FaaS-based architecture must engage multiple com-
ponents to place functions and �les where needed for extraction. To
better understand the resulting costs, we measure per-component
latencies when submitting a single unbatched metadata extraction
task (extracting keywords from a free text document) to an end-
point on River: see Figure 3. As this endpoint has no shared �le
system, we must transfer the �le in from either a Globus or Google
Drive endpoint.

The time-cost of the crawler service, C2B , is predominantly due
to Globus Auth and remote Globus directory listing requests. Other
crawler service events such as grouping, calculating themin-transfer
families, and packingmetadata objects are relatively short (less than
20 ms) in comparison. The 539 ms required to report the task back
to the Xtract service is high as it includes the cost of enqueueing
and dequeueing the task from SQS.

Once the task is received by the Xtract service the majority of the
cost CGB is due to resolving the endpoint and container associated
with a given metadata extractor from the RDS database. These
values are cached for subsequent requests. The cost of determining
an extraction plan for a group is negligible.

The funcX invocation costs (C5 G ) represent the time required
to send the task through the funcX service to the compute layer
(e.g., a funcX endpoint containing multiple funcX workers) on
River. Once a given task is transmitted to funcX, it also incurs an
authentication/authorization cost using Globus Auth.

Once the task reaches the endpoint, it is dispatched to an ap-
propriate warmed Docker container on an idle Kubernetes pod.
A majority of the keyword extractor cost, C:4 , arises from using
Python libraries that process each word in the �le, tokenize them,
and then analyze those tokens to generate keywords. In the case
where the �le should be fetched, moving a �le via Globus HTTPS,
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Figure 4: Number of�les crawled over time for 2, 4, 8, 16, and
32 worker threads for 2.3M �les from MDF.

C6⌘ , or the Google Drive API, C63 , is more costly than the extraction
itself (i.e., in general, C6⌘, C63 > C4G ).

Many costs are amortized when the scale of the metadata extrac-
tion task is increased. For example, crawling a directory of 1000
�les is much more e�cient than performing 1000 individual re-
quests. Similarly, the extractor can download many �les in a family
in parallel to increase overall throughput. Further, funcX costs can
be reduced by batching extraction tasks into a single request.

5.4 Crawl Parallelization
In order for Xtract to maintain a high-throughput stream of data
to workers, it is important that the crawlers e�ciently process
directories and enqueue family objects. We evaluate the e�ects of
parallelizing the number of workers processing directories from the
crawler’s queue. We perform crawler parallelization experiments
on an AWS t3.medium instance (2 vCPUs and 4 GB RAM). Figure 4
shows performance for crawling all 2.3M �les on MDF, requiring
50 minutes with just two workers, and ⇠25 minutes on 16–32 work-
ers. We observe minimal bene�t after 16 concurrent workers, due
to network congestion on the instance caused by large �le lists
simultaneously returning from Globus.

5.5 Batching
We evaluate the e�ects of batching in two ways (§4.3.2): Xtract
batching combines tasks on the Xtract client such that tasks are
serially processed by the same extractor and funcX batching re-
duces the number of requests to funcX. To this end we try to �nd an
optimal batching pattern by submitting 100 000 MaterialsIO tasks
to the endpoint and varying both Xtract and funcX batch sizes from
2–32. We have 224 Midway workers processing these tasks. The
results of this experiment are shown in Figure 5. We examine that
overall throughput is maximized by extracting 8 extraction tasks
per batch and sending 8–16 of these batches at a time to funcX.

5.6 O�loading and System Comparison
Xtract’s decentralized metadata extraction allows metadata extrac-
tion tasks to be o�oaded to remote resources with a compatible
compute layer that the user is authorized to use, for example to
make use of additional idle cloud or HPC allocations. Opportunis-
tically o�oading tasks enables Xtract to minimize the makespan
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Figure 5: Extraction tasks processed per second when vary-
ing the Xtract batch size and the funcX batch size.

of extraction tasks. To this end, Xtract enables users to de�ne via
its RAND scheduling policy a percentage of the data to be sent to
alternative resources. To evaluate the e�ectiveness of this strategy
we measure the performance of o�oading tasks to the Jetstream
cloud. In particular, we evaluate the makespan of extracting 100 000
�les using a 56-worker endpoint on the Midway cluster when of-
�oading 0%, 10%, and 20% of the �les to 10 idle funcX workers
on a Jetstream instance. Further, we compare Xtract to a similar
o�oading setup using the same �les, but instead running Apache
Tika at the endpoints for metadata extraction. We con�gure Tika
to automatically detect �le type and execute the ‘best’ parser from
its default library. We present the results of the three o�oading
scenarios for both extraction tools in Table 2.

We observe that there is an equilibrium point between trans-
ferring too few and too many �les. In this case, if we transfer too
few �les (0%), then too many tasks remain queued waiting for re-
sources on Midway. These tasks may queue longer than the time to
transfer and extract them on Jetstream. When o�oading too many
�les (20%), Jetstream’s 10 funcX workers or Tika processes become
saturated, and the Midway workers are underutilized. In the best
case, we transfer just 10% of all �les and see total extraction occur
8% faster than when processing everything in situ. Additionally,
Xtract executes its extractions 20% faster than Tika, on average, but
using a di�erent (and less domain-speci�c) set of parsers.

Table 2: Completion time for various RAND policy o�load-
ing rules from 56 concurrent workers on Midway to 10 con-
current workers on Jetstream: Xtract and Apache Tika.

System Percentage
Transferred (%)

Transfer
Time (s)

Completion
Time (s)

Xtract
0% 0 1696
10% 374 1560
20% 655 1662

Apache Tika
0% 0 2032
10% 384 1868
20% 649 1935

A key use case for Xtract is to process �les residing on a storage
system without an associated computer, in which case data must be
transferred to permit extraction. We show in Figure 6 results from
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Figure 6: Bulk metadata extraction times for an MDF sub-
set processed on 4, 8, 16, and 32 remote Midway nodes (each
running 28 workers).

such a con�guration. Speci�cally, we move (prefetch) 200 000 MDF
�les from Petrel to Midway using 10 concurrent Globus transfer
jobs, and extract metadata on 4–32 Midway nodes, each with 28
workers. We see that the time required to crawl the data is small
compared to the prefetch and extraction costs; that �le prefetch
(transfer) incurs the majority of the time; and that on 32 nodes,
Xtract processes the data nearly as quickly as it arrives.

5.7 Min-Transfers Grouping
Xtract’s FaaS compute layer e�ectively decouples data storage lo-
cation from extractor execution location. However, in such an envi-
ronment it is possible that data may be moved unnecessarily (e.g.,
when the same �le is included in multiple families each moved to
di�erent compute endpoints). Xtract’s lightweight min-transfers al-
gorithm aims to minimize overall transfer time and data transferred
by batching groups that have intersecting sets of �les into family
objects. The min-transfers algorithm is automatically applied to
each directory as part of the crawler. Ideally to be e�ective, the
min-transfers algorithm would signi�cantly reduce transfer time
in exchange for comparatively small overheads in the crawler. We
seek here to explore the bene�t of applying the min-transfers algo-
rithm against the regular approach of simply transferring each �le
group separately, regardless of overlap between groups.

Figure 7 shows performance with and without min-transfers
when crawling 100 000 (161 GB) randomly selected �les on both
Midway2 and Petrel and then transferring those �les to four Jet-
stream instances for extraction. We observe that in the regular
approach, 3246 of our randomly-selected families contain multiple
�les, leading to 20 258 �les (32 GB) that are transferred redundantly.
The �gure shows that min-transfers adds little overhead to crawl-
ing. The regular crawls on Midway2 and Petrel took 913 and 1005
seconds, respectively. The slowdown caused by min-transfers is
only 19 and 7 seconds, respectively: a penalty of less than 1%. The
transfer time to Jetstream from Midway2 decreased by 24% (from
8291 to 6290 seconds, at an e�ective transfer rate of 26 MB/s), and
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Figure 7: Min-transfers algorithm in�uence on crawl and
transfer times whenmoving data to Jetstream from theMid-
way2 and Petrel �le systems.

from Petrel by 16% (from 2464 to 2060 seconds at an e�ective trans-
fer rate of 79 MB/s). We conclude that the min-transfers algorithm
helps reduce both transfer time and redundant bytes transferred.

5.8 Case Studies
To examine whether Xtract is capable of bulk metadata extraction
of real, heterogeneous data stores using heterogeneous computing
resources, we outline our experience applying Xtract to MDF and a
graduate student’s Google Drive repository.

5.8.1 MDF. We �rst examine Xtract’s performance on the 61 TB,
2.5 million group repository. We conduct this test using a Theta
endpoint with 4096 workers. We crawl the entire repository in
26.3 minutes using 16 parallel crawlers. The Xtract service begins
extracting data within 3 seconds of the crawler being initiated as
�le groups are returned asynchronously.

Full extraction from MDF data took 26 200 core hours and 6.4
walltime hours. Figure 8 shows both throughput (groups processed
per second) and cumulative groups processed over time. The higher
throughput in the �rst hour is due to the order of task submission,
as many long-duration tasks saturate multiple funcX workers. A
graph of extraction start time by duration for each processed fam-
ily is shown in Figure 8. Here we see that many families whose
overall extraction time is dominated by the compute-intensive ASE
extractor begin executing within the �rst hour, with many such
families taking multiple hours to �nish.

These results also highlight the reliability of the Xtract process.
Theta’s scheduling policies allowed us to allocate nodes for only
six hours at a time, less than total extraction time. Xtract could
checkpoint and resubmit remaining tasks on a second allocation
some time later. For this experiment we checkpointed progress via
a ‘checkpoint-�ag’ in the extractor that, when present, �ushes each
processed group’s metadata to disk on completion. When funcX
returns a heartbeat to the Xtract service stating that a family’s
task id is lost (i.e., the allocation ended), then the entire family
is resubmitted, and in the presence of the ‘checkpoint-�ag’, the
metadata are re-loaded. We see in Figure 8 that Xtract was able to
restart the job with minimal overhead at 19 274 seconds. In sum,
the total metadata spanned 2.5 million �les (14 GB).

Extracting metadata without transferring data is particularly
valuable in the case of large many-�le repositories. For example,
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Figure 8: Metadata extraction on all of MDF. Above:
Throughput in K-groups per second (blue line) and cumula-
tive groups processed (red line) over time. Below: Per-family
extraction duration vs. start time, colored by the extractor
that took the longest. In both �gures, the black-dashed line
at 6 hrs show when extraction was terminated and restarted
from checkpoint

despite the fact that Theta and Petrel are located in the same ma-
chine room, transferring all 64 TB of MDF to Theta would take 13.3
hours: double the time required to perform extraction on Theta.

5.8.2 Scientific Google Drive repository. To explore the e�ective-
ness of Xtract when applied to a smaller, uncurated repository not
mounted to a computing system (e.g., when decentralized extrac-
tions without transferring data prove impossible), we consider the
Google Drive repository of a graduate student. This Google Drive
repository contains 4443 �les: 2976 text �les, 333 tabular �les, 564
images, 184 presentations, 1 hierarchical �le and 6 compressed �les.
For 379 �les, we were unable to derive an associated type, so we
initially treat them as free text �les. Due to the absence of a ‘pre-
sentation’ extractor, we also treat presentations as free text �les.
As compute is not available on Google Drive, we con�gure Xtract
to use 30 Kubernetes pods on River.

Table 3 presents statistics on the extraction process, including
the average extraction and transfer time for each extractor type.
There are more extractor invocations (4980) than total �les (4443),
as some �les are processed by multiple extractors: for example,
when a text �le contains both free text and tabular content.

We completed the extraction process in ⇠35 minutes or 23 to-
tal Kubernetes pod-hours. As each extraction plan for a �le may
contain up to �ve extractors, and because Kubernetes pods do not
mount a shared disk, a signi�cant portion of this time was spent

Table 3: Graduate student Google Drive extraction statistics.

Extractor Total
Invoca-
tions

Avg.
Extract
Time (s)

Avg.
Transfer
Time (s)

Avg.
File Size
(MB)

Keyword 3539 2.76 1.38 0.559
Tabular 333 0.21 0.31 0.024
Null-Value 333 0.84 0.30 0.024
Images 774 1.06 0.80 4.0
Hierarchical 1 2.2 5.9 14.0

transferring data and starting new extractors, incurring a cold-start
cost of ⇠70 seconds per container. While being able to build and
execute a rich metadata extraction plan for an average student’s
repository in a handful of minutes is certainly valuable, we again see
the bene�t of being able to o�oad extraction to another location.

6 RELATEDWORK
Data, in the absence of information concerning content and relation-
ships, are just assemblages of bytes. This reality has spurred much
work on methods for extracting or synthesizing the information
that people need to navigate such assemblages.

A few such analyses can proceed without domain knowledge.
For example, �le-level deduplication [18], commonly applied in
storage systems to reduce storage requirements [10], looks only at
byte sequences in �les to determine the inter-�le relationship “are
equivalent.” In general, however, semantic information is needed to
make sense of data. Manual creation and maintenance of such meta-
data [12, 20, 31, 33], is time-consuming, even if required expertise
is available. In the general case, automatic methods are needed.

To alleviate these challenges researchers have developed meth-
ods to extract standard metadata from nonstandard �le types and
formats [26]. Further, a number of systems have been developed to
automatically extract and organize metadata from �les. Here we
review several such systems and compare them to Xtract.

ScienceSearch [21] uses machine learning techniques to create
metadata for micrographs in a National Center for Electron Mi-
croscopy (NCEM) dataset, with additional context derived from
associated artifacts, such as �le system data and free text propos-
als and publications. Like Xtract, ScienceSearch allows users to
switch metadata extractors to suit particular datasets. However, it
too requires that extractions be performed where data reside.

Apache Tika [17] is an open-source metadata extraction toolkit
and library with an extensible parser interface for developing cus-
tom parsers. Tika’s default parser libraries can recognize thousands
of �le formats, making it a rich source of extractors for use within
Xtract. A limitation is that the choice of parsers to apply to a �le
is made primarily on the basis of MIME types, which are often
misleading in scienti�c data sets, where for example MIME type
‘text/plain’ may be used for both tabular and free text �les. The
Tika libraries are also used by the GEMMS [19] metadata extraction
system to identify parsers for extracting property, structure, and
semantic metadata; thus GEMMS su�ers from similar limitations
to Tika when applied to scienti�c data.

The Clowder [16] data management system supports data cura-
tion and metadata extraction for scienti�c data. Like Xtract, it uses
containers for extensible and scalable metadata extraction. Clowder
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stores metadata records in an ElasticSearch index to make them
discoverable. Xtract could be used by Clowder to enable distributed
execution of bulk metadata extraction on distributed repositories.

Constellation [30] is a centralized metadata extraction and stor-
age system that extracts entities—research groups, machines, exper-
iments and �les—from scienti�c data. It provides simple extractors
for self-described hierarchical metadata, HPC logs, and �le sys-
tems. Also relevant to Xtract is work on pay-as-you go information
integration systems, which allow for incremental improvements
to semantic mappings between data elements, as and when users
decide that further investment in data analysis is required [8].

The systems just discussed all use either entirely local or entirely
centralized computation to perform extractions. Modern high-speed
networks and simplifying abstractions such as FaaS make it easy
to perform computation in di�erent locations. AWS Lambda [1]
is an event-driven, serverless platform for function execution that
has seen wide-spread adoption in business to lower infrastructure
costs. funcX [7] is a federated FaaS system designed to support
distributed function execution across computing resources. AWS
Snowball [2] is an industrial platform for edge computing and data
migration. We leverage the ideas of remote function execution for
our extractor execution to deliver a �exible metadata extraction
service capable of bulk metadata extraction in distributed systems.

7 CONCLUSION
Traditional metadata extraction methods either act entirely on lo-
cally available �les or move data to a central system (e.g., cloud).
In contrast, Xtract implements a hybrid model in which metadata
extractors are executed on remote and heterogeneous computing
endpoints. Xtract leverages the funcX federated FaaS system to
dispatch extractors for remote execution and the Globus research
data management platform for moving data between endpoints. We
have demonstrated that Xtract can scale well to materials science
extractors concurrently executing across 2048 funcX workers on
an endpoint, crawl millions of �les, and support batching for better
performance. As a measure of Xtract’s e�cacy, we showed that we
can crawl the 61 TB MDF repository in just over six hours.

In future work we will extend Xtract to dynamically o�oad
extraction tasks intelligently to heterogeneous resources based on
optimization criteria such as transfer cost, resource availability,
and processing speed. We will also expand the extractor library
to encompass a broader range of �les. To facilitate e�cient �le
storage use, we will explore methods for identifying duplicated or
nearly-duplicated data. We will also evaluate the utility of extracted
metadata, so that we can explore utility-cost tradeo�s.
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