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A B S T R A C T   

The state-of-the-art energy management for the heating, ventilation and air conditioning (HVAC) system uses a 
static clothing model that calculates the occupant’s clothing insulation as a fixed value based on outdoor air 
temperature measured at a particular time of the day. However, the static clothing model can hardly capture the 
occupant’s intra-day clothing behaviors, leading to inaccurate thermal comfort assessment and unrealistic HVAC 
energy management. This paper proposes a novel HVAC energy management scheme to optimally schedule the 
thermostat setpoints of HVAC and to provide recommendations on occupants’ optimal hourly clothing decisions 
through a predicted mean vote model, while considering uncertainties in the outside temperature. The proposed 
HVAC energy management scheme is solved by applying an approximate dynamic programming approach. 
Further, a model predictive control framework with a long short-term memory based forecaster is developed for 
more realistic simulations. We study the HVAC schedules in a residential home with summer and winter time of 
use electricity tariffs for both male and female occupants. Compared with non-optimized cases, proof-of-concept 
simulation results demonstrate that the proposed scheme can achieve a 53.8% and a 29.8% cost saving in a 
summer-male scenario and a winter-female scenario, respectively.   

1. Introduction 

Approximately 100 million single-family homes in the United States 
account for 36% of the electricity load, and often they determine the 
peak system load, especially on hot summer days when the use of resi-
dential air-conditioning (AC) is high [1]. Increased consumer adoption 
of home automation products such as smart thermostats for heating, 
ventilation and air conditioning (HVAC) is a prominent trend in resi-
dential buildings. 

In addition to energy cost savings, occupant’s thermal comfort is one 
of the most significant factors considered in the thermostat control of the 
HVAC. One popular index of the thermal comfort is the Predicted Mean 
Vote (PMV) model and Predicted Percentage of Dissatisfied (PPD), 
which was proposed by P.O. Fanger and his colleagues in Kansas State 
University and Technical University of Denmark in the 1970s [2]. In 
additional, PMV-PPD is included in ISO 7730 [3] in 2005 and the 
American Society of Heating, Refrigerating and Air-Conditioning Engi-
neers (ASHRAE) standard 55 [4] in 2004. Buratti et al. [5] developed a 
linear regression approach to the PMV with a wider range of clothing 

thermal insulation in moderate environments based on measured air 
temperature and relative humidity. Jia et al. applied an event-based 
optimization control via Markov Decision Process (MDP) with PMV 
while considering the effect of multi-rooms [6]. Luo et al. proposed a 
metaheuristic algorithm based energy management system (EMS) to 
optimally schedule energy resources (including residential PV) while 
using adaptive PMV to account for the occupant’s thermal comfort [7]. 
Clothing condition has a drastic impact on the human body thermal 
insulation, which in turn influences occupants’ thermal comfort signif-
icantly. Therefore, the occupant’s clothing condition is taken as a given 
parameter in building energy modeling and simulations. For example, 
since clothing has a drastic impact on the human body thermal insu-
lation, it still remains unclear as to how human clothing decisions, i.e., 
donning and doffing, can influence optimal schedules of HVAC ther-
mostats in terms of the occupant’s electricity costs and thermal comfort. 

The current state of the art in building energy modeling and simu-
lations (e.g., EnergyPlus [8]) is that the thermal comfort condition is 
calculated based on a dynamic clothing model. In this model, the 
clothing insulation is calculated as a function of outdoor air temperature 
measured at 6 o’clock and this clothing insulation value remains 
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unchanged during the entire day. While there is no standardized 
guideline on how to set clothing insulation schedules, the dynamic 
clothing model leads to HVAC systems that are incorrectly operated and 
to the inaccurate assessment of occupant comfort conditions. In reality, 
residential occupants can frequently adjust their clothing, depending on 
the thermal conditions around them, on an hourly or sub-hourly basis, as 
opposed to a constant clothing value in an entire day. Such adjustments 
can improve home demand flexibility and thus enable a higher energy 
cost saving. The frequent clothing adjustment is even more plausible 
under the COVID-19 outbreak, whereby many businesses worldwide 
shift from traditional office-based work operations to work from home 
(WFH) arrangements. Therefore, the hourly or sub-hourly clothing 
adjustment should be fully captured and optimized in the residential 
home energy management to model HVAC systems realistically. There 
has been no work to date that addresses this issue. In addition, it is 
challenging to incorporate occupant’s clothing adjustments in the HVAC 
energy management due to the complex nonlinear relationship between 
the clothing conditions and the occupant’s thermal comfort. 

Various home energy management models and solution algorithms 
have been proposed. Among them, approximate dynamic programming 
(ADP) represents a promising class of algorithms for decision-making 
under uncertainty [9,10]. Past research efforts have used ADP for 
grid-battery management [11–16], real-time microgrid operations [17], 
and air conditioner to minimize electricity consumption while consid-
ering the occupant thermal comfort [18–20]. Nevertheless, to the best of 
our knowledge, there has been no work to date that uses the ADP to 
address the HVAC energy management issue while considering occu-
pant’s hourly clothing decisions. 

This paper bridge this gap by proposing an HVAC energy manage-
ment scheme that aims to minimize the electricity cost and the occu-
pant’s thermal discomfort while taking into account the occupant’s 
optimal clothing decisions. Under the time-of-use (ToU) electricity tar-
iff, the proposed scheme optimally determines the thermostat setpoints 
of HVAC and simultaneously provides the best recommendations on the 

occupant’s clothing conditions, while accounting for uncertainties in 
outside temperature. The proposed HVAC energy management scheme 
is solved by using an ADP-based algorithm. Further, a model predictive 
control (MPC) framework with a Long Short-Term Memory (LSTM)- 
based forecasting technique is developed to simulate the complex de-
cision making considering the electricity prices, HVAC schedules, and 
occupants’ thermal comfort and clothing conditions. We systematically 
study the optimal HVAC schedules and hourly clothing decisions for 
both male and female occupants in the summer and winter seasons. 
Comparative results with and without considering the hourly clothing 
decisions are also revealed. The main contributions of this work are 
three-fold:  

1) This paper proposes a novel HVAC energy management scheme that 
is the first of its kind to explicitly consider the occupant’s hourly 
dynamic clothing conditions as an additional dimension of decisions 
for minimizing the electricity cost and the occupant thermal 
discomfort under uncertainty.  

2) An ADP-based algorithm is applied to include the occupant’s 
clothing states and actions. An MPC framework with the ADP algo-
rithm as an optimization engine and an LSTM as an embedded out-
door temperature forecaster is proposed to simulate HVAC energy 
management. This framework simulates the HVAC operation under 
uncertainty in a more realistic environment. 

3) Proof-of-concept simulation results show that, if the occupant fol-
lows the optimal clothing decisions produced, 53.8% and 29.8% of 
daily electricity cost savings can be achieved respectively for a 
summer-male scenario and a winter-female scenario, only with 
negligibly compromised thermal comfort. Table 1 compares related 
work in this area to the contributions of this paper in terms of pro-
posed approaches, energy management system, occupant comfort, 
clothing factor and study scope. 

Nomenclature 

HVAC Heating, ventilation and air conditioning 
EMS Energy management system 
PMV Predicted Mean Vote 
PPD Predicted Percentage of Dissatisfied 
MDP Markov decision process 
EV Electrical vehicle 
WFH Work from home 
WH Water heater 
ADP Approximate dynamic programming 
ToU Time-of-use 
MPC Model predictive control 
LSTM Long short-term memory 
ASHRAE The American Society of Heating, Refrigerating and Air- 

Conditioning Engineers 
KDNN K-D tree nearest neighbor 
SSBI Sobol sampling backward induction 
RNN Recurrent neural network 
MAPE Mean absolute percentage error 
COP Coefficient of performance 
Parameters and variables 
t Time interval 
i HVAC or clothing index, i ∈{H, C} 
Δt Resolution of time interval 
T Total number of time intervals 
Tkd K-D tree 

sit At time t, pre-decision state of i (◦C) 
ṡt At time t, post-decision state (◦C) 
s′t At time t, sampled state (◦C) 
S State space 
xit At time t, decision of i 
X Decision space 
ũt At time t, uncertain outside temperature (◦C) 
Ũ Uncertainty space 
rht Relative humidity at time t (%) 
α𝒟t At time t, discomfort weight 
α𝒞t At time t, cost weight 
βt Discomfort penalty at time t 
ct Electricity price at time t ($/kWh) 
γOUT Thermal coefficient of outside temperature 
γ

RM Thermal coefficient of room temperature 
γHc Cooling coefficient of HVAC 
γH

h Heating coefficient of HVAC 
sit Lower bound of state i at time t 
si
t Upper bound of state i at time t 

xit Lower bound of decision i at time t 
xi

t Upper bound of decision i at time t 
𝒟 Function of discomfort 
𝒞 Function of electricity cost 
ℱ s Sobol sampling function 
(⋅)′ Superscript representing sampled  
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2. Problem formulation 

2.1. ADP-based optimization problem 

The HVAC energy management problem is a discrete-time MDP, 
which contains an objective function, a group of state transition func-
tions and physical constraints. We provide a detailed formulation in this 
section. The physical setting of the HVAC energy management scheme 
including the component connection, data and control flows within a 
residential home is illustrated in Fig. 1. Here, the ADP-based HVAC 
controller is a central device that connects the sensors, meters and an 
HVAC thermostat. All the data from the sensors and smart meters will be 
sent to the cloud data center for data collection. A weather forecaster 
will deliver the predicted weather data back to the ADP-based 
controller. Then, the controller determines optimal schedules for the 
setpoints of the HVAC thermostat and sends the optimally recommended 
clothing adjustment, if any, to the occupant through a smartphone 
application or a speaker in a smart home hub (e.g., Amazon Echo). The 
occupant decides whether to follow the clothing adjustment 

recommendation or simply ignore it. Then, the feedback will be sent to 
the ADP-based controller, in which the occupant’s clothing state is 
updated. The above setting is available in today’s smart home envi-
ronment [21], in which various measurements (e.g., indoor and outdoor 
temperatures, relative humidity, and electricity prices) can be collected 
frequently to facilitate real-time control. 

The aim of ADP is to minimize the weighted sum of the occupant’s 
electricity consumption and thermal discomfort. This model contains 
discrete states, discrete actions, and stochastic factors. At each time 
interval t, a state consists of the room temperature sHt and the occupant 
clothing state sCt . A decision contains HVAC power xHt and occupant’s 
clothing adjustment xCt , i.e., doffing or donning. The stochastic variables 
ũt are the outside temperature. Additionally, the HVAC is in state sHt 
when a decision xHt is determined at the beginning of each time interval. 
Then, the decision is implemented instantly and affects the rest of the 
time intervals. After the decision is applied, the outdoor temperature as 
the uncertainty variable is realized and affects the rest of the time 
intervals. 

The state-decision set tuple {st , xt} = {(sHt , sCt ), (xHt , xCt )} contains 
HVAC- and clothing-related state and decisions for all time periods. The 
objective function is to minimize the expectation value of the reward: 

minE

{
∑T

t=1

Rt(st, xt, ũt)

}
(1)  

Rt(st, xt, ũt) = α𝒟
t ⋅𝒟t(st) + α𝒞

t ⋅𝒞t(st, xt) (2) 
Equation (2) shows that the reward Rt consists of thermal discomfort 

𝒟t and the electricity cost 𝒞t of the occupant. Additional, α𝒟
t and α𝒞

t are 
respectively weight discomfort coefficient and cost coefficient. These 
value can be calculated based on the occupant’s preferences [20]. The 
occupant’s discomfort 𝒟t consists of PMV at time t is defined as follows: 
𝒟t(st) = βt⋅PMV(st) (3) 

In equation (3), the occupant’s thermal discomfort HVAC is modeled 
as an absolute value of the PMV times a coefficient β. The PMV equation 
for the thermal comfort model is expressed as follows: 
PMV(st) = a(sC

t )⋅s
H
t + b(sC

t )⋅P(s
H
t , rht) − c(sC

t ) (4)  

P(sH
t , rht) = rht⋅0.61121exp

((
18.678− sH

t

/
234.5)⋅(sH

t

/
(257.14+ sH

t )) (5) 

Table 1 
Comparison of related works in the literature.  

References Approaches EMS Comfort Clothing Study scope 
[5] linear regression  ✓ Fixed 

values 
HVAC 

[6] complexity-based 
approach 

✓ ✓ Fixed 
values 

HVAC 

[7] MPC ✓ ✓  PV, HVAC, 
battery 

[11] temporal 
difference ADP 

✓ ✓  PV, battery 

[12] distributed 
iterative ADP 

✓   battery 

[13–15] action-dependent 
heuristic DP 

✓   PV, battery 

[16] iterative ADP ✓   battery 
[17] spatiotemporal 

ADP 
✓   microgrid 

[18,19] ADP ✓ ✓  thermal 
storage 

[20] ADP-based MPC ✓ ✓  HVAC, WH, 
EV 

This work ADP-based MPC 
with LSTM 

✓ ✓ Hourly 
decis. 

HVAC  

Fig. 1. The schematic diagram of proposed energy management.  

X. Liu et al.                                                                                                                                                                                                                                      



Journal of Building Engineering 40 (2021) 102708

4

where P(sHt , rht) is the water vapor pressure in ambient air (kPa) and rht 
is the relative indoor humidity. In order to study the occupant’s dynamic 
clothing behaviors, we adopt a simplified PMV model from Ref. [5]. This 
model is dependent only from air temperature and relative humidity 
because these two parameters are widely available due to their easy 
measurement in residential buildings. The boundary conditions (e.g., 
metabolic rate, air velocity) and the parameters a(sCt ), b(sCt ) and c(sCt ) in 
the PMV model can be found in Ref. [5]. The contribution of electricity 
cost 𝒞t is defined: 
𝒞t

(
sH

t , x
H
t

)
= ct xH

t Δt (6)  

where ct is the electricity price. In this paper, we adopt a ToU tariff such 
that the electricity prices are available beforehand. The cost function in 
(6) is calculated as the total electricity cost of HVAC in the scheduling 
horizon. The physical constraints of the HVAC are listed as follows: 

The constraints of the energy management scheme are associated 
with the physical operational limits of the HVAC. We adopt a first-order, 
1R1C (i.e., 1 resistor-1 capacitor) thermodynamic model that is widely 
used in the literature [1,22–24]. The equivalent capacitor C represents 
the thermal mass of the building and the equivalent resistor R represents 
the resistance to heat transfer. The differential equation of 1R1C model 
is transferred in the Laplace domain and derived to get a set of linear 
Equation (7). The resultant linear equations consider the room tem-
perature as a function of the room temperature at the previous time 
period, HVAC power consumption, and the outside temperature. The 
HVAC constraints are shown below: 

sH
t = SM(sH

t−1, x
H
t , ũt) =

{
γRMsH

t−1 − γH
c xH

t + γOUTũt, ∀t, cooling

γRMsH
t−1 + γH

h xH
t + γOUTũt, ∀t, heating

(7)  

sH
t ≤ sH

t ≤ sH
t , ∀t (8)  

xH
t ≤ xH

t ≤ xH
t , ∀t (9) 

In (7), thermal coefficients are computed according to either the 
values of equivalent resistor and capacitor or a regression analysis [1, 
23]. Equation (8) suggests that the states should be within the lower and 
upper bounds prescribed by the occupants. Equation (9) indicates that 
the decisions should be limited by the physical cooling or heating 
capability of the HVAC. In Table 3, parameters of the HVAC first-order 
model and details of the clothing conditions are clearly displayed. 

2.2. Occupant’s clothing conditions 

Clothing insulation, measured in the unit of clo, is the thermal 
insulation provided by clothing as well as any layer of trapped air 

between skin and clothing. One unit of clo equates to 0.155 K ⋅ m2/W, 
which means the amount of clothing needed by a sedentary person to 
maintain thermal comfort in an environment with 21 ◦C air tempera-
ture, 50% relative humidity (RH), and 0.1 m/s airspeeds. The ASHRAE 
Standard 55 [4] and ASHRAE Handbook [25] contains a list of clo values 
for selected garment types and formulas for estimating the insulation 
provided by a total clothing ensemble. 

On the other hand, a simplified method of estimating clothing 
insulation is to multiply the weight of a clothing ensemble in lbs by 0.15. 
However, this method assumes there is no wind penetration in the 
nearby environment or body movements pumping air around. In gen-
eral, the higher a clo value, the more insulating value is provided by a 
total clothing ensemble. Schiavon and Lee [26] found that the median 
clothing insulation is 0.59 clo in summer and 0.69 clo in winter. 
Clothing adjustment behaviours, i.e. adding or reducing layers of 
clothing, have a direct impact on the occupants’ thermal comfort, thus 
the optimum operative temperature changes with clo values. The effect 
of changing clothing insulation on the optimum operative temperature 
is approximately 6 ◦C per clo for a sedentary man whose metabolic rate 
is approximately 1.2 met and this effect is greater with the higher 
metabolic rate [4]. 

Table 2 shows the estimated clo values of some typical business ca-
sual clothing ensembles. All the estimated clo values are from Ref. [27]. 
The range of clo values are traditionally divided into three groups [5], 
which are Clo 1: 0.25–0.5, Clo 2: 0.51–1.00, and Clo 3:1.01–1.65. 
Studying dressing behaviors is complicated particularly with the WFH 
arrangement during the COVID-19 pandemic. Some people value com-
fort, therefore prefer to dress down when they are working at home 
while some others believe dressing in a routine manner, such as wearing 
business casual outfits while working from home, can help them main-
tain a sense of control, degree of normality, and productivity. Even 
though business casual ensembles are used to demonstrate the rela-
tionship between clo values and the occupant’s donning and doffing 

Table 2 
Clo values of typical business casual clothing ensembles.  

Range (clo) Male Ensembles Female Ensembles 
Clo 1: 

0.25–0.50 
Estimated clo = 0.42 Estimated clo = 0.41  

Outfit: A short-sleeve shirt (0.19), a pair of thin straight trousers (0.15). Outfit: A short-sleeve dress shirt (0.19), a thin skirt (0.14)  
Underwear: a man’s brief (0.04). Underwear: a bra (0.01) and a panty (0.03).  
Footwear: A pair of stockings (0.02), shoes (0.02). Footwear: A pair of stockings (0.02), shoes (0.02). 

Clo 2: 
0.51–1.00 

Estimated clo = 0.82 Estimated clo = 0.81  

Outfit: A long-sleeve shirt (0.25), a thin long sleeve sweater (0.25), a pair of 
thick straight trousers (0.24). 

Outfit: A long-sleeve shirt (0.25), a thin long sleeve sweater (0.25), a thick skirt 
(0.23)  

Underwear: a man’s brief (0.04). Underwear: a bra (0.01) and a panty (0.03).  
Footwear: A pair of stockings (0.02), shoes (0.02). Footwear: A pair of stockings (0.02), and a pair of shoes (0.02). 

Clo 3: 
1.01–1.65 

Estimated clo = 1.23 Estimated clo = 1.11  

Outfit: A long-sleeve shirt (0.25), a thick single-breasted suit jacket (0.42), a pair 
of thick straight trousers (0.24). 

Outfit: A long-sleeve shirt (0.25), a thick single-breasted suit jacket (0.42), a pair 
of thick straight trousers (0.24).  

Underwear: a man’s brief (0.04), a pair of long underwear bottoms (0.15). Underwear: a bra (0.01), a panty (0.03).  
Footwear: A pair of calf-length socks (0.03), a pair of boots (0.10). Footwear: A pair of knee socks (thick) (0.06), and a pair of boots (0.10).  

Table 3 
HVAC parameters and clothing conditions.  

State Range State Revolution 
[18 30] 0.1 

Cooling case parameters 
γ
RM 

γ
OUT 

γc COP x(kW)  
0.94 0.06 0.116 4.75 4 

Heating case parameters     
γ
RM 

γ
OUT 

γh COP x(kW)  
0.95 0.05 0.15 2.95 8 

Time range Occupant’s clothing conditions   
[10pm, 6am] Clo 1   
[6am, 10pm] optimal hourly decision    
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behaviors at a residential home in this paper, this relationship exists in 
other types of ensembles as well. 

According to Table 2, if a male is dressing in Clo 2 but feeling cold, he 
can exchange his thin sweater for a thick suit, swap the stockings for a 
pair of calf-length socks, trade his shoes for boots, and even add a pair of 
long underwear bottoms. Differently, if he is feeling hot when he is 
dressing in Clo 2, he can take off his thin sweater, exchange the long- 
sleeve shirt for a short-sleeve shirt, and swap the thick trousers for a 
pair of thin trousers. On the other hand, if a female is dressing in Clo 2 
and feeling cold, she can exchange her thin sweater for a thick suit, swap 
her stockings for a pair of thick knee socks, and trade her shoes for boots. 
She may also place a blanket on her laps to warm-up her body (clo value 
varies based on the thickness and materials of the blanket, so its clo 
value is not included in Table 2. If she is feeling hot when she dresses in 
Clo 2, she can take off her thin sweater, exchange the long-sleeve shirt 
for a short-sleeve one, and swap the thick skirt for a thin skirt. 

Based on the above analysis, we for the first time incorporates the 
occupant clothing conditions in the proposed model. Similar to the 
HVAC, the state transition of clothing conditions is expressed as follows: 
sC

t = sC
t−1 + xC

t (10)  

sC
t ≤ sC

t ≤ sC
t ,∀t (11)  

xC
t ≤ xC

t ≤ xC
t ,∀t (12)  

3. ADP algorithm and MPC framework 

In this section, we first describe the ADP algorithm, including state 
transition, the K-D tree Nearest Neighbor (KDNN), and the Sobol Sam-
pling Backward Induction (SSBI). Then, we introduce the MPC 

framework that incorporates the ADP algorithm and an LSTM forecaster. 

3.1. State transition and ADP 

In our ADP algorithm, the value function V(st), the expected value of 
the state st while applying all feasible decisions xt and uncertainty ũt at 
time t: 
V(st) =

∑

st+1

P(st+1|xt, st, ũt)[R(st, xt, ũt)+V(st+1)] (13)  

where P(st+1|xt , st , ũt) is the probability of st+1 given xt, st and ũt. An 
optimal action x∗t is attained by V∗

t (st) along with qualifying the Bellman 
optimality condition in (14) 
V∗

t (st) = min
xt

[Rt(st, xt, ũt) + E(Vt+1(st+1)|st) ] (14) 

Fig. 2 shows a diagram of state transition when T = 3, in which a red- 
highlighted path represents the optimal decision sequence. At the ter-
minal state (t = T), Vt(st) is calculated according to discomfort value for 
all possible sT in the state space S as defined in equation (8). Next, for all 
previous states (t = 1 and t = 2), we apply a backward induction to 
identify the optimal value V∗

t (st) and the best decision x∗
t . While 

traversing backward in the state transition diagram, x∗
t and V∗

t (st) at each 
time index t are collected. At the initial time period (t = 1), V∗

1(s1) cor-
responding to x∗

1 is obtained. 
The well-known “curse of dimensionality” [9] dictates that an 

extremely long or even infeasible run time may occur due to a vast 
amount of state, decision and uncertainty spaces. Here, we use KDNN 
and SSBI to address this challenge [20]. SSBI is similar to the classic 
backward induction, but it contains a supplementary Sobol sampling 

Fig. 2. Illustration of a state transition diagram considering occupant’s clothing states and actions in winter (when T = 3).  
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function ℱ s, which compacts the workload efficiently since only 
necessary state, action and uncertainty sets are considered. KDNN is one 
important approach of value function approximation. In order to ach-
ieve a fast computation, KDNN traverses the nearest point of s′t, and 
looks for an approximation value of V(s′t) instead of calculating from 
equation (13). The combination of KDNN and SSBI has shown promising 
performances in finding the optimal decision x∗1. The ADP algorithm 
used in this paper minimizes the electricity cost and the occupant’s 
thermal discomfort while taking into account the occupant’s clothing 
decisions. The algorithm is modified based on Algorithm 3 in Ref. [20], 
but the main difference between them is the introduction of clothing 
factor into the state and decision spaces. More details about the algo-
rithm can be found in Ref. [20]. 

3.2. ADP-based MPC framework with LSTM 

The methodology of the ADP-based MPC framework is illustrated in 
Fig. 3, which is developed to test the effectiveness of the proposed HVAC 
energy management scheme in a more practical simulation that repre-
sents the state of the art in smart home applications. The MPC frame-
work minimizes objective function (1) subject to the constraints (2)–(12) 
through a look-ahead horizon from the present time to the future (t = T). 
As shown in Fig. 3, the MPC framework collects three classes as inputs: 
1) ADP-based MPC configurations including parameters pertaining to 
HVAC and ToU prices; 2) occupant’s preferences including the weight of 
both discomfort and cost, desired sleeping temperature, PMV and 
clothing conditions; and 3) an outside temperature forecast, which is 
updated over time. After the ADP is solved, the decisions made for the 
present time interval are adapted to the real-time operation simulation 
module. Then, the thermostat setpoint and occupant’s clothing adjust-
ment are simulated with given optimal decisions. Initial states of the 
HVAC, the occupant’s clothing, the PMV value and the electricity cost, 
all for the next window, are returned. The above steps repeat in the next 
window to form a receding horizon control. The ADP-based MPC sums 
up the simulated thermal discomfort and electricity costs over the whole 
horizon and determines an overall objective value. 

The proposed HVAC energy management model can either receive 

weather forecasts of hourly outside temperature from the internet, or 
use the embedded LSTM forecaster to predict the outside temperature. 
Here, we unitize an LSTM technique to predict the hourly outside tem-
perature based on the historical data by leveraging our previous work 
[28]. The LSTM is one type of recurrent neural networks (RNNs) and is 
capable of learning order dependence in sequence prediction problems 
such as speech recognition and context recognition [29,30]. The supe-
riority of the LSTM is that it solves the long-range dependence more 
accurately than the conventional RNN [31]. According to the testing 
results, the mean absolute percentage error (MAPE) of the outside 
temperature forecast is about 0.02 and 0.38 for summer and winter, 
respectively, signifying an accurate forecast well suited in the proposed 
MPC framework. 

4. Simulation results 

The ADP-based energy management model is implemented in 
MATLAB via DYNAMO toolbox [32]. The HVAC parameters and occu-
pant’s clothing conditions are shown in Table 3. The HVAC parameters 
in Equation (7) are obtained using a linear regression method on a 
historical dataset of a residential home in Hillsboro, Oregon [22,23] 
with both a cooling case and a heating case. 

We use the ToU electricity tariff, i.e., Pacific Gas & Electric EToU-E6 
as the summer rate, and the Southern California EDISON TOU-D-5-8PM 
as the winter rate. For the summer, this tariff contains three price levels: 
Base, Peak A, and Peak B prices, i.e., $0.244/kWh, $0.32/kWh, and 
$0.436/kWh, represented by white, light grey and dark grey in Fig. 4 
(a), respectively. Peak A takes place in Hours 11–13, 20, and 21, and 
Peak B occurs during Hours 14–19. Base prices are utilized in the rest of 
the hours. Similarly, for the winter, as shown in Fig. 4 (b), Base, Peak A, 
and Peak B are $0.24/kWh, $0.28/kWh, and $0.42/kWh, respectively. 

In order to demonstrate the benefit of using the proposed HVAC 
energy management scheme, simulation results in both summer and 
winter under a traditional fixed setpoint thermostat (i.e., without the 
proposed energy management scheme) are shown in Fig. 5. We assume a 
medium clothing state (i.e.sCt = 2) with the desired temperature the 
occupant sets is 22.8 ◦C in winter for female and 20 ◦C in summer for the 

Fig. 3. Flowchart of the ADP based MPC framework.  
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male. This is because 22.8 ◦C is the most comfortable (PMV = 0) tem-
perature for the female when the cloth state sCt is set to Clo 2, while that 
is 20 ◦C for male. Without loss of generality, we simulate the winter case 
for a female occupant and the summer case for a male occupant. In the 
winter, i.e., a heating case, the outside temperature is 22.4 ◦C lower than 
the room temperature at the initial time, i.e., 6:00. For the summer, i.e., 
a cooling case, the outside temperature is around 2.2 ◦C higher than the 
room temperature at 6:00 and becomes 11.1 ◦C higher at 18:00. In 
Fig. 5, we only show the simulation results from 6:00 to 22:00 because 
the other hours are considered as the occupant’s sleeping time, when the 
fixed setpoint of the thermostat is respectively set to 25 ◦C and 22 ◦C in 
winter and summer as a comfortable temperature for female and male 
occupants [33]. It is seen the traditional fixed-setpoint thermostat keeps 
the room temperature around the desired temperature regardless of the 
electricity price and energy cost, implying the cost-saving potential for 
the energy management scheme. 

With the proposed scheme, Fig. 6 shows the MPC simulation results 
for a female occupant. Specifically, Fig. 6 (a) shows the indoor tem-
perature, outside temperature and the HVAC power, while Fig. 6 (b) 
shows the clothing state and dressing decisions. To facilitate our com-
parison and focus exclusively on the hours with clothing behavior, we 
adopt the same fixed setpoint control during the sleeping time as in the 
non-optimized case. At 6:00, the user’s cloth state is Clo 1 and the indoor 
temperature is 25 ◦C. From 6:00 to 12:00 (noon), there is no HVAC 
heating but the donning decisions are made at both 6:00 and 8:00 to 
eventually get a clothing state Clo 3 at 10:00. This result shows that the 
occupant’s clothing behavior plays an additional role in maintaining a 
satisfactory thermal comfort even with an extremely low outdoor 
temperature. 

Meanwhile, the indoor temperature decreases due to the dropping 
outside temperature until it reaches the lowest temperature during the 
day. The outside temperature is rolling down to the minimum while the 
clothing state is reaching the maximum, without any HVAC heating to 
save the cost. Then, the HVAC energy management scheme makes a 
maximum heating decision at 12:00 since it is in an off-peak period, 
which in turn drives the indoor temperature to rise. The turning point of 
the indoor temperature occurs at 12:00 while the occupant makes a 
doffing decision to change its cloth state from Clo 3 to Clo 2. With an 

Fig. 4. The time-of-use electricity tariff.  

Fig. 5. Simulation results of a female winter case and a male summer case, both without the proposed HVAC energy management scheme.  

Fig. 6. Simulation results of a winter day for female with ADP.  
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increasing outside temperature, the energy management scheme makes 
several heating decisions from 13:00–15:00. As a result, the indoor 
temperature increase and the clothing state also decreases from Clo 3 to 
Clo 1. The above results in Fig. 6 suggest that in concert with the well- 
known pre-heating effect of the scheme, the ability to make optimal 
clothing decisions can provide an additional mechanism to better 
consider the occupant’s thermal comfort while more effectively utilizing 
the thermal storage in the residential building. 

At 16:00, both the outside temperature and indoor temperature come 
to the peak temperature of the daytime. At 17:00, in order to get a 
comparatively high indoor temperature (around 23.9 ◦C), the HVAC 
heats up the room and the female occupant stays with the minimum 
clothing state. Then, the occupant doffs at 18:00 when the indoor tem-
perature decreases slightly. The HVAC slightly heats up the room at 
19:00 and 20:00 to make the indoor temperature ends at the sleeping 
temperature we set at 22:00. It is worth mentioning the optimal clothing 
state follows the relationships between the PMV values and indoor 
temperatures for all three clothing states are referred from Ref. [5]. 

For a summer day, the simulation result of the HVAC energy man-
agement scheme for a male occupant is demonstrated in Fig. 7. At 6:00, 
the occupant’s clothing state is Clo 1 and the indoor temperature is 
20.6 ◦C. The occupant dons (e.g., adding a pair of long underwear bot-
toms) and his clothing state increases from Clo 1 to Clo 2 at 6:00. There 
is no HVAC power during 6:00–12:00 when the outside temperature is 
rising. At 12:00, the HVAC energy management scheme decides to 
slightly pre-cool the house. With the increasing outside temperature to 
the maximum at 92 ◦F, the scheme cools the house at 15:00, 17:00, and 
18:00 to maintain the maximum of indoor temperature around 23.3 ◦C. 
Accordingly, the dressing decision made is doffing from Clo 2 to Clo 1 at 
14:00 (i.e., the beginning of Peak B), and keep the minimum clothing 
state unchanged from 14:00 to 20:00 when both the peak electricity 

price and outside temperature are on the peak. To save the electricity 
cost, the proposed scheme postpones a cooling decision at its rated 
power (i.e., 4 kW) until 21:00 right after Peak B, to drastically brings 
down the room temperature. Meanwhile, The clothing state increases 
from Clo 1 to Clo 2 while the indoor temperature is drastically drooped 
to around 21.1 ◦C. The simulation result in Fig. 7 shows again that the 
ability to make optimal clothing decisions enhances the occupant’s 
thermal sensation and provides an extra means to balance the occu-
pant’s thermal comfort and electricity cost. 

In order to unequivocally show the benefit of the proposed scheme 
considering optimal clothing decisions, we perform a comparative study 
between the non-optimized and the optimized scenarios by the HVAC 
energy management. The comparative simulation results are listed in 
Table 4, in which two aforementioned scenarios, i.e., the summer case 
for a male occupant and the winter case for a female case, are compared. 
To facilitate the comparison, from 6:00 to 22:00, the initial and end 
temperatures of the non-optimal case are identical to those of the opti-
mized case. However, the differences between the non-optimized and 
optimized cases are that the most comfortable temperatures under the 
dynamic clothing model (i.e., Clo = 2 on this day) are taken as manual 
temperature setpoints in the non-optimized case, while the temperature 
setpoints in the optimized case are optimally determined by the pro-
posed scheme. For example, in the summer-male scenario, the non- 
optimized thermostat setpoints are set to a most comfortable tempera-
ture, which is 19.8 ◦C for Clo 2. For the winter-female scenario, they are 
set to 22.8 ◦C for Clo 2. 

As seen in Table 4, the optimized electricity cost of the summer-male 
scenario is 3.8 US dollars and the average PMV from 6:00 a.m. to 10:00 
p.m. is −0.1, whereas that of the winter-female scenario is 7.88 US 
dollars and the average PMV is −0.06. In either scenario, the optimized 
electricity cost by the HVAC energy management scheme is much su-
perior to the non-optimized cost when the dynamic clothing model [8] is 
used. Recall that this dynamic model calculates the clothing insulation 
as a function of outdoor air temperature measured at 6 o’clock of the 
scheduling day and this clothing insulation value remains unchanged 
during the entire day. Therefore, this model cannot capture the intricacy 
of occupant clothing adjustment on an hourly basis. Through optimally 
determining the hourly clothing conditions, the proposed HVAC energy 
management scheme achieves a cost saving of 53.8% in the 
summer-male scenario, while a cost saving of 29.8% in the 
winter-female scenario. This much higher cost saving percentage in the 
summer-male scenario can be explained by comparing the average PMV 
values in Table 4. It is seen the average PMV value in the optimized 
summer-male scenario has a larger deviation from zero than that in the 
winter-female scenario, indicating a larger compromise in his thermal 
comfort. However, since the average PMV values are still close to zero, 
the occupant can hardly feel obvious thermal discomfort. The compar-
ative results in Table 4 demonstrate that the proposed energy manage-
ment scheme can significantly save the occupant’s electricity cost with a 
negligibly compromised comfort. 

5. Conclusions 

In this paper, we propose a novel HVAC energy management scheme 
that is the first of its kind to take into account the occupant’s hourly 
dynamic clothing behaviors to minimize the electricity cost and the 
occupant’s thermal discomfort. We adopt a PMV model that accounts for 

Fig. 7. Simulation results of a summer day for male with ADP.  

Table 4 
A daily comparison between non-optimized and optimized cases.  

Case Item Non-optimized Optimized 
Summer Cost ($/day) 8.22 3.80 
Male Avg-PMV −0.02 −0.10 
Winter Cost ($/day) 11.23 7.88 
Female Avg-PMV 0.06 −0.06  
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the indoor temperature, humidity, occupant gender, and a wide range of 
clothing thermal insulation. Then, the proposed scheme is embedded in 
an ADP-based MPC framework that includes the occupant’s clothing 
states and actions. Under a ToU tariff, the ADP optimally determines the 
setpoint of the HVAC thermostat and provides recommendations on 
occupant’s optimal clothing decisions based on typical business casual 
clothing ensembles for both genders, while considering outside tem-
perature uncertainties. Such clothing recommendations can be sent to 
the occupant through a smartphone application or a speaker in a smart 
home hub. We systematically compare HVAC schedules with and 
without the optimal clothing decisions for both summer-male and 
winter-female scenarios. The proof-of-concept simulation results 
demonstrate the validity of the proposed HVAC energy management 
scheme and the effectiveness of the proposed ADP approach. 

The benefits of considering the occupant’s optimal hourly clothing 
decisions as opposed to a constant clothing condition in an entire day are 
shown in this paper. In particular, simulation results show that, if the 
occupant follows the optimal clothing decisions produced, a 53.8% and 
a 29.8% of daily electricity cost savings can be achieved respectively for 
a summer-male scenario and a winter-female scenario, only with 
negligibly compromise in the occupant’s thermal comfort. Our simula-
tion results also illuminate that the proposed HVAC energy management 
scheme has great capabilities of utilizing the building thermal storage in 
terms of pre-cooling, pre-heating, and delayed-cooling, etc. In future 
work, we will conduct real-world implementation and verification of the 
proposed HVAC energy management scheme. Furthermore, we will 
focus on enhancing the proposed energy management scheme using 
deep machine learning techniques for a variety of applications in next- 
generation residential and commercial buildings. 
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