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Abstract—In this paper, the application of quantum computing 

(QC) in solving gate insulator Poisson equation is studied, through 

QC simulator and hardware in IBM. Various gate insulator stacks 

with and without fixed charges are studied. It is found that by 

increasing the number of clock bits and by choosing appropriate 

evolution time, accurate solutions can be obtained in QC 

simulation. However, when the real quantum hardware is used, 

the accuracy is substantially reduced. Therefore, a more robust 

quantum circuit or error correction should be employed and 

developed. 
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I. INTRODUCTION 

Quantum computing (QC) is becoming more promising and 
quantum supremacy has been demonstrated in a 53-qubit QC 
system [1]. One of the promising applications of QC is to speed 

up the solving of the system of linear equations, 𝑨𝑥⃗ = 𝑏⃗⃗ , in 
which vector 𝑥⃗ is solved for a given symmetric matrix, 𝑨, and a 

vector, 𝑏⃗⃗. HHL algorithm [2][3], which has a time complexity 
of O(log N), is a QC algorithm that can provide exponential 
speedup over the classical conjugate gradient method. It is 
expected to have a big impact on various areas such as machine 
learning [4] and modeling of quantum systems [5]. It has also 
been proposed to solve the Poisson equation [6].  

However, there is a lack of study of using QC to solve the 
Poisson equation in semiconductor problems. In this work, we 
study the performance of QC in solving the Poisson equation in 
gate dielectric stacks using QC simulator [7] and QC hardware 
in IBM [8]. SiO2, SiO2/HfO2, and Si3N4/SiO2/Si3N4 gate stacks 
with and without fixed charges are studied. Firstly, a system with 
an exact solution is studied in detail and solved using two 
different circuits in both QC simulation and hardware. Then the 
robustness of solving more complex systems is studied through 
QC simulation and the results are verified using TCAD 
Sentaurus [9].  

II. SIMULATION STRUCTURES 

Poisson equations across various 1-D gate stacks are studied. 
Fig. 1 shows the structures simulated. Three types of structures, 
namely structure (a) (Si3N4/SiO2/Si3N4), structure (b) (SiO2), 
and structures (c1), (c2), (c3) (SiO2/HfO2), are studied. Fixed 
charges are put in structures (c2) and (c3). All structures are 

biased at 2V and are 2nm thick. The Poisson equation is 
discretized and the size of 𝑨 is 2×2 for structures (a), (b), and 
(c1), 4×4 for structure (c2), and 8×8 for structure (c3). 
Therefore, they can be handled by 1, 2, and 3 qubits respectively 
in quantum computing. Note that the terminal mesh points are at 
a fixed bias (Dirichlet boundary condition) and thus need not be 
solved. The equations are solved in Python 3.7.3 using direct 
solver, TCAD Sentaurus using Newton iteration, and Qiskit for 
quantum computing circuit simulation. Structure (a), which 
gives an exact solution is also implemented in IBM 5-qubit 
quantum computing hardware.  

III. HHL ALGORITHM AND SIMULATION 

A. Overview 

Fig. 2 shows the HHL algorithm implemented to solve 
structure (a). HHL Algorithm has 5 main sections: state 
preparation, quantum phase estimation (QPE), ancilla bit 
rotation, inverse quantum phase estimation, and measurement. 

In HHL, 𝑨𝑥⃗ = 𝑏⃗⃗ is represented by 𝑨|𝑥⟩ = |𝑏⟩. If |𝑢𝑖⟩ are the 

eigenvectors of 𝑨 , the coefficient, bi, in 𝑏⃗⃗  is encoded as the 
coefficient of |𝑏⟩  in the basis formed by |𝑢𝑖⟩ , i.e. |𝑏⟩ =
∑ 𝑏𝑖 |𝑢𝑖⟩. The number of clock qubits (nl) needs to be large 
enough to encode the eigenvalues of 𝑨. The algorithm starts 
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Figure 1: Gate stacks studied in this paper. Mesh points are 

showed in dots. Color legend of each material is shown on top 

with its relative dielectric constant. Fixed charge is also added to 

certain nodes. 

mailto:hiuyung.wong@sjsu.edu


 

 

with QPE by applying 𝑒𝑖𝐴𝑡  on |𝑏⟩  in order to find the 
eigenvalues, 𝜆𝑖, of 𝑨, which are encoded in the clock qubits and 

approximated by |𝜆𝑖̃⟩. t is the evolution time whose effect will 

be studied in detail. After that, controlled rotation on the ancilla 
qubit by the clock qubits is performed and is followed by inverse 
QPE and the ancilla bit is measured. If the ancilla bit is measured 
to be |0⟩, the result is discarded and the computation is repeated 
until the ancilla bit is measured to be |1⟩ and the solution is 
encoded as the coefficients in the output qubit |𝑥⟩. One can 
prove that the solution of the system of linear equation is  

𝑥 = ∑
1

𝜆𝑗
𝑏𝑗|𝑢𝑗⟩

𝑁−1

𝑗=0

(1) 

B. Example and Details 

As an example, for structure (a), after normalization, 𝑏⃗⃗ =

(
0
1

) , 𝑨 = (
1 −1/3

−1/3 1
)  with eigenvalues, 𝜆1 and𝜆2 , being 

2/3 and 4/3, respectively.  

𝑏⃗⃗ can be represented by 1 qubit, |𝑏⟩, and is obtained after 
applying X gate to |0⟩. After the state is initialized, the 
eigenvalues are computed and encoded in the clock qubits using 
QPE which has 3 parts: superposition of the clock qubits 
(through Hadamard gates), controlled unitary operation, and 
Inverse Quantum Fourier Transform (IQFT). The clock qubits 
are in a superposition state, which in turn are controls for the 
unitary matrix applied to |𝑏⟩. The value of nl (number of clock 
qubits) is based on the desired resolution of the result. In this 
particular case, the eigenvalues can be encoded exactly using 2 
clock qubits (nl = 2) as 𝜆1 can be encoded as |01⟩ and 𝜆2 can be 
encoded as |10⟩ with a ratio of 2 unchanged.  

The controlled unitary operations applied to |𝑏⟩ are 𝑈 =
 (𝑒𝑖𝐴𝑡)2𝑟

. There are two controlled operations, each with 𝑟 = 0 
and 1, respectively. We use U-gate to perform the equivalent 
rotations, 

U(𝜃, Φ, λ) = (
cos (

𝜃

2
) −𝑒𝑖𝜆 sin (

𝜃

2
)

𝑒𝑖Φ sin (
𝜃

2
) 𝑒𝑖(𝜆+Φ)cos (

𝜃

2
)

) (2) 

by setting (𝜃, Φ, λ) = (
𝜋

2
, −

𝜋

2
,

𝜋

2
) and (𝜃, Φ, λ) = (𝜋, 𝜋, 0)  for 

𝑟 = 0 and 1, respectively. Appropriate phases are added before 
the operations. 

 We follow [10] and set t=3/4𝜋 so that 𝜆𝑖̃=𝜆𝑖  and an exact 
solution can be obtained. The IQFT, which is necessary to 
complete the QPE, is a standard one and would not be further 
explained in detail.  

Including the ancilla qubit, this system has 4 qubits. The 
ancilla bit is added so that after the controlled rotation on the 
ancilla qubit by the clock qubits, the system has the following 
state (from left to right are the qubits from bottom to top in Fig. 
2): 

∑ 𝑏𝑗|𝑢𝑗⟩|𝜆𝑗⟩(√1 −  
𝐶2

𝜆𝑗
2

|0⟩ +
𝐶

𝜆𝑗
 |1⟩)

𝑁−1

𝑗=0

(3) 

And after applying inverse QPE, it becomes 

∑ 𝑏𝑗|𝑢𝑗⟩|00⟩(√1 −  
𝐶2

𝜆𝑗
2

|0⟩ +
𝐶

𝜆𝑗
 |1⟩)

𝑁−1

𝑗=0

(4) 

If a measurement is performed on the ancilla bit and it 
returns |1⟩ and if we only care about the 1st qubit (the bottom 
one in Fig. 2), the wavefunction collapses to 

∑
𝐶

𝜆𝑗
𝑏𝑗|𝑢𝑗⟩

𝑁−1

𝑗=0

(5) 

Up to a normalization factor, this is the solution of the linear 
equation as shown in (1). 

In order to achieve (3), controlled rotation 𝑅𝑌(𝜃) is used to 

obtain 
𝐶

𝜆𝑗
, 

 

Figure 2: Quantum circuit used to solve structure (a). Boxes highlights various functional blocks. 



 

 

𝑅𝑌(𝜃) = exp (−𝑖
𝜃

2
𝑌) = (

cos (
𝜃

2
) −sin (

𝜃

2
)

sin (
𝜃

2
) cos (

𝜃

2
)

) (6) 

 The angle is found by using 𝜃(𝑐1𝑐0̃ ) = 2 arcsin (
𝐶

𝑐1𝑐0̃
) , 

which is further approximated as 𝜃(𝑐1𝑐0̃ ) =  𝜋𝑐0 +
𝜋

3
𝑐1 −

3.51𝑐0𝑐1, where 𝑐1𝑐0̃  is the clock qubit in binary form for the C 
= 1 case. C = 1 is chosen because it maximizes the probability 
to obtain |1⟩ when the ancilla bit is measured. Note that C must 
be larger than or equal to the smallest encoded eigenvalue, 
which is |01⟩ = 1 in this case. 

The circuit in Fig. 2 is simulated in software using 
“qasm_simulator”. The solution of structure (a), i.e. the potential 
of the 2 interior points, are 0.5V and 1.5V, respectively. 
Therefore, the wavefunction amplitudes of |𝑥⟩ are expected to 
have a ratio of 1:3 and thus the probability of measuring |𝑥⟩ to 
be |0⟩ or |1⟩ has a ratio of 1:9. Fig. 3 shows that the ratio is 
1:8.97 (Fig. 5) which is very close to the theoretical value. 

It is possible to implement the same algorithm using 
different but equivalent circuits. We also implement the 
algorithm by modifying the circuit in [10]. The circuit is showed 
in Fig. 4. Fig. 5 shows the simulation results and the ratio 
between |01⟩ to |11⟩ is 1:8.9, which is also very close to the 

theoretical value and is similar to the result obtained in Fig. 3. 
Therefore, the circuits in Fig. 2 and Fig. 4 are considered to be 
equivalent. 

IV. HARDWARE IMPLEMENTATION 

Structure (a) has a matrix that can give an exact solution in 
QC. Therefore, the quantum circuits in Fig. 2 and Fig. 4 are 
implemented to solve the Poisson equation in structure (a) and 
submitted to run in IBM Quantum Computers.  

Three 5-qubit quantum computers have been tried, namely, 
ibmq_5_yorktown, ibmq_belem, and ibmq_santiago, which 
have quantum volumes of 8, 16, and 32 respectively. 
ibmq_5_yorktown has the best result and is shown in Fig. 6 and 
Fig. 7. However, the result is far from the expected value. The 
probability of measuring |𝑥⟩  to be |0⟩  or |1⟩  is found to be 
1:1.41 and 1:1, respectively for circuits in Fig. 2 and Fig. 4, 
instead of 1:9. This is probably due to noise and the lack of error 
coding. Note that the results also have a substantial difference 
when it is run on different days. 

V. SOFTWARE SIMULATION ACCURACY 

 We further study the effect of t and nl on the fidelity [11] and 
error using the built-in HHL function in [7] (python 3.7.3 and 
qiskit 0.23.5) using “statevector_simulator” on larger systems in 
Fig. 1. Fig. 8 shows that state fidelity is not a good metric to 

 
Figure 5: Simulated measurement probability of top most 

and bottom most bits in Fig. 4. |01⟩  to |11⟩  ratio = 

0.063:0.561=1:8.9. 

 

Figure 4: Quantum circuit modified from [10] used to solve structure (a). Boxes highlights various functional blocks. 

 
Figure 3: Simulation result of the circuit in Fig. 2. X-axis 

shows the values of the top most and bottom most qubits in 

Fig. 2. |01⟩ to |11⟩ ratio = 0.063:0.565=1:8.97. 



 

 

measure accuracy. One may achieve close to 100% fidelity but 
with an error (defined by average relative absolute error) close 
to 16% (structure (b)). It also shows that by increasing nl, the 
error is reduced and it gives a larger window of t to achieve a 
small error. Fig. 9 compares the QC solutions for structures (c2) 
and (c3) against the TCAD solution. For structure (c3), 10 qubits 
are needed but there is still a substantial error compared to 
TCAD as the eigenvalue cannot be encoded exactly in the 6 
clock qubits. 

VI. CONCLUSIONS 

In this paper, we studied the use of the quantum computer 
through both simulation and hardware implementation to solve 

the Poisson equation in various gate stacks. We show that 
fidelity is not a good metric to gauge accuracy. While simulation 
shows that quantum computers can achieve similar accuracy as 
in TCAD, hardware implementation is not accurate enough, and 
probably more sophisticated error correction is needed. 
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Figure 8: Simulated QC fidelity and error as a function of t and 

nl of structures (b), (c1), and (c2). Error is defined by the average 

relative absolute error. 

 
Figure 9: Best solutions obtained from QC simulation and 

TCAD for structures (c2) and (c3).  

 
Figure 6: Hardware measurement probability of top most and 

bottom most bits in Fig. 2. |01⟩  to |11⟩  ratio = 

0.167:0.235=1:1.41. 

 
Figure 7: Hardware measurement probability of top most and 

bottom most bits in Fig. 4. |01⟩  to |11⟩  ratio = 

0.216:0.217=1:1. 
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