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Abstract— Identifying the source of integrated circuit (IC) 

degradation and being able to track its degradation via its 

electrical characteristics (e.g. the Voltage Transfer 

Characteristics, VTC, of an inverter) is very useful in failure 

analysis. This is because the electrical measurement is non-

destructive, low-cost, and rapid.  However, the extraction of 

defects from electrical characteristics requires significant 

domain expertise. To reduce or even obviate the need for 

domain expertise so that the process can be automatic for 

various circuits, one may use manifold learning. As a type of 

machine learning (ML), manifold learning also requires a large 

amount of accurate training data. To obtain enough defect 

training data, which is almost impossible from experiments, one 

may use SPICE simulation. Based on our previous work of using 

AutoEncoder (AE) to perform SPICE-augmented ML to extract 

the pMOS and nMOS source contact resistances from the 

inverter VTC, in this paper, we compare the efficacy of using 

another 6 types of manifold learning. They are used to predict 

the experimental result and it is found that most of them have 

reasonable performance although the AE is still the best 

(R2=0.9). However, when including also the variation of PMOS 

width (as a weak perturbation to the data), algorithms such as 

Locally Linear Embedding (LLE) are found to perform better 

than AE (R2=0.72) with LLE (R2=0.83) being the best. 

Therefore, multiple manifold learnings are suggested to be used 

in parallel in real production to enhance accuracy. 
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I. INTRODUCTION  

Semi-conductor fabrication is becoming more 
complicated with new 3D structures such as stacked 
nanosheet, FinFET, and complimentary FET [1]-[3] and the 
subsequent increase in process complexity has made Failure 
Analysis (FA) more important. Rapid FA has become an 
essential part of defect identification and reverse engineering. 
Another consequence of the increased complexity in the 
fabrication process is the importance of parasitic components 
in highly scaled devices which further complicates their 
analysis. Contact resistance is one such parasitic resistance 
that requires more attention [4][5]. 

Classical FA techniques such as SEM and TEM are 
destructive, time-consuming, and expensive. To meet the 
current demand in FA, a low-cost and accurate technique to 
identify the presence of a defect, its type, and its numerical 
value is highly desirable. One method is to identify defects via 
the corresponding electrical characteristics such as Current-
Voltage, I-V, and Capacitance-Voltage, C-V, for devices and 
VTC and butterfly-curves for inverters and SRAM, 
respectively. The problem with using electrical characteristics 
for FA is that there is no simple correlation between the defect 

and the change in the electrical characteristics. As a result, 
significant domain expertise is required. However, this is not 
desirable due to the many different types of circuits and 
different ways of electrical characterization. 

To obviate the need of developing defect-electrical 
characteristic correlation for every circuit and measurement, 
one may use ML. However, most ML algorithm requires a lot 
of data and it is impossible to generate well-controlled defect 
data experimentally. One solution is to use the well-calibrated 
simulation as the low-cost data [6]. However, since simulation 
data does not have the noise and hidden variables as in the 
experimental data, overfitting can be an issue and special care 
needs to be taken (e.g. adding noise to training data [7] or 
using Principal Component Analysis [8]) to apply to 
experiments. To avoid this, one may use manifold learning. 
Manifold learning is a type of machine learning for projecting 
high-dimensional data onto a lower dimension while 
preserving the information present in the data. While there are 
various manifold learning algorithms, each algorithm attempts 
to preserve certain aspects of the data such as its local shape, 
global shape, or distance between points [9].  

Autoencoder (AE) is one of the commonly used manifold 
learning algorithms [10]-[13]. We have used (AE) in various 
TCAD-augmented (data generated by TCAD) machine 
learning for inverse design [10], process variation 
identification [11], and electrical characteristics 
reconstruction [12]. In [13], an AE machine trained by SPICE 
simulation data is used to identify the values of the pMOSFET 
and nMOSFET drain contact resistances of an inverter in the 
experiment. 

However, it is unclear if AE is the most suitable manifold 
learning algorithm for semiconductor applications and if they 
will still perform well when extra variations are added. In this 
paper, 6 other manifold learning tools are introduced and 
applied to the experimental data. Moreover, the pMOSFET 
width is intentionally varied to test the prediction accuracy of 
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Fig. 1. Schematic of the circuit being studied. Different numbers of 

pMOSFETs are put in parallel (NP = 1, 2, 3) for different widths. 



the algorithms (note that in [13], the pMOSFET width is fixed 
to different values during the corresponding training and 
testing). 

II. EXPERIMENTAL SETUP AND TRAINING DATA GENERATION 

A setup using discrete components is used to generate the 
experimental data as this allows precise control of contact 
resistances. The PMOS and NMOS devices are from 
Advanced Linear Devices, Inc. (ALD1103). The devices were 
fabricated with an enhanced ACMOS silicon gate CMOS 
process. Extra resistors with 10% or better accuracies are 
added to the setup to model the defect-induced drain contact 
resistances of pMOSFET and nMOSFET devices. These 
resistances are labeled as R0 and R1, respectively.  To prevent 
any loading during data acquisition, a unity gain buffer is used 
at the output. The experimental setup used in this experiment 
is described in detail in [13] and depicted in Fig. 1. 

The training data is generated using SPICE simulation in 
Cadence [14]. Because ALD1103 does not have a SPICE 
model, a level 3 SPICE model is developed to capture the 
threshold voltage and the equivalent on-state resistance at VDS 

= VGS = VDD/2 as Rp and Rn. The values of the drain contact 
resistance, R0 and R1, are varied from 10Ω to 1MΩ 
logarithmically. The effective width of the pMOSFET is 
varied by having 1, 2, or 3 pMOSFET in parallel in the circuit 
(NP = 1, 2, 3). Further details regarding how the training 
dataset is generated can be found in [13]. Selected 
experimental and simulation VTC are shown in Fig. 2(a) and 
Fig. 2(b), respectively.  

Two different sets of data have been studied. The first set 
has NP = 1 and only R0 and R1 are varied. The second set has 
also the NP changed among the values of 1, 2, and 3. 

III. MANIFOLD LEARNING ALGORITHMS AND RESULTS 

In this paper the following algorithms are reviewed for 

their efficiency at dimensionality reduction in addition to the 

AE in [13]: 

1. Principal Component Analysis  

2. Isometric Mapping  

3. Locally Linear Embedding  

4. Multi-Dimensional Scaling  

5. T-Stochastic Neighbour Embedding 

6. Graph Convolutional Neural Networks   

The VTC curve which had 51 discretized points generated 

across different input voltages is assumed to be a singular 

point in 51 dimensions, which are then projected onto a 

lower-dimensional plane using dimensionality reduction 

techniques listed above.  After dimensionality reduction, the 

latent variables are mapped to R0 and R1 (Fig. 3) using KNN 

regression. During regression training, 10% of the training 

data was kept aside to form the validation dataset for 

hyperparameter tuning. The experimental dataset which 

contains actual VTC data was used to compare the 

performance of different algorithms. 

A. Principal Component Analysis (PCA) 

Most manifold learning algorithms are an extension of 

PCA [15] to deal with non-linear data and to effectively carry 

out dimensionality reduction for such data.  For the first set 

of data, the first two principal components which accounted 

for 87.34% of the variance were retained and used for 

dimensionality reduction as there are only two variables (R0 

and R1). The experimental prediction accuracy is depicted in 

Fig. 4. When extending the capabilities of PCA to predict the 

contact resistance values by introducing an additional 

variable of the effective pMOSFET width (NP = 1, 2, 3), it is 

found that four components are needed (instead of 3) for 

accurate prediction. These four components accounted for 

91.49%. Moreover, the number of neighbors (k) was 

increased from 3 to 6 to overcome issues of underfitting. The 

experimental results of the second set of data are shown in 

Fig. 5. 

B. Isometric Mapping (Isomap) 

Isomap is a non-linear dimensionality reduction 

technique that attempts to preserve the geodesic structure of 

high-dimensional data in lower dimensions [16]. The 

geodesic distance is calculated using the Minkowski distance 

with p set to 2, which then is equivalent to calculating the 

Euclidean distance between points. The experimental results 

for the first and second set of data are depicted in Fig. 4. and 

Fig. 5, respectively. During hyperparameter tuning, it is 

found that setting the number of neighbors to 128 was optimal 

and this could prevent the algorithm from underfitting or 

overfitting the data. 

 
Fig. 2. Selected experimental (a) and simulated (b) VTCs for different 

NP’s. Green :NP=1, Blue: NP=2, Orange=NP=3  

 
Fig. 4. Experimental prediction accuracy of R0 and R1 for NP=1 (first 

set of data with only R0 and R1 varied). Blue: R0; Orange: R1. 

 
 

Fig. 3. The algorithmic flow for manifold learning prediction. 



C. Locally Linear Embedding (LLE) 

LLE is another type of manifold learning algorithm which 

attempts at preserving the local distance or ‘information’ 

within local neighborhoods [17]. In this study, the number of 

neighbors was set to 256 and because the number of 

neighbors was greater than the number of dimensions (51), 

the modified LLE was used instead which adds a 

regularization term to the calculation to get a stable non-rank-

deficient solution [18]. The experimental results for the first 

and second set of data are depicted in Fig. 4. and Fig. 5, 

respectively. 

D. Multi-Dimensional Scaling (MDS) 

MDS is a non-linear dimensionality reduction manifold 

learning algorithm that attempts at preserving the actual 

distances between points from the higher dimension to its 

lower dimension projection [19]. In this study, the metric 

MDS was used wherein the dissimilarity matrix was 

calculated by using the Euclidean distance between two 

neighboring points. Since MDS is a tool to find the relative 

positions of the training data after finding their best lower 

dimensional representation, it cannot be used to predict new 

data. Therefore, to use it in the experimental data, one 

possibility is to add the experimental data (scarce) to the 

simulation data (abundant) to perform the projection. Once 

the data is reduced to a simpler representation, the two 

datasets are then separated and the regression model is trained 

only on the training data and evaluated on the experimental 

data. The number of neighbors was set to 128. The 

experimental results for the first and second set of data are 

depicted in Fig. 4. and Fig. 5, respectively. 

E. t-Distributed Stochastic Neighbour Embedding (t-SNE) 

t-SNE is a non-linear dimensionality reduction manifold 

learning technique that attempts at preserving the local 

distribution of the data points from the higher dimension to 

its lower-dimensional projection [20]. Similar to MDS, since 

t-SNE is a data visualization tool, the experimental data was 

appended to the training data during training and then ran 

separately. For this experiment, the perplexity of the 

algorithm was set to 50. The experimental results for the first 

and second set of data are depicted in Fig. 4. and Fig. 5, 

respectively. 

F. Graph Convolutional Neural Networks (GCN) 

Another algorithm that was a possible dimensionality 

reduction technique was highlighted in [21] wherein a graph 

neural network algorithm was used for doing dimensionality 

reduction on a graph. For this experiment, graph 

convolutional neural networks were used [22] and the VTC 

curve was modeled as a graph. The adjacency matrix was 

varied to accommodate the number of potential neighbors. 

The number of neighbors of the VTC curve was varied from 

1 (i.e. the adjacency matrix resembled an identity matrix) to 

where every VTC sample is a neighbor to every other point 

(i.e. adjacency matrix becomes a unit matrix). Other numbers 

of neighbors such as 2, 5, 10, and 25 were all tried as well. 

However, the GCN did not perform well. It is found that the 

most efficient algorithm is the GCN-based Autoencoder 

whose model is shown in Fig. 6. Experimental results are 

shown in Fig. 4 and Fig. 5.  

IV. DISCUSSION 

There were other experiments done as well but eventually 

led to poor algorithmic performance on the experimental 

data. The first such experiment was standardizing the input 

zero mean and unit variance. Once standardized, although all 

of the algorithms did perform well on the training data, the 

performance degraded for the experimental data. This is 

because the latter’s distribution is different from the training 

dataset. The second experiment is the use of least-square 

regression instead of KNN regression. While the former and 

latter had similar performances, upon close inspection, the 

former was underfitting on the data.  

As seen in Fig. 4, most manifold learnings have similar 

performance although AE is the best when there are two 

variables (i.e. the first set of data with only R0 and R1 varied). 

Note that for R1 prediction, the t-SNE, MDS, and Isomap 

perform better than AE. This might be due to the fact that the 

experimental dataset was appended to the training dataset 

during training and the algorithm had a priori information 

about the experimental dataset via the calculated dissimilarity 

matrix. This shows that if some experimental data are 

 
Fig. 7. Prediction of experimental R0 and R1 by Isomap with NP=1. 

 
 

Fig. 6. GCN based Autoencoder 

 
Fig. 5. Experimental prediction accuracy of R0 and R1 for the second 

set of data with R0, R1 and NP varied. Blue: R0; Orange: R1. 

 



available, appending them to the training data set generated 

by simulation might improve the inference accuracy. 

Besides the data visualization techniques, between PCA, 

Isomap, LLE, and GCN-AE, the best performing algorithm 

overall was Isomap (which attempts at preserving the 

geodesic distances between points) with predicted 

experimental R2 scores of 0.8 and 0.96 for R0 and R1, 

respectively (Fig. 7). 

However, their performances start to differ in the second 

set of data (i.e. R0, R1, and NP are varied). It is found that AE 

prediction degrades substantially for R1 prediction. LLE has 

the best overall performance with R2 scores of 0.89 and 0.75 

for R0 and R1, respectively (Fig. 8). Isomap and GCN-AE 

degrade the most when the variation of PMOS width is 

introduced. 

For the second set of data, R0, R1, and NP (transformed to 

RP) are the variables and are all predicted by the machine. 

Fig. 8 shows that the prediction of NP is not good probably 

because the variation of the corresponding RP is not large 

enough. LLE can predict the trend of the average and it can 

be seen that the average Rp/Rn prediction increases for each 

NP value (golden line). This shows that even there is an extra 

relatively insignificant variable, the machine can still predict 

R0 and R1 well.  

V. CONCLUSION 

In this paper, SPICE simulation data is generated to train 

machines to predict the experimental contact resistances in 

inverters. Various algorithms capable of carrying out 

dimensionality reduction were experimented with. When 

there are only noise and regular hidden variables in the 

experimental data, while AE performs the best, all the 

algorithms have reasonable performance. When a minor 

variation is introduced (PMOS effective width), their 

performance differs a lot and LLE is found to be the best.  
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Fig. 8. Experimental prediction of R0, R1, and NP (which is translated to normalized RP. The machine is trained by the second set of data. 


