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ABSTRACT. The goal of this paper is to provide new proofs of the persistence
of superoscillations under the Schrodinger equation. Superoscillations were
first put forward by Aharonov and have since received much study because of
connections to physics, engineering, signal processing and information theory.
An interesting mathematical question is to understand the time evolution of
superoscillations under certain Schrodinger equations arising in physics. This
paper provides an alternative proof of the persistence of superoscillations by
some elementary convergence facts for sequence and series and some connec-
tions with certain polynomials and identities in combinatorics. The approach
given opens new perspectives to establish persistence of superoscillations for
the Schrodinger equation with more general potentials.

1. Introduction. Superoscillation is a phenomenon in which a signal which is

globally band-limited can contain local segments that oscillate faster than its fastest
Fourier components. An example of a function exhibiting this phenomenon is

N
N .
Fy(z,a) = (cos%—i—iasin %) = E Cr(N, a)e”(lf%)
k=0

where N is a large integer and a > 1 and Cx(N,a) = (]Ij) (H“)ka (k—a)k This

2 2
function is periodic with period N7, but when expanded in its Fourier series, each
individual component function has frequency ki v = 1 — % which is bounded by

1. One can further show that Fy(z,a) — € and that when |z| < V/N then
Fn(x,a) can be well approximated by e‘®. Superoscillations and the phenomenon
was originally attributed to Yakir Aharonov, and then appeared in work by Michael
Berry and similar concepts were known to Ingrid Daubechies.
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Superoscillations have come to play a role in quantum physics, in engineering
through superresolutions and in signal processing and information theory. They
also have been studied for purely mathematical reasons because of their interesting
analytic properties and connections to approximation and harmonic analysis; the
interested reader can consult [18, 16, 5, 9, 11, 12] for more details.

An important question in the area is to understand the evolution of a superoscil-
lating function under a Schrédinger equation and determine if the superoscillating
phenomenon persists under time evolution. In particular, one studies the follow-
ing problem. Let v, (x,t) and v (z,t) denote solutions to the following Schrodinger
equations:

% (2,t) = H(w,t)pn(w,t) () = Hiz,t)(x,1)
'll}n(x;()) = Fn(a:,a) w(x’o) = clax

where H(x,t) is an appropriate Hamiltonian for the system being studied and
F,(z,a) is the superoscillating function above. Under what conditions do we have
that nli_)rréown(%t) := ¢(z,t)? In the following papers, [3, 4, 6, 19, 10, 5, 2, §]
versions of this question were studied when H(z,t) is the Laplacian, the quantum
oscillator, and natural Hamiltonian’s arising in physics. The method of proof was
to cleverly connect the solutions to certain infinite order differential operators and
their behavior on spaces of analytic functions. The convergence results then follow
from continuity results for these operators on spaces of analytic functions. In this
paper we take a different approach at studying these convergence results and obtain
similar results.

Studying the results in literature around superoscillations point to the under-
standing of moments of the Green’s functions. Let K be the Green’s function
associated with the one-dimensional linear Schrodinger problem:

i%—’f(my,t) H(z, t)K(z,y,t)
K(z,y,0) = d(x—y).

Then the normalized moments of the Green’s function defined by

1
b (x,t) == %/ymlC(m,y,t)dy z,teR meN
YR

play a fundamental role if we have li_>m Yn(z,t) = P(x,t). Our main result is the

following:

Theorem 1.1. Let z,t € R. Suppose that Z m|by, (2, )] (22 (14a))™ = M, < o,
m=0
then lim o, (z,t) = ¥(x,t). If we further have that sup M, < oo, then we have
n— oo z,teER

for any z,t € R that lim ¢, (x,t) = ¢¥(x,1t).
n— oo

In Section 2 we collect some simple and direct computations that will be impor-
tant in our analysis. These computations reduce to some basic manipulations and
estimates of power series. In particular, we will point out connections to certain
fundamental polynomials and identities that arise in combinatorics and approxi-
mation theory. However, from these estimates we are able to develop some tools
that allow us to recover many of the results on superoscillations in the papers
[6, 19, 10, 5, 2, 8, 14], by appealing to simple convergence facts of sequences and
to avoid the connections to infinite order differential operators and spaces of entire
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functions. Further, we are able to obtain some information about rates of conver-
gence of the superoscillating sequence to the given function. Our main theorem,
Theorem 2.3, appears there and shows that if the Green’s function associated to a
linear Schrodinger equation possesses some appropriate decay as measured in mo-
ments then persistence of superoscillations will occur. This theorem is implicit in
the work of [2], where something like this was done for a special case; our contri-
bution is to extract out the general phenomenon and use it in the known instances
of persistence of superoscillations. In Section 3 we show how the tools developed in
Section 2, in particular Proposition 1, can be used to directly recover some math-
ematical facts about superoscillations in the literature. In Section 4, we compute
explicitly the normalized moment of order m of the Green’s function for the free par-
ticle Schrodinger equation, the harmonic oscillator, the Schrodinger equation with
linear potential, the one with centrifugal potential and finally for the centripetal
barrier oscillator. Appealing to Theorem 2.3 then gives another proof of the results
in the literature surrounding superoscillations. The method we used should permit
to get results with the Green’s function for the Schrodinger equation with other
potentials; but the computations are surely much more complicated.

The authors thank Juliette Leblond for pointing out reference [19] and Pamela
Gorkin for suggesting an improvement of Lemma 2.2; both are also thanked for
comments about an early draft of this paper.

2. Preliminary results on superoscillating functions. The first lemma we
observe is purely combinatorial and is a direct computation from the definitions.
It is here that we encounter the connection with Sterling numbers and some basics
from approximation theory.

Lemma 2.1. For 1 <p <n,

with

sn(p,1) = (i)pl lﬁ n%js(p,l%

Jj=0

and where S(p,1) is the Stirling number of second kind defined by

S(p,1) = ;!El:(—l)ic) (1— ).

=0

Proof. We use the following well-known identity:

kP =" S(p,1)(k), where (k) =k(k—1)(k—2)---(k—1+1). (1)
=1

For an integer n > 1, and 1 < p < n,
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P(n,a) = — ZC’k(n,a)kp

p n k n—k
B 2 n\ (k) (1—a 1+a
=y S (1) 5 (57) (57)
(771), one can get recursively that

k—1
S - (onTe

=0

Using that £ (7)

and we obtain that

which proves the lemma.
We next collect an elementary estimate.
Lemma 2.2. For any positive integers 7 and n we have:

27=15
—

<

j_ln—l
1171
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Proof. We make the following computational observation:

j—1

—1 —Iln— 1
I1 n—v o4 = nztn=j+1
n n n
=0 1=
2 n—1 n +1
- < L 1) J 1
n
1=0
B <ﬁn—l 1>n—]+1 n—j+1 !
o n n n
1=0
_ <]_2n—l 1>n—j+1 —j+1
o n n n
1=0
This then implies that:
Jj—1 j—2
n—I j—1 n—I
— -1 < -1
]-_-[ n - n H n
=0 =0
This can then be iterated and leads to:
j—1 j—1 .
11 n—t < L G=1)j
n n 2n
1=0 =1

O

Proposition 1. Let a € R with a > 1. We have the following statements being
true:

(i) Let {bym} be a sequence of complex numbers such that Z m|by|(23(1 + a))™

m=0

converges. Then the sequence ZC’k(n, a) Z b (1 — ) converges to

n
k=0 m=0
o0
E bya™.
m=0

N
(i) Let P(z) = Zplzl be a holomorphic polynomial of degree N. The sequence
1=0
Z C’k(n,a)ep(lf%k) converges to eF(@),

k=0

(7ii) Let G(z) = Zglzl be an analytic function on the disc Dg(11q)+c(0). The
1=0

n
sequence Z Ck(n, a)eG((lf%)) converges to €@,

k=0

Proof. The main idea behind the proof of (i) is to compare what we want for the
limit with what is given. We are able to extract terms which obviously converge to
0 and others that need to be paired appropriately for the limit to converge. We will
apply Lemma 2.1 and some direct estimates and computations in the course of the
proof.
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First observe the following:

k=0 m=0
- - 2k\™ = 2\
=Y Ci(n,a) [me (1—) + > bm (1—) 1
k=0 m=0 n m=n+1 n
- 26\ < = 26\
= Ck(n,a) b, <1 — > + ZCk(n,a) Z b, (1 — >
0 n k=0 m=n+1 n

Next, observe that

Bl =| Y bm > Ci(n,a) (1 — n)
m=n+1 k=0
- ‘bm‘ - n 2n 2n .
< Z 27”2 3 (I+a)™=(14a) Z b,
m=n+1 k=0 m=n+1
where we used that z |by | is the remainder term of the Taylor series expansion

m=n+1
of the function Z b 2™ (evaluated at z =1). Thus, lim |B,| = 0. The condition
n— oo

m=
on {b;,} in the hypothesis is more than is needed to guarantee the convergence at
this step. For m > 1, we have using the Binomial Theorem and by Lemma 2.1

;:ck(n,a) (1— ff)m

£)rEena(?)
-1 +i (") (; snli, B~ a>k>
= +§ (7w <sn<j,j><1 ~ay +§sn<.7,k><1 - a)k)
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=13 (M) (}j’?) (1-a)
+Z(’j)(—1)f§ (.01 )

where

We have that
3" blu(m) = 3 bma™| = me<1+2<’? H"n_l>(a1) - ’")
(1))
=0
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Thus, we get via simple estimates and Lemma 2.2 that

> bmdn(m) =Y by

m=0 m=0

IA I\
M3 3
s 7
NE
~

<. 3 /T
~ 3
~
T
—

3

§‘|

|

—
~_—

=

|

=

IA
M:
=
El
NE
7 N
3
N———
<

ol |
: —_
=
—

+

A
|
3
[\v]
=
3
o
_l’_
&
3

By the conditions on the sequence {b,,} we have that this last expression tends to
0 when n tends to oco. It follows that

Z b, (I,(m) —a™)| = 0.

m=0

> bpdn(m) = Y bna™

m=0 m=0

lim = lim
n—oo n—oo

To get an upper bound of IT,,(m), we use again that S(j, k) < k7% (i) to obtain
that
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Thus, we get that

i bmHn(m)| < Zn: b |11, ()
m=0

= Z mlbm|(2°(1 + a))™

| N

100
< = b | (23(1
7n§:: [(2°(1 +a))™,

which means that lim
n—oo

Z b I I ( )‘ = 0 by the convergence of the series of

general term m/|b,,|(23(1 + a))
It follows that

Zb ZCkna<1—> mea
m=0

m(In( Z bma +Zb II
=0

m=n+1
Zn:bm (I Z bma™ | + melln(m
m=0 p=0

m=n-+1

)| + | Bnl -

It is then clear that all these terms tend to zero as n tends to infinity giving us

nILH;OZCkHG Zb (1%) = nhﬁn;oZb ZC’kna <12:)m

k=0 k=0
g ba™
m=0

Note that we also have that for any £ € T we have

k=0 m=0

The proof of (ii) follows immediately from (i) since one can use that e’(*) has

a power series representation and can compute the coefficients for the power series.
N

Indeed, one has that for P(z Z piz! one can compute that:
1=0
o0

e Mzm
m

m=0
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where P, (p1,...,pn) is a polynomial of degree m in the coefficients of the poly-
nomial P(z) (The case when P(z) = p1z + p22? is especially interesting since the
coefficients P, (p1,p2) are related to the expansion of 2z via Hermite polynomials;
other cases should be equally interesting to explore!). Now since ef’ (2) is an entire
function we have that for any L € R:

(oo}
P, e
Z | m(plv 7pN)|Lm < 0.
m!
m=0
From this condition, and the analyticity of e’ (*), one readily sees that:

i m—‘Pm(pl’“"pN)'(z?’u +a))™ < oo.

m!
m=0

But, this then implies, by part (4 ) that

k=0 =0 ' n

m=0
o0
Pm(plv"'7pN) m P(a)
ooy Pl
m=0

by obvious choice of coefficients b,,
We now turn case (ii7) of general analytic functions. Suppose G(z Z g7

satisfies the hypotheses of the proposition. We can expand e%(*)

on the disc Dg(144)+¢(0) to have:

in a power series

[ee]

P.(g1,--. )
G(z) _ m\g1s---r9m) m
DY m! z
m=0
where P,,(g1,...,9m) is a polynomial in the first m coefficients of the power series

expansion of G. Again the hypotheses imply that

i m‘Pm(glw~~agm)‘(23<1+a))m < 0.

m)!
m=0

since the function e*) converges on the disc Dg(144)+(0), But, this then implies,
by part (¢) that

kZ_OCk(n,a)eG( -%) ZC’kna ighw(l_i]{)m

N Z P, gla~"7gm) a™m — 6G(a)

by obvious choice of coefficients bm. O

Remark 1. Note that the general estimates we proved above show that, if we

denote v, := ZCk (n,a) Z bm (1 — > and Y := Z b,a™ then is at least

m=0
n
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for the rate of convergence. One can of course do better when we have explicit
information on the sequence {b,,} and can exploit that to extract better convergence
information.

Remark 2. The condition we have imposed upon {b,,} is an artifact of the proof.
It is a reasonable condition in that it reflects some information about the sequence
of coefficients {b,,} and the number a > 1. However, in many of the examples,
since we are after some “uniformity” when determining the limit we typically have
a stronger condition on {b,, }. For example a condition typical is that the coefficients
satisfy

1i£n Y o | m! =0

which is saying that the function b(z Z b 2™ is of infraexponential type.

m=0

We now state and prove the main result of this section. Recall that we are
interested in the following problem. For the solutions %, (x,t) and ¥(z,t) to the
linear Schrodinger equations:

~—
|

H(z, t)(z,t)

% (1) = H(w (1) aw(§ ‘
F — ezaa:

1/)n(x 0) =

when does lim ¥, (z,t) = ¢(z,t)? We now demonstrate that when the moments
n—oo

of the Green’s function satisfy certain decay, then this condition is sufficient to
guarantee the desired convergence.

Let K be the Green’s function associated with the one-dimensional linear
Schrédinger problem:

i (z,y,t) = H(z,)K(z,y,1)
K(z,y,0) = d(z—y).

Define

1
b (2, 1) 1= /ymlC(a:,y,t)dy r,t€R meN.
R

m!

The main result then shows that these normalized moments determine the conver-
gence.

Theorem 2.3. Let z,t € R. Suppose that Z mlbm (z,1)|(2%(1+a)™ = M, ; < co.

Then lim ¥, (x,t) = (x,t). If we further have that sup M, < oo, then we have
n— oo z,teR

for any z,t € R that lim ), (z,t) = ¥(x,t).
n—oo
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Proof. Observe that by the definition of the Green’s function and the two different
equations being considered we have

ia - ( )m m = - \mMm
w(x,t):/Re yK(x,y,t)dy:%ZzL!/Ry K(x,y,t)dt:mz::bm(x,t)(za) :

0

=S Saa (i(1-2)) " L [y o
= fj i@(n,a)bm(x,t) ( <1 _ f))m

m=0 k=0

The interchange of the series and the integral is justified by the hypotheses on

normalized moments of the Green’s function. The form of ¢(z,t) and ¥, (z,t) is

exactly as in Proposition 1 and so then we have that lim ¢, (z,t) = (x,t), giving
n—oo

the result. O

Remark 3. Note that the condition of convergence of the series with general term
m|by, (z,1)[(23(1 + a))™ is satisfied if

b
lim [bm 1] =/,
m——+oo |bm|

with ¢ < for a fixed a > 1.

1
23 (14a)
Remark 4. The above theorem provides a sufficient condition on the Green’s func-
tion K(z,y,t) and the Hamiltonian H(z,t) in terms of moments. It would be in-
teresting to know if any condition of this type is also necessary for the desired
conclusion. Additionally, we remark that a theorem of this type provides a “sim-
ple” test that one can preform to deduce when superoscillations persist and reduces
to just verifying some decay conditions on the moments of the Green’s function.

3. Time-dependent Schrodinger equation and superoscillations. In this

section, we recover the results in [6, 19, 10, 5, 2, 8, 14] by showing how the con-

vergence results in Section 2, in particular Proposition 1, can be used to study the

persistence of superoscillations under the evolution of the Schrédinger equation.
In the subsections below, we look at the problem:

0y, O
v ot ((t,t) = H(x7t)wn(xvt) Za(xﬂf) = H(xat)w(:ﬂat)
Yn(2,0) = Fy(z,a) = Z Ck(n,a)eiw(l_%) Y(z,0) = e,

k=0
where H(z,t) is an appropriate Hamiltonian differential operator. We show how the
results above let us deduce that lim ¢, (z,t) = t(x,t). One will use the appropriate
n—oo

solution operator to determine explicit formulas for ¢, (x,t) and ¢ (z,t) and then
the convergence results will follow from the techniques developed in Section 2.
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3.1. The Hamiltonian H = —A. In [10] the authors studied the following
Schrodinger equation:
iagt" (z,t) = —A¢,(x,t)

Yp(2,0) = Fy(z,a) = ZCk(n,a)e”(lf%).
k=0
Using the Fourier Transform, they first prove:

Theorem 3.1 ([10, Theorem 1.1]). The time evolution of these solutions takes the
following form:

2k

Chlm a)e= (13013

=

3
—~
8
=

I
(7=

k=0

The proof of this theorem uses the technique of taking the Fourier transform
of the partial differential equation to turn it into a differential equation and then
solves the differential equation using standard methods; we do not reproduce the
argument here.

Notice that the form of the function v, (z,t) then falls under Proposition 1, part
(i7) by taking P(z) = w2z —t2? (here x and t are fixed and treated as the coefficients
of the polynomial), and so we have:

Theorem 3.2 ([10, Corollary 3.4]). For a > 1 and for all z,t € R we have:

n—0o0 n— oo

n
. . . 2 . .
lim ¢, (z,t) = lim ZC’k(n,a)e”(lf%)eﬂt(lf%) = eiaw—ia’t,
k=0

3.2. The quantum harmonic oscillator. We next turn to the situation of the
harmonic oscillator

.0 n
i g’t (z,t)

1 (—A+2?) Yy (z, t)

n

1/Jn($,0) = Fn(zya) = ch(’rL,a)eim(l_%).
k=0

The persistence of superoscillations of this Schrodinger equation was studied in [5];
again we can recover the results in that paper by using the methods of Section 2.
The authors of [5] first prove

Theorem 3.3 ([5, Theorem 5.3.2]). The time evolution of these solutions takes the
following form:

e—%mZ tant ™

%(%t) =

Ck(n)a)eiﬁ(l—%)e—g@—%)ztant.

N|=

(cost)” 5o

The proof of this theorem in [5] utilizes the Green’s function for the Schrédinger
operator to arrive at an explicit form for the solutions v, (x,?). By taking P(z) =

tant

_ia2
Lz —1aL22 noting that for fixed x and ¢ that 6(2‘7)1 is a constant and so does
cost)2

not impact the convergence of the limit and observing that this form is exactly as
appears in Proposition 1 we recover the following:
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Theorem 3.4 ([5, Theorem 5.3.2, Second Half]). Fora > 1 and for all x,t € R we
have:

_ig?
=i tanteiﬁ(l_%>e_%(l_%)2tant

n
lim ¢, (z,t) = lim Cr(n,a)
1

_ . e—%(m2+a2) tan t4 Lo )
(cost)?

N

The proof of the convergence of ¢, (x,t) to ¢ (z,t) in [5] utilizes infinite order dif-
ferential operators and their continuity properties on certain spaces of holomorphic
functions; the argument we give here avoids that line of reasoning.

3.2.1. Driven quantum harmonic oscillator and variable coefficient Schrédinger equa-
tions. When one changes the Hamiltonian to be driven by a potential f(t):
i%et) = (~imA+ a4 f(O)r) Yala,t)

ipx 2j

Yn(2,0) = Fu(z,a) =Y Ci(n,a)e’® (17%)
=0

the persistence of superoscillations was also studied in [5]; again we can recover the
results in that paper by using the methods of Section 2. We instead recover the
slightly more general result in [19] that considered the following linear Schrédinger
equation with variable coefficients:

i%n(z,t) = (—a(t)A+b(t)a? —ic(t)xd, —id(t) — f(t)x + ig(t)) Yn(x,t)

Yn(7,0) Fo(z,a) :ch(n,a)ew(lf%),
k=0

It is clear that appropriate choices of functions a(t),b(t), ..., g(t) recover the driven
harmonic oscillator. However, more interestingly this Schrodinger equation allows
for a slightly more general Hamiltonian with variable coefficients. The authors of
[19] prove persistence of superoscillations; we recover their result with our methods.

Theorem 3.5 ([19, Theorem 2]). The solution to the Schrédinger equation with
initial condition (x,0) = e** takes the form:

. 2\ 2
ety =57 55

. Br(a—e)) _; 2—52—4n772sa)
'l)[)(x’t): ez(éx'i_T)e ( £
V2
With initial condition ,(x,0) = ZC’k(n,a)ex(l_%), the solution to the
k=0

Schrédinger equation takes the form:

4y

(Rt (i, 20

2
; g2y
61(404'v B )/w

Un(@,1) = 53"k o Ck(n, 6)67 <

Moreover, for a > 1 and x,t € R
nh_{glo n(z,t) = P(x,t)

Here a(t), B(t),v(t),0(t),e(t) and k(t) are solutions to a Riccati-type system and i is
the solution to a certain characteristic equation associated to the variable coefficient
Schrédinger equation (see [19] for the precise definition of these quantities).
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The solutions v, (z,t) follow from the linearity of the Schrédinger equation and
the explicit formula for the Green’s function obtained in [19]. Based on the form of
the solutions v, (z,t), it is clear that this falls under the framework in Proposition
1 and so the convergence of ¢, (z,t) to ¥(x,t) follows.

3.3. A type of generalized Schrédinger operator. A related generalized
Schrodinger equation was considered in [5] where they allow more derivatives in
the Hamiltonian. They studied the persistence of super oscillations under the fol-
lowing Hamiltonian:

O,
? g}t (x’t) = (_1)p+138:p n(z,t)
k

Un(,0) = Fy(z,0) =Y Cr(n,a)e™(=%),
k=0

when p € N and prove the following theorem:

Theorem 3.6 ([5, Theorem 6.1.1, Theorem 6.1.4]). The time evolution of these
solutions takes the following form:

2k 2k

Up(z,t) = z”: Ci(n, a)eiz(liﬁ)eik(p)t(*i(lfﬁ))p.
k=0

Moreover, we have that for a > 1 and z,t € R that

i iE(P) (_iq)P
Ii iax i (—ia)Pt
lim Un(x,t) = e

where k(p) =1 if p is even and k(p) = 0 if p is odd.

The first half of the theorem is as in [5] and utilizes the Fourier transform to
arrive at the solution. The convergence claim follows from Proposition 1 by choos-
ing the appropriate (obvious) polynomial P(z). We can also obtain the the results
in [19, Theorems 3 and 4] that combine these generalized and variable coefficient
Schrodinger equations, we do not state the results explicitly since they are an im-
mediate blend of the results from these two previous subsections.

3.4. The Schrédinger equation with the centrifugal potential. The paper
[14] shows that super oscillations are preserved under the Hamiltonian with cen-
trifugal potential. Recall the following system with x > 0 and U > O:

i%Ge(a,t) = (A+ %) talat)
Yn(2,0) = Fy(z,a) = ZCk(n,a)e”(l_%).
k=0
Let ¢ (x,t) be the solution to the same problem but with initial condition ¢(z,0) =
e'2® . The following result gives a closed form for these functions:

Proposition 2 ([14, Proposition 2.3]). The solution to the Cauchy problem for the
centrifugal potential with initial data €'*® is given by:

w2 (22 P& 1 22\ "
t) =e 2t [ Z— el
Wz, t) =e <2it> ,;k!r (—28+k+1) (22'15)

« 3 (-1t ((+ 52!”“ ) (@i a\/i)l.
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Via linearity of the Schrodinger operator we have that the solutions 1, (z,t) are
given by:

¢(xt)—ei§t2 z _ﬂi 1 ki kx
e 2it) = RID (=28 +k+5) \2it

> cutna e HEEEE (0 (123 i)

n
=0

The persistence of superoscillations is then the following result since the solutions
Y, (x,t) is amenable to analysis of the methods of Proposition 1.:

Theorem 3.7 ([14, Theorem 3.4]). Fora >1andx >0 andt € R, lim v, (z,t) —
n— oo
P(z,t).

This proof can be deduced by exploiting the explicit form of the Green’s function
and checking certain estimates on the moments given in the next section.

3.5. Schrédinger equation with linear potential. We next demonstrate the
persistence of superoscillations under the linear potential Schrodinger equation
(with U > 0)

-0, 2
% @t) = (~5& +Uz) vu(a,1)
n
Yn(z,0) = Fn(a:,a):ZC’k(n,a)em(l_%).
k=0
We have an explicit formula for the Green’s function of this partial differential
equation:
2\2
1 U243 | (m—y+U2t>
K(z,y,t) = e~ o TiUty— 23t
( ) k) ) \/m

From this it is a straightforward exercise in calculus to demonstrate that the solution
to this partial differential equation with initial condition ¢ (x,0) = €*** is given by:

2,3 2 2
U2t aUt at
+45—+ % ax)

P(x,t) = e_i( g
By linearity we have that the solutions 9, (z,t) take the form:

) _ 2k )2 _2k)?2
#J’»(l 2%)Ut Jr(1 2;) t*(l*%)w>

Finally, by the form of these two solutions, and appealing to Proposition 1 we have
the following theorem:

Theorem 3.8. Let a > 1. Then the solutions to the equation:
. 02
i%e@t) = (5L +U2) vua,1)

wn('xvo) = Fn(mya) = Zok(n,a)em(l_%)
k=0

are given by:

U (2, 1)
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Moreover, for any x,t € R we have that

S GRS NS
nl;rr;o Yn(z,t) = nlLr&];)Ck(n,a)e
TC T
= 1(z,1t).

This example appears to be new in the literature.

3.6. Superoscillating tunneling waves and step potentials. In this subsec-
tion we show how to recover the main result in [2]. We consider the following
Schrodinger equation

i%(0,t) = (-~ + Vb)) nlz.t)

Y (7,0) Fo(z,a) = ch(n,a)eix(l_%)
k=0

where 6(x) is the step function that is 0 for = negative and 1 for > 0 and V; is
a (real) constant. The constant V; denotes the height of the barrier. Similarly we
will be interested in the following problem:

i%—f(m,t) = (—%0‘9—; + Voﬁ(x)) P(x,t)
P(x,0) = e,
When V; > a2 the limit function of 1, which will turn out to be 1 will denote

the wave that tunnels through the barrier. The main result in [2] is the following
beautiful result:

Theorem 3.9 ([2, Theorem 4.4]). The time evolution of these solutions takes the
following form:

(1) = iCk(ma)gBm(m,t) (z (1 _ 2:))7”

k=0
Moreover, we have that for a > 1 and x,t € R that

lim ¢, (x,t) = Z B (z,t)(ia)™ = / e IC (2, —it, y)dy.
m=0 R

n— oo

Here
1 m .
Bufent) = 5 [ (e, =ity

where KC(z, —it, y) is portion of the Green’s function that is responsible for the trans-
mission of the wave through the barrier.

The first half of the theorem is as in [2] and utilizes key information about the
Green’s function for the solution operator to this Schrédinger equation. The exact
form of the Green’s function can be found in [13] and is given by an explicit formula.
The convergence claim follows from Proposition 1 by choosing b,, = B,,(z,t) and
then appealing to the estimates that {B,,(z,t)} satisfies as in [2, pg. 13-14].
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3.7. Extensions to several variables. In [6] the authors also show how to pro-

duce examples of superoscillating functions via taking the tensor product of one-
variable superoscillating sequences. From [6, Theorem 3.4] we have that

folzy, ... 2.) = Z Ck(n,a)P (ei“(*i(lf%/")p), el e”r(*i(lf%/”)p))
k=0

where P(uq,...,u,) = Z aguit .. uyr, with a, € C converges to the value
la|<h
P (eim (=)’ e (=1@)") " As f,(z1,...,7,) can be written as
n
(w1, 1) = Z Qo Z Ck(n, a)ei(o‘lzl+"'°‘TIT)(*i(1*2k/”)p)
la|<h k=0
n
— Z e, Ck(n,a)eiPm(l—ﬂc/n)
la|<h k=0

the result follows from Proposition 1 (i4) where P, (z) = (a121+. ..+ a,z,)2P. Using
similar methods one can likely recover the results in [15] about superoscillations in
a uniform magnetic field.

3.8. Generalized Schrodinger equations. We now utilize part (ii¢) of Proposi-
tion 1. We are interested in generalized Schrodinger equations that arise from an
analytic function G with some properties. This allows us to recover the result in [7]

Theorem 3.10 ([7, Theorem 6]). Let a € R with a > 1. Let G(z) be an analytic
function on a disc with radius sufficiently large compared to a. Suppose that G(ia) €
R and |G(ia)| > a.

i%n(z,t) = —G(L)Pn(z,t)

n

Yp(2,0) = Fu(z,a) = ZC’k(n,a)eir(l—%).
k=0

d = dm
where G (dz) = Z Im Then the solution 1, (x,t) is given by
m=0
n
wn(x7 t) _ Z C«k(n7a)e—ix<1—%)eit6‘(i(l—%))
k=0
and we have o
lim TZ)n(f,t) _ eztG(za)eza:v’
n—oo
4. Moments of Green’s functions. This section will compute explicit formulas
for the normalized moments given by:

1 [t

— o0
where K(z,y,t) is the corresponding Green’s function for the Schréodinger equation
with potential H(x,t). It is possible to give closed form expressions for the normal-
ized moments of the Green’s function for the free particle, the harmonic oscillator,
the Schrodinger equation with linear potential, a centrifugal potential, and with a
centripetal barrier potential. To establish the formulas, we used Maple 2016 and
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the Online Encyclopedia of Integer Sequences. We refer to [20] for the explicit
expressions of the respective Green’s functions.

In what follows, ¢, (x,t) and t(z,t) denote the solution of the respective
Schrédinger equation

il = W@y i@ = M
l/}n(fﬂ,O) = Fn(x,a) ( x, ) = elaz

The results below show that Erf Un(x,t) = Y(x,t) for x and ¢ fixed by making

use of Lemma 4.1 and Remark 3 to verify the hypothesis of Theorem 2.3. In what
follows, we collect a fact that will be used exclusively in this section. Recall that
he hypergeometric function Hypergeom([a, b], [], Z), for a and b real numbers, is the
function defined by the power series

+<x>

Hypergeom(|[a, b], Z . 12 <1,
7=0

and we will male use of the following facts to prove that the conditions of Theorem
2.3 are satisfied for the normalized moments we compute.

Lemma 4.1. The following statements hold:
[m/2]

m VA
X m m 1 27
(’L) WHypergeom([—g, -5 + 5 Z xm= ] m 2])
[m/2] i
(11) The series Z Z X" 23 (21 m(2*(1 4+ a))™ converges for
(m —2j
m>0 7=0
fixed real numbers X and Z.
—mY) _m_._i _Zj .
Proof. (i) It is easy to see that (=), j!2 ), = o5 (%!f;j)!j! which leads to the
Lm/2J . Z-7 xX|™|z|™
equality claimed. For (i7), as ZO Xm=2i i (m — 211 < m(/‘Lm|/4|j)!2 , the series
Jj=
[m/2] i
ith 1t Xmu = (231 m for X and
with general term m JZ:(:) 27 (m — 25)1;! (2°(1 4+ a))™ converges for X an
Z fixed. O

4.1. The free particle. The Green’s function for the free particle time-dependent

Schrodinger equation zawéf t) = —10,2¢(z,t) is given by
1 (@=u)?
Ko(z,y,t) ez
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One can obtain the following formula for the normalized moment of order m for m
even:

1 [t
bm('r7t> = / ymK:O(xayvt)dy

m! J_

1 me -m —m n 1 i 21t
p— — — I' [ PR p— PR
V2t m! YPergeot 27 2 THT g2

1B ey
2mit ‘= 27 (m — 25)150

where the second equality follows from Lemma 4.1 (¢). It follows by Lemma
4.1 (u) that the hypothesis of Theorem 2.3 are satisfied and for z,t € R fixed,

ham T/Jn(%t) = w(zvt)'

4.2. The harmonic oscillator. The Green’s function of the harmonic oscillator

o (x,t) ( )

o~ 2022

2
5 —|—Ux)¢(x,t), U>0

is given by

a e—m(mz cos(at)—2zy+y? cos(at))

Ki(,y,t) = 2mi sin(at)

with o = v/2U. Observe that via direct algebraic manipulations that it is possible
to relate this Green’s function to that for the free particle:

2 22
o e~ Zisman) si;"(at) (22 cos(at)— T:(at) +m —2zy+y? cos(at))

Ki(z,y,t) =,/ ——F——
(@,y,%) 2mi sin(at)

— o e_ 2isin(at) (x2 Cos(at)_cos(at) ) e_ 2isin(at) (cos(at) —2xy+y2 COS(Oét))

27 sin(at)
2
, ,
_ e_m(aﬂ COS(at)—Tf(M)) #eigﬁsig(a‘ ) (\/CD:T,,)’*y cos(at))
27 sin(ovt)
az? sin(2at) T sin(ot
— e 2icos(at) ICO —_—— Y COS(Oét)7 ( ) )
cos(at) o
. . 2 in2

where we use in the last equality that z? cos(at) — cona] = fsclgs((gft)):cz. The

normalized moment of order m is
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1 400
b (z,t) = @/ y" Ky (z,y, t)dy
+J—oco
1 as’sinen [T (ot
= ¢ 2”“(“”/ y" Ko L,y cos(ozt),sm(a) dy
m! —o0 cos(at) e!

az? sin(at)

1 27 cos(at) +o0 ; t
L — / ™K < ), sin(at) dv
m! (cos(at)) ™z J - \/cos(at) a
az? sin(at)
e 2icos(at) ™M

m!(cos(at))mTH( cos(at))m
-m 1- m] . 2i cos(art) sin(at))

H -
X ypergeom([ D) o

ax? sin(at)
e 2icosan) g™ -m 1—m 2i cos(at) sin(at)
= ﬁﬁHypergeom A 5
(cos(at))m™tz m! or

27 2

By Lemma 4.1 (¢4) with X =z and Z = M, for z and ¢t fixed it follows
Z m|by, (,1)](23(14a))™ converges, and the hypothesis of Theorem 2.3 then holds.

4.3. The linear potential. The Schrodinger equation with linear potential is

O (z,t) 1
———=-=-A-U ,t), U>0,
5 5 z ) (1)
~iU263 iy L (g U2
and KCa(z,y,t) = Q;ite 5t 2“< vt ) is the corresponding Green’s

function. Note that simple algebraic manipulations provide:

1 =uti(ye_ N (o 2?2
Ko(z,y,t)dy = e Tt (U2~ 6a+62-6y) — g (v —y+ Y4 )
_ Le—eti(Ut2—6z)€7Uti(a:fy)7ﬁ(w7y+UTt2)2
2mit
= 1 6_6“’(Utzfﬁm)ez%(*2Ut(wfy)+(wfy)2+#Jr(w—y)Uﬁ)
2mit
= Le‘%’“(Ut%m;)em (a-1£ _y)2
2mit
1 —Uti (Ut276:v) Ut2
= RN 6 IC -, ¢
omit o=

One can deduce the following expression of normalized moments order m:

1 [r
b t) = o [ 9Kty

m
=Uti (U2 —6z) (2 — Ut?
e 6 2
m!

2mit

H -m 1—m i 2it
ypergeoi 2 ’ 9 ’ 7(1_7U7t2)2
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By Lemma 4.1 (i) with X = z — Uth and Z = M, shows for  and ¢

fixed that Z m|bp (,1)](23(1+a))™ converges, and the hypothesis of Theorem 2.3

m
again are satisfied.

4.4. The centrifugal potential. The Green’s function associated with the
Schrédinger equation with centrifugal potential

Op(x,t) _ (—1A+ U
2

o 2

)wu»x U0,
is
08_1/9 /LY iz2+y?) x
Ks(z,y,t) =i UQTB 2 J_2p-1/2 ( y) ;

t
where J,(r) = 5= (4)" [ o le="s/4+1/5 s is the Bessel function. The value Gy =
=1tv1+8U WJ is excluded since the Bessel function at —28y — 1/2 diverges as = goes

to 0. The normalized moment of order m is given by

1 +o00 T 1 +m ﬁ
— Ks(z,y,t)y"dy = f,@(aat)M

0o m)!
14+m 1 m 3 %
— 3 2 B — 3 p— —_— — p— [
x((( 1+4B)t+zx)< 5 +B> WhlttakerM(4+2, ﬂ+4, 2t>
1 m . 3 m 3 2%
+4t (—4 + ﬂ) (—1 to5t 6) WhittakerM <—4 t 5 -6+ T t>> ;
where

F 21/4 w2 — —1/2+8 il’2 —1/4+8
t — Yo 4l _ -
o) = T (2 1 5/2) ¢ (t) (t)

(o)

t

and WhittakerM(a, b, z) is the special function
1
WhittakerM(a, b, Z) = e~ */2 712+ Hypergeom (2 +b—a,l+2b, Z> .

Let Z = ’”2—2;7 a= % +5,and b= -3+ % Observe that

1o Sk m 5

ZFT(1 - -2+ k)I(—2 5
Hypergeom (1—ﬁ—m,_25+57z> _ ' (1-p 7121+ )I( €+2),
2 2 k=0 k! F(l_ﬁ_ 2)1—‘(_2ﬂ+§+k)

and for any m, one has

M1-f-2+k) D(-26+3)
P1—B—173) T(=28+ 5 +k) kotoo

o((k/2)!).
It follows that
IXZET(1-B-2+k) T(-26+3) O(*fzk )

KO T(A-B-%) T(-26+35+k) T B2

k=0 k=0
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and for z and ¢ fixed, we have that
1 m 3 z%i | 2|k
WhittakerM | — + —, — - —
<4+ 2 ﬂ+4 Qt) ( thkk'
Further, for z and ¢ fixed,

(=1 + 4B)t + ia?) (—1“;”‘ + ﬂ) WhittakerM (i + Mgy 3 “) = O(m?),

and

1 m 3 m 3 z%
4t [ == 14+ — Whittaki -+ =, = vl e 2
t( 4+ﬂ>( +2+ﬁ) 1ttaerM< yRECERRET 2t> O(m~),

which implies that

mlbm (2, 6)|(2° (1 +a)™ =

m(23(1 +a))m ‘ e ng(x y t)ymdy’

- .
_ 0 <(mni!2)!m3(23(1 + a))m) .

By Remark 3, it is easy to see that the hypotheses of Theorem 2.3 are satisfied and
for z,t € R fixed, lim ¢, (x,t) =¥ (z,1).
n—oo

Remark 5. From what precedes, one gets that for x and ¢ fixed, if P, (z,t) is a
polynomial of degree 2 in x and Z(z,t) is a function in z and ¢, then

P, (z,t)WhittakerM (i + %, -6+ Z, Z(amt)) = 0(m?).

The same occur when the first parameter of the Whittaker function is —% + 5.

4.5. The centripetal barrier potential. The Green’s function associated with
the centripetal barrier oscillator given by

2
Z‘aw(x?t) _ (_;AJFU(:E_;) >¢(x,t), U >0,

ot
is
) 200/TY  giat+ia cos(2at) ZAv) 2axy
K Ly, t) = 28+3/2 “V*I  dia“t+iacos( a)sin<2m) T oa _saxy
(@,9,8) =i sin(2at)e 212 \ in(2at)

The function KC4(x,y,t) is related to the Green’s function Kz(x,y,t) for the cen-
trifugal potential as follows

2a ia cos(2at) 2+ 2azx
) = A ST oo (2 )

sln(2at)J - <
sm(2at)e 2p-1/2 sin(2at)

(25+3/2 ia? 20/T c05(208)y\/08(20) i cos? (20t) ot
cos(2at) sin(2at)

2y
T on _rg
XJ-26-1/2 (Siﬂ(?@f))

— 2843/2 cos(2at)e4m2t’€4($a y,t).
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Focus on the term 164(:177 y,t) which is the only term of K4(x,y,t) depending on y.
Let T = W, X = z+/cos(2at) and Y = y+/cos(2at), then

1 [t

— Ka(z,y,t)y"dy
J—c0
400 5 ia cos?(2at) (z2+y>
:/ 20/ cos(2at)y\/cos(2at)6%(]_25_1/2 (204939> ymdy

o cos(2at) sin(2at)m! sin(2at)
Veos(2at) [T VXY i cos(2at) XY XY Y "
)T e )\ e
! e cos(2at)
— 1 /+OO VXY ecos(QOct)ii(Xz;}Y% J ﬂ Y™y
" (cos(2at))m=D/2pm! T “2-2\
FG+% -5

B (Cos(2at))(m71)/2m!gﬁ(X, TYHm(X,T),

where H,,(X,T) is given by

1 X?
H (X, T) = A(X, T)WhittakerM (4 + 5 )

PR T cos(2at)

3 m 3 X2
B(X,T)WhittakerM | —> + 2 —g+ 2 =
+ B(X, T)Whittaker ( FRECY B+4’2iTcos(2at))’

with
A(X,T) = (T(—1+48) cos(2at) +iX?)(1 +m — 23)
B(X,T)=-T(-14+458) (=2 +m + 2p) cos(2at)
and
i X 1/2—28 X 1/2—28
D) = oo (251 ) (X(‘”m (7)) +(7) ﬁm)

- <(T(2 Coiijtﬁ — 1)>3/4 <Tc:i;at)>ﬁ (z co;(2at)>M/2+ﬁ

x?(2cos(2at)2 1 i — 2i cos(at)?
% 21/4+m/2€ 13T cos(2at) TQ,/_X %

By Remark 5, we obtain that
Hu(X,T) = O(m?),
which implies that
1+m

m 3 a))™ (T_ﬁ) _
@1 +0))"Gs(X, T) (cos(2at))mT_lmle(X7 =0 (

(%)!

N N
Wm3(23(1+a)) )

By Remark 3, it is easy to see that the hypotheses of Theorem 2.3 are satisfied and
for z,t € R fixed, and thus lim o, (z,t) = ¥(z,t).
n—oo
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5. Concluding remarks. As has been shown, precise knowledge about the
Green’s function for the resulting Schrodinger equation can be used to deduce the
persistence of superoscillations. This is an essential ingredient in all the papers
[1, 6, 19, 10, 5, 2, 8, 14] and suggests that one should seek out a suitable Green’s
function for more general Schrédinger operators. A viewpoint taken here is to ex-
ploit decay in the moments of the Green’s function to deduce we have the desired
convergence.

Some natural questions arise. How general is this procedure? Does it characterize
the existence of superoscillations? Can anything be done in the case of nonlinear
Schrodinger equations? Can one recover the results in [17] with a potential given
by the Dirac comb using the approach from this paper?
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