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Abstract—TIn this paper, the application of quantum computing
(QC) in solving gate insulator Poisson equation is studied, through
QC simulator and hardware in IBM. Various gate insulator stacks
with and without fixed charges are studied. It is found that by
increasing the number of clock bits and by choosing appropriate
evolution time, accurate solutions can be obtained in QC
simulation. However, when the real quantum hardware is used,
the accuracy is substantially reduced. Therefore, a more robust
quantum circuit or error correction should be employed and
developed.

Keywords—Insulator, Poisson Equation, Quantum Computing,
Technology Computer-Aided Design (TCAD)

I. INTRODUCTION

Quantum computing (QC) is becoming more promising and
quantum supremacy has been demonstrated in a 53-qubit QC
system [1]. One of the promising applications of QC is to speed

up the solving of the system of linear equations, AX = b, in
which vector X is solved for a given symmetric matrix, 4, and a

vector, b. HHL algorithm [2][3], which has a time complexity
of O(log N), is a QC algorithm that can provide exponential
speedup over the classical conjugate gradient method. It is
expected to have a big impact on various areas such as machine
learning [4] and modeling of quantum systems [5]. It has also
been proposed to solve the Poisson equation [6].

However, there is a lack of study of using QC to solve the
Poisson equation in semiconductor problems. In this work, we
study the performance of QC in solving the Poisson equation in
gate dielectric stacks using QC simulator [7] and QC hardware
in IBM [8]. SiO,, SiO,/HfO,, and Si3N4/SiO,/SizN4 gate stacks
with and without fixed charges are studied. Firstly, a system with
an exact solution is studied in detail and solved using two
different circuits in both QC simulation and hardware. Then the
robustness of solving more complex systems is studied through
QC simulation and the results are verified using TCAD
Sentaurus [9].

II. SIMULATION STRUCTURES

Poisson equations across various 1-D gate stacks are studied.
Fig. 1 shows the structures simulated. Three types of structures,
namely structure (a) (Si3N4/SiO2/SizN4), structure (b) (SiO»),
and structures (cl), (c2), (c3) (SiO/HfO,), are studied. Fixed
charges are put in structures (c2) and (c3). All structures are
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Figure 1: Gate stacks studied in this paper. Mesh points are
showed in dots. Color legend of each material is shown on top
with its relative dielectric constant. Fixed charge is also added to
certain nodes.

biased at 2V and are 2nm thick. The Poisson equation is
discretized and the size of A is 2x2 for structures (a), (b), and
(cl), 4x4 for structure (c2), and 8x8 for structure (c3).
Therefore, they can be handled by 1, 2, and 3 qubits respectively
in quantum computing. Note that the terminal mesh points are at
a fixed bias (Dirichlet boundary condition) and thus need not be
solved. The equations are solved in Python 3.7.3 using direct
solver, TCAD Sentaurus using Newton iteration, and Qiskit for
quantum computing circuit simulation. Structure (a), which
gives an exact solution is also implemented in IBM 5-qubit
quantum computing hardware.

III. HHL ALGORITHM AND SIMULATION

A. Overview

Fig. 2 shows the HHL algorithm implemented to solve
structure (a). HHL Algorithm has 5 main sections: state
preparation, quantum phase estimation (QPE), ancilla bit
rotation, inverse quantum phase estimation, and measurement.

In HHL, AX = b is represented by A|x) = |b). If |u;) are the
eigenvectors of A, the coefficient, b;, in b is encoded as the
coefficient of |b) in the basis formed by |u;), i.e. |b) =
Y. b; lu;). The number of clock qubits (n;) needs to be large

enough to encode the eigenvalues of A. The algorithm starts
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Figure 2: Quantum circuit used to solve structure (a). Boxes highlights various functional blocks.

with QPE by applying e*4? on |b) in order to find the
eigenvalues, 4;, of A, which are encoded in the clock qubits and
approximated by |/T,) t is the evolution time whose effect will
be studied in detail. After that, controlled rotation on the ancilla
qubit by the clock qubits is performed and is followed by inverse
QPE and the ancilla bit is measured. If the ancilla bit is measured
to be |0), the result is discarded and the computation is repeated
until the ancilla bit is measured to be |1) and the solution is
encoded as the coefficients in the output qubit |x). One can
prove that the solution of the system of linear equation is

N-1
1
=4
j=0
B. Example and Details
As an example, for structure (a), after normalization, b=
1 -1
(0), A= ( / 3) with eigenvalues, 1, andA,, being

1 -1/3 1
2/3 and 4/3, respectively.

b can be represented by 1 qubit, |b), and is obtained after
applying X gate to |0). After the state is initialized, the
eigenvalues are computed and encoded in the clock qubits using
QPE which has 3 parts: superposition of the clock qubits
(through Hadamard gates), controlled unitary operation, and
Inverse Quantum Fourier Transform (IQFT). The clock qubits
are in a superposition state, which in turn are controls for the
unitary matrix applied to |b). The value of n; (number of clock
qubits) is based on the desired resolution of the result. In this
particular case, the eigenvalues can be encoded exactly using 2
clock qubits (n;=2) as A, can be encoded as |01) and A, can be
encoded as |10) with a ratio of 2 unchanged.

The controlled unitary operations applied to |b) are U =
(e™t)2" . There are two controlled operations, each with r = 0
and 1, respectively. We use U-gate to perform the equivalent
rotations,

6 i i (@
cos (E) —etsin (E)
. 0 . 0
e'® sin (E) eiA+®)cog (E)

by setting (6, ®,A) = (g, —g,g) and (6, ®,)) = (mr,m, 0) for
r = 0 and 1, respectively. Appropriate phases are added before
the operations.

U@, o, = 2)

We follow [10] and set r=3/4m so that 1,=A; and an exact
solution can be obtained. The IQFT, which is necessary to
complete the QPE, is a standard one and would not be further
explained in detail.

Including the ancilla qubit, this system has 4 qubits. The
ancilla bit is added so that after the controlled rotation on the
ancilla qubit by the clock qubits, the system has the following
state (from left to right are the qubits from bottom to top in Fig.

2):
N-1 c2 c
bilu)|2;)C [1 = =710} += 1)) 3)
j=0 J ]

And after applying inverse QPE, it becomes

< 2
bi[u;)[00)( |1 - —[0) +— |1 4
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If a measurement is performed on the ancilla bit and it
returns |1) and if we only care about the 1% qubit (the bottom
one in Fig. 2), the wavefunction collapses to

N-1

C
Z 7 bilw) ®
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Up to a normalization factor, this is the solution of the linear
equation as shown in (1).
In order to achieve (3), controlled rotation RY (€) is used to
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Figure 3: Simulation result of the circuit in Fig. 2. X-axis
shows the values of the top most and bottom most qubits in
Fig. 2. |01) to |11) ratio = 0.063:0.565=1:8.97.

(439)-

The angle is found by using 6(ci¢,) = 2 arcsin (%),
1to

(7] 6
cos (z) —sin (%)
RY(6) = exp 2 2 (6)

0 0
sin (E) cos (E)

which is further approximated as 0(ci¢y) = mcy + gcl -
3.51cycy, where c1 ¢y is the clock qubit in binary form for the C
=1 case. C =1 is chosen because it maximizes the probability
to obtain |1) when the ancilla bit is measured. Note that C must
be larger than or equal to the smallest encoded eigenvalue,
which is [01) = 1 in this case.

The circuit in Fig. 2 is simulated in software using
“qasm_simulator”. The solution of structure (a), i.e. the potential
of the 2 interior points, are 0.5V and 1.5V, respectively.
Therefore, the wavefunction amplitudes of |x) are expected to
have a ratio of 1:3 and thus the probability of measuring [x) to
be |0) or |1) has a ratio of 1:9. Fig. 3 shows that the ratio is
1:8.97 (Fig. 5) which is very close to the theoretical value.

It is possible to implement the same algorithm using
different but equivalent circuits. We also implement the
algorithm by modifying the circuit in [10]. The circuit is showed
in Fig. 4. Fig. 5 shows the simulation results and the ratio
between |01) to |11) is 1:8.9, which is also very close to the
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Figure 5: Simulated measurement probability of top most
and bottom most bits in Fig. 4. |01) to |11) ratio
0.063:0.561=1:8.9.
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theoretical value and is similar to the result obtained in Fig. 3.
Therefore, the circuits in Fig. 2 and Fig. 4 are considered to be
equivalent.

IV. HARDWARE IMPLEMENTATION

Structure (a) has a matrix that can give an exact solution in
QC. Therefore, the quantum circuits in Fig. 2 and Fig. 4 are
implemented to solve the Poisson equation in structure (a) and
submitted to run in IBM Quantum Computers.

Three 5-qubit quantum computers have been tried, namely,
ibmq 5 yorktown, ibmq belem, and ibmq santiago, which
have quantum volumes of 8, 16, and 32 respectively.
ibmq 5 yorktown has the best result and is shown in Fig. 6 and
Fig. 7. However, the result is far from the expected value. The
probability of measuring |x) to be |0) or |1) is found to be
1:1.41 and 1:1, respectively for circuits in Fig. 2 and Fig. 4,
instead of 1:9. This is probably due to noise and the lack of error
coding. Note that the results also have a substantial difference
when it is run on different days.

V. SOFTWARE SIMULATION ACCURACY

We further study the effect of # and »; on the fidelity [11] and
error using the built-in HHL function in [7] (python 3.7.3 and
qiskit 0.23.5) using “statevector_simulator” on larger systems in
Fig. 1. Fig. 8 shows that state fidelity is not a good metric to
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Figure 4: Quantum circuit modified from [10] used to solve structure (a). Boxes highlights various functional blocks.
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Figure 6: Hardware measurement probability of top most and
bottom most bits in Fig. 2. |01) to |11) ratio =
0.167:0.235=1:1.41.
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Figure 7: Hardware measurement probability of top most and
bottom most bits in Fig. 4. |01) to |11) ratio =
0.216:0.217=1:1.

measure accuracy. One may achieve close to 100% fidelity but
with an error (defined by average relative absolute error) close
to 16% (structure (b)). It also shows that by increasing n;, the
error is reduced and it gives a larger window of ¢ to achieve a
small error. Fig. 9 compares the QC solutions for structures (c2)
and (c3) against the TCAD solution. For structure (c3), 10 qubits
are needed but there is still a substantial error compared to
TCAD as the eigenvalue cannot be encoded exactly in the 6
clock qubits.

VI. CONCLUSIONS

In this paper, we studied the use of the quantum computer
through both simulation and hardware implementation to solve
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the Poisson equation in various gate stacks. We show that
fidelity is not a good metric to gauge accuracy. While simulation
shows that quantum computers can achieve similar accuracy as
in TCAD, hardware implementation is not accurate enough, and
probably more sophisticated error correction is needed.
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