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1. Introduction

In [1], Bargman introduced the Fock space on C™ and discussed its connection with quantum mechanics.
In [2], Berger and Coburn studied the operators on the Fock space on C™. In the last section of that paper,
the authors asked a question: can the analysis in this paper be applied in the physically interesting case
where C™ is replaced by an infinite-dimensional Hilbert space? However, in this paper, we will use C* to
replace C™ instead of infinite-dimensional Hilbert space. By this replacement, we will show that the Fock
space on C° is isomorphic to the Bose-Fock space. Then, we are going to generalize some conclusions in
[2] and give a physical application.

The Bose-Fock space is used to describe the states of bosons in quantum mechanics, for the details of this
space we refer to [4]. If H is a separable Hilbert space, the Full Fock space over H is the complete tensor
algebra over H:
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where ®@*# is the kth tensor power of H for k > 1 and @°H = C. We define the projection on the Full Fock
space over H by

1
P+(u1®"'®uk):Ezun(l)@)'“@ua(kﬁ

where o ranges over the group of permutations of k letters. The Bose-Fock space F.(H) consists of all
symmetric tensors, that is to say

Fi(H) =P P (@"H).

k=0

It is easy to verify that if {h;} is an orthonormal basis for H, then

[ k! o o
{Ea: aP+(h11®h22®-~-): a:(a1,~-~,an,---)7Zaj:k:, k:O,1,2,...}

is an orthonormal basis for F, (H), where the superscripts o denote tensor powers. For any h € H, the
annihilation operator a(h) and the creation operator a*(h) on the Fock space over H are given by

a(h) (M @ ha @ -+ @ hp) =n"? (hyh1) ha @ hy @ + - @ hiy
a*(h) (M ®@ha @ @hy)=(n+1D)Y2h@h1 ® - @ hy,.

By definition, we know that the creation operators map ®@"# to ®" 1! and the annihilation operators map
®@"H to ®"~'H. The annihilation operator a (h) and the creation operator a* (h) on the Bose-Fock space
are given by

at(f) = Pra(f)Py and  al(f) = Pyra*(f)Py,
then we have
Pi(hi @y ®---hy) = (n))"V2a% (hy)a% (he) - - @’ (ha), (1.1)
where 2 = (1,0,0,---) € ®™H. Next, we introduce the Weyl operators on the Bose-Fock space. Let
W (h) = exp{i®(h)}

be the Weyl operator, where

®(h) =272 (ay(h) + a’(h)).
The Weyl algebra CCR(H) is a C*-algebra generated by
{W(h): heH},

where CCR stands for the canonical commutation relations, see [4, pg 10]. If H is an unbounded selfadjoint
operator on H, one can define H,, on P, (®k’H) by setting Hy = I and

i=1
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for all f; € D(H), and then extending by continuity. The selfadjoint closure of this sum is called the second
quantization of H and is denoted by dI'(H). Thus

Let Gaussian measure d\,, on C™ be given by

1 2|2
d)\n(2> = WC_‘J dz.

The Fock space on C", denoted by F?(C", d),) or F?(C™), consists of all entire functions on C™ which are
square-integrable with respect to d\,.
For any nonnegative integer k, let

1
er(w) =4/ ka,w e C.

We have e;(2)ex(2) = vk + legr1(2). Then the set {e;} is an orthonormal basis for F2(C,d)\;).

The Gaussian measure can be extended on C*, we denote it by d\s. L2(C°, d\) consists of all square-
integrable function on C* with respect to the infinite dimensional Gaussian measure dA. Let I; be the
complex linear functional such that for any z = (21,--- ,2;,---), we have

l](Z) =Zzj.

Let e, ol; be a function on C*°, such that

1
erolj(z) = er(z) =1/ Qk—k;lzf

The Fock space on C* is defined to be a closed subspace of L?(C>, d)\,,) generated by the orthonormal
set

{ealollX6a20l2><"'><€amolm"'5 Zamzk, k:O,l,Z,...}

and is denoted by F?(C*®, d)\y). In fact, F2(C™) can be regarded as a closed subspace of F?(C>, d)\),
the embedding is given by

flz,---,20) = f(21, -, 2n,0,0,---), for any f € F2(C™).
In fact, we have a sequence of embeddings
F2CYHYc---Cc FA(C") C--- C F(C™®,d)\s).

Let P, be the projection from F?(C%,d\) to F2(C™). Since the set of finite polynomials is dense in the
Fock space on C*°, we have

JF?(C™, d,) is dense in F(C™, dA).
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We define an isomorphism B from Fy(H) to F?(C>,d)\) such that
Be = c when c € @"H = C

and

[ k!
B|: ap+(h?1®"'®hz"'):|:ealoll"'eanoln (12)

when (h{* ® -+ ® ho") € @*H with > _, a,y = k # 0. We need to point out that the isomorphism B
depends on the basis {h;}. We call B as infinite Bargmann representation.

Let P denote the projection from L?(C%°,d)\s) to F2(C>,d)\s ). We define the Toeplitz operator with
symbol ¢ € L2(C*, dA) by

Tyh = P(gh)

for all h € F2(C*,d\) such that ph € L?(C*, d\ ). In Section 2, we are going to use some facts of infinite
dimensional Gaussian measures to show that the Toeplitz operators on F2(C®°,d\,,) are unitary equivalent
to the annihilation, creation and Weyl operators on the Bose-Fock space, which is the generalization of
some conclusions in [2]. This equivalence can be used to translate some problems in the Bose-Fock space to
F?(C®°,d)\s). In [5] and [6], the authors obtained some similar conclusions. In fact, they defined the Fock
space on a metric space with some properties and obtained representations. However, their representation
of a Weyl operator is a strong limit of a sequence of Toeplitz operators. C* is a spacial case of such metric
space, we will show that, in this situation, Weyl operators can be represented as Toeplitz operators. For the
sake of completeness, we give all details here.

We need to point out that the reason that we care about the Fock space on C° is that it gives us an
application. Since | J,, F?(C™,d),,) is dense in F?(C>,d\), the problems in F?(C>,d\) can be reduced
to F2(C™,d\,). In Section 3, we will use this idea to discuss a problem in Quantum Statistical Mechanics.
We will study the trace formula which will be applied to the Gibbs state. The Gibbs state of an operator A
on the Bose-Fock space is

Ty (e—ﬁdF(H—uI)A)
w(d) = = (e BarCH—uI))

where e PIC(H—nI) ig an operator and its definition will be given in Section 3. The Gibbs state is an
important quantity in the Quantum Statistical Mechanics, in fact, it is just the trace of an operator on the
Bose-Fock space, see [4]. Because we know the trace formula in the Fock space on C™, we can generalize the
trace formula and apply it to the Gibbs state. In the theory of Many-Body Problems, some operators can
be represented by the linear combination of products of annihilation and creation operators, see [9, Chapter
1]. So, it is important to study the product of annihilation and creation operators. Given

f(l)u o 7f(m)7g(1)7 T 7g(m) € H?
we will study the Gibbs state of the operator

ai(f(l)) . ~ai(f(m))a+(g(1)) . ..aJr(g(m))7

which is the generalization of [4, Proposition 5.2.28].
In Section 4, we will discuss the relationship between the Fock space on C™ and the Gaussian Har-
monic analysis. In [11], the authors gave an isomorphism between the Fock-Sobolev space on C™ and the



B.D. Wick, S. Wu / J. Math. Anal. Appl. 505 (2022) 125499 5

Gauss-Sobolev space over R™. We will generalize this isomorphism in the infinite dimensional case. As an
application, we study the boundedness of the annihilation and creation operators.

2. Annihilation, creation and Weyl operators

Let xi be the subspace of the Fock space on C™ generated by

Ol e Zaj:k
J

Then, for any h =} c;h; € H, we have Bh =3, cjer o lj. By Pihy = hy, and (1.2), we have

Bhy,(2) = e1(zm)-

Thus, we know that the isomorphism B maps H to xi.
Next, we are going to show that the annihilation operators and creation operators are isomorphic to the
Toeplitz operators with symbols in y;.

Proposition 2.1. For any h € H, let ay(h) and a’ (h) be an annihilation operator and a creation operator,
we have

Ba* (h)B™' =Tg, and Bai(h)B™' = Tg.
Proof. For any h =) c;jh; € H, we have
Bh = chel olj.
Thus, for any eq, 0 li---€q,, © Ly -+ with Y o =k, we have
B ' Tgpea, oli - eq,, 0l

=B~! E cjerol; X eq, 0ly-+-eq,, 0l -

-1
=B E ci\/aj +1leq, oli - eq, 4100l eq,, Oly- -

(k+1)! +1
Ny AR

=2
J

1)! v
+ )P+ (h(;“@m@h?ﬂ“@m).

On the other hand

[ k!
1Ol1"'€amolm"':ai(h) JP+(h?l®hg2®)

1

= a[ai(h)afF(hl)al ~-~ai(hn)an }Q (by (1_1))

a* (h)B e,

k+1)! N
= ( a!)PJr(h@hll@...hgn...)
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k+1)! o o
:\/( ol LS Py @ @),

which means that Ba* (h)B~' = Tjp. Thus we have Ba, (h)B~! = Ty, by taking adjoints. O

We are going to give a representation of the Weyl operators, thus we need some facts about infinite
dimensional Gaussian measure. For these facts about infinite dimensional Gaussian measure, we refer to [3,
Chapter 2]. Because we need a particular theorem in [3], we give the details about the general theory.

A Borel probability measure v on R! is called Gaussian if it is either the Dirac measure 6, at a point a
or has density

1 (ta)2>
2
L a,0%) 1 t— exp | —
p( ) oV2r p( 202

with respect to the Lebesgue measure.

Let X be a locally convex space. Let X* be the set of real linear continuous functionals on X. Let us
denote by £(X, X*) the minimal o-field of subsets of 2, with respect to which all functionals f € X* are
measurable. A probability measure 7 defined on the o—field £(X, X*) is called Gaussian if, for any f € X*,
the induced measure yo f~! on R! is Gaussian. Let

o (1) = [ fah(ao).

We denote by X7 the closure of the set

{f—ay(f), f € X7}

embedded into L2(7y), with respect to the norm of L?(y). We define
() = [ 1) = (1) [o(e) = e 0)] 7 (o)
X

For any = € X let
|l x(y) = sup {l(h) e X7 (L Dx: < 1} .
The space
X(y)={he X :|hx@) < oo}
is called the Cameron-Martin space for X.

Lemma 2.2 ([3, Lemma 2.4.1]). A vector x in X belongs to the Cameron-Martin space X () precisely when
there exists & € X such that f(x) = (&, f)x: for any f € X*. In this case,

1z x (v) = 12l L2 ()

Lemma 2.3 (/3, Lemma 2.4.4]). Let v be a Gaussian measure on a locally convex space X. If x € X () and
& € X7 satisfy
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for any f € X*, then the measures vy and v, = v(-—x) are equivalent and the corresponding Radon-Nikodym
density is given by the expression

#12(2) = exp (56:) = gl ) dr(2)

Next, we discuss a special case when X = C* and dy = d\. Let Rl (2) = Rz and Sk (z) = Sz
Then any real linear functional f € (C°)* is a finite linear combination of Rl and iy, see [8, Theorem
4.3]. That is to say that there is a unique sequence {fi = aj + iby, € C} such that

F=Y axRle+ Y bSl =Y RfRL+ D SfiSlk =R frlk.
k=1 k=1 k=1 k=1 k=1

Thus, we have

o (f) = / F(2)dAn(2) = 0.
Coo

For any
f=R> Ffili and g=R>_ gl € (C®)*,
k=1 k=1
we have
(Fo)cr,. = [ 1@9EM(2) = 3 (RfiRaw + 35390 =R Fiou. (2.1)
Coo k=1 k=1

Since (C*°);,__ is the completion of (C*)* with respect to the inner product above, we know that, for any
f € (C>)j,., there is a sequence { fi} such that

n
f= nh_)H;O%I; Jrlk,

where the limit is taken in (C*)7%, . We denote by f = RY oy frlk.
If z is in the Cameron-Martin space C*(d\,) for C°°, then we have

|zlcoe () = sup{l(z) 1€ (C%)*, <l7l>(‘c°°)éxoo < 1} < 00.

Thus, by (2.1), we have

|2lcoe () = O law*)? < o0
k=1

Thus, we write |z|ce(4) as |z]. By (2.1), we know that R "), Zxli is convergent in L?(C>, d\), then we
denote the limit by

E=RD il (2.2)
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Then for any f =R ,_, filk, we have

F(2) =R Frzk = R(f, 2oy
k=1

By Lemma 2.2, Lemma 2.3 and the argument above, we have the following Lemma.

Lemma 2.4. Let d\ be the Gaussian measure on C.
(1) Let C*°(dAs) be the Cameron-Martin space for C*, then

x=(T1, T, ) € C¥(dA\s) if and only if |x|= (Z |='17k|)1/2 < 0.
k=1

(2) For any f,g € (C>)},__, there are sequences (f1,-++ , fn, ) and (g1, , gn, - +) with o 1Y <
0o and (3272 lgr)/? < oo such that

F=RY Files g=R> Gl and (g, f)cys, =R frn
k=1 k=1 k=1

(8) For any x = (x1, "+ , Tk, -+ ) € C¥(dA\), let T =N}, Tly € (C™)j,__, we have

f(z) = (%, f),

for any f € (C*®)*. Moreover the measures dhs and dhso.s = dAso(- — x) are equivalent and the corre-
sponding Radon-Nikodym density is given by the expression

R 1
dAmﬂxz>=exp(x(@——itﬂ%wgum>)dAuxz»

For any = (z1, -+ ,Zn, --) € C®(dA\x), we have > }'_, Tgly is convergent in F?(C>,d)\). Let
limy, o0 Yy Tl be the limit, we define

(x,2) = LILH;O Zx_klk} (z) for z € C* almost everywhere. (2.3)
k=1

Thus (z, 2) is a function in F2(C>,d)\). By (2.1) and (2.2), we have
R(x, z) = &(z) almost everywhere and ||<x’Z>H(‘C°°)2AOO = 2|z| = 2[|2|coo (dr)- (2.4)
We define the translation operator U, on L?(C>, d)\,) by
Unf(2) = f(z = w)er (@731,

Remark 2.5. In the Fock space on C", we can define the reproducing kernel for all (") = {xy,---  2,} € C™.
The reproducing kernel is given by

K, (z(”)) — 3 5Tz — pale™ 2M)en

for any z(" e C”. Since we can’t define the inner product of two points in C*°, we can’t define the
reproducing kernel for all points in C°°. However, for z in the Cameron-Martin space C*(d\ ) and z € C*,
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we can define (z,2) by the limit in F?(C>,d)\,) as in (2.3). That is the reason that we need the Cameron-
Martin space. So, the analogue of the normalized reproducing kernel in F?(C>,d\,) is given by

ky(z) = ez (@2 —zlal®,
On the other hand, by Lemma 2.4, we know that any € C*°(d)\) is a bounded sequence. Thus

C™® (oo U[ ~-><B(O,N)><-~-}C(C°°,

where B(0, N) is a ball in C with center 0 and radius N. Since [B(O, N)x---x B(0,N) x - } has measure
0 in C* with respect to the Gaussian measure, we know that C*°(dA) has measure 0.
If x,z € C*(d)\), we always require

n

(z,z) = lim E Tk2k-
n—oo
k=1

Since C*°(dAs) has measure 0, this requirement would’t change the definition of (x,z) as a function in
F2(C™, dA\).

We are going to study the operators BW (h)B~!, so we need a lemma.

Lemma 2.6. For any z,y € C*(d\), we have

UyUp = e 230U, f(2) and  ([Unfl| 72 oo arny = 1 I172(coe anny

for any f € L*(C*®,d\s). If 2™ converges to x in C®(d\s), then Uy converges to U, in the strong
operator topology on F2(C> d)\s ). Moreover, U, is a unitary operator on the Fock space over C*°, thus
Upf € F?2(C*®,d)\s) when f € F2(C*®,d\).

Proof. For any f € L?(C>,d)\y), by Lemma 2.4, we have
11 e arer = / £) A
/ If(z — 2)PdA o o
L2
[f(z —2)[Pexp | &(2) — §|$|Coc(dAoo) dAoo(2)
2 L2

= / |f(z —x)|" exp (%(m,z) — §|x|C°o(d/\w)) dA oo (2)

Coe
1 1, 5 9

= [ |f(z—xz)exp 5(3:,2} - Z|I|Cx(d/\w) [“dA oo (2)

(C:)c

= [ )P o).
(Coo
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Thus U, is a unitary operator on L?(C*,d\,). For any z,y € C*®(d\,), we have

UyUrf(Z) = Uy[f(z — gj)e%@,z’)*ﬂﬂz]

= f(z — z — y)ed@=—M=ilal’ 3 (w.2) 5yl

Thus U_,U, = e_%%@”’@Uw_x = I, that is to say U_, = U1 = U>.
For any (™), 2 € C*®(d\y) and f € F2(C*, d)\), if 2™ converges to x in C*(d)\s), then

Uy [ = U fll p2(Co,dro)

_i (m)
23 oy o f = FllF2(Co drn)

le

i

[(em 836 — 1y

IA

Upm) —z fll 2o anay + 1Uzom) —o f — fllF2(€o,dar0)

%(a:(m)

i
2

INA

le D = 1[If | p2(c arn) + 1Unom o f = fllp2(co are)-
On one hand,
lim [z 2)| = lim [ —z,2)| < lim |z — z]jz| = 0.
m—0o0 m—0o0 m—r oo
On the other hand, we claim that if 3™ — 0 in C*°(d)\,), then
W}i_f}loo Uy f = fllF2coe ar) = 0-
Thus, we obtain

W (|Uyom f = Us fllp2 (0o ann) = 0.
m—r o0

Next, we prove the claim. If there is a constant € > 0, a function g € F?(C*,d)\,,) and a sequence y(m)
such that

"}iinoo |y(m)| =0 and ||Uy(m>g — gllp2(co,ar.) > 3¢
for any m. Since g € F?(C°,d\) there is a polynomial p(z1,-- - , 2;) such that

19 — pllFz(coe.arng) <€

Thus, we have
[Uyemp = pllF2(coo,ar.) > €.
By the expression of the U, and (2.4) we have

m M)y L(y™ 2y 1]y(m) |2 m m
Uyomp(2) =p(zs — 9™, 2y —yf™)er @230 F and - [[(y™, 2) oo )s, = 2ly™] = 0.

Thus, there is a subsequence {y(™*)} such that (y™*, z) converges to 0 almost everywhere. Then Uymop
converges to p almost everywhere. On the other hand we have
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U, PllLz (o dro) = 1Pz (o drn )

thus

Jim (|Uyenop = pllr2 (e .are) =0,

which is a contradiction. We have completed the proof of the claim.
In the last, we only need to prove that for any polynomial p(z1,- - ,2;), we have U,p € F2(C*>, d\s).
For any [ > j, let ) = (zy,x5,--- ,2;,0,0,---), we have

Uyiop(z1, -+, 25) =plz1 — @1, 25 — xj)e%Zin:ﬂ_’"Z’”*izinzl loml® ¢ F2(CladN).
Thus U,yp € F?(C*®,d)\s) for any [ > j. Send [ to oo, and we have
Uyp € F2(C™®,d)\s).
Thus, U, is a unitary operator from F?(C*,d\,.) to F2(C*® d\s). O

For any © = (1,72, --) € C*(d)\), since R(z,z) is a real-valued function, we have Ty, ) is
an unbounded self-adjoint operator. Thus we can define e’’®@.» by functional calculus. Let z(™) =
(1, ,2,,0,0,---), then U, is an operator maps F?(C™, d\,) to F?(C",d\,). In [2, Proposition 2
and pg 284], the authors have proved that

L =€ TREM. =
eqzm<m(n),z)+%

(2.5)

—iz(n)
holds on the Fock space on C™. We can generalize this equality in the Fock space on C*°.
Theorem 2.7. For any h = Z;‘;l zjhj € H, let x = (z1,--+ ,&n, ), we have

BW(h)B™! =Ty =U_;z =T 2

e'i&?(m,z)«i»T

holds on the Fock space on C*. Moreover, the Weyl algebra is represented on F2(C*® d\) as a Toeplitz
algebra generated by

{TEMWHﬂ 1€ C%(dhoo) } -

4

Proof. Since the Weyl algebra is generated by Weyl operators, we only need to prove the equality.
By the definition of the isomorphism B, we have Bh = 3772 xje; o l;. Since 3, |z;]? < oo, we have
x € C®(dA). Then (z, z) is well-defined and

R{x,z) = %ijlj = ﬁ%ijej ol; = 2_1/2(2 zjejol; + ijej oly).
=1 =1 =1 =1

Moreover, by Proposition 2.1, we have Ba’ (h)B~! = T, and Bay(h)B~! = Tgy,. Thus

1y o1z (e 4
BW(h)B~! = Bei2 "/ *las®raim) g—1 — " (R wenoty 7552, geaoty) _ iToges

Let (™ = (21, - ,2,0,0,---), by (2.5), we have
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T.

— i R (z(m) —
Ei?}?(z(m),z)+ \I(T)|2 f =€ ( z)f = U*i{E(m)f

for any m,n € N with m > n and f € F?(C",d\,) C F?(C™,d\,,). For the operator Tem<z<"'L>,z>+'w<TZ) 2,

since limy,— o0 [|20™) — z[|coc (ar..) = 0, we have

im [z, 2) = (@, 2) |l 22 €= are) = 0.

There is a subsequence my, such that

lim (z(™*) 2) = (x,2) almost everywhere.
k—o00

Thus we have

f.

lim T (mp) |2 f = lim T
S k—oo e

z|2
koo in(e(mE) 24 12 iR,z 1212

Let h(™) = > iy jhj, by [4, Proposition 5.2.4], we have W (h{"™) converges to W (h) in the strong operator
topology. Thus

lim e e .o f = TR f,
m—o0

By Proposition 2.6, we have
Jim U_of = Usiaf.
Then, we have
eiTmz’ﬂf =U_izf= Teiﬁmm,zH—J%lE f
for any f € F?(C™,d\,). We have completed the proof because | J,, F2(C"™,d),) is dense in F?(C*®,d) ). O
3. The Gibbs state and trace formula

Next, we study the second quantization and the Gibbs state. Given an unbounded self-adjoint operator H
on the Hilbert space H, we have defined dI'(H), thus e**“"(H) is a unitary operator for any t. Let U; = e

then Uy is a unitary operator on H. By [4, pg 8], we know that

eitdF(H)P+(f1 ® - ® fn) — P+(eitHf1 R ® eitan), (3.1)

itdl'(H) ig 4 hounded operator.

Since dI'(H) is a self-adjoint operator, we know that e
Let 8 be a constant such that SH is a positive operator, then SdI'(H) is a positive operator. Similarly,

the operator e A#4'(H) is given by
e PP (1@ ®f)=PlePPfig - 0e L. (3.2)

Since SdI'(H) is a positive operator, we know that e~ PIT(H) i a bounded operator.
Because there is no proof of (3.1) and (3.2) in [4], we give a simple proof here.
Let U; be an operator such that

UP(fi® @ fn) =Pp(e™ fro- @ f,).
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It is easy to see that U; is a one-parameter group of unitary operators and its generator is dI'(H), by [7,
Theorem VIII.8] we have

U, = eitdl(H),

The proof for (3.2) is similar, we only need to apply [7, Problem 39, pg 315].

Recall that, for any j € N, [, is a function in F?(C>°, d\) such that [;(z) = z;. Since B is an isomorphism
itH g—1

from H to x1, we know that Be is an operator on x; which is generated by {l;}.
Theorem 3.1. For any self-adjoint operator H on H, we have
BetdC I B=11() = f(Bet B~ (2), -+ , Be B~11,(2), )
for any f €, F2(C"™,d\,). Let 3 be a constant such that BH is a positive operator, then we have
Be PHEH) B=1¢(2) = f(Be PHB7 Yy (2),--- ,Be PHB 1, (2), )
for any f e, F?(C",d\,).

Proof. We only need to prove the first conclusion, because the proof for the second is similar. Since

[ k!
B[ JPJr(h?l ®hg2®...®hgn)} :ealoll"'eanoln

1 Qq Qn
:sz_a!ll ln

and Bhj(z) =ejol; = \/glj, we have

o . T .
B[ aP+(h1 ® hj ®"'®hnn)]: J[Bhl]' <+ [Bha]™".

Thus, for any f1,---, fn, € H we have

B [\/gm (@ fon)] = \/g[Bfl](“ (B (3.3)

Va1 - (),

For any monomial

we have

, 1
Beitdl(H) g—1 e [1]% - [l,]o

. Kl
:Be“dWH)B*lB[,/am @ ® hgn)]

' . .
:B{ k_"PJr ([ethhl]ozl ®_._®[ethhn]an>]

(e%)
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1

=\[ o [Be™ ]t [Be Ry (by (3.3))
1 . .

— j[BethBlehl]al .'.[BeZtHBfllhn]an
(o2

1 : )
_ BeltHB—lll ay . BethB—lln an
2k

Then, for any polynomial p, we have
Bet T H) B=1y(2) = p(Be™ B (2),--- , Be* T B71,,(2),- - -).
For any positive integer n and f € F?(C",d),), there is a sequence of polynomials {p,} such that
lirrlnpn(z) = f(z) for any z € C" and hrIan" =f in F2(C"™ d\,).
Thus we have
B H) B=1r(2) = f(Be™ B~y (2),--- ,Be™ B~ ,,(2),---). O

Let p be a real number, the Gibbs grand canonical equilibrium state is defined in terms of the generalized
Hamiltonian K, = dI'(H — pI) whenever

exp {—BdD(H — ul)}
is trace-class. This latter property places a constraint on the possible values of u.

Proposition 3.2 ([, Proposition 5.2.27]). Let H be a self-adjoint operator on the Hilbert space H and let
B € R. The following conditions are equivalent:

(1) e PH is of trace-class on H and B(H — pul) > 0,

(2) e=BACH=RI) s of trace-class on Fy(H) for all p € R.

Let us now assume that exp {—(K,} is of trace-class and then calculate the Gibbs state

A Tr (6fﬁdF(H7;LI)A)
w(d) = -5 (e~ Par(H—pD))

for any operator A on Fy(H) such that e P (H=1D) A is of trace-class. By Proposition 3.2, we have
e BH=1D) i a bounded operator. The Gibbs equilibrium state is important in the quantum physics, see [4].
As an application of the Fock space on C*°, we are going to give a trace formula and apply it to the Gibbs
equilibrium state.

For any z € C™ and z € C*>(d\), let

K.(2) = e3(®:2)

Let (") = (21, ,2,,0,0,---) and 2" = (21,--- ,2,,0,0,---), then K, ) (2(™) is the reproducing kernel
of F2(C™,d\,). Let X(™ be an operator on F2(C™,d\,), by [12, Proposition 4], we have

Tr(X™) = / (XM K ), Ky Y (™).
(Cn
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Theorem 3.3. If X is an operator on F2(C* d)\), then X is of trace-class if and only if

| Hm [ (XK, Ko )dAn (2™)] < 0.

n—oo

Cn

In that case, we have

Tr(X) = lim [ (XK ), Ky )dA, (™).

n—oo

Cn

Moreover, if A is an operator on the Bose-Fock space, then we have

Tr(e_ﬁdF(H_”I)A)

= lim / / (B.ABile(n))(Z)Kw(n) (Be*ﬁ(H*#I)Bflll(z), .. )d)\oo(z)d)\n(x(”))

Proof. Let
E, ={eq, 0l1 Xeqy0lag X - Xeq, olp: ap, - ,an >1} whenn >1and Ey = {I},
where I stands for the function which maps all z € C* to 1. It is easy to see that F, is the set of basis of

F%(C™,d\,) & F?(C"1,d\,). Thus we know that |J 7, E, is a basis set of the Fock space on C*. If X is
of trace-class, then

Tr(X) = i Y (Xee) :n}gnmi D (Xee).
n=0eckE, n=0e€ckE,

Since P, is the projection from F?(C*,d)\y) to F2(C™,d)\,,), we have P,XP,, is an operator from
F2(C™,d\,,) to F2(C™,d\y,). Since |, E,, is a basis set of F2(C™, d\,,), we have

S S (Xe,e) =30 Y (PuXPue,e) = Te(PuX Py)

n=0eck, n=0eck,
= /<PmXPmKI(m),Kz(m)>d/\m(1‘(m))
Cm
= / (XK yom), K yomy Yl (2™,
(Cm,
Thus
. (m)y| — . _
| lim [ (XK o), Kpom) YA (™) = | W}gnmz% ; (Xe,e)| = | Tr(X)] < oo.
cm n=0e n

On the other hand, if

| im [ (XK, ), K m)| < o0,

n—oo

Cn
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then, by the argument above, we know that X is of trace-class.
The second conclusion follows from Theorem 3.1. O

If e PAC(H=1I) ig of trace-class, by Proposition 3.2, we know that S(H — pul) is a positive operator and
e PH is of trace-class on H. We suppose that {\; : 5 = 1,--- ,n,---} and {v; : j = 1,---,n,---} are
eigenvalues and eigenvectors of e #(H=#1) gsuch that

e_ﬁ(H_#I)Uj = /\jUj. (34)
Thus 0 < A; < 1. Since e PH=1I) g a self-adjoint operator, we suppose {v;} is a basis of H.

Next, we are going to study the Gibbs state. Let By denote the isomorphism from the Bose-Fock space
to the Fock space over C°° such that

BH[\/gP+ (vf? ®®Uf{”)](z) =eq, 0l1 €q, Olpn,
where k = 3", . Because By;'l; = 2By e; ol; = v/2v;, we have
Bpe PH-rD Bl = )15
By the construction above and Theorem 3.3, we have the following corollary.

(H—pI

Corollary 3.4. Let 3(H — pl) be a positive operator and e ) be of trace-class with eigenvalues {\y}

on H. For any operator A, we have

rﬁ(e—ﬂdF(H—uI)A)

~ lim / / (BuAB K o0 )(2) Koty Oizn - s s 0,0, - Y dAoe (2)dn ().
CW,COO

In [4, Proposition 5.2.28], if e~ #4'(H=11) jg of trace-class on the Bose-Fock space, we have the following
formulas

W(W(F)) = exp{—(f, (L + e 2H1D)(1 = e=#U=HD) =1 ) a3,
and
W@} (£ar(g)) = (g.e TN e PTRD) ),

Next, we are going to show that Theorem 3.3 implies these two formulas. Moreover, we will generalize the
second one.

Corollary 3.5. If e AIUH=1D) s of trace-class on the Bose-Fock space, then the Gibbs state of a Weyl operator
W(f) is given by

W(W(f)) = exp{—(f, (1 + e PH=1D)(1 = ¢~ FH=RD)1 1) 4},

Proof. Let {v;} be a basis as in (3.4), we suppose f = Zj fivj. Let y = (=if1, -+ ,—ifn, --) € C®, by
Theorem 2.7 we have
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ByW (h)By' = U,.
Then, by Corollary 3.4, we have

Te(e #A 1D (1))

~ lim / / (UKo ) (2) Ry O zne oz 0,0, - Yoo () (™).

n—oo

Cn Ce

By the definition of U,, we have

/ (UK ) () Ky 21, Az, 0,0, JdAoo (2)
Coo
:/e%zyzlz—j<zfyj>+%z;zly—ﬂj(z)fﬂyﬁe%z;':la:jsz—jd%o(z),
(Coo
Since
/e%mlj(z)dAl(zj) =1 for any 7,
C

we have
/ AT B gy (2) = / A TERTLG N ()
Coe Coe

for any integer m and

m— o0

lim \/e%E?’;ij<Z>dAm(z)—1|: lim /|e%2?’;m?flj<2>—1|dAoo(z)
Coe Coo

< lim fle2 Z=n T — 1] pa(ce ann)
m—ro0

. 1 oo 12
< lim |JeT Z=m vil Uy—yom 1 = 1| p2 (o drn.)

~ m—oo

=0 (by Lemma 2.6).
Thus

/ €3 XiZnt y_jlf(z)d)\oo(z) — lim €2 LiZm y_jlf(z)d)\oo(z) =1.
m—00

Coe Coo

Then, we have

(UyK ) (2) Ky (AM121, -+ 5 Ap2n, 0,0, -+ )dAoo(2)

J— R 2 J—
o3 Li—1 T (2 =) +3 Xl Uiz — 1 lvl® o3 Xioy 2 A% dAn(2)

/
/

Cn

— —_ 2
—e3 L= TENTi =)+ N TN — 1 lyl®

17
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Thus

T(e P H-DT (1))

1 (N —ap s 1 T\ — L 2
_ li)m 652?:1 Z;(N\jx; y])+2 Z‘;Lzly]A‘]I] 4\y| d)\n(lf(n))
n—00
Cn
= lim [ e? ZimTwi—yi)+s i, yﬁ)‘ﬂj—%\yﬁ#e_%zyﬂ |®j\2d(x(n)>
n—)oo(c (2ﬂ)2n
n
= hm e%E?:lrj(fyj)“r%E;}:lyij)‘jmjfi‘yﬁ#e*%Z;‘lzl(l*)\j)‘zled(x(n))
n~>oo(C (27r)2n
n
. 1 1 ( vj) + DI 7%7i|y|2
= lim —f——F—— e’ = Vl 2y = VTN A, (z™)
n—00 Hj 1 1 )‘j
Cn
1 S RTHLI N G B YL
= lim — 4l i=1 2 T=x; ¥
n
n—o0 Hj:l 1— )\j
_ 1 P52, d = v
T e J
TREVAEDY
14N
1 421 11— AJ| 51°

_H;L \/1_>‘J ’

where [[7Z, \/1 — ); is convergent because >, \; = Tr(e=#H=11)) < oo and A; < 1. By functional calculus,

we have

(7,0 e Hm0) (1 D)y (£, (14 e HHR) 1 ) S fr
J
=3 A £ (U e (1 -y
J
foJ<f, (14 A)(1 =20y

—Zwl“ Zml“

Thus, we have

1 e—%<f,(1+e’ﬁ(H’“I))(l—e’ﬁ(H’“”)’1f>

Tr(e PITH=1DW (£)) = T viex
j=1 Y]

Since W(f) = I when f =0, we have

Tr(e AT H-pDy =~
( ) H;)i1 1- >‘j

Then we have

Tr(e—ﬁdF(H—MI)W(f)) _i<f7(1+e—B(H—;LI))(l_e—E(H—;LI))—1f>
= € .

W(W(f)) = Tr(efﬁdF(H*liI)) O
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Corollary 3.6. If e PICH=1D) 45 of trace-class on the Bose-Fock space, then

w(af (f0) @t (F)ar (V) - as(g™))
(Vi ({060 £) i (0 6 05))

where

Proof. Let 2™ = (A2, , A\yZp, 0, ),

7= ap(FV) -+ ap (F) and 7o = ay (g9) -+ s (9™).
Since

Ko (Mz1, 0 3 An2n,0,0,-0) = e L= TNz = Kz (2),
we have

Tr(e P H=1DTETy) (by Corollary 3.4)

= lim / / (BuT;ToB Ky (2) Ky (M1215 7+ 5 AnZn, 0,0, -+ - JdAoo (2)dN, (™)

n— oo
C'n,(Coc
- Jim. / / BuT{ ToB;; K o) (2) Koo (2) oo (2)dAn (™)
Cn Ce
= lim / / (BuToBy' K y)(2)(BaTiBg' Kz ) (2)d oo (2)dAn (2(™).
n—o0
Cn([joc

By Proposition 2.1, we have

-T

ByTiBy' =T o

Bufo ) and BHTQB;Il =T

Brg® " Tppgtm

We suppose g*) = Zj gj(»k)vj and f¥) = Zj f;k)vj. For any polynomial p, we have

(P T, o K a ) P2 (€ dre) = (T gom Dy Ky ) P2(C dr )

n
m) Tj (m
:E gj(- ) p(z™) E 93 ) Ko)) p2(Co dr.)
j=1

) T
= <p,zgj )7%Kx(n)>F2(C°°7d)\oo)v

Kom)(2) = 2052, gﬁm) ZL K ,(n) (2). Thus, we have

which means (T 7

Br g™

(BuToB5 K o) (

”MS

) (;_gﬁm)%)m@)

19
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and

(BuTi By Kzn)(2) = (Zf“ A\j/%j) (Zf(’” /\\/ai]>K5<n>(z).

Jj=1

Then

e
I
s

VN

NE

By the proof of Corollary 3.5, we have

Tr(e—ﬁdF(H—uI)) —

thus

w(aj(ﬂl)) . ~a*+(f(m))a+(g(1)) . ..a+(g<m>))

n

- [ (S ST (5 A e

Cn k=1 j= k=1

m (’f m n (k)
. .7
=JLH;OZH Yz be)I (X e o b)) it

(k)

. m n f(k) m.on
=t (13 et Hzl e

Let

—B(H—pl) 1
W) — & T k) and g% = (k)
= A ™9 = e

By functional calculus, we have

e—B(H—uI) A f) il (k)

B '
BHWJC BHZ\/l_— Z\/l——elolj

=1

BHf(k) =
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and

1

A1) WL AR S Ay
1— e AUH—uD) \/1 = r= RV

Bug™ = By

Let @, be a projection on x; such that

o0 n
QuY ajeroly=Y ajeiol;
j=1 =1

for any Zj ajer ol; € x1, further we denote Qn = BﬁlQnBH. Then, we have

HZ HQ”Z e1ol _HQHBHf(k)_HBHan(k
k=1 j=1 Pt} fier

and
HZ HQnZ 610l _HQnBHg(k)_HBHQ G®.
k=1j=1 -

Thus

w(af (F0) - ai(f(m))m(g(”) : -a+<g<m>>)

SN 1SR TABHTI o oA S

=1 kljl

:nlirr;o<HBH fl U BiiQng™ >F2(Coo dAoo)

=1

Qnf
= tim (VinlPy (Quf D @0 Quf™) VmlPy (Qui @+ 2 Qug™) )

n—oo

=(VmlPy (JV @@ fo) Vmipy (30 @ @ ™))

=
—
<.

=

Fr(H)

Fe(H)

4. Fock-Sobolev spaces and Gaussian Harmonic analysis

Gaussian Harmonic analysis has been studied for a long time, see [10]. In this section, we introduce
the Fock-Sobolev spaces and discuss its relationship with Gaussian Harmonic analysis. In [13], the author
defined the Fock-Sobolev spaces. In [11], the authors used the relationship between the Fock-Sobolev spaces
and the Gaussian Harmonic analysis to study the boundedness of an integral operator. We will show that,
we have a similar conclusion in the infinite dimensional case. As an application of this relationship, we will
study the boundedness of creation operators and annihilation operators.

For any r € N, the Fock Sobolev space on C™ consists of all f € F?(C™) such that

T

fllesren =3 (X [0rs@PonE) " <o (4.1)

k=1 ‘(Il:k(Cn

We need to point out that, in some literature the norm of function in the Fock-Sobolev space is defined by
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||f||*:i Z (/|6“f(z)|2d/\n(z))1/2.

k=1 \a|:k Cn

|lfll« and || f|| p2.~(cn) are equivalent for any n but not uniformly equivalent with respect to n. Since we need
to generalize the Fock-Sobolev space to the infinite dimensional case, we use (4.1).
In the Fock space on C™, we have the following equality

—0.,.

e1(z;)

Since the Fock space on C*° is not an analytic function space, so we use the Toeplitz operator Tm to
define the Fock-Sobolev space on C®°. Let the Fock-Sobolev space F2"(C>) be the completion of finite
polynomials with respect to the following norm

r

1/2
Wlres =3 (X [ ey TamrePiw)

k=1 i, ik >1ch

To study the Fock-Sobolev space, we introduce the Gaussian Sobolev space. Let Gaussian measure dry,, on
R"™ be given by

dryn(z) = (%)%e* 2 dr.

The Gaussian Measure can be extended to R*, we denote it by dvs. Let L?(R*, dvs,) consist of all square-
integrable function on R*® with respect to dys. For any k£ = 0,1, ..., the Hermite polynomials Hy on the
real line are defined by the formula

i) = e (£) £ o (2),

By [3, Lemma 1.3.2 and Corollary 1.3.3], we have

H () = VEHy 1 (2) (42)
and {Hy} is an orthonormal basis in the space L? (R,~1). By [3, Lemma 2.5.1 and Example 2.3.5], we have
{Ha,(x1)Ha, (22) -+ - Ha, (2n) ZEEZ‘Nj:: k, k=0,1,2,---}

is a basis of L?(C>,d)\,). Let I be the projection from L?(C>, d)\,) to the subspace which is generated
by

{Ha, (z1)Hay (22) -+ - Ha,, (20) :ZE:‘lj:: k}.

By [3, Chapter 5], the Gaussian Sobolev class is the completion of all finite combination of Hermite poly-
nomials with respect to the norm

T

o =3 (X [ 10y 00, S0P @)

k=1 g1, gk >0

We also have
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I llw=r @y = 1> (1 + )2 I fll L2 Roe ) (4.3)
k=0

The Gaussian Bargmann transform G is a unitary operator from L?(R>°, dvs,) to F2(C*,d)\s) such that

G[Ha, (21)Hay (22) - Ha,, (20)] = €a,(21) -+ - €a,, (2n)-
Let Qi be the projection from F?(C*,d\,) to xr. We have GQrG~! = I;. It is elementary that

T ea; (2j) = /% eq,_,(z5), thus by (4.2) and the definition of the Fock-Sobolev space and Gaussian
Sobolev class we have

o0
Pl p2r ey = IG™ pllwr@ee) = 1 D (1 + k)2 Qupll r2(c> arn)- (4.4)
k=0

That is to say the Gaussian Bargmann transform G is also a unitary operator from W?27(R*) to
F27(C*®,d)\y).

Proposition 4.1. For any ¢ € x1 and r > 1, Ty and Ty are bounded from F27(C%) to F?r—1(C®).
Proof. Let ¢ =} cpei(z;). For any eq, (21) -+ €q, (2n) -+ with 3 a; =k, we have

I Toear (1) - €a, (2n) 52 (€ arn)

=| chel(zj)eal (21) - €an(z0) - 2 (e ,ane)
=|| Z Ciy/ oy + 16041 (21) - ea;a(25) H%*?((Cw,dAoo)
= Z lej* (o +1) < 8112 (k + Dllear (1) - €a, (20) | F2(c e ar -

Thus, for any pi € xx, we have

||T¢PkH2F2(<Cw,dAoo) < Hd)H%Q(COO,d)\OC)(kJF 1)||Pk||2F2(Coo,d,\m)

and Typy € Xr+1. For any polynomial p, we have

I Tspll32r1(coey = 1D ToQrpll T (cov)
k
2 |3k +2)"F ToQuplliec anny (by (4:4))
k
= Z (k+2)" M TsQupl F2 (oo ar.n)
<Yk + 2 MISl7 (o aney (F + DIQRDIF2 (o ar.)
k

S 7o arny Z(k’ + 1)7(|QrpllFz (e arn)
%

2 [[6l72 (oo ar) 12172 ooy (BY (44)),

thus Ty is bounded from F*7(C>) to F>"~1(C*). The proof for T is similar. O
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