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Abstract— Identifying the source of integrated circuit (IC)
degradation and being able to track its degradation via its
electrical characteristics (e.g. the Voltage Transfer
Characteristics, VTC, of an inverter) is very useful in failure
analysis. This is because the electrical measurement is non-
destructive, low-cost, and rapid. However, the extraction of
defects from electrical characteristics requires significant
domain expertise. To reduce or even obviate the need for
domain expertise so that the process can be automatic for
various circuits, one may use manifold learning. As a type of
machine learning (ML), manifold learning also requires a large
amount of accurate training data. To obtain enough defect
training data, which is almost impossible from experiments, one
may use SPICE simulation. Based on our previous work of using
AutoEncoder (AE) to perform SPICE-augmented ML to extract
the pMOS and nMOS source contact resistances from the
inverter VTC, in this paper, we compare the efficacy of using
another 6 types of manifold learning. They are used to predict
the experimental result and it is found that most of them have
reasonable performance although the AE is still the best
(R?=0.9). However, when including also the variation of PMOS
width (as a weak perturbation to the data), algorithms such as
Locally Linear Embedding (LLE) are found to perform better
than AE (R?>=0.72) with LLE (R?=0.83) being the best.
Therefore, multiple manifold learnings are suggested to be used
in parallel in real production to enhance accuracy.
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I. INTRODUCTION

Semi-conductor ~ fabrication is  becoming more
complicated with new 3D structures such as stacked
nanosheet, FinFET, and complimentary FET [1]-[3] and the
subsequent increase in process complexity has made Failure
Analysis (FA) more important. Rapid FA has become an
essential part of defect identification and reverse engineering.
Another consequence of the increased complexity in the
fabrication process is the importance of parasitic components
in highly scaled devices which further complicates their
analysis. Contact resistance is one such parasitic resistance
that requires more attention [4][5].

Classical FA techniques such as SEM and TEM are
destructive, time-consuming, and expensive. To meet the
current demand in FA, a low-cost and accurate technique to
identify the presence of a defect, its type, and its numerical
value is highly desirable. One method is to identify defects via
the corresponding electrical characteristics such as Current-
Voltage, I-V, and Capacitance-Voltage, C-V, for devices and
VTC and butterfly-curves for inverters and SRAM,
respectively. The problem with using electrical characteristics
for FA is that there is no simple correlation between the defect
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and the change in the electrical characteristics. As a result,
significant domain expertise is required. However, this is not
desirable due to the many different types of circuits and
different ways of electrical characterization.

To obviate the need of developing defect-electrical
characteristic correlation for every circuit and measurement,
one may use ML. However, most ML algorithm requires a lot
of data and it is impossible to generate well-controlled defect
data experimentally. One solution is to use the well-calibrated
simulation as the low-cost data [6]. However, since simulation
data does not have the noise and hidden variables as in the
experimental data, overfitting can be an issue and special care
needs to be taken (e.g. adding noise to training data [7] or
using Principal Component Analysis [8]) to apply to
experiments. To avoid this, one may use manifold learning.
Manifold learning is a type of machine learning for projecting
high-dimensional data onto a lower dimension while
preserving the information present in the data. While there are
various manifold learning algorithms, each algorithm attempts
to preserve certain aspects of the data such as its local shape,
global shape, or distance between points [9].

Autoencoder (AE) is one of the commonly used manifold
learning algorithms [10]-[13]. We have used (AE) in various
TCAD-augmented (data generated by TCAD) machine
learning for inverse design [10], process variation
identification  [11], and electrical  characteristics
reconstruction [12]. In [13], an AE machine trained by SPICE
simulation data is used to identify the values of the pMOSFET
and nMOSFET drain contact resistances of an inverter in the
experiment.

However, it is unclear if AE is the most suitable manifold
learning algorithm for semiconductor applications and if they
will still perform well when extra variations are added. In this
paper, 6 other manifold learning tools are introduced and
applied to the experimental data. Moreover, the pMOSFET
width is intentionally varied to test the prediction accuracy of
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Fig. 1. Schematic of the circuit being studied. Different numbers of
pMOSFETs are put in parallel (NP = 1, 2, 3) for different widths.



the algorithms (note that in [13], the pMOSFET width is fixed
to different values during the corresponding training and
testing).

II. EXPERIMENTAL SETUP AND TRAINING DATA GENERATION

A setup using discrete components is used to generate the
experimental data as this allows precise control of contact
resistances. The PMOS and NMOS devices are from
Advanced Linear Devices, Inc. (ALD1103). The devices were
fabricated with an enhanced ACMOS silicon gate CMOS
process. Extra resistors with 10% or better accuracies are
added to the setup to model the defect-induced drain contact
resistances of pMOSFET and nMOSFET devices. These
resistances are labeled as Ro and R, respectively. To prevent
any loading during data acquisition, a unity gain buffer is used
at the output. The experimental setup used in this experiment
is described in detail in [13] and depicted in Fig. 1.

The training data is generated using SPICE simulation in
Cadence [14]. Because ALD1103 does not have a SPICE
model, a level 3 SPICE model is developed to capture the
threshold voltage and the equivalent on-state resistance at Vps
= Vgs= Vpp/2 as R, and R,. The values of the drain contact
resistance, Ro and R;, are varied from 10Q to 1MQ
logarithmically. The effective width of the pMOSFET is
varied by having 1, 2, or 3 pMOSFET in parallel in the circuit
(NP = 1, 2, 3). Further details regarding how the training
dataset is generated can be found in [13]. Selected
experimental and simulation VTC are shown in Fig. 2(a) and
Fig. 2(b), respectively.

Two different sets of data have been studied. The first set
has NP = I and only Ry and R, are varied. The second set has
also the NP changed among the values of 1, 2, and 3.

III. MANIFOLD LEARNING ALGORITHMS AND RESULTS

In this paper the following algorithms are reviewed for
their efficiency at dimensionality reduction in addition to the
AE in [13]:

1. Principal Component Analysis
Isometric Mapping
Locally Linear Embedding
Multi-Dimensional Scaling
T-Stochastic Neighbour Embedding
6. Graph Convolutional Neural Networks

Sl

The VTC curve which had 51 discretized points generated
across different input voltages is assumed to be a singular
point in 51 dimensions, which are then projected onto a
lower-dimensional plane using dimensionality reduction
techniques listed above. After dimensionality reduction, the
latent variables are mapped to R and R; (Fig. 3) using KNN
regression. During regression training, 10% of the training
data was kept aside to form the validation dataset for
hyperparameter tuning. The experimental dataset which
contains actual VTC data was used to compare the
performance of different algorithms.
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Fig. 3. The algorithmic flow for manifold learning prediction.
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Fig. 2. Selected experimental (a) and simulated (b) VTCs for different
NP’s. Green :NP=1, Blue: NP=2, Orange=NP=3

A. Principal Component Analysis (PCA)

Most manifold learning algorithms are an extension of
PCA [15] to deal with non-linear data and to effectively carry
out dimensionality reduction for such data. For the first set
of data, the first two principal components which accounted
for 87.34% of the variance were retained and used for
dimensionality reduction as there are only two variables (Ro
and R;). The experimental prediction accuracy is depicted in
Fig. 4. When extending the capabilities of PCA to predict the
contact resistance values by introducing an additional
variable of the effective pMOSFET width (NP =1, 2, 3), it is
found that four components are needed (instead of 3) for
accurate prediction. These four components accounted for
91.49%. Moreover, the number of neighbors (k) was
increased from 3 to 6 to overcome issues of underfitting. The
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Fig. 4. Experimental prediction accuracy of Ry and R, for NP=1 (first
set of data with only Ry and R, varied). Blue: Ry; Orange: R;.

experimental results of the second set of data are shown in
Fig. 5.

B. Isometric Mapping (Isomap)

Isomap is a non-linear dimensionality reduction
technique that attempts to preserve the geodesic structure of
high-dimensional data in lower dimensions [16]. The
geodesic distance is calculated using the Minkowski distance
with p set to 2, which then is equivalent to calculating the
Euclidean distance between points. The experimental results
for the first and second set of data are depicted in Fig. 4. and
Fig. 5, respectively. During hyperparameter tuning, it is
found that setting the number of neighbors to 128 was optimal
and this could prevent the algorithm from underfitting or
overfitting the data.
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Fig. 5. Experimental prediction accuracy of Ry and R; for the second
set of data with Ry, R; and NP varied. Blue: Ry; Orange: R;.

C. Locally Linear Embedding (LLE)

LLE is another type of manifold learning algorithm which
attempts at preserving the local distance or ‘information’
within local neighborhoods [17]. In this study, the number of
neighbors was set to 256 and because the number of
neighbors was greater than the number of dimensions (51),
the modified LLE was used instead which adds a
regularization term to the calculation to get a stable non-rank-
deficient solution [18]. The experimental results for the first
and second set of data are depicted in Fig. 4. and Fig. 5,
respectively.

D. Multi-Dimensional Scaling (MDS)

MDS is a non-linear dimensionality reduction manifold
learning algorithm that attempts at preserving the actual
distances between points from the higher dimension to its
lower dimension projection [19]. In this study, the metric
MDS was used wherein the dissimilarity matrix was
calculated by using the Euclidean distance between two
neighboring points. Since MDS is a tool to find the relative
positions of the training data after finding their best lower
dimensional representation, it cannot be used to predict new
data. Therefore, to use it in the experimental data, one
possibility is to add the experimental data (scarce) to the
simulation data (abundant) to perform the projection. Once
the data is reduced to a simpler representation, the two
datasets are then separated and the regression model is trained
only on the training data and evaluated on the experimental
data. The number of neighbors was set to 128. The
experimental results for the first and second set of data are
depicted in Fig. 4. and Fig. 5, respectively.

E. t-Distributed Stochastic Neighbour Embedding (t-SNE)

t-SNE is a non-linear dimensionality reduction manifold
learning technique that attempts at preserving the local
distribution of the data points from the higher dimension to
its lower-dimensional projection [20]. Similar to MDS, since
t-SNE is a data visualization tool, the experimental data was
appended to the training data during training and then ran
separately. For this experiment, the perplexity of the
algorithm was set to 50. The experimental results for the first
and second set of data are depicted in Fig. 4. and Fig. 5,
respectively.

F. Graph Convolutional Neural Networks (GCN)

Another algorithm that was a possible dimensionality
reduction technique was highlighted in [21] wherein a graph
neural network algorithm was used for doing dimensionality
reduction on a graph. For this experiment, graph
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convolutional neural networks were used [22] and the VTC
curve was modeled as a graph. The adjacency matrix was
varied to accommodate the number of potential neighbors.
The number of neighbors of the VTC curve was varied from
1 (i.e. the adjacency matrix resembled an identity matrix) to
where every VTC sample is a neighbor to every other point
(i.e. adjacency matrix becomes a unit matrix). Other numbers
of neighbors such as 2, 5, 10, and 25 were all tried as well.
However, the GCN did not perform well. It is found that the
most efficient algorithm is the GCN-based Autoencoder
whose model is shown in Fig. 6. Experimental results are
shown in Fig. 4 and Fig. 5.

1V. DISCUSSION

There were other experiments done as well but eventually
led to poor algorithmic performance on the experimental
data. The first such experiment was standardizing the input
zero mean and unit variance. Once standardized, although all
of the algorithms did perform well on the training data, the
performance degraded for the experimental data. This is
because the latter’s distribution is different from the training
dataset. The second experiment is the use of least-square
regression instead of KNN regression. While the former and
latter had similar performances, upon close inspection, the
former was underfitting on the data.

As seen in Fig. 4, most manifold learnings have similar
performance although AE is the best when there are two
variables (i.e. the first set of data with only Ry and R, varied).
Note that for R; prediction, the t-SNE, MDS, and Isomap
perform better than AE. This might be due to the fact that the
experimental dataset was appended to the training dataset
during training and the algorithm had a priori information
about the experimental dataset via the calculated dissimilarity
matrix. This shows that if some experimental data are
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Fig. 7. Prediction of experimental Ry and R; by Isomap with NP=1.
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Fig. 8. Experimental prediction of Ry, R, and NP (which is translated to normalized Rp. The machine is trained by the second set of data.

available, appending them to the training data set generated
by simulation might improve the inference accuracy.

Besides the data visualization techniques, between PCA,
Isomap, LLE, and GCN-AE, the best performing algorithm
overall was Isomap (which attempts at preserving the
geodesic  distances between points) with predicted
experimental R? scores of 0.8 and 0.96 for Ry and R,
respectively (Fig. 7).

However, their performances start to differ in the second
set of data (i.e. Ro, Rj, and NP are varied). It is found that AE
prediction degrades substantially for R; prediction. LLE has
the best overall performance with R? scores of 0.89 and 0.75
for Rg and Ry, respectively (Fig. 8). Isomap and GCN-AE
degrade the most when the variation of PMOS width is
introduced.

For the second set of data, Ry, R;, and NP (transformed to
Rp) are the variables and are all predicted by the machine.
Fig. 8 shows that the prediction of NP is not good probably
because the variation of the corresponding Rp is not large
enough. LLE can predict the trend of the average and it can
be seen that the average Ry/R, prediction increases for each
NP value (golden line). This shows that even there is an extra
relatively insignificant variable, the machine can still predict
Rp and R; well.

V. CONCLUSION

In this paper, SPICE simulation data is generated to train
machines to predict the experimental contact resistances in
inverters. Various algorithms capable of carrying out
dimensionality reduction were experimented with. When
there are only noise and regular hidden variables in the
experimental data, while AE performs the best, all the
algorithms have reasonable performance. When a minor
variation is introduced (PMOS effective width), their
performance differs a lot and LLE is found to be the best.
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