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In this paper, we introduce the Fock space on C∞ and obtain an isomorphism 
between the Fock space on C∞ and Bose-Fock space. Based on this isomorphism, 
we obtain representations of some operators on the Bose-Fock space and answer a 
question in [2]. As a physical application, we study the Gibbs state.
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1. Introduction

In [1], Bargman introduced the Fock space on Cn and discussed its connection with quantum mechanics. 
In [2], Berger and Coburn studied the operators on the Fock space on Cn. In the last section of that paper, 
the authors asked a question: can the analysis in this paper be applied in the physically interesting case 
where Cn is replaced by an infinite-dimensional Hilbert space? However, in this paper, we will use C∞ to 
replace Cn instead of infinite-dimensional Hilbert space. By this replacement, we will show that the Fock 
space on C∞ is isomorphic to the Bose-Fock space. Then, we are going to generalize some conclusions in 
[2] and give a physical application.

The Bose-Fock space is used to describe the states of bosons in quantum mechanics, for the details of this 
space we refer to [4]. If H is a separable Hilbert space, the Full Fock space over H is the complete tensor 
algebra over H:

F(H) =
∞⊕
k=0

(
⊗kH

)
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where ⊗kH is the kth tensor power of H for k ≥ 1 and ⊗0H = C. We define the projection on the Full Fock 
space over H by

P+ (u1 ⊗ · · · ⊗ uk) = 1
k!
∑
σ

uσ(1) ⊗ · · · ⊗ uσ(k),

where σ ranges over the group of permutations of k letters. The Bose-Fock space F+(H) consists of all 
symmetric tensors, that is to say

F+(H) = P+

∞⊕
k=0

(
⊗kH

)
.

It is easy to verify that if {hj} is an orthonormal basis for H, then{
Eα =

√
k!
α!P+ (hα1

1 ⊗ hα2
2 ⊗ · · · ) : α = (α1, · · · , αn, · · · ),

∑
αj = k, k = 0, 1, 2, . . .

}

is an orthonormal basis for F+(H), where the superscripts αj denote tensor powers. For any h ∈ H, the 
annihilation operator a(h) and the creation operator a∗(h) on the Fock space over H are given by

a(h) (h1 ⊗ h2 ⊗ · · · ⊗ hn) = n1/2 (h, h1)h2 ⊗ h3 ⊗ · · · ⊗ hn

a∗(h) (h1 ⊗ h2 ⊗ · · · ⊗ hn) = (n + 1)1/2h⊗ h1 ⊗ · · · ⊗ hn.

By definition, we know that the creation operators map ⊗nH to ⊗n+1H and the annihilation operators map 
⊗nH to ⊗n−1H. The annihilation operator a+(h) and the creation operator a∗+(h) on the Bose-Fock space 
are given by

a+(f) = P+a(f)P+ and a∗+(f) = P+a
∗(f)P+,

then we have

P+(h1 ⊗ h2 ⊗ · · ·hn) = (n!)−1/2a∗+(h1)a∗+(h2) · · · a∗+(hn)Ω, (1.1)

where Ω = (1, 0, 0, · · · ) ∈ ⊗nH. Next, we introduce the Weyl operators on the Bose-Fock space. Let

W (h) = exp{iΦ(h)}

be the Weyl operator, where

Φ(h) = 2−1/2(a+(h) + a∗+(h)
)
.

The Weyl algebra CCR(H) is a C∗-algebra generated by

{W (h) : h ∈ H},

where CCR stands for the canonical commutation relations, see [4, pg 10]. If H is an unbounded selfadjoint 
operator on H, one can define Hn on P+

(
⊗kH

)
by setting H0 = I and

Hn (P± (f1 ⊗ · · · ⊗ fn)) = P±

(
n∑

f1 ⊗ f2 ⊗ · · · ⊗Hfi ⊗ · · · ⊗ fn

)

i=1
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for all fi ∈ D(H), and then extending by continuity. The selfadjoint closure of this sum is called the second 
quantization of H and is denoted by dΓ(H). Thus

dΓ(H) =
⊕
n≥0

Hn.

Let Gaussian measure dλn on Cn be given by

dλn(z) = 1
(2π)n

e−
|z|2
2 dz.

The Fock space on Cn, denoted by F 2(Cn, dλn) or F 2(Cn), consists of all entire functions on Cn which are 
square-integrable with respect to dλn.

For any nonnegative integer k, let

ek(w) =
√

1
2kk!w

k, w ∈ C.

We have e1(z)ek(z) =
√
k + 1ek+1(z). Then the set {ek} is an orthonormal basis for F 2(C, dλ1).

The Gaussian measure can be extended on C∞, we denote it by dλ∞. L2(C∞, dλ∞) consists of all square-
integrable function on C∞ with respect to the infinite dimensional Gaussian measure dλ∞. Let lj be the 
complex linear functional such that for any z = (z1, · · · , zj , · · · ), we have

lj(z) = zj .

Let ek ◦ lj be a function on C∞, such that

ek ◦ lj(z) = ek(zj) =
√

1
2kk!z

k
j .

The Fock space on C∞ is defined to be a closed subspace of L2(C∞, dλ∞) generated by the orthonormal 
set {

eα1 ◦ l1 × eα2 ◦ l2 × · · · × eαm
◦ lm · · · :

∑
m

αm = k, k = 0, 1, 2, . . .
}

and is denoted by F 2(C∞, dλ∞). In fact, F 2(Cn) can be regarded as a closed subspace of F 2(C∞, dλ∞), 
the embedding is given by

f(z1, · · · , zn) → f(z1, · · · , zn, 0, 0, · · · ), for any f ∈ F 2(Cn).

In fact, we have a sequence of embeddings

F 2(C1) ⊂ · · · ⊂ F 2(Cn) ⊂ · · · ⊂ F 2(C∞, dλ∞).

Let Pn be the projection from F 2(C∞, dλ∞) to F 2(Cn). Since the set of finite polynomials is dense in the 
Fock space on C∞, we have ⋃

F 2(Cn, dλn) is dense in F 2(C∞, dλ∞).

n
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We define an isomorphism B from F+(H) to F 2(C∞, dλ∞) such that

Bc = c when c ∈ ⊗0H = C

and

B
[√ k!

α!P+ (hα1
1 ⊗ · · · ⊗ hαn

n )
]

= eα1 ◦ l1 · · · eαn
◦ ln (1.2)

when (hα1
1 ⊗ · · · ⊗ hαn

n ) ∈ ⊗kH with 
∑n

m=1 αm = k 
= 0. We need to point out that the isomorphism B
depends on the basis {hj}. We call B as infinite Bargmann representation.

Let P denote the projection from L2(C∞, dλ∞) to F 2(C∞, dλ∞). We define the Toeplitz operator with 
symbol φ ∈ L2(C∞, dλ∞) by

Tφh = P (φh)

for all h ∈ F 2(C∞, dλ∞) such that φh ∈ L2(C∞, dλ∞). In Section 2, we are going to use some facts of infinite 
dimensional Gaussian measures to show that the Toeplitz operators on F 2(C∞, dλ∞) are unitary equivalent 
to the annihilation, creation and Weyl operators on the Bose-Fock space, which is the generalization of 
some conclusions in [2]. This equivalence can be used to translate some problems in the Bose-Fock space to 
F 2(C∞, dλ∞). In [5] and [6], the authors obtained some similar conclusions. In fact, they defined the Fock 
space on a metric space with some properties and obtained representations. However, their representation 
of a Weyl operator is a strong limit of a sequence of Toeplitz operators. C∞ is a spacial case of such metric 
space, we will show that, in this situation, Weyl operators can be represented as Toeplitz operators. For the 
sake of completeness, we give all details here.

We need to point out that the reason that we care about the Fock space on C∞ is that it gives us an 
application. Since 

⋃
n F

2(Cn, dλn) is dense in F 2(C∞, dλ∞), the problems in F 2(C∞, dλ∞) can be reduced 
to F 2(Cn, dλn). In Section 3, we will use this idea to discuss a problem in Quantum Statistical Mechanics. 
We will study the trace formula which will be applied to the Gibbs state. The Gibbs state of an operator A
on the Bose-Fock space is

ω(A) =
Tr

(
e−βdΓ(H−μI)A

)
Tr

(
e−βdΓ(H−μI)

) ,

where e−βdΓ(H−μI) is an operator and its definition will be given in Section 3. The Gibbs state is an 
important quantity in the Quantum Statistical Mechanics, in fact, it is just the trace of an operator on the 
Bose-Fock space, see [4]. Because we know the trace formula in the Fock space on Cn, we can generalize the 
trace formula and apply it to the Gibbs state. In the theory of Many-Body Problems, some operators can 
be represented by the linear combination of products of annihilation and creation operators, see [9, Chapter 
1]. So, it is important to study the product of annihilation and creation operators. Given

f (1), · · · , f (m), g(1), · · · , g(m) ∈ H,

we will study the Gibbs state of the operator

a∗+(f (1)) · · · a∗+(f (m))a+(g(1)) · · · a+(g(m)),

which is the generalization of [4, Proposition 5.2.28].
In Section 4, we will discuss the relationship between the Fock space on Cn and the Gaussian Har-

monic analysis. In [11], the authors gave an isomorphism between the Fock-Sobolev space on Cn and the 
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Gauss-Sobolev space over Rn. We will generalize this isomorphism in the infinite dimensional case. As an 
application, we study the boundedness of the annihilation and creation operators.

2. Annihilation, creation and Weyl operators

Let χk be the subspace of the Fock space on Cn generated by⎧⎨⎩eα1 ◦ l1 · · · eαm
◦ lm · · · :

∑
j

αj = k

⎫⎬⎭ .

Then, for any h =
∑

cjhj ∈ H, we have Bh =
∑

j cje1 ◦ lj . By P+hm = hm and (1.2), we have

Bhm(z) = e1(zm).

Thus, we know that the isomorphism B maps H to χ1.
Next, we are going to show that the annihilation operators and creation operators are isomorphic to the 

Toeplitz operators with symbols in χ1.

Proposition 2.1. For any h ∈ H, let a+(h) and a∗+(h) be an annihilation operator and a creation operator, 
we have

Ba∗+(h)B−1 = TBh and Ba+(h)B−1 = TBh.

Proof. For any h =
∑

cjhj ∈ H, we have

Bh =
∑

cje1 ◦ lj .

Thus, for any eα1 ◦ l1 · · · eαm
◦ lm · · · with 

∑
αj = k, we have

B−1TBheα1 ◦ l1 · · · eαm
◦ lm · · ·

=B−1
∑
j

cje1 ◦ lj × eα1 ◦ l1 · · · eαm
◦ lm · · ·

=B−1
∑
j

cj
√
αj + 1eα1 ◦ l1 · · · eαj+1 ◦ lj · · · eαm

◦ lm · · ·

=
∑
j

cj
√
αj+1

√
(k + 1)!

α1! · · · (αj + 1)! · · ·P+

(
hα1

1 ⊗ · · · ⊗ h
αj+1
j ⊗ · · ·

)

=
∑
j

cj

√
(k + 1)!

α! P+

(
hα1

1 ⊗ · · · ⊗ h
αj+1
j ⊗ · · ·

)
.

On the other hand

a∗+(h)B−1eα1 ◦ l1 · · · eαm
◦ lm · · · = a∗+(h)

√
k!
α!P+ (hα1

1 ⊗ hα2
2 ⊗ · · · )

=
√

1
α! [a

∗
+(h)a∗+(h1)α1 · · · a∗+(hn)αn · · · ]Ω

(
by (1.1)

)
=
√

(k + 1)!
P+(h⊗ hα1

1 ⊗ · · ·hαn
n · · · )
α!
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=
√

(k + 1)!
α!

∑
cjP+(hj ⊗ hα1

1 ⊗ · · ·hαn
n · · · ),

which means that Ba∗+(h)B−1 = TBh. Thus we have Ba+(h)B−1 = TBh by taking adjoints. �
We are going to give a representation of the Weyl operators, thus we need some facts about infinite 

dimensional Gaussian measure. For these facts about infinite dimensional Gaussian measure, we refer to [3, 
Chapter 2]. Because we need a particular theorem in [3], we give the details about the general theory.

A Borel probability measure γ on R1 is called Gaussian if it is either the Dirac measure δa at a point a
or has density

p
(
·, a, σ2) : t �→ 1

σ
√

2π
exp

(
− (t− a)2

2σ2

)
with respect to the Lebesgue measure.

Let X be a locally convex space. Let X∗ be the set of real linear continuous functionals on X. Let us 
denote by E(X, X∗) the minimal σ-field of subsets of Ω, with respect to which all functionals f ∈ X∗ are 
measurable. A probability measure γ defined on the σ−field E(X, X∗) is called Gaussian if, for any f ∈ X∗, 
the induced measure γ ◦ f−1 on R1 is Gaussian. Let

aγ(f) =
∫
X

f(x)γ(dx).

We denote by X∗
γ the closure of the set

{f − aγ(f), f ∈ X∗}

embedded into L2(γ), with respect to the norm of L2(γ). We define

〈f, g〉X∗
γ

:=
∫
X

[f(x) − aγ(f)] [g(x) − aγ(g)] γ(dx)

For any x ∈ X, let

|h|X(γ) = sup
{
l(h) : l ∈ X∗, 〈l, l〉X∗

γ
≤ 1

}
.

The space

X(γ) =
{
h ∈ X : |h|X(γ) < ∞

}
is called the Cameron-Martin space for X.

Lemma 2.2 ([3, Lemma 2.4.1]). A vector x in X belongs to the Cameron-Martin space X(γ) precisely when 
there exists x̂ ∈ X∗

γ such that f(x) = 〈x̂, f〉X∗
γ

for any f ∈ X∗. In this case,

|x|X(γ) = ‖x̂‖L2(γ).

Lemma 2.3 ([3, Lemma 2.4.4]). Let γ be a Gaussian measure on a locally convex space X. If x ∈ X(γ) and 
x̂ ∈ X∗

γ satisfy

f(x) = 〈x̂, f〉X∗

γ
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for any f ∈ X∗, then the measures γ and γx = γ(· −x) are equivalent and the corresponding Radon-Nikodym 
density is given by the expression

dγx(z) = exp
(
x̂(z) − 1

2 |x|
2
X(λ)

)
dγ(z).

Next, we discuss a special case when X = C∞ and dγ = dλ∞. Let �lk(z) = �zk and �lk(z) = �zk. 
Then any real linear functional f ∈ (C∞)∗ is a finite linear combination of �lk and �lk, see [8, Theorem 
4.3]. That is to say that there is a unique sequence {fk = ak + ibk ∈ C} such that

f =
n∑

k=1

ak�lk +
n∑

k=1

bk�lk =
n∑

k=1

�fk�lk +
n∑

k=1

�fk�lk = �
n∑

k=1

fklk.

Thus, we have

adλ∞(f) =
∫

C∞

f(z)dλ∞(z) = 0.

For any

f = �
n∑

k=1

fklk and g = �
n∑

k=1

gklk ∈ (C∞)∗,

we have

〈f, g〉(C∞)∗dλ∞
=

∫
C∞

f(z)g(z)dλ∞(z) =
n∑

k=1

(�fk�gk + �fk�gk) = �
n∑

k=1

fkgk. (2.1)

Since (C∞)∗dλ∞
is the completion of (C∞)∗ with respect to the inner product above, we know that, for any 

f ∈ (C∞)∗dλ∞
, there is a sequence {fk} such that

f = lim
n→∞

�
n∑

k=1

fklk,

where the limit is taken in (C∞)∗dλ∞
. We denote by f = � 

∑∞
k=1 fklk.

If z is in the Cameron-Martin space C∞(dλ∞) for C∞, then we have

|z|C∞(γ) = sup
{
l(z) : l ∈ (C∞)∗, 〈l, l〉(C∞)∗dλ∞

≤ 1
}
< ∞.

Thus, by (2.1), we have

|z|C∞(γ) = (
∞∑
k=1

|zk|2)1/2 < ∞.

Thus, we write |z|C∞(γ) as |z|. By (2.1), we know that � 
∑n

k=1 zklk is convergent in L2(C∞, dλ∞), then we 
denote the limit by

ẑ = �
∞∑

zklk. (2.2)

k=1



8 B.D. Wick, S. Wu / J. Math. Anal. Appl. 505 (2022) 125499
Then for any f = � 
∑n

k=1 fklk, we have

f(z) = �
n∑

k=1

fkzk = �〈f, ẑ〉(C∞)∗dλ∞
.

By Lemma 2.2, Lemma 2.3 and the argument above, we have the following Lemma.

Lemma 2.4. Let dλ∞ be the Gaussian measure on C∞.
(1) Let C∞(dλ∞) be the Cameron-Martin space for C∞, then

x = (x1, · · · , xk, · · · ) ∈ C∞(dλ∞) if and only if |x| = (
∞∑
k=1

|xk|)1/2 < ∞.

(2) For any f, g ∈ (C∞)∗dλ∞
, there are sequences (f1, · · · , fn, · · · ) and (g1, · · · , gn, · · · ) with (

∑∞
k=1 |fk|)1/2 <

∞ and (
∑∞

k=1 |gk|)1/2 < ∞ such that

f = �
∞∑
k=1

fklk, g = �
∞∑
k=1

gklk and 〈g, f〉(C∞)∗dλ∞
= �

∞∑
k=1

fkgk.

(3) For any x = (x1, · · · , xk, · · · ) ∈ C∞(dλ∞), let x̂ = � 
∑

k xklk ∈ (C∞)∗dλ∞
, we have

f(x) = 〈x̂, f〉,

for any f ∈ (C∞)∗. Moreover the measures dλ∞ and dλ∞,x = dλ∞(· − x) are equivalent and the corre-
sponding Radon-Nikodym density is given by the expression

dλ∞,x(z) = exp
(
x̂(z) − 1

2 |x|
2
C∞(dλ∞)

)
dλ∞(z).

For any x = (x1, · · · , xn, · · · ) ∈ C∞(dλ∞), we have 
∑n

k=1 xklk is convergent in F 2(C∞, dλ∞). Let 
limn→∞

∑n
k=1 xklk be the limit, we define

〈x, z〉 =
[

lim
n→∞

n∑
k=1

xklk

]
(z) for z ∈ C∞ almost everywhere. (2.3)

Thus 〈x, z〉 is a function in F 2(C∞, dλ∞). By (2.1) and (2.2), we have

�〈x, z〉 = x̂(z) almost everywhere and ‖〈x, z〉‖(C∞)∗dλ∞
= 2|x| = 2‖x̂‖C∞(dλ∞). (2.4)

We define the translation operator Ux on L2(C∞, dλ∞) by

Uxf(z) = f(z − x)e 1
2 〈x,z〉− 1

4 |x|
2
.

Remark 2.5. In the Fock space on Cn, we can define the reproducing kernel for all x(n) = {x1, · · · , xn} ∈ Cn. 
The reproducing kernel is given by

Kx(n)(z(n)) = e
1
2
∑n

j xjzj = e
1
2 〈x

(n),z(n)〉Cn

for any z(n) ∈ Cn. Since we can’t define the inner product of two points in C∞, we can’t define the 
reproducing kernel for all points in C∞. However, for x in the Cameron-Martin space C∞(dλ∞) and z ∈ C∞, 
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we can define 〈x, z〉 by the limit in F 2(C∞, dλ∞) as in (2.3). That is the reason that we need the Cameron-
Martin space. So, the analogue of the normalized reproducing kernel in F 2(C∞, dλ∞) is given by

kx(z) = e
1
2 〈x,z〉− 1

4 |x|
2
.

On the other hand, by Lemma 2.4, we know that any x ∈ C∞(dλ∞) is a bounded sequence. Thus

C∞(dλ∞) ⊂
⋃
N

[
B(0, N) × · · · ×B(0, N) × · · ·

]
⊂ C∞,

where B(0, N) is a ball in C with center 0 and radius N . Since 
[
B(0, N) ×· · ·×B(0, N) ×· · ·

]
has measure 

0 in C∞ with respect to the Gaussian measure, we know that C∞(dλ∞) has measure 0.
If x, z ∈ C∞(dλ∞), we always require

〈x, z〉 = lim
n→∞

n∑
k=1

xkzk.

Since C∞(dλ∞) has measure 0, this requirement would’t change the definition of 〈x, z〉 as a function in 
F 2(C∞, dλ∞).

We are going to study the operators BW (h)B−1, so we need a lemma.

Lemma 2.6. For any x, y ∈ C∞(dλ∞), we have

UyUx = e−
i
2�〈x,y〉Ux+yf(z) and ‖Uxf‖2

L2(C∞,dλ∞) = ‖f‖2
L2(C∞,dλ∞)

for any f ∈ L2(C∞, dλ∞). If x(m) converges to x in C∞(dλ∞), then Ux(m) converges to Ux in the strong 
operator topology on F 2(C∞, dλ∞). Moreover, Ux is a unitary operator on the Fock space over C∞, thus 
Uxf ∈ F 2(C∞, dλ∞) when f ∈ F 2(C∞, dλ∞).

Proof. For any f ∈ L2(C∞, dλ∞), by Lemma 2.4, we have

‖f‖2
L2(C∞,dλ∞) =

∫
C∞

|f(z)|2dλ∞

=
∫

C∞

|f(z − x)|2dλ∞,x

=
∫

C∞

|f(z − x)|2 exp
(
x̂(z) − 1

2 |x|
2
C∞(dλ∞)

)
dλ∞(z)

=
∫

C∞

|f(z − x)|2 exp
(
�〈x, z〉 − 1

2 |x|
2
C∞(dλ∞)

)
dλ∞(z)

=
∫

C∞

|f(z − x) exp
(

1
2 〈x, z〉 −

1
4 |x|

2
C∞(dλ∞)

)
|2dλ∞(z)

=
∫

C∞

|Uxf(z)|2dλ∞(z).
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Thus Ux is a unitary operator on L2(C∞, dλ∞). For any x, y ∈ C∞(dλ∞), we have

UyUxf(z) = Uy[f(z − x)e 1
2 〈x,z〉− 1

4 |x|
2
]

= f(z − x− y)e 1
2 〈x,z−y〉− 1

4 |x|
2
e

1
2 〈y,z〉− 1

4 |y|
2

= e−
i
2�〈x,y〉Ux+yf(z).

Thus U−xUx = e−
i
2�〈x,x〉Ux−x = I, that is to say U−x = U−1

x = U∗
x .

For any x(m), x ∈ C∞(dλ∞) and f ∈ F 2(C∞, dλ∞), if x(n) converges to x in C∞(dλ∞), then

‖Ux(m)f − Uxf‖F 2(C∞,dλ∞)

=‖e− i
2�〈x(m),x〉Ux(m)−xf − f‖F 2(C∞,dλ∞)

≤‖(e− i
2�〈x(m),x〉 − 1)Ux(m)−xf‖F 2(C∞,dλ∞) + ‖Ux(m)−xf − f‖F 2(C∞,dλ∞)

≤|e− i
2�〈x(m),x〉 − 1|‖f‖F 2(C∞,dλ∞) + ‖Ux(m)−xf − f‖F 2(C∞,dλ∞).

On one hand,

lim
m→∞

|�〈x(m), x〉| = lim
m→∞

|�〈x(m) − x, x〉| ≤ lim
m→∞

|x(m) − x||x| = 0.

On the other hand, we claim that if y(m) → 0 in C∞(dλ∞), then

lim
m→∞

‖Uy(m)f − f‖F 2(C∞,dλ∞) = 0.

Thus, we obtain

lim
m→∞

‖Ux(m)f − Uxf‖F 2(C∞,dλ∞) = 0.

Next, we prove the claim. If there is a constant ε > 0, a function g ∈ F 2(C∞, dλ∞) and a sequence y(m)

such that

lim
m→∞

|y(m)| = 0 and ‖Uy(m)g − g‖F 2(C∞,dλ∞) > 3ε

for any m. Since g ∈ F 2(C∞, dλ∞) there is a polynomial p(z1, · · · , zj) such that

‖g − p‖F 2(C∞,dλ∞) < ε.

Thus, we have

‖Uy(m)p− p‖F 2(C∞,dλ∞) > ε.

By the expression of the Uy(m) and (2.4) we have

Uy(m)p(z) = p(z1 − y
(m)
1 , · · · , zj − y

(m)
j )e 1

2 〈y
m,z〉− 1

4 |y
(m)|2 and ‖〈ym, z〉‖(C∞)∗dλ∞

= 2|y(m)| → 0.

Thus, there is a subsequence {y(mk)} such that 〈ymk , z〉 converges to 0 almost everywhere. Then Uy(mk)p

converges to p almost everywhere. On the other hand we have
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‖Uy(mk)p‖L2(C∞,dλ∞) = ‖p‖L2(C∞,dλ∞),

thus

lim
m→∞

‖Uy(mk)p− p‖F 2(C∞,dλ∞) = 0,

which is a contradiction. We have completed the proof of the claim.
In the last, we only need to prove that for any polynomial p(z1, · · · , zj), we have Uxp ∈ F 2(C∞, dλ∞). 

For any l ≥ j, let x(l) = (x1, x2, · · · , xl, 0, 0, · · · ), we have

Ux(l)p(z1, · · · , zj) = p(z1 − x1, · · · , zj − xj)e
1
2
∑l

m=1 xmzm+ 1
4
∑l

m=1 |xm|2 ∈ F 2(Cl, dλl).

Thus Ux(l)p ∈ F 2(C∞, dλ∞) for any l ≥ j. Send l to ∞, and we have

Uxp ∈ F 2(C∞, dλ∞).

Thus, Ux is a unitary operator from F 2(C∞, dλ∞) to F 2(C∞, dλ∞). �
For any x = (x1, x2, · · · ) ∈ C∞(dλ∞), since �〈x, z〉 is a real-valued function, we have T	〈x,z〉 is 

an unbounded self-adjoint operator. Thus we can define eiT�〈x,z〉 by functional calculus. Let x(n) =
(x1, · · · , xn, 0, 0, · · · ), then Ux(n) is an operator maps F 2(Cn, dλn) to F 2(Cn, dλn). In [2, Proposition 2 
and pg 284], the authors have proved that

T
ei�〈x(n),z〉+ |x(n)|2

4
= e

iT�〈x(n),z〉 = U−ix(n) (2.5)

holds on the Fock space on Cn. We can generalize this equality in the Fock space on C∞.

Theorem 2.7. For any h =
∑∞

j=1 xjhj ∈ H, let x = (x1, · · · , xn, · · · ), we have

BW (h)B−1 = eiT�〈x,z〉 = U−ix = T
ei�〈x,z〉+ |x|2

4

holds on the Fock space on C∞. Moreover, the Weyl algebra is represented on F 2(C∞, dλ∞) as a Toeplitz 
algebra generated by {

T
ei�〈x,z〉+ |x|2

4
: x ∈ C∞(dλ∞)

}
.

Proof. Since the Weyl algebra is generated by Weyl operators, we only need to prove the equality.
By the definition of the isomorphism B, we have Bh =

∑∞
j=1 xje1 ◦ lj . Since 

∑
j |xj |2 < ∞, we have 

x ∈ C∞(dλ∞). Then 〈x, z〉 is well-defined and

�〈x, z〉 = �
∞∑
j=1

xjlj =
√

2�
∞∑
j=1

xjej ◦ lj = 2−1/2(
∞∑
j=1

xjej ◦ lj +
∞∑
j=1

xjej ◦ lj).

Moreover, by Proposition 2.1, we have Ba∗+(h)B−1 = TBh and Ba+(h)B−1 = TBh. Thus

BW (h)B−1 = Bei2
−1/2(a+(h)+a∗

+(h))B−1 = e
i2−1/2

(
T∑∞

j=1 xje1◦lj
+T∑∞

j=1 xje1◦lj

)
= eiT�〈x,z〉 .

Let x(m) = (x1, · · · , xm, 0, 0, · · · ), by (2.5), we have
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T
ei�〈x(m),z〉+ |x(m)|2

4
f = e

iT�〈x(m),z〉f = U−ix(m)f

for any m, n ∈ N with m ≥ n and f ∈ F 2(Cn, dλn) ⊆ F 2(Cm, dλm). For the operator T
ei�〈x(m),z〉+ |x(m)|2

4
, 

since limm→∞ ‖x(m) − x‖C∞(dλ∞) = 0, we have

lim
m→∞

‖〈x(m), z〉 − 〈x, z〉‖L2(C∞,dλ∞) = 0.

There is a subsequence mk such that

lim
k→∞

〈x(mk), z〉 = 〈x, z〉 almost everywhere.

Thus we have

lim
k→∞

T
ei�〈x(mk),z〉+ |x(mk)|2

4
f = lim

k→∞
T
ei�〈x,z〉+ |x|2

4
f.

Let h(m) =
∑m

j=1 xjhj , by [4, Proposition 5.2.4], we have W (h(m)) converges to W (h) in the strong operator 
topology. Thus

lim
m→∞

e
iT�〈x(m),z〉f = eiT�〈x,z〉f.

By Proposition 2.6, we have

lim
m→∞

U−ix(m)f = U−ixf.

Then, we have

eiT�〈x,z〉f = U−ixf = T
ei�〈x,z〉+ |x|2

4
f

for any f ∈ F 2(Cn, dλn). We have completed the proof because 
⋃

n F
2(Cn, dλn) is dense in F 2(C∞, dλ∞). �

3. The Gibbs state and trace formula

Next, we study the second quantization and the Gibbs state. Given an unbounded self-adjoint operator H
on the Hilbert space H, we have defined dΓ(H), thus eitdΓ(H) is a unitary operator for any t. Let Ut = eitH , 
then Ut is a unitary operator on H. By [4, pg 8], we know that

eitdΓ(H)P+(f1 ⊗ · · · ⊗ fn) = P+(eitHf1 ⊗ · · · ⊗ eitHfn). (3.1)

Since dΓ(H) is a self-adjoint operator, we know that eitdΓ(H) is a bounded operator.
Let β be a constant such that βH is a positive operator, then βdΓ(H) is a positive operator. Similarly, 

the operator e−βdΓ(H) is given by

e−βdΓ(H)P+(f1 ⊗ · · · ⊗ fn) = P+(e−βHf1 ⊗ · · · ⊗ e−βHfn). (3.2)

Since βdΓ(H) is a positive operator, we know that e−βdΓ(H) is a bounded operator.
Because there is no proof of (3.1) and (3.2) in [4], we give a simple proof here.
Let Ut be an operator such that

UtP+(f1 ⊗ · · · ⊗ fn) = P+(eitHf1 ⊗ · · · ⊗ eitHfn).
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It is easy to see that Ut is a one-parameter group of unitary operators and its generator is dΓ(H), by [7, 
Theorem V III.8] we have

Ut = eitdΓ(H).

The proof for (3.2) is similar, we only need to apply [7, Problem 39, pg 315].
Recall that, for any j ∈ N, lj is a function in F 2(C∞, dλ∞) such that lj(z) = zj . Since B is an isomorphism 

from H to χ1, we know that BeitHB−1 is an operator on χ1 which is generated by {lj}.

Theorem 3.1. For any self-adjoint operator H on H, we have

BeitdΓ(H)B−1f(z) = f(BeitHB−1l1(z), · · · , BeitHB−1ln(z), · · · )

for any f ∈
⋃

n F
2(Cn, dλn). Let β be a constant such that βH is a positive operator, then we have

Be−βdΓ(H)B−1f(z) = f(Be−βHB−1l1(z), · · · , Be−βHB−1ln(z), · · · )

for any f ∈
⋃

n F
2(Cn, dλn).

Proof. We only need to prove the first conclusion, because the proof for the second is similar. Since

B
[√ k!

α!P+ (hα1
1 ⊗ hα2

2 ⊗ · · · ⊗ hαn
n )

]
= eα1 ◦ l1 · · · eαn

◦ ln

=
√

1
2kα! l

α1
1 · · · lαn

n

and Bhj(z) = e1 ◦ lj =
√

1
2 lj , we have

B
[√ k!

α!P+ (hα1
1 ⊗ hα2

2 ⊗ · · · ⊗ hαn
n )

]
=
√

1
α! [Bh1]α1 · · · [Bhn]αn .

Thus, for any f1, · · · , fn ∈ H we have

B
[√ k!

α!P+ (fα1
1 ⊗ · · · ⊗ fαn

n )
]

=
√

1
α! [Bf1]α1 · · · [Bfn]αn . (3.3)

For any monomial √
1

2kα! [l1(z)]
α1 · · · [ln(z)]αn ,

we have

BeitdΓ(H)B−1
√

1
2kα! [l1]

α1 · · · [ln]αn

=BeitdΓ(H)B−1B
[√ k!

α!P+ (hα1
1 ⊗ · · · ⊗ hαn

n )
]

=B
[√ k!

P+
(
[eitHh1]α1 ⊗ · · · ⊗ [eitHhn]αn

) ]

α!
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=
√

1
α! [BeitHh1]α1 · · · [BeitHhn]αn (by (3.3))

=
√

1
α! [BeitHB−1Bh1]α1 · · · [BeitHB−1Ihn]αn

=
√

1
2kα! [BeitHB−1l1]α1 · · · [BeitHB−1ln]αn .

Then, for any polynomial p, we have

BeitdΓ(H)B−1p(z) = p(BeitHB−1l1(z), · · · , BeitHB−1ln(z), · · · ).

For any positive integer n and f ∈ F 2(Cn, dλn), there is a sequence of polynomials {pn} such that

lim
n

pn(z) = f(z) for any z ∈ Cn and lim
n

pn = f in F 2(Cn, dλn).

Thus we have

BeitdΓ(H)B−1f(z) = f(BeitHB−1l1(z), · · · , BeitHB−1ln(z), · · · ). �
Let μ be a real number, the Gibbs grand canonical equilibrium state is defined in terms of the generalized 

Hamiltonian Kμ = dΓ(H − μI) whenever

exp {−βdΓ(H − μI)}

is trace-class. This latter property places a constraint on the possible values of μ.

Proposition 3.2 ([4, Proposition 5.2.27]). Let H be a self-adjoint operator on the Hilbert space H and let 
β ∈ R. The following conditions are equivalent:
(1) e−βH is of trace-class on H and β(H − μI) > 0,
(2) e−βdΓ(H−μI) is of trace-class on F+(H) for all μ ∈ R.

Let us now assume that exp {−βKμ} is of trace-class and then calculate the Gibbs state

ω(A) =
Tr

(
e−βdΓ(H−μI)A

)
Tr

(
e−βdΓ(H−μI)

)
for any operator A on F+(H) such that e−βdΓ(H−μI)A is of trace-class. By Proposition 3.2, we have 
e−β(H−μI) is a bounded operator. The Gibbs equilibrium state is important in the quantum physics, see [4]. 
As an application of the Fock space on C∞, we are going to give a trace formula and apply it to the Gibbs 
equilibrium state.

For any z ∈ C∞ and x ∈ C∞(dλ∞), let

Kx(z) = e
1
2 〈x,z〉.

Let x(n) = (x1, · · · , xn, 0, 0, · · · ) and z(n) = (z1, · · · , zn, 0, 0, · · · ), then Kx(n)(z(n)) is the reproducing kernel 
of F 2(Cn, dλn). Let X(n) be an operator on F 2(Cn, dλn), by [12, Proposition 4], we have

Tr(X(n)) =
∫

〈X(n)Kx(n) ,Kx(n)〉dλn(x(n)).

Cn
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Theorem 3.3. If X is an operator on F 2(C∞, dλ∞), then X is of trace-class if and only if

| lim
n→∞

∫
Cn

〈XKx(n) ,Kx(n)〉dλn(x(n))| < ∞.

In that case, we have

Tr(X) = lim
n→∞

∫
Cn

〈XKx(n) ,Kx(n)〉dλn(x(n)).

Moreover, if A is an operator on the Bose-Fock space, then we have

Tr(e−βdΓ(H−μI)A)

= lim
n→∞

∫
Cn

∫
C∞

(BAB−1Kx(n))(z)Kx(n)

(
Be−β(H−μI)B−1l1(z), · · ·

)
dλ∞(z)dλn(x(n)).

Proof. Let

En = {eα1 ◦ l1 × eα2 ◦ l2 × · · · × eαn
◦ ln : α1, · · · , αn ≥ 1} when n ≥ 1 and E0 = {I},

where I stands for the function which maps all z ∈ C∞ to 1. It is easy to see that En is the set of basis of 
F 2(Cn, dλn) �F 2(Cn−1, dλn). Thus we know that 

⋃∞
n=0 En is a basis set of the Fock space on C∞. If X is 

of trace-class, then

Tr(X) =
∞∑

n=0

∑
e∈En

〈Xe, e〉 = lim
m→∞

m∑
n=0

∑
e∈En

〈Xe, e〉.

Since Pm is the projection from F 2(C∞, dλ∞) to F 2(Cm, dλm), we have PmXPm is an operator from 
F 2(Cm, dλm) to F 2(Cm, dλm). Since 

⋃m
n=0 En is a basis set of F 2(Cm, dλm), we have

m∑
n=0

∑
e∈En

〈Xe, e〉 =
m∑

n=0

∑
e∈En

〈PmXPme, e〉 = Tr(PmXPm)

=
∫
Cm

〈PmXPmKx(m) ,Kx(m)〉dλm(x(m))

=
∫
Cm

〈XKx(m) ,Kx(m)〉dλm(x(m)).

Thus

| lim
m→∞

∫
Cm

〈XKx(m) ,Kx(m)〉dλm(x(m))| = | lim
m→∞

m∑
n=0

∑
e∈En

〈Xe, e〉| = |Tr(X)| < ∞.

On the other hand, if

| lim
n→∞

∫
〈XKx(n) ,Kx(n)〉| < ∞,
Cn
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then, by the argument above, we know that X is of trace-class.
The second conclusion follows from Theorem 3.1. �
If e−βdΓ(H−μI) is of trace-class, by Proposition 3.2, we know that β(H − μI) is a positive operator and 

e−βH is of trace-class on H. We suppose that {λj : j = 1, · · · , n, · · · } and {vj : j = 1, · · · , n, · · · } are 
eigenvalues and eigenvectors of e−β(H−μI) such that

e−β(H−μI)vj = λjvj . (3.4)

Thus 0 < λj < 1. Since e−β(H−μI) is a self-adjoint operator, we suppose {vj} is a basis of H.
Next, we are going to study the Gibbs state. Let BH denote the isomorphism from the Bose-Fock space 

to the Fock space over C∞ such that

BH

[√ k!
α!P+ (vα1

1 ⊗ · · · ⊗ vαn
n )

]
(z) = eα1 ◦ l1 · · · eαn

◦ ln,

where k =
∑

m αm. Because B−1
H lj =

√
2B−1

H e1 ◦ lj =
√

2vj , we have

BHe−β(H−μI)B−1
H lj = λj lj .

By the construction above and Theorem 3.3, we have the following corollary.

Corollary 3.4. Let β(H − μI) be a positive operator and e−β(H−μI) be of trace-class with eigenvalues {λk}
on H. For any operator A, we have

Tr(e−βdΓ(H−μI)A)

= lim
n→∞

∫
Cn

∫
C∞

(BHAB−1
H Kx(n))(z)Kx(n)(λ1z1, · · · , λnzn, 0, 0, · · · )dλ∞(z)dλn(x(n)).

In [4, Proposition 5.2.28], if e−βdΓ(H−μI) is of trace-class on the Bose-Fock space, we have the following 
formulas

ω(W (f)) = exp{−
〈
f, (1 + e−β(H−μI))(1 − e−β(H−μI))−1f

〉
/4},

and

ω(a∗+(f)a+(g)) =
〈
g, e−β(H−μI)(1 − e−β(H−μI))−1f

〉
.

Next, we are going to show that Theorem 3.3 implies these two formulas. Moreover, we will generalize the 
second one.

Corollary 3.5. If e−βdΓ(H−μI) is of trace-class on the Bose-Fock space, then the Gibbs state of a Weyl operator 
W (f) is given by

ω(W (f)) = exp{−
〈
f, (1 + e−β(H−μI))(1 − e−β(H−μI))−1f

〉
/4}.

Proof. Let {vj} be a basis as in (3.4), we suppose f =
∑

j fjvj . Let y = (−if1, · · · , −ifn, · · · ) ∈ C∞, by 
Theorem 2.7 we have
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BHW (h)B−1
H = Uy.

Then, by Corollary 3.4, we have

Tr(e−βdΓ(H−μI)W (f))

= lim
n→∞

∫
Cn

∫
C∞

(UyKx(n))(z)Kx(n)(λ1z1, · · · , λnzn, 0, 0, · · · )dλ∞(z)dλn(x(n)).

By the definition of Uy, we have∫
C∞

(UyKx(n))(z)Kx(n)(λ1z1, · · · , λnzn, 0, 0, · · · )dλ∞(z)

=
∫

C∞

e
1
2
∑n

j=1 xj(zj−yj)+ 1
2
∑∞

j=1 yj lj(z)− 1
4 |y|

2
e

1
2
∑n

j=1 xjλjzjdλ∞(z).

Since ∫
C

e
1
2yj lj(z)dλ1(zj) = 1 for any j,

we have ∫
C∞

e
1
2
∑∞

j=n+1 yj lj(z)dλ∞(z) =
∫

C∞

e
1
2
∑∞

j=m yj lj(z)dλ∞(z)

for any integer m and

lim
m→∞

|
∫

C∞

e
1
2
∑∞

j=m yj lj(z)dλ∞(z) − 1| = lim
m→∞

∫
C∞

|e 1
2
∑∞

j=m yj lj(z) − 1|dλ∞(z)

≤ lim
m→∞

‖e 1
2
∑∞

j=m yj lj − 1‖F 2(C∞,dλ∞)

≤ lim
m→∞

‖e 1
4
∑∞

j=m |yj |2Uy−y(m)1 − 1‖F 2(C∞,dλ∞)

=0 (by Lemma 2.6).

Thus ∫
C∞

e
1
2
∑∞

j=n+1 yj lj(z)dλ∞(z) = lim
m→∞

∫
C∞

e
1
2
∑∞

j=m yj lj(z)dλ∞(z) = 1.

Then, we have ∫
C∞

(UyKx(n))(z)Kx(n)(λ1z1, · · · , λnzn, 0, 0, · · · )dλ∞(z)

=
∫
Cn

e
1
2
∑n

j=1 xj(zj−yj)+ 1
2
∑n

j=1 yjzj− 1
4 |y|

2
e

1
2
∑n

j=1 xjλjzjdλn(z)

=e
1
2
∑n

j=1 xj(λjxj−yj)+ 1
2
∑n

j=1 yjλjxj− 1
4 |y|

2
.



18 B.D. Wick, S. Wu / J. Math. Anal. Appl. 505 (2022) 125499
Thus

Tr(e−βdΓ(H−μI)W (f))

= lim
n→∞

∫
Cn

e
1
2
∑n

j=1 xj(λjxj−yj)+ 1
2
∑n

j=1 yjλjxj− 1
4 |y|

2
dλn(x(n))

= lim
n→∞

∫
Cn

e
1
2
∑n

j=1 xj(λjxj−yj)+ 1
2
∑n

j=1 yjλjxj− 1
4 |y|

2 1
(2π)2n e

− 1
2
∑n

j=1 |xj |2d(x(n))

= lim
n→∞

∫
Cn

e
1
2
∑n

j=1 xj(−yj)+ 1
2
∑n

j=1 yjλjxj− 1
4 |y|

2 1
(2π)2n e

− 1
2
∑n

j=1(1−λj)|xj |2d(x(n))

= lim
n→∞

1∏n
j=1

√
1 − λj

∫
Cn

e
1
2
∑n

j=1
xj√
1−λj

(−yj)+ 1
2
∑n

j=1 yjλj
xj√
1−λj

− 1
4 |y|

2

dλn(x(n))

= lim
n→∞

1∏n
j=1

√
1 − λj

e
− 1

4 |y|
2−

∑n
j=1

1
2

λj
1−λj

|yj |2

= 1∏∞
j=1

√
1 − λj

e
− 1

4 |y|
2−

∑∞
j=1

1
2

λj
1−λj

|yj |2

= 1∏∞
j=1

√
1 − λj

e
− 1

4
∑∞

j=1
1+λj
1−λj

|yj |2
,

where 
∏∞

j=1
√

1 − λj is convergent because 
∑

j λj = Tr(e−β(H−μI)) < ∞ and λj < 1. By functional calculus, 
we have〈

f, (1 + e−β(H−μI))(1 − e−β(H−μI))−1f
〉

=
〈
f, (1 + e−β(H−μI))(1 − e−β(H−μI))−1

∑
j

fjvj

〉
=
∑
j

fj

〈
f, (1 + e−β(H−μI))(1 − e−β(H−μI))−1vj

〉
=
∑
j

fj

〈
f, (1 + λj)(1 − λj)−1vj

〉
=
∑
j

|fj |2
1 + λj

1 − λj
=
∑
j

|yj |2
1 + λj

1 − λj
.

Thus, we have

Tr(e−βdΓ(H−μI)W (f)) = 1∏∞
j=1

√
1 − λj

e
− 1

4

〈
f,(1+e−β(H−μI))(1−e−β(H−μI))−1f

〉
.

Since W (f) = I when f = 0, we have

Tr(e−βdΓ(H−μI)) = 1∏∞
j=1

√
1 − λj

.

Then we have

ω(W (f)) = Tr(e−βdΓ(H−μI)W (f))
−βdΓ(H−μI) = e

− 1
4

〈
f,(1+e−β(H−μI))(1−e−β(H−μI))−1f

〉
. �
Tr(e )
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Corollary 3.6. If e−βdΓ(H−μI) is of trace-class on the Bose-Fock space, then

ω
(
a∗+(f (1)) · · · a∗+(f (m))a+(g(1)) · · · a+(g(m))

)
=
〈√

m!P+

(
f̃ (1) ⊗ · · · ⊗ f̃ (m)

)
,
√
m!P+

(
g̃(1) ⊗ · · · ⊗ g̃(m)

)〉
F+(H)

,

where

f̃ (k) = e−β(H−μI)
√

1 − e−β(H−μI)
f (k) and g̃(k) = 1√

1 − e−β(H−μI)
g(k).

Proof. Let x̃(n) = (λ1x1, · · · , λnxn, 0, · · · ),

T1 = a+(f (1)) · · · a+(f (m)) and T2 = a+(g(1)) · · · a+(g(m)).

Since

Kx(n)(λ1z1, · · · , λnzn, 0, 0, · · · ) = e
1
2
∑n

j=1 xjλjzj = Kx̃(n)(z),

we have

Tr(e−βdΓ(H−μI)T ∗
1 T2) (by Corollary 3.4)

= lim
n→∞

∫
Cn

∫
C∞

(BHT ∗
1 T2B

−1
H Kx(n))(z)Kx(n)(λ1z1, · · · , λnzn, 0, 0, · · · )dλ∞(z)dλn(x(n))

= lim
n→∞

∫
Cn

∫
C∞

(BHT ∗
1 T2B

−1
H Kx(n))(z)Kx̃(n)(z)dλ∞(z)dλn(x(n))

= lim
n→∞

∫
Cn

∫
C∞

(BHT2B
−1
H Kx(n))(z)(BHT1B

−1
H Kx̃(n))(z)dλ∞(z)dλn(x(n)).

By Proposition 2.1, we have

BHT1B
−1
H = T

BHf(1) · · ·TBHf(m) and BHT2B
−1
H = T

BHg(1) · · ·TBHg(m) .

We suppose g(k) =
∑

j g
(k)
j vj and f (k) =

∑
j f

(k)
j vj . For any polynomial p, we have

〈p, T
BHg(m)Kx(n)〉F 2(C∞,dλ∞) = 〈TBHg(m)p,Kx(n)〉F 2(C∞,dλ∞)

=
n∑

j=1
g
(m)
j

xj√
2
p(x(n)) =

n∑
j=1

g
(m)
j

xj√
2
〈p,Kx(n)〉F 2(C∞,dλ∞)

= 〈p,
n∑

j=1
g
(m)
j

xj√
2
Kx(n)〉F 2(C∞,dλ∞),

which means (T
BHg(m)Kx(n))(z) =

∑n
j=1 g

(m)
j

xj√
2Kx(n)(z). Thus, we have

(BHT2B
−1
H Kx(n))(z) =

( n∑
g
(1)
j

xj√
2

)
· · ·

( n∑
g
(m)
j

xj√
2

)
Kx(n)(z)
j=1 j=1
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and

(BHT1B
−1
H Kx̃(n))(z) =

( n∑
j=1

f
(1)
j

λjxj√
2

)
· · ·

( n∑
j=1

f
(m)
j

λjxj√
2

)
Kx̃(n)(z).

Then

Tr
(
e−βdΓ(H−μI)a∗+(f (1)) · · · a∗+(f (m))a+(g(1)) · · · a+(g(m))

)
= lim

n→∞

∫
Cn

∫
C∞

m∏
k=1

( n∑
j=1

g
(k)
j

xj√
2

)
Kx(n)(z)

m∏
k=1

( n∑
j=1

f
(k)
j

λjxj√
2

)
Kx̃(n)(z)dλ∞(z)dλn(x(n))

= lim
n→∞

∫
Cn

m∏
k=1

( n∑
j=1

f
(k)
j

λjxj√
2

) m∏
k=1

( n∑
j=1

g
(k)
j

xj√
2

) ∫
C∞

Kx(n)(z)Kx̃(n)(z)dλ∞(z)dλn(x(n))

= lim
n→∞

∫
Cn

m∏
k=1

( n∑
j=1

f
(k)
j

λjxj√
2

) m∏
k=1

( n∑
j=1

g
(k)
j

xj√
2

)
e

1
2
∑n

j=1 λj |xj |2dλn(x(n))

= 1∏∞
j=1

√
1 − λj

lim
n→∞

∫
Cn

m∏
k=1

( n∑
j=1

λjf
(k)
j√

1 − λj

xj√
2

) m∏
k=1

( n∑
j=1

g
(k)
j√

1 − λj

xj√
2

)
dλn(x(n)).

By the proof of Corollary 3.5, we have

Tr(e−βdΓ(H−μI)) = 1∏∞
j=1

√
1 − λj

,

thus

ω
(
a∗+(f (1)) · · · a∗+(f (m))a+(g(1)) · · · a+(g(m))

)
= lim

n→∞

∫
Cn

m∏
k=1

( n∑
j=1

λjf
(k)
j√

1 − λj

xj√
2

) m∏
k=1

( n∑
j=1

g
(k)
j√

1 − λj

xj√
2

)
dλn(x(n))

= lim
n→∞

∫
C∞

m∏
k=1

( n∑
j=1

λjf
(k)
j√

1 − λj

e1 ◦ lj(x)
) m∏
k=1

( n∑
j=1

g
(k)
j√

1 − λj

e1 ◦ lj(x)
)
dλ∞(x)

= lim
n→∞

〈 m∏
k=1

n∑
j=1

λjf
(k)
j√

1 − λj

e1 ◦ lj ,
m∏

k=1

n∑
j=1

g
(k)
j√

1 − λj

e1 ◦ lj
〉
F 2(C∞,dλ∞)

.

Let

f̃ (k) = e−β(H−μI)
√

1 − e−β(H−μI)
f (k) and g̃(k) = 1√

1 − e−(H−μI)
g(k).

By functional calculus, we have

BH f̃ (k) = BH
e−β(H−μI)

√
1 − e−β(H−μI)

f (k) = BH

∞∑ λjf
(k)
j√

1 − λj

vj =
∞∑ λjf

(k)
j√

1 − λj

e1 ◦ lj

j=1 j=1
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and

BH g̃(k) = BH
1√

1 − e−β(H−μI)
g(k) = BH

∞∑
j=1

g
(k)
j√

1 − λj

vj =
∞∑
j=1

g
(k)
j√

1 − λj

e1 ◦ lj .

Let Qn be a projection on χ1 such that

Qn

∞∑
j=1

aje1 ◦ lj =
n∑

j=1
aje1 ◦ lj

for any 
∑

j aje1 ◦ lj ∈ χ1, further we denote Q̂n = B−1
H QnBH . Then, we have

m∏
k=1

n∑
j=1

λjf
(k)
j√

1 − λj

e1 ◦ lj =
m∏

k=1

Qn

∞∑
j=1

λjf
(k)
j√

1 − λj

e1 ◦ lj =
m∏

k=1

QnBH f̃ (k) =
m∏

k=1

BHQ̂nf̃
(k)

and

m∏
k=1

n∑
j=1

g
(k)
j√

1 − λj

e1 ◦ lj =
m∏

k=1

Qn

∞∑
j=1

g
(k)
j√

1 − λj

e1 ◦ lj =
m∏

k=1

QnBH g̃(k) =
m∏

k=1

BHQ̂ng̃
(k).

Thus

ω
(
a∗+(f (1)) · · · a∗+(f (m))a+(g(1)) · · · a+(g(m))

)
= lim

n→∞

〈 m∏
k=1

n∑
j=1

λjf
(k)
j√

1 − λj

e1 ◦ lj ,
m∏

k=1

n∑
j=1

g
(k)
j√

1 − λj

e1 ◦ lj
〉
F 2(C∞,dλ∞)

= lim
n→∞

〈 m∏
k=1

BHQ̂nf̃
(k),

m∏
k=1

BHQ̂ng̃
(k)
〉
F 2(C∞,dλ∞)

= lim
n→∞

〈√
m!P+

(
Q̂nf̃

(1) ⊗ · · · ⊗ Q̂nf̃
(m)

)
,
√
m!P+

(
Q̂ng̃

(1) ⊗ · · · ⊗ Q̂ng̃
(m)

)〉
F+(H)

=
〈√

m!P+

(
f̃ (1) ⊗ · · · ⊗ f̃ (m)

)
,
√
m!P+

(
g̃(1) ⊗ · · · ⊗ g̃(m)

)〉
F+(H)

. �
4. Fock-Sobolev spaces and Gaussian Harmonic analysis

Gaussian Harmonic analysis has been studied for a long time, see [10]. In this section, we introduce 
the Fock-Sobolev spaces and discuss its relationship with Gaussian Harmonic analysis. In [13], the author 
defined the Fock-Sobolev spaces. In [11], the authors used the relationship between the Fock-Sobolev spaces 
and the Gaussian Harmonic analysis to study the boundedness of an integral operator. We will show that, 
we have a similar conclusion in the infinite dimensional case. As an application of this relationship, we will 
study the boundedness of creation operators and annihilation operators.

For any r ∈ N, the Fock Sobolev space on Cn consists of all f ∈ F 2(Cn) such that

‖f‖F 2,r(Cn) =
r∑

k=1

( ∑
|α|=k

∫
Cn

|∂αf(z)|2dλn(z)
)1/2

< ∞. (4.1)

We need to point out that, in some literature the norm of function in the Fock-Sobolev space is defined by
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‖f‖∗ =
r∑

k=1

∑
|α|=k

( ∫
Cn

|∂αf(z)|2dλn(z)
)1/2

.

‖f‖∗ and ‖f‖F 2,r(Cn) are equivalent for any n but not uniformly equivalent with respect to n. Since we need 
to generalize the Fock-Sobolev space to the infinite dimensional case, we use (4.1).

In the Fock space on Cn, we have the following equality

Te1(zj) = ∂zj .

Since the Fock space on C∞ is not an analytic function space, so we use the Toeplitz operator Te1(zj) to 
define the Fock-Sobolev space on C∞. Let the Fock-Sobolev space F 2,r(C∞) be the completion of finite 
polynomials with respect to the following norm

‖p‖F 2,r(C∞) =
r∑

k=1

( ∑
j1,··· ,jk≥1

∫
C∞

|Te1(zj1 ) · · ·Te1(zjk )p(z)|
2dλ∞(z)

)1/2
.

To study the Fock-Sobolev space, we introduce the Gaussian Sobolev space. Let Gaussian measure dγn on 
Rn be given by

dγn(x) = 1
(2π)

n
2
e−

|x|2
2 dx.

The Gaussian Measure can be extended to R∞, we denote it by dγ∞. Let L2(R∞, dγ∞) consist of all square-
integrable function on R∞ with respect to dγ∞. For any k = 0, 1, . . ., the Hermite polynomials Hk on the 
real line are defined by the formula

Hk(x) = (−1)k√
k!

exp
(
x2

2

)
dk

dxk
exp

(
−x2

2

)
.

By [3, Lemma 1.3.2 and Corollary 1.3.3], we have

H ′
k(x) =

√
kHk−1(x) (4.2)

and {Hk} is an orthonormal basis in the space L2 (R, γ1). By [3, Lemma 2.5.1 and Example 2.3.5], we have

{Hα1(x1)Hα2(x2) · · ·Hαn
(xn) :

∑
αj = k, k = 0, 1, 2, · · · }

is a basis of L2(C∞, dλ∞). Let Ik be the projection from L2(C∞, dλ∞) to the subspace which is generated 
by

{Hα1(x1)Hα2(x2) · · ·Hαn
(xn) :

∑
αj = k}.

By [3, Chapter 5], the Gaussian Sobolev class is the completion of all finite combination of Hermite poly-
nomials with respect to the norm

‖f‖W 2,r(R∞) =
r∑

k=1

( ∑
j1,··· ,jk≥1

∫
C∞

|∂xj1
· · · ∂xjk

f(x)|2dγ∞(x)
)1/2

.

We also have



B.D. Wick, S. Wu / J. Math. Anal. Appl. 505 (2022) 125499 23
‖f‖W 2,r(R∞) � ‖
∞∑
k=0

(1 + k)r/2Ikf‖L2(R∞,dγ∞). (4.3)

The Gaussian Bargmann transform G is a unitary operator from L2(R∞, dγ∞) to F 2(C∞, dλ∞) such that

G[Hα1(x1)Hα2(x2) · · ·Hαn
(xn)] = eα1(z1) · · · eαn

(zn).

Let Qk be the projection from F 2(C∞, dλ∞) to χk. We have GQkG
−1 = Ik. It is elementary that 

Te1(zj)eαj
(zj) =

√
αjeαj−1(zj), thus by (4.2) and the definition of the Fock-Sobolev space and Gaussian 

Sobolev class we have

‖p‖F 2,r(C∞) = ‖G−1p‖W 2,r(R∞) � ‖
∞∑
k=0

(1 + k)r/2Qkp‖F 2(C∞,dλ∞). (4.4)

That is to say the Gaussian Bargmann transform G is also a unitary operator from W 2,r(R∞) to 
F 2,r(C∞, dλ∞).

Proposition 4.1. For any φ ∈ χ1 and r ≥ 1, Tφ and Tφ are bounded from F 2,r(C∞) to F 2,r−1(C∞).

Proof. Let φ =
∑

j cke1(zj). For any eα1(z1) · · · eαn
(zn) · · · with 

∑
αj = k, we have

‖Tφeα1(z1) · · · eαn
(zn)‖2

F 2(C∞,dλ∞)

=‖
∑
j

cje1(zj)eα1(z1) · · · eαn
(zn) · · · ‖2

F 2(C∞,dλ∞)

=‖
∑
j

cj
√

αj + 1eα1(z1) · · · eαj+1(zj) · · · ‖2
F 2(C∞,dλ∞)

=
∑
j

|cj |2(αj + 1) ≤ ‖φ‖2(k + 1)‖eα1(z1) · · · eαn
(zn)‖2

F 2(C∞,dλ∞).

Thus, for any pk ∈ χk, we have

‖Tφpk‖2
F 2(C∞,dλ∞) ≤ ‖φ‖2

F 2(C∞,dλ∞)(k + 1)‖pk‖2
F 2(C∞,dλ∞)

and Tφpk ∈ χk+1. For any polynomial p, we have

‖Tφp‖2
F 2,r−1(C∞) = ‖

∑
k

TφQkp‖2
F 2,r−1(C∞)

� ‖
∑
k

(k + 2)
r−1
2 TφQkp‖2

F 2(C∞,dλ∞) (by (4.4))

=
∑
k

(k + 2)r−1‖TφQkp‖2
F 2(C∞,dλ∞)

≤
∑
k

(k + 2)r−1‖φ‖2
F 2(C∞,dλ∞)(k + 1)‖Qkp‖2

F 2(C∞,dλ∞)

� ‖φ‖2
F 2(C∞,dλ∞)

∑
k

(k + 1)r‖Qkp‖2
F 2(C∞,dλ∞)

� ‖φ‖2
F 2(C∞,dλ∞)‖p‖2

F 2,r(C∞) (by (4.4)),

thus Tφ is bounded from F 2,r(C∞) to F 2,r−1(C∞). The proof for Tφ is similar. �
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