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ARTICLE INFO ABSTRACT
Keywords: The state-of-the-art energy management for the heating, ventilation and air conditioning (HVAC) system uses a
Home energy management static clothing model that calculates the occupant’s clothing insulation as a fixed value based on outdoor air

Occupant’s clothing condition
Approximate dynamic programming
Model predictive control

Heating

Ventilation and air conditioning

temperature measured at a particular time of the day. However, the static clothing model can hardly capture the
occupant’s intra-day clothing behaviors, leading to inaccurate thermal comfort assessment and unrealistic HVAC
energy management. This paper proposes a novel HVAC energy management scheme to optimally schedule the
thermostat setpoints of HVAC and to provide recommendations on occupants’ optimal hourly clothing decisions
through a predicted mean vote model, while considering uncertainties in the outside temperature. The proposed
HVAC energy management scheme is solved by applying an approximate dynamic programming approach.
Further, a model predictive control framework with a long short-term memory based forecaster is developed for
more realistic simulations. We study the HVAC schedules in a residential home with summer and winter time of
use electricity tariffs for both male and female occupants. Compared with non-optimized cases, proof-of-concept
simulation results demonstrate that the proposed scheme can achieve a 53.8% and a 29.8% cost saving in a
summer-male scenario and a winter-female scenario, respectively.

thermal insulation in moderate environments based on measured air
temperature and relative humidity. Jia et al. applied an event-based
optimization control via Markov Decision Process (MDP) with PMV
while considering the effect of multi-rooms [6]. Luo et al. proposed a
metaheuristic algorithm based energy management system (EMS) to
optimally schedule energy resources (including residential PV) while
using adaptive PMV to account for the occupant’s thermal comfort [7].
Clothing condition has a drastic impact on the human body thermal
insulation, which in turn influences occupants’ thermal comfort signif-
icantly. Therefore, the occupant’s clothing condition is taken as a given
parameter in building energy modeling and simulations. For example,
since clothing has a drastic impact on the human body thermal insu-
lation, it still remains unclear as to how human clothing decisions, i.e.,

1. Introduction

Approximately 100 million single-family homes in the United States
account for 36% of the electricity load, and often they determine the
peak system load, especially on hot summer days when the use of resi-
dential air-conditioning (AC) is high [1]. Increased consumer adoption
of home automation products such as smart thermostats for heating,
ventilation and air conditioning (HVAC) is a prominent trend in resi-
dential buildings.

In addition to energy cost savings, occupant’s thermal comfort is one
of the most significant factors considered in the thermostat control of the
HVAC. One popular index of the thermal comfort is the Predicted Mean . . - .
Vote (PMV) model and Predicted Percentage of Dissatisfied (PPD), donmng. and doffing, can influence opFlr'nal schedules of HVAC ther-
which was proposed by P.O. Fanger and his colleagues in Kansas State mostats in terms of the occupant’s electricity costs and thermal comfort.

University and Technical University of Denmark in the 1970s [2]. In .The current state of the art. in building energy modeling an‘? .sim1.1—
additional, PMV-PPD is included in 1SO 7730 [3] in 2005 and the lations (e.g., EnergyPlus [8]) is that the thermal comfort condition is

American Society of Heating, Refrigerating and Air-Conditioning Engi- calculated based on a dynamic clothing model. In this model, the

neers (ASHRAE) standard 55 [4] in 2004. Buratti et al. [5] developed a clothing insulation is calculated as a function of outdoor air temperature

linear regression approach to the PMV with a wider range of clothing measured at 6 o’clock and this clothing insulation value remains
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Nomenclature

HVAC  Heating, ventilation and air conditioning
EMS Energy management system

PMV Predicted Mean Vote

PPD Predicted Percentage of Dissatisfied
MDP Markov decision process

EV Electrical vehicle

WFH Work from home

WH Water heater

ADP Approximate dynamic programming
ToU Time-of-use

MPC Model predictive control

LSTM Long short-term memory

ASHRAE The American Society of Heating, Refrigerating and Air-
Conditioning Engineers

KDNN  K-D tree nearest neighbor

SSBI Sobol sampling backward induction
RNN Recurrent neural network

MAPE Mean absolute percentage error
COP Coefficient of performance

Parameters and variables

t Time interval

i HVAC or clothing index, i e{H, C}
At Resolution of time interval

T Total number of time intervals

Tka K-D tree

si At time t, pre-decision state of i (°C)

St At time t, post-decision state (°C)

s, At time t, sampled state (°C)

S State space

xt At time t, decision of i

X Decision space

U, At time t, uncertain outside temperature (°C)
U Uncertainty space

rh; Relative humidity at time t (%)

aP At time ¢, discomfort weight

af At time t, cost weight

Pe Discomfort penalty at time t

I Electricity price at time t ($/kWh)

yoUT Thermal coefficient of outside temperature
M Thermal coefficient of room temperature
v Cooling coefficient of HVAC

v Heating coefficient of HVAC

sk Lower bound of state i at time t

st Upper bound of state i at time t

xi Lower bound of decision i at time t

Xt Upper bound of decision i at time t

D Function of discomfort

C Function of electricity cost

Fs Sobol sampling function

¢y Superscript representing sampled

unchanged during the entire day. While there is no standardized
guideline on how to set clothing insulation schedules, the dynamic
clothing model leads to HVAC systems that are incorrectly operated and
to the inaccurate assessment of occupant comfort conditions. In reality,
residential occupants can frequently adjust their clothing, depending on
the thermal conditions around them, on an hourly or sub-hourly basis, as
opposed to a constant clothing value in an entire day. Such adjustments
can improve home demand flexibility and thus enable a higher energy
cost saving. The frequent clothing adjustment is even more plausible
under the COVID-19 outbreak, whereby many businesses worldwide
shift from traditional office-based work operations to work from home
(WFH) arrangements. Therefore, the hourly or sub-hourly clothing
adjustment should be fully captured and optimized in the residential
home energy management to model HVAC systems realistically. There
has been no work to date that addresses this issue. In addition, it is
challenging to incorporate occupant’s clothing adjustments in the HVAC
energy management due to the complex nonlinear relationship between
the clothing conditions and the occupant’s thermal comfort.

Various home energy management models and solution algorithms
have been proposed. Among them, approximate dynamic programming
(ADP) represents a promising class of algorithms for decision-making
under uncertainty [9,10]. Past research efforts have used ADP for
grid-battery management [11-16], real-time microgrid operations [17],
and air conditioner to minimize electricity consumption while consid-
ering the occupant thermal comfort [18-20]. Nevertheless, to the best of
our knowledge, there has been no work to date that uses the ADP to
address the HVAC energy management issue while considering occu-
pant’s hourly clothing decisions.

This paper bridge this gap by proposing an HVAC energy manage-
ment scheme that aims to minimize the electricity cost and the occu-
pant’s thermal discomfort while taking into account the occupant’s
optimal clothing decisions. Under the time-of-use (ToU) electricity tar-
iff, the proposed scheme optimally determines the thermostat setpoints
of HVAC and simultaneously provides the best recommendations on the

occupant’s clothing conditions, while accounting for uncertainties in
outside temperature. The proposed HVAC energy management scheme
is solved by using an ADP-based algorithm. Further, a model predictive
control (MPC) framework with a Long Short-Term Memory (LSTM)-
based forecasting technique is developed to simulate the complex de-
cision making considering the electricity prices, HVAC schedules, and
occupants’ thermal comfort and clothing conditions. We systematically
study the optimal HVAC schedules and hourly clothing decisions for
both male and female occupants in the summer and winter seasons.
Comparative results with and without considering the hourly clothing
decisions are also revealed. The main contributions of this work are
three-fold:

1) This paper proposes a novel HVAC energy management scheme that
is the first of its kind to explicitly consider the occupant’s hourly
dynamic clothing conditions as an additional dimension of decisions
for minimizing the electricity cost and the occupant thermal
discomfort under uncertainty.

2) An ADP-based algorithm is applied to include the occupant’s
clothing states and actions. An MPC framework with the ADP algo-
rithm as an optimization engine and an LSTM as an embedded out-
door temperature forecaster is proposed to simulate HVAC energy
management. This framework simulates the HVAC operation under
uncertainty in a more realistic environment.
Proof-of-concept simulation results show that, if the occupant fol-
lows the optimal clothing decisions produced, 53.8% and 29.8% of
daily electricity cost savings can be achieved respectively for a
summer-male scenario and a winter-female scenario, only with
negligibly compromised thermal comfort. Table 1 compares related
work in this area to the contributions of this paper in terms of pro-
posed approaches, energy management system, occupant comfort,
clothing factor and study scope.

3
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Table 1
Comparison of related works in the literature.

References  Approaches EMS  Comfort  Clothing Study scope
[5] linear regression v Fixed HVAC
values
[6] complexity-based v v Fixed HVAC
approach values
[7] MPC v 4 PV, HVAC,
battery
[11] temporal v v PV, battery
difference ADP
[12] distributed v battery
iterative ADP
[13-15] action-dependent v PV, battery
heuristic DP
[16] iterative ADP v battery
[17] spatiotemporal v microgrid
ADP
[18,19] ADP v v thermal
storage
[20] ADP-based MPC v v HVAC, WH,
EV
This work ADP-based MPC v v Hourly HVAC
with LSTM decis.

2. Problem formulation
2.1. ADP-based optimization problem

The HVAC energy management problem is a discrete-time MDP,
which contains an objective function, a group of state transition func-
tions and physical constraints. We provide a detailed formulation in this
section. The physical setting of the HVAC energy management scheme
including the component connection, data and control flows within a
residential home is illustrated in Fig. 1. Here, the ADP-based HVAC
controller is a central device that connects the sensors, meters and an
HVAC thermostat. All the data from the sensors and smart meters will be
sent to the cloud data center for data collection. A weather forecaster
will deliver the predicted weather data back to the ADP-based
controller. Then, the controller determines optimal schedules for the
setpoints of the HVAC thermostat and sends the optimally recommended
clothing adjustment, if any, to the occupant through a smartphone
application or a speaker in a smart home hub (e.g., Amazon Echo). The
occupant decides whether to follow the clothing adjustment
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recommendation or simply ignore it. Then, the feedback will be sent to
the ADP-based controller, in which the occupant’s clothing state is
updated. The above setting is available in today’s smart home envi-
ronment [21], in which various measurements (e.g., indoor and outdoor
temperatures, relative humidity, and electricity prices) can be collected
frequently to facilitate real-time control.

The aim of ADP is to minimize the weighted sum of the occupant’s
electricity consumption and thermal discomfort. This model contains
discrete states, discrete actions, and stochastic factors. At each time
interval t, a state consists of the room temperature s and the occupant
clothing state s¢. A decision contains HVAC power x!! and occupant’s
clothing adjustment x€,
1, are the outside temperature. Additionally, the HVAC is in state sf!
when a decision x!! is determined at the beginning of each time interval.
Then, the decision is implemented instantly and affects the rest of the
time intervals. After the decision is applied, the outdoor temperature as
the uncertainty variable is realized and affects the rest of the time
intervals.

The state-decision set tuple {s;,x;} = {(si!,sC), (!, x¢)} contains
HVAC- and clothing-related state and decisions for all time periods. The
objective function is to minimize the expectation value of the reward:

T
minE{ ZR,(S,,X,,E,)} (€D)

=1
Rr(stvxh’ﬁl) = a}j'Dt(St) + a,C'ct(tht)

i.e., doffing or donning. The stochastic variables

@

Equation (2) shows that the reward R; consists of thermal discomfort
D, and the electricity cost C; of the occupant. Additional, a” and of are
respectively weight discomfort coefficient and cost coefficient. These
value can be calculated based on the occupant’s preferences [20]. The
occupant’s discomfort D, consists of PMV at time ¢ is defined as follows:

3

In equation (3), the occupant’s thermal discomfort HVAC is modeled
as an absolute value of the PMV times a coefficient g. The PMV equation
for the thermal comfort model is expressed as follows:

)-s;' + b(sy)-P(sy', c(sy)

rhy) = rh-0.61121exp((18.678 — st / 234.5)-(sy" / (257.14 +5}1))

Dy(s;) = p-PMV(s.)

PMV(s,) = a(s® rh,) — 4

P(s!

1

(5)
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Fig. 1. The schematic diagram of proposed energy management.
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where P(s‘;‘7 rh;) is the water vapor pressure in ambient air (kPa) and rh;
is the relative indoor humidity. In order to study the occupant’s dynamic
clothing behaviors, we adopt a simplified PMV model from Ref. [5]. This
model is dependent only from air temperature and relative humidity
because these two parameters are widely available due to their easy
measurement in residential buildings. The boundary conditions (e.g.,
metabolic rate, air velocity) and the parameters a(s¢), b(s¢) and ¢(s¢) in
the PMV model can be found in Ref. [5]. The contribution of electricity
cost C; is defined:

C(sth ) = ¢, x}' At (6)

where c; is the electricity price. In this paper, we adopt a ToU tariff such
that the electricity prices are available beforehand. The cost function in
(6) is calculated as the total electricity cost of HVAC in the scheduling
horizon. The physical constraints of the HVAC are listed as follows:

The constraints of the energy management scheme are associated
with the physical operational limits of the HVAC. We adopt a first-order,
1RI1C (i.e., 1 resistor-1 capacitor) thermodynamic model that is widely
used in the literature [1,22-24]. The equivalent capacitor C represents
the thermal mass of the building and the equivalent resistor R represents
the resistance to heat transfer. The differential equation of 1R1C model
is transferred in the Laplace domain and derived to get a set of linear
Equation (7). The resultant linear equations consider the room tem-
perature as a function of the room temperature at the previous time
period, HVAC power consumption, and the outside temperature. The
HVAC constraints are shown below:

" M H O H ~ M — 4y OUTE, Vi, cooling

sp =S5l ) = 9 e H HH ,  OUT~ : @
YoUSLy +y,x, v g, Vi, heating

st < s < vr ®

X <xt<xLVI ©)

In (7), thermal coefficients are computed according to either the
values of equivalent resistor and capacitor or a regression analysis [1,
23]. Equation (8) suggests that the states should be within the lower and
upper bounds prescribed by the occupants. Equation (9) indicates that
the decisions should be limited by the physical cooling or heating
capability of the HVAC. In Table 3, parameters of the HVAC first-order
model and details of the clothing conditions are clearly displayed.

2.2. Occupant’s clothing conditions

Clothing insulation, measured in the unit of clo, is the thermal
insulation provided by clothing as well as any layer of trapped air

Table 2
Clo values of typical business casual clothing ensembles.

Journal of Building Engineering 40 (2021) 102708

Table 3
HVAC parameters and clothing conditions.

State Range State Revolution

[18 30] 0.1
Cooling case parameters
M your Ye COP X(kW)
0.94 0.06 0.116 4.75 4
Heating case parameters
M T h cop x(kW)
0.95 0.05 0.15 2.95 8
Time range Occupant’s clothing conditions
[10pm, 6am] Clo1
[6am, 10pm] optimal hourly decision

between skin and clothing. One unit of clo equates to 0.155 K - m?/W,
which means the amount of clothing needed by a sedentary person to
maintain thermal comfort in an environment with 21 °C air tempera-
ture, 50% relative humidity (RH), and 0.1 m/s airspeeds. The ASHRAE
Standard 55 [4] and ASHRAE Handbook [25] contains a list of clo values
for selected garment types and formulas for estimating the insulation
provided by a total clothing ensemble.

On the other hand, a simplified method of estimating clothing
insulation is to multiply the weight of a clothing ensemble in 1bs by 0.15.
However, this method assumes there is no wind penetration in the
nearby environment or body movements pumping air around. In gen-
eral, the higher a clo value, the more insulating value is provided by a
total clothing ensemble. Schiavon and Lee [26] found that the median
clothing insulation is 0.59 clo in summer and 0.69 clo in winter.
Clothing adjustment behaviours, i.e. adding or reducing layers of
clothing, have a direct impact on the occupants’ thermal comfort, thus
the optimum operative temperature changes with clo values. The effect
of changing clothing insulation on the optimum operative temperature
is approximately 6 °C per clo for a sedentary man whose metabolic rate
is approximately 1.2 met and this effect is greater with the higher
metabolic rate [4].

Table 2 shows the estimated clo values of some typical business ca-
sual clothing ensembles. All the estimated clo values are from Ref. [27].
The range of clo values are traditionally divided into three groups [5],
which are Clo 1: 0.25-0.5, Clo 2: 0.51-1.00, and Clo 3:1.01-1.65.
Studying dressing behaviors is complicated particularly with the WFH
arrangement during the COVID-19 pandemic. Some people value com-
fort, therefore prefer to dress down when they are working at home
while some others believe dressing in a routine manner, such as wearing
business casual outfits while working from home, can help them main-
tain a sense of control, degree of normality, and productivity. Even
though business casual ensembles are used to demonstrate the rela-
tionship between clo values and the occupant’s donning and doffing

Range (clo) Male Ensembles

Female Ensembles

Clo 1: Estimated clo = 0.42
0.25-0.50

Outfit: A short-sleeve shirt (0.19), a pair of thin straight trousers (0.15).

Underwear: a man’s brief (0.04).
Footwear: A pair of stockings (0.02), shoes (0.02).
Clo 2: Estimated clo = 0.82
0.51-1.00

Outfit: A long-sleeve shirt (0.25), a thin long sleeve sweater (0.25), a pair of

thick straight trousers (0.24).
Underwear: a man’s brief (0.04).
Footwear: A pair of stockings (0.02), shoes (0.02).
Clo 3: Estimated clo = 1.23
1.01-1.65

Outfit: A long-sleeve shirt (0.25), a thick single-breasted suit jacket (0.42), a pair

of thick straight trousers (0.24).

Underwear: a man’s brief (0.04), a pair of long underwear bottoms (0.15).

Footwear: A pair of calf-length socks (0.03), a pair of boots (0.10).

Estimated clo = 0.41

Outfit: A short-sleeve dress shirt (0.19), a thin skirt (0.14)
Underwear: a bra (0.01) and a panty (0.03).

Footwear: A pair of stockings (0.02), shoes (0.02).
Estimated clo = 0.81

Outfit: A long-sleeve shirt (0.25), a thin long sleeve sweater (0.25), a thick skirt
(0.23)

Underwear: a bra (0.01) and a panty (0.03).

Footwear: A pair of stockings (0.02), and a pair of shoes (0.02).

Estimated clo = 1.11

Outfit: A long-sleeve shirt (0.25), a thick single-breasted suit jacket (0.42), a pair
of thick straight trousers (0.24).

Underwear: a bra (0.01), a panty (0.03).

Footwear: A pair of knee socks (thick) (0.06), and a pair of boots (0.10).
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behaviors at a residential home in this paper, this relationship exists in
other types of ensembles as well.

According to Table 2, if a male is dressing in Clo 2 but feeling cold, he
can exchange his thin sweater for a thick suit, swap the stockings for a
pair of calf-length socks, trade his shoes for boots, and even add a pair of
long underwear bottoms. Differently, if he is feeling hot when he is
dressing in Clo 2, he can take off his thin sweater, exchange the long-
sleeve shirt for a short-sleeve shirt, and swap the thick trousers for a
pair of thin trousers. On the other hand, if a female is dressing in Clo 2
and feeling cold, she can exchange her thin sweater for a thick suit, swap
her stockings for a pair of thick knee socks, and trade her shoes for boots.
She may also place a blanket on her laps to warm-up her body (clo value
varies based on the thickness and materials of the blanket, so its clo
value is not included in Table 2. If she is feeling hot when she dresses in
Clo 2, she can take off her thin sweater, exchange the long-sleeve shirt
for a short-sleeve one, and swap the thick skirt for a thin skirt.

Based on the above analysis, we for the first time incorporates the
occupant clothing conditions in the proposed model. Similar to the
HVAG, the state transition of clothing conditions is expressed as follows:

s€ =58+ (10)
s& <sE <5t 1D
[Vt 12
3. ADP algorithm and MPC framework

In this section, we first describe the ADP algorithm, including state

transition, the K-D tree Nearest Neighbor (KDNN), and the Sobol Sam-
pling Backward Induction (SSBI). Then, we introduce the MPC
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framework that incorporates the ADP algorithm and an LSTM forecaster.

3.1. State transition and ADP

In our ADP algorithm, the value function V(sy), the expected value of
the state s; while applying all feasible decisions x; and uncertainty u, at
time t:

V(s) = ZP(51+1 s 0, )[R0, X 14g) + V(s041)] 13)

St+1

where P(s¢y1|X:,St, Us) is the probability of s..q given x;, s; and U;. An
optimal action x; is attained by V;(s;) along with qualifying the Bellman
optimality condition in (14)

V;(SI) = nlin[R,(s,,x,,'ﬁ,) + E(Vz+l (&H)‘SIH a4

Fig. 2 shows a diagram of state transition when T = 3, in which a red-
highlighted path represents the optimal decision sequence. At the ter-
minal state (t = T), V,(s,) is calculated according to discomfort value for
all possible st in the state space S as defined in equation (8). Next, for all
previous states (t = 1 and t = 2), we apply a backward induction to
identify the optimal value V;(s;) and the best decision x;. While
traversing backward in the state transition diagram, x; and V; (s,) at each
time index t are collected. At the initial time period (t = 1), V7 (s1) cor-
responding to x;j is obtained.

The well-known “curse of dimensionality” [9] dictates that an
extremely long or even infeasible run time may occur due to a vast
amount of state, decision and uncertainty spaces. Here, we use KDNN
and SSBI to address this challenge [20]. SSBI is similar to the classic
backward induction, but it contains a supplementary Sobol sampling

Initial | Decision | Post-decision Uncertaintyé Pre-decision | Decision Post-decisiong Uncertainty Terminal
State Set State Space State Set State Space | State
' L (30, Clo3) ' i :
(31.1) i D (low, doffing) ~ .. st
! -/ - < (294,Clo2)
(322) , ( ';
D ______ (rated,idle) ;'j,“"'" (31.6) < | (30, Clo 2)
' : ; (322) 1
. i : : ( <| 30, clo2
(idle, donning) ("2'8{”3’ Clo 3) : : (28.8,Clo 2) .( ity
— ) ' — idle,idl 29.4
. O (29.4) - (idle,idle) D (294 <J283,clo3)
; (30) B 27.7,Clo 3) (30) A
' ; ] < |(283,Clo3
(28.3,Clo 2) . (27.2, Clo 2) 28.8. Clo 2) low.donnin ) Q¢ )
(lowidlc) (1) i GLI) A6, o3
(26.6,Clo 1) .
rated,doffin; ] A
. GL6) 1---- frated dotiing) $1.8) < 28.6,Cl03)
: (32.2) ... : (322) <1 29, Clo3
(rated,doffing) (26w1’ Clal) : ].-J- (idle.donning) /™ (29.4) \J:( B
—0) ; ! O <] (26, Clo 1)
29.4 ]
(224) Tt (low,donning) (;\‘_ 39 < | (28.3,Clo 1)
283,Clo 1 ,
— . 30 : 311 1
[ ] Pre-decision State (30) :ﬁ—— (L.1) < @ss,clo
. . ted,idl |
<]Termmal State : (ratodidle) - !
() Post-decision State :
Uncertainty Space
— Decision Space .
Timestep
- i >
|
=1 =2 =3

Fig. 2. Illustration of a state transition diagram considering occupant’s clothing states and actions in winter (when T = 3).
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function F;, which compacts the workload efficiently since only
necessary state, action and uncertainty sets are considered. KDNN is one
important approach of value function approximation. In order to ach-
ieve a fast computation, KDNN traverses the nearest point of s’t, and
looks for an approximation value of V(s,) instead of calculating from
equation (13). The combination of KDNN and SSBI has shown promising
performances in finding the optimal decision xj. The ADP algorithm
used in this paper minimizes the electricity cost and the occupant’s
thermal discomfort while taking into account the occupant’s clothing
decisions. The algorithm is modified based on Algorithm 3 in Ref. [20],
but the main difference between them is the introduction of clothing
factor into the state and decision spaces. More details about the algo-
rithm can be found in Ref. [20].

3.2. ADP-based MPC framework with LSTM

The methodology of the ADP-based MPC framework is illustrated in
Fig. 3, which is developed to test the effectiveness of the proposed HVAC
energy management scheme in a more practical simulation that repre-
sents the state of the art in smart home applications. The MPC frame-
work minimizes objective function (1) subject to the constraints (2)—(12)
through a look-ahead horizon from the present time to the future (¢t = T).
As shown in Fig. 3, the MPC framework collects three classes as inputs:
1) ADP-based MPC configurations including parameters pertaining to
HVAC and ToU prices; 2) occupant’s preferences including the weight of
both discomfort and cost, desired sleeping temperature, PMV and
clothing conditions; and 3) an outside temperature forecast, which is
updated over time. After the ADP is solved, the decisions made for the
present time interval are adapted to the real-time operation simulation
module. Then, the thermostat setpoint and occupant’s clothing adjust-
ment are simulated with given optimal decisions. Initial states of the
HVAC, the occupant’s clothing, the PMV value and the electricity cost,
all for the next window, are returned. The above steps repeat in the next
window to form a receding horizon control. The ADP-based MPC sums
up the simulated thermal discomfort and electricity costs over the whole
horizon and determines an overall objective value.

The proposed HVAC energy management model can either receive
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weather forecasts of hourly outside temperature from the internet, or
use the embedded LSTM forecaster to predict the outside temperature.
Here, we unitize an LSTM technique to predict the hourly outside tem-
perature based on the historical data by leveraging our previous work
[28]. The LSTM is one type of recurrent neural networks (RNNs) and is
capable of learning order dependence in sequence prediction problems
such as speech recognition and context recognition [29,30]. The supe-
riority of the LSTM is that it solves the long-range dependence more
accurately than the conventional RNN [31]. According to the testing
results, the mean absolute percentage error (MAPE) of the outside
temperature forecast is about 0.02 and 0.38 for summer and winter,
respectively, signifying an accurate forecast well suited in the proposed
MPC framework.

4. Simulation results

The ADP-based energy management model is implemented in
MATLAB via DYNAMO toolbox [32]. The HVAC parameters and occu-
pant’s clothing conditions are shown in Table 3. The HVAC parameters
in Equation (7) are obtained using a linear regression method on a
historical dataset of a residential home in Hillsboro, Oregon [22,23]
with both a cooling case and a heating case.

We use the ToU electricity tariff, i.e., Pacific Gas & Electric EToU-E6
as the summer rate, and the Southern California EDISON TOU-D-5-8PM
as the winter rate. For the summer, this tariff contains three price levels:
Base, Peak A, and Peak B prices, i.e., $0.244/kWh, $0.32/kWh, and
$0.436/kWh, represented by white, light grey and dark grey in Fig. 4
(a), respectively. Peak A takes place in Hours 11-13, 20, and 21, and
Peak B occurs during Hours 14-19. Base prices are utilized in the rest of
the hours. Similarly, for the winter, as shown in Fig. 4 (b), Base, Peak A,
and Peak B are $0.24/kWh, $0.28/kWh, and $0.42/kWh, respectively.

In order to demonstrate the benefit of using the proposed HVAC
energy management scheme, simulation results in both summer and
winter under a traditional fixed setpoint thermostat (i.e., without the
proposed energy management scheme) are shown in Fig. 5. We assume a
medium clothing state (i.e.stC = 2) with the desired temperature the
occupant sets is 22.8 °C in winter for female and 20 °C in summer for the
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Fig. 3. Flowchart of the ADP based MPC framework.
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male. This is because 22.8 °C is the most comfortable (PMV = 0) tem-

perature for the female when the cloth state s¢ is set to Clo 2, while that Room Temperature

is 20 °C for male. Without loss of generality, we simulate the winter case = = =Qutside Temperature

for a female occupant and the summer case for a male occupant. In the [ IHVAC Power

winter, i.e., a heating case, the outside temperature is 22.4 °C lower than —_ g
the room temperature at the initial time, i.e., 6:00. For the summer, i.e.,
a cooling case, the outside temperature is around 2.2 °C higher than the
room temperature at 6:00 and becomes 11.1 °C higher at 18:00. In
Fig. 5, we only show the simulation results from 6:00 to 22:00 because
the other hours are considered as the occupant’s sleeping time, when the
fixed setpoint of the thermostat is respectively set to 25 °C and 22 °C in TR

winter and summer as a comfortable temperature for female and male -10

occupants [33]. It is seen the traditional fixed-setpoint thermostat keeps I_I |_| |_|
the room temperature around the desired temperature regardless of the -20 U
electricity price and energy cost, implying the cost-saving potential for Tlme (hr)
the energy management scheme. (a) HVAC result

With the proposed scheme, Fig. 6 shows the MPC simulation results
for a female occupant. Specifically, Fig. 6 (a) shows the indoor tem-
perature, outside temperature and the HVAC power, while Fig. 6 (b) @ Clothing
shows the clothing state and dressing decisions. To facilitate our com- 3 (N B N ] =) Donning
parison and focus exclusively on the hours with clothing behavior, we »Doffnng
adopt the same fixed setpoint control during the sleeping time as in the
non-optimized case. At 6:00, the user’s cloth state is Clo 1 and the indoor
temperature is 25 °C. From 6:00 to 12:00 (noon), there is no HVAC
heating but the donning decisions are made at both 6:00 and 8:00 to
eventually get a clothing state Clo 3 at 10:00. This result shows that the
occupant’s clothing behavior plays an additional role in maintaining a
satisfactory thermal comfort even with an extremely low outdoor
temperature.

Meanwhile, the indoor temperature decreases due to the dropping
outside temperature until it reaches the lowest temperature during the o 8 1'0 ,1'2 .1'4 1'5 18 20 22
day. The outside temperature is rolling down to the minimum while the Time(hr)
clothing state is reaching the maximum, without any HVAC heating to (b) Clothing behavior
save the cost. Then, the HVAC energy management scheme makes a
maximum heating decision at 12:00 since it is in an off-peak period, Fig. 6. Simulation results of a winter day for female with ADP.
which in turn drives the indoor temperature to rise. The turning point of
the indoor temperature occurs at 12:00 while the occupant makes a
doffing decision to change its cloth state from Clo 3 to Clo 2. With an
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increasing outside temperature, the energy management scheme makes
several heating decisions from 13:00-15:00. As a result, the indoor
temperature increase and the clothing state also decreases from Clo 3 to
Clo 1. The above results in Fig. 6 suggest that in concert with the well-
known pre-heating effect of the scheme, the ability to make optimal
clothing decisions can provide an additional mechanism to better
consider the occupant’s thermal comfort while more effectively utilizing
the thermal storage in the residential building.

At 16:00, both the outside temperature and indoor temperature come
to the peak temperature of the daytime. At 17:00, in order to get a
comparatively high indoor temperature (around 23.9 °C), the HVAC
heats up the room and the female occupant stays with the minimum
clothing state. Then, the occupant doffs at 18:00 when the indoor tem-
perature decreases slightly. The HVAC slightly heats up the room at
19:00 and 20:00 to make the indoor temperature ends at the sleeping
temperature we set at 22:00. It is worth mentioning the optimal clothing
state follows the relationships between the PMV values and indoor
temperatures for all three clothing states are referred from Ref. [5].

For a summer day, the simulation result of the HVAC energy man-
agement scheme for a male occupant is demonstrated in Fig. 7. At 6:00,
the occupant’s clothing state is Clo 1 and the indoor temperature is
20.6 °C. The occupant dons (e.g., adding a pair of long underwear bot-
toms) and his clothing state increases from Clo 1 to Clo 2 at 6:00. There
is no HVAC power during 6:00-12:00 when the outside temperature is
rising. At 12:00, the HVAC energy management scheme decides to
slightly pre-cool the house. With the increasing outside temperature to
the maximum at 92 °F, the scheme cools the house at 15:00, 17:00, and
18:00 to maintain the maximum of indoor temperature around 23.3 °C.
Accordingly, the dressing decision made is doffing from Clo 2 to Clo 1 at
14:00 (i.e., the beginning of Peak B), and keep the minimum clothing
state unchanged from 14:00 to 20:00 when both the peak electricity
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Fig. 7. Simulation results of a summer day for male with ADP.
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price and outside temperature are on the peak. To save the electricity
cost, the proposed scheme postpones a cooling decision at its rated
power (i.e., 4 kW) until 21:00 right after Peak B, to drastically brings
down the room temperature. Meanwhile, The clothing state increases
from Clo 1 to Clo 2 while the indoor temperature is drastically drooped
to around 21.1 °C. The simulation result in Fig. 7 shows again that the
ability to make optimal clothing decisions enhances the occupant’s
thermal sensation and provides an extra means to balance the occu-
pant’s thermal comfort and electricity cost.

In order to unequivocally show the benefit of the proposed scheme
considering optimal clothing decisions, we perform a comparative study
between the non-optimized and the optimized scenarios by the HVAC
energy management. The comparative simulation results are listed in
Table 4, in which two aforementioned scenarios, i.e., the summer case
for a male occupant and the winter case for a female case, are compared.
To facilitate the comparison, from 6:00 to 22:00, the initial and end
temperatures of the non-optimal case are identical to those of the opti-
mized case. However, the differences between the non-optimized and
optimized cases are that the most comfortable temperatures under the
dynamic clothing model (i.e., Clo = 2 on this day) are taken as manual
temperature setpoints in the non-optimized case, while the temperature
setpoints in the optimized case are optimally determined by the pro-
posed scheme. For example, in the summer-male scenario, the non-
optimized thermostat setpoints are set to a most comfortable tempera-
ture, which is 19.8 °C for Clo 2. For the winter-female scenario, they are
set to 22.8 °C for Clo 2.

As seen in Table 4, the optimized electricity cost of the summer-male
scenario is 3.8 US dollars and the average PMV from 6:00 a.m. to 10:00
p.m. is —0.1, whereas that of the winter-female scenario is 7.88 US
dollars and the average PMV is —0.06. In either scenario, the optimized
electricity cost by the HVAC energy management scheme is much su-
perior to the non-optimized cost when the dynamic clothing model [8] is
used. Recall that this dynamic model calculates the clothing insulation
as a function of outdoor air temperature measured at 6 o’clock of the
scheduling day and this clothing insulation value remains unchanged
during the entire day. Therefore, this model cannot capture the intricacy
of occupant clothing adjustment on an hourly basis. Through optimally
determining the hourly clothing conditions, the proposed HVAC energy
management scheme achieves a cost saving of 53.8% in the
summer-male scenario, while a cost saving of 29.8% in the
winter-female scenario. This much higher cost saving percentage in the
summer-male scenario can be explained by comparing the average PMV
values in Table 4. It is seen the average PMV value in the optimized
summer-male scenario has a larger deviation from zero than that in the
winter-female scenario, indicating a larger compromise in his thermal
comfort. However, since the average PMV values are still close to zero,
the occupant can hardly feel obvious thermal discomfort. The compar-
ative results in Table 4 demonstrate that the proposed energy manage-
ment scheme can significantly save the occupant’s electricity cost with a
negligibly compromised comfort.

5. Conclusions

In this paper, we propose a novel HVAC energy management scheme
that is the first of its kind to take into account the occupant’s hourly
dynamic clothing behaviors to minimize the electricity cost and the
occupant’s thermal discomfort. We adopt a PMV model that accounts for

Table 4

A daily comparison between non-optimized and optimized cases.
Case Item Non-optimized Optimized
Summer Cost ($/day) 8.22 3.80
Male Avg-PMV —-0.02 —-0.10
Winter Cost ($/day) 11.23 7.88
Female Avg-PMV 0.06 —0.06
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the indoor temperature, humidity, occupant gender, and a wide range of
clothing thermal insulation. Then, the proposed scheme is embedded in
an ADP-based MPC framework that includes the occupant’s clothing
states and actions. Under a ToU tariff, the ADP optimally determines the
setpoint of the HVAC thermostat and provides recommendations on
occupant’s optimal clothing decisions based on typical business casual
clothing ensembles for both genders, while considering outside tem-
perature uncertainties. Such clothing recommendations can be sent to
the occupant through a smartphone application or a speaker in a smart
home hub. We systematically compare HVAC schedules with and
without the optimal clothing decisions for both summer-male and
winter-female scenarios. The proof-of-concept simulation results
demonstrate the validity of the proposed HVAC energy management
scheme and the effectiveness of the proposed ADP approach.

The benefits of considering the occupant’s optimal hourly clothing
decisions as opposed to a constant clothing condition in an entire day are
shown in this paper. In particular, simulation results show that, if the
occupant follows the optimal clothing decisions produced, a 53.8% and
a 29.8% of daily electricity cost savings can be achieved respectively for
a summer-male scenario and a winter-female scenario, only with
negligibly compromise in the occupant’s thermal comfort. Our simula-
tion results also illuminate that the proposed HVAC energy management
scheme has great capabilities of utilizing the building thermal storage in
terms of pre-cooling, pre-heating, and delayed-cooling, etc. In future
work, we will conduct real-world implementation and verification of the
proposed HVAC energy management scheme. Furthermore, we will
focus on enhancing the proposed energy management scheme using
deep machine learning techniques for a variety of applications in next-
generation residential and commercial buildings.
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