
Learning Hierarchically-Structured Concepts

Nancy Lynch1 and Frederik Mallmann-Trenn2

1Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
2King’s College London, London, England

Abstract

We use a recently developed synchronous Spiking Neural Network (SNN) model1

to study the problem of learning hierarchically-structured concepts. We introduce2

an abstract data model that describes simple hierarchical concepts. We define a3

feed-forward layered SNN model, with learning modeled using Oja’s local learning4

rule, a well known biologically-plausible rule for adjusting synapse weights. We5

define what it means for such a network to recognize hierarchical concepts; our6

notion of recognition is robust, in that it tolerates a bounded amount of noise.7

Then, we present a learning algorithm by which a layered network may learn8

to recognize hierarchical concepts according to our robust definition. We an-9

alyze correctness and performance rigorously; the amount of time required to10

learn each concept, after learning all of the sub-concepts, is approximately11

O
(

1
ηk

(
`max log(k) + 1

ε

)
+ b log(k)

)
, where k is the number of sub-concepts12

per concept, `max is the maximum hierarchical depth, η is the learning rate, ε13

describes the amount of uncertainty allowed in robust recognition, and b describes14

the amount of weight decrease for "irrelevant" edges. An interesting feature of this15

algorithm is that it allows the network to learn sub-concepts in a highly interleaved16

manner. This algorithm assumes that the concepts are presented in a noise-free17

way; we also extend these results to accommodate noise in the learning process.18

Finally, we give a simple lower bound saying that, in order to recognize concepts19

with hierarchical depth two with noise-tolerance, a neural network should have at20

least two layers.21

The results in this paper represent first steps in the theoretical study of hierarchical22

concepts using SNNs. The cases studied here are basic, but they suggest many23

directions for extensions to more elaborate and realistic cases.24

Keywords: Hierarchical Concepts, Representing Hierarchical Concepts, Recognizing Hierarchical25

Concepts, Learning Hierarchical Concepts, Spiking Neural Networks, Brain-Inspired Algorithms26

1 Introduction27

We are interested in the general problem of how concepts that have structure are represented in the28

brain. What do these representations look like? How are they learned, and how do the concepts29

get recognized after they are learned? We draw inspiration from recent experimental research on30

computer vision in convolutional neural networks (CNNs) by Zeiler and Fergus [54] and Zhou, et31

al. [55]. This research shows that CNNs learn to represent structure in visual concepts: lower layers32

of the network represent basic concepts and higher layers represent successively higher-level concepts.33

This observation is consistent with neuroscience research, which indicates that visual processing34

in mammalian brains is performed in a hierarchical way, starting from primitive notions such as35

position, light level, etc., and building toward complex objects; see, e.g., [15, 14, 7]. More generally,36

Preprint. Under review.

we consider the thesis that the structure that is naturally present in real-world concepts get mirrored37

in their brain representations, in some natural way that facilitates both learning and recognition.38

We approach this problem using ideas and techniques from theoretical computer science, distributed39

computing theory, and in particular, from recent work by Lynch, et al. on synchronous Spiking40

Neural Networks (SNNs) [28, 25, 27, 45, 13]. These papers began the development of an algorithmic41

theory of SNNs, developing formal foundations, and using them to study problems of attention and42

focus, neural representation, and short-term learning. Here we continue that general development, by43

initiating the study of long-term learning within the same framework.44

We focus here on learning hierarchically-structured concepts. We capture these formally in terms of45

abstract concept hierarchies, in which concepts are built from lower-level concepts, which in turn are46

built from still-lower-level concepts, etc. Such structure is natural, e.g., for physical objects that are47

learned and recognized during human or computer visual processing. An example of such a hierarchy48

might be the following model of a human: A human consists of a body, a head, a left leg, a right leg,49

a left arm, and a right arm. Each of these concepts may consist of more concepts, allowing us to50

model a human to an arbitrary degree of granularity. Most concepts in the real world have additional51

structure, e.g., arms and legs are positioned symmetrically; however, we ignore such information for52

now and assume simply that each concept consists of sub-concepts. For this initial theoretical study,53

we make some additional simplifications: we fix a maximum level `max for concept hierarchies, we54

assume that all non-primitive concepts have the same number k of "child concepts", and we assume55

that our concept hierarchies are trees, i.e., there is no overlap in the composition of different concepts56

at the same level of a hierarchy. We expect that these assumptions can be removed or weakened, but57

it seems useful to start with the simplest case.58

This paper demonstrates theoretically, in terms of simple hierarchies, how hierarchically-structured59

data can be represented, learned, and recognized in feed-forward layered Spiking Neural Networks.60

Specifically, we provide formal definitions for concept hierarchies and layered neural networks. We61

define precisely what it means for a layered neural network to recognize a particular concept in a62

concept hierarchy. Our notion of recognition is robust: a concept is required to be recognized if the63

input is close to the ideal concept, and is required not to be recognized if the input is far from the64

ideal. We also define what it means for a layered neural network to learn to recognize a concept65

hierarchy, according to our robust definition of recognition.66

Next, we present two simple, efficient algorithms (layered networks) that learn to recognize concept67

hierarchies; the first assumes reliability during the learning process, whereas the second tolerates a68

bounded amount of noise. An example of such learning is shown in Figure 1. We also provide a69

preliminary lower bound, saying that, in order to robustly recognize concepts with hierarchical depth70

2, a neural network should have at least 2 layers. We discuss possible extensions of this bound to71

concepts with larger depth. We end with many directions for extending this work.72

Note: We view this work as the first step in a general project to produce a theory for how logical73

concepts are represented, and learned, in the brain. Our general approach is to start with the simplest74

case, working out basic definitions, algorithms, and limitations for that case, and then to extend in75

many directions, step-by-step. We think such a stepwise approach will be effective in developing the76

theory. In addition, we hope that this first step, besides being of interest on its own, will provide a77

useful blueprint for later extensions.78

In more detail: We describe our data model in Section 2. We assume a fixed maximum number79

`max of levels in our concept hierarchies. Each concept hierarchy C has a fixed set C of concepts,80

organized into levels `, 0 ≤ ` ≤ `max. These are chosen from some universal set D of concepts.81

Each concept at each level `, 1 ≤ ` ≤ `max has precisely k children, which are level `− 1 concepts.82

We assume here that each concept hierarchy is a tree, that is, there is no overlap among the sets of83

children of different concepts. Each individual concept hierarchy represents the concepts and child84

relationships that arise in a particular execution of the network (or lifetime of an organism). However,85

the chosen concepts and their relationships may be different in different concept hierarchies. Again86

we note that these assumptions are a considerable simplification of reality, but we regard them as a87

good starting point.88

1 c© Universal Color Slide Company.

2

human

head body

armseyes mouth legs

rep(arms)rep(eyes) rep(mouth) rep(legs)

rep(human)

Concept hierarchy Brain/Neural Network

rep(body) rep(head)

Figure 1: The leftmost figure shows the concept human, which consists of two sub-concepts, and
so on. The second figure shows a network that has "learned" the concept "human" in the sense that,
when the neurons representing the basic parts eyes, mouth, arms, legs are excited, then exactly one
neuron u on the top layer will fire. Neuron u should also fire when "most" of the basic parts are
excited, and u should not fire when few of the basic parts are excited. For example, the painting “Girl
with a Mandolin” by Picasso1should cause u to fire despite the lack of a mouth and legs. The network
accomplishes this by strengthening relevant synapses (bold edges) and weakening others (thin edges).

Next, in Section 3, we define a synchronous Spiking Neural Network model2, derived from the one89

in [28, 27], but with additional structure to support learning. Namely, the new model incorporates edge90

weights (representing synapse strengths) into neuron states; this provides a convenient way to describe91

how those weights change during learning. We model learning using Oja’s rule, a biologically-92

inspired rule that can be regarded as a mathematical formalization of Hebbian learning [18]. Oja’s93

rule was first introduced in [35], and has since received considerable attention due its connections94

with dimensionality reduction; see, for example, [36, 8]. Although there is no direct experimental95

evidence yet that Oja’s precise rule is used in the brain, its core characteristics such as long-term96

potentiation, long-term depression, and normalization are known to occur in brain networks, and97

have been studied thoroughly (e.g., [2, 1]). Interestingly, to the best of our knowledge, Oja’s rule has98

so far been studied only in "flat" settings, where the network has only one layer. Moreover, previous99

work (e.g., [35]) has allowed the learning parameter η to be time-dependent, in order to achieve100

convergence. In this paper, we consider the multilayer setting, and we show convergence with a fixed101

learning rate.102

In Section 4, we present our definitions for the robust recognition and noise-free learning problems.103

Thus, we define how an SNN represents a concept hierarchy; here we use the simplifying assumption104

that each concept is represented by just one neuron. We define what it means for an SNN to correctly105

recognize a concept hierarchy, including situations in which the network is required to recognize a106

concept c and situations where it is required not to do so. In particular, if a sufficiently large fraction107

r2 of the children of concept c are recognized, then c should be recognized, whereas if fewer than108

a smaller fraction r1 of the children of c are recognized, then c should not be recognized. We also109

define what it means for an SNN to learn to recognize a concept hierarchy, in the noise-free setting.110

Then, in Section 5, we present algorithms that allow a network, starting from a default configuration,111

to recognize and to learn the concepts in a particular concept hierarchy. Our algorithms are efficient,112

2A word about our use of the Spiking Neural Network terminology: Our model here is simpler than typical
SNN models, in that neuron actions depend just on the previous state and not on a longer history. In some of our
prior work, such as [45], we use a more elaborate version of the model in which neurons actions can depend on
bounded history. This is useful for capturing aspects of neuron processing such as accumulating potential. In
future extensions of the present work, we expect to use such elaborations. We use the SNN terminology here in
an attempt to keep the terminology consistent across our papers.

3

in terms of network size and running time. In particular, a network with max layer `max suffices to113

recognize a concept hierarchy with max level `max. Recognition happens within a very short time,114

proportional to the number of layers in the network. For learning, our algorithm converges reasonably115

quickly to a configuration that supports robust recognition. Our convergence time bound result for116

noise-free learning is Theorem 5.3. Our algorithms require the examples to be shown several times117

and in a constrained order: roughly speaking, we require the network to "learn" the children of a118

concept c first, before examples of c are shown. Thus, in our running example, we require enough119

examples of "head", "body", etc. to be able to learn those concepts before the network sees them all120

together as "human". Except for this constraint, concepts may be shown in an arbitrarily interleaved121

manner. In Section 6, we adapt our problem definitions and learning algorithm to a setting where122

the examples presented may be perturbed by noise. The modified algorithm still works, but now123

convergence requires the network to see more examples, compared to the noise-free case, as we show124

in Theorem 6.4. The detailed analysis needed to prove Theorems 5.3 and 6.4 appears in Sections A125

and B, respectively.126

Once we see that a network with max layer `max can easily learn and recognize any concept hierarchy127

with max level `max, it is natural to ask whether `max layers are actually necessary. Certainly these128

networks yield natural and efficient representations, but it is still interesting to ask the theoretical129

question of whether shallower networks could accomplish the same thing. In Section 7, we give130

a preliminary lower bound result, showing that a two-layer concept hierarchy requires a two-layer131

network in order to solve the noisy recognition problem. We also discuss the possibility of extending132

this result to more levels and layers.133

In summary, this paper is intended to show, using theoretical techniques, how structured concepts134

can be represented, recognized, and learned in biologically plausible neural networks. We give135

fundamental definitions and algorithms for particular types of concept hierarchies and networks. This136

represents a first step towards a theory of representation and learning for hierarchically-structured137

concepts in SNNs; it opens up many follow-on questions, which we discuss in Section 8.138

Related work: Immediate inspiration from this work came from experimental computer vision139

research on "network dissection" by Zhou, et al. [55]. This work describes experiments that show140

that unsupervised learning of visual concepts in deep convolutional neural networks results in141

"disentangled" representations. These include neural representations, not just for the main concepts142

of interest, but also for their components and sub-components, etc., throughout a concept hierarchy.143

As in this paper, they consider individual neurons as representations for individual concepts. They144

find that the representations that arise are generally arranged in layers so that more primitive concepts145

(colors, textures,...) appear at lower layers whereas more complex concepts (parts, objects, scenes)146

appear at higher layers. Earlier work by Zeiler and Fergus [54] made similar observations. As we147

described earlier, this work is consistent with neuroscience research, which indicates that visual148

processing in mammalian brains is performed hierarchically [15, 14, 7]. Some of this work indicates149

that the network includes feedback edges in addition to forward edges; the function of the feedback150

edges seems to be to solidify representations of lower-level objects based on context [16, 33]. While151

we do not yet address feedback edges in this paper, that is one of our main intended future directions.152

Brain-like hierarchical models have been studied before (e.g., [43] and [44]). The authors of [43]153

propose a model consisting of different kinds of cells to model image recognition in the brain. Another154

biologically-motivated line of research concerns synfire chains, which are essentially a feed-forward155

network of neurons. These networks are a predecessor of spiking neural networks (SNNs). An156

interesting work in this field is [44], which studies a hierarchical organization of synfire chains.157

The SNN model [29, 30, 9, 17, 11], upon which all of our neural algorithms research is based, is a158

model for neural computation that balances biological plausibility with theoretical tractability. Our159

work is influenced by research of Maass et al. [30, 31, 32] on the computational power of SNNs, and160

by that of Valiant [47, 48, 49, 50] on learning in the neuroidal model of brain computation. Recent161

research by Papadimitriou, et al. [40, 42, 22, 41] on problems of learning and association of concepts162

is another source of inspiration.163

Oja’s learning rule [35, 36]. is a biologically plausible local rule for adjusting synapse weights during164

learning. As mentioned earlier, to the best of our knowledge, Oja’s rule has so far been studied only165

in single-layered networks and with time-dependent learning rates ([35, 36, 8]. Other related learning166

rules include Hebbian variants [12, 23] or BCM learning [3].167

4

The learning algorithms in this paper utilize a Winner-Take-All sub-network [21, 53, 46, 4, 32, 51,168

37, 24], to help in selecting which neurons to engage in learning. Winner-Take-All is an important169

primitive in neural computation that is used to model visual attention and competitive learning.170

Maybe "Note that such engagement of a neuron to learn is also known in some of neuroscience171

literature eligibility traces (or synaptic flags); see [10] for experimental evidence of the existence of172

eligibility traces.173

Work by Mhaskar et al. [34] is related to ours in that they also consider embedding a tree-structured174

concept hierarchy in a layered network. They also prove results saying that deep neural networks175

are better than shallow networks at representing a deep concept hierarchy, However, their concept176

hierarchies differ mathematically from ours, since they are formalized as compositional functions.177

Also, their notion of representation is different, corresponding to function approximation, and their178

proofs are based on approximation theory. Other related work appears in papers by Knoblauch179

and collaborators, e.g., [6, 19, 39]. These papers describe experimental work involving hierarchical180

concepts that are more general than ours (e.g., allowing overlap), networks that are more general181

(e.g., allowing feedback), and more robust types of representations (cell assemblies). They present182

this work in the context of an integrated robot system combining processing of visual and language183

input, decisions, and action). For us, this provides good inspiration for future theoretical work.184

Acknowledgments: We thank Brabeeba Wang for helpful conversations and suggestions. we also185

thank an anonymous referee for much constructive feedback, and many suggestions for interesting186

extensions. The authors were supported in part by NSF Award Numbers CCF-1810758, CCF-187

0939370, CCF-1461559, and CCF-2003830.188

2 Data Model189

In this section, we define an abstract notion of a concept hierarchy, which represents all the concepts190

that arise in some particular "lifetime" of an organism, together with hierarchical relationships191

between them. As noted above, our definition is restricted to tree-structured hierarchical relationships;192

extensions are left for future work. We follow this with a definition for the notion of support, which193

indicates which lowest-level concepts are sufficient to trigger the recognition of higher-level concepts.194

2.1 Preliminaries195

We begin by defining some general notation. First, we fix four constants:196

• `max, a positive integer, representing the maximum level number for the concepts we197

consider.198

• n, a positive integer, representing the total number of lowest-level concepts.199

• k, a positive integer, representing the number of top-level concepts in any concept hierarchy,200

and also the number of sub-concepts for each concept that is not at the lowest level.3201

• r1, r2, reals in [0, 1] with r1 ≤ r2; these represent thresholds for noisy recognition.202

We assume a predetermined universal set D of concepts, partitioned into disjoint sets D`, 0 ≤ ` ≤203

`max. We refer to any particular concept c ∈ D` as a level ` concept, and write level(c) = `.204

Here, D0 represents the most basic concepts and D`max the highest-level concepts. We assume that205

|D0| = n.206

2.2 Concept hierarchies207

A concept hierarchy C consists of a subset C of D, together with a children function. For each208

`, 0 ≤ ` ≤ `max, we define C` to be C ∩ D`, that is, the set of level ` concepts in C. For each209

concept c ∈ C`, 1 ≤ ` ≤ `max, we designate a nonempty set children(c) ⊆ C`−1. We call each210

c′ ∈ children(c) a child of c. We require the following three properties.211

1. |C`max
| = k.212

3Assuming the same number k throughout is a simplification of what would be needed for applications; it
should be easy to generalize this.

5

2. For any c ∈ C`, where 1 ≤ ` ≤ `max, we have that |children(c)| = k; that is, the degree of213

any internal node in the concept hierarchy is exactly k.214

3. For any two distinct concepts c and c′ in C`, where 1 ≤ ` ≤ `max, we have that215

children(c) ∩ children(c′) = ∅; that is, the sets of children of different concepts at216

the same level are disjoint.217

It follows that C is a forest with k roots and height `max. Also, for any `, 0 ≤ ` ≤ `max, |C`| =218

k`max−`+1. Note that our notion of concept hierarchies is quite restrictive, in that we allow no overlap219

between the sets of children of different concepts. Allowing overlap is an important next direction for220

future work.221

We extend the children notation recursively by defining a concept c′ to be a descendant of a222

concept c if either c′ = c, or c′ is a child of a descendant of c. We write descendants(c) for the set223

of descendants of c. Let leaves(c) = descendants(c) ∩ C0, that is, all the level 0 descendants of c.224

2.3 Support225

Now we give a key definition that indicates which lowest-level concepts should be sufficient to trigger226

recognition of higher-level concepts.227

We fix a particular concept hierarchy C, with its concept set C partitioned into C0, . . . , C`max . For228

any given subset B of the general set D0 of level 0 concepts, and any real number r ∈ [0, 1], we229

define a set supportedr(B) of concepts in C. This represents the set of concepts c ∈ C, at all levels,230

that have enough of their leaves present in B to support recognition of c. The notion of "enough"231

here is defined recursively, based on having an r-fraction of children supported at every level.232

Definition 2.1 (Supported). Given B ⊆ D0, define the following sets of concepts at all levels,233

recursively:234

1. B0 = B ∩ C0. That is, we restrict attention to just the level 0 concepts in C.235

2. B1 is the set of all concepts c ∈ C1 such that |children(c)∩B0| ≥ rk. That is, we consider236

the level 1 concepts in C for which at least an r-fraction of their children appear in B0.237

3. For 2 ≤ ` ≤ `max,B` is the set of all concepts c ∈ C` such that |children(c)∩B`−1| ≥ rk.238

That is, we consider the level ` concepts inC for which at least an r-fraction of their children239

appear in B`−1.240

Define supportedr(B) to be
⋃

0≤`≤`max
B`. We sometimes also write supportedr(B, `) for B`.241

c

c1 c2 c3

c1,1 c1,2 c1,3 c2,1 c2,2 c2,3 c3,1 c3,2 c3,3 c4,0

Figure 2: This example illustrates the supportedr(B) definition, with k = 3 and r =
2
3 . We depict just a single level 2 concept c with children c1, c2, c3 and grandchildren
c1,1, c1,2, c1,3, c2,1, c2,2, c2,3, c3,1, c3,2, c3,3. The set B consists of concepts c1,1, c1,2, c3,1, c3,3 plus
an "extra" concept c4,0 that is not a descendant of c. ThenB0 = {c1,1, c1,2, c3,1, c3,3},B1 = {c1, c3},
and B2 = {c}.

The special case r = 1 is important as it corresponds to a "noise-free" notion of support, in which all242

the leaves of a concept must be present. That is:243

Lemma 2.2. For any B ⊆ D0, supported1(B) is the set of all concepts c ∈ C (at all levels) such244

that leaves(c) ⊆ B.245

6

3 Network Model246

In this section, we define our network model. We first describe the network structure, then the247

individual neurons, and finally the operation of the overall network.248

3.1 Preliminaries249

We introduce four constants:250

• `′max, a positive integer, representing the maximum number of a layer in the network.251

• n, a positive integer, representing the number of distinct inputs the network can handle. This252

is the same n as in the data model, where it represents the total number of level 0 concepts253

in a concept hierarchy.254

• τ , a real number, representing the firing threshold for neurons.255

• η, a positive real, representing the learning rate for our learning rule.256

3.2 Network structure257

Our networks are directed graphs consisting of neurons arranged in layers, with edges directed from258

each layer to the next-higher layer; thus, they are feed-forward layered neural networks.259

Specifically, a network N consists of a set N of neurons, partitioned into disjoint sets N`, 0 ≤ ` ≤260

`′max, which we call layers. We refer to any particular neuron u ∈ N` as a layer ` neuron, and261

write layer(u) = `. We assume (for simplicity) that each layer contains exactly n neurons, that is,262

|N`| = n for every `. We refer to the n layer 0 neurons as input neurons and to all other neurons as263

non-input neurons. We assume total connectivity between successive layers, that is, each neuron in264

N`, 0 ≤ ` ≤ `′max − 1 has an outgoing edge to each neuron in N`+1, and these are the only edges.265

We assume a one-to-one mapping rep : D0 → N0, where rep(c) is the neuron corresponding to266

concept c. That is, rep is a one-to-one mapping from the full set of level 0 concepts, D0, to N0, the267

set of layer 0 neurons, This will allow the network to receive an input corresponding to any level 0268

concept. See Figure 3 for a depiction.

layer `max

layer 0 (input layer)

layer 1

layer 2

layer `max − 1

Figure 3: The figure depicts the general structure of a feed-forward network.
269

We "lift" the definition of rep to sets of level 0 concepts as follows: For any B ⊆ D0, we define270

rep(B) = {rep(b)|b ∈ B}. That is, rep(B) is the set of all reps of concepts in B. (We will use271

analogous "lifting" definitions to extend other functions to sets.)272

Since we know that |C0| = k`max +1, C0 ⊆ D0, and all elements of D0 have reps among the n273

neurons of N0, it follows that n ≥ k`max +1. However, we imagine that n is much larger than this,274

because we imagine that the total number of possible level 0 concepts is much larger than the number275

that will arise in any particular execution of the network.276

In Section 4, we will consider extensions of the rep() function from level 0 concepts to higher-level277

concepts. Establishing such higher-level reps will be the job of a learning algorithm.278

7

3.3 Neuron states279

We assume that the state of each neuron consists of several state components. Here we distinguish280

between input neurons and non-input neurons. Namely, each input neuron u ∈ N0 has just one state281

component:282

• firing, with values in {0, 1}; this indicates whether or not the input neuron is currently firing.283

We denote the firing component of input neuron u at integer time t by firingu(t); we will sometimes284

abbreviate this in mathematical formulas as just yu(t).285

Each non-input neuron u ∈ N`, 1 ≤ ` ≤ `′max, has three state components:286

• firing, with values in {0, 1}, indicating whether the neuron is currently firing.287

• weight, a real-valued column vector in [0, 1]n representing current weights on incoming288

edges.289

• engaged, with values in {0, 1}; indicating whether the neuron is currently prepared to learn.290

As discussed in the intro, these model eligibility traces (see [10]).291

We denote the three components of non-input neuron u at time t by firingu(t), weightu(t), and292

engagedu(t), respectively, and abbreviate these by yu(t), wu(t), and eu(t).293

We also use the notation xu(t) to denote the column vector of firing flags of u’s incoming neighbor294

neurons at time t. That is, xu(t) = [yv1(t)yv2(t) . . . yvn(t)]T , where {vi}i≤n are the incoming295

neighbors of u, which are exactly all the nodes in the layer below u.296

3.4 Neuron transitions297

Now we describe neuron behavior, specifically, we describe how to determine the values of the state298

components of each neuron u at time t ≥ 1 based on values of state components at the previous time299

t− 1 and on external inputs. Again, we distinguish between input neurons and non-input neurons.300

Input neurons: If u is an input neuron, then it has only one state component, the firing flag.301

Since u is an input neuron, we assume that the value of the firing flag is controlled by the network’s302

environment and not by the network itself, that is, the value of yu(t) is set by some external input303

signal, which we do not model explicitly.304

Non-input neurons: If u is a non-input neuron, then it has three state components, firing, weight,305

and engaged. Whether or not neuron u fires at time t, that is, the value of yu(t), is determined by its306

incoming potential and its activation function.307

The potential at time t, which we denote by potu(t) is given by the dot product of the weights and308

inputs at neuron u at time t− 1, that is,309

potu(t) = wu(t− 1)T · xu(t− 1) =
n∑
j=1

wuj (t− 1)xuj (t− 1).

The activation function, which defines whether or not neuron u fires at time t, is then defined by:310

yu(t) =

{
1 if potu(t) ≥ τ ,
0 otherwise,

.

where τ is the assumed firing threshold.311

We assume that the value of the engaged flag of u is controlled by u’s environment, that is, for312

every t, the value of eu(t) is set by some input signal, which may arise from outside the network313

or from another part of the network. For example, the engaged flag could be used to ensure that,314

in any round, only one neuron is prepared to learn.4 This neuron might be selected by a separate315

"Winner-Take-All" sub-network.316

4We use the term "round" to represent the activity between two consecutive times. In particular, "round t"
refers to the activity that takes the system from time t− 1 to time t. Thus, the potential in round t means the
same thing as the potential at time t, captured by potu(t).

8

Finally, for the weights, we assume that each neuron that is engaged at time t determines its weights317

at time t according to Oja’s learning rule. That is, if eu(t) = 1, then318

Oja’s rule: wu(t) = wu(t− 1) + η z(t− 1) · (xu(t− 1)− z(t− 1) · wu(t− 1)), (1)

where η is the assumed learning rate and z(t− 1) = potu(t).5 Thus, the weight vector is adjusted319

by an additive amount that is proportional to the learning rate and the potential, and depends on the320

input firing pattern, with a negative adjustment that depends on the potential and the prior weights.321

3.5 Network operation322

During execution, the network proceeds through a sequence of configurations,323

Con(0), Con(1), Con(2), . . ., where Con(t) describes the configuration at nonnegative inte-324

ger time t. Each configuration specifies a state for every neuron in the network, that is, values for all325

the state components of every neuron.326

As described above, the y values for the input neurons are specified by some external source. The y,327

w, and e values for the non-input neurons are defined by the network specification at time t = 0. For328

times t > 0, the y and w values are determined by the activation and learning functions described329

above. The e values (engagement flags) are determined by special inputs arriving from outside the330

network or from other sub-networks. In our algorithms in Sections 5.2 and 6.2, they will arrive from331

Winner-Take-All sub-networks.332

4 Problem Statements333

In this section we define our two main problems: recognizing concept hierarchies, and learning to334

recognize concept hierarchies. Our notion of recognition is robust to a bounded amount of noise. The335

notion of learning we define in this section corresponds to noise-free learning; we extend this to noisy336

learning in Section 6. In all cases, we assume that each item is represented by exactly one neuron;337

considering more elaborate representations is another direction for future work.338

4.1 Preliminaries339

Throughout this section, we fix constants `max, n, k, r1, and r2 according to the definitions for a340

concept hierarchy in Section 2. We consider a concept hierarchy C, with concept set C and maximum341

level `max, partitioned as usual into C0, C1, . . . , C`max . We also fix constants `′max, n, τ , and η as in342

the definitions for a network in Section 3, and consider a network N as described earlier. Thus, we343

allow the maximum layer number `′max for N to be different from the maximum level number `max344

for C, but the number n of input neurons is the same as the number of level 0 items in C.345

The following definition will be useful in defining our recognition and learning problems. It expresses346

what it means for a particular subset B of the level 0 concepts to be "presented" as input to the347

network, at a certain time t.348

Definition 4.1 (Presented). If B ⊆ D0 and t is a non-negative integer, then we say that B is349

presented at time t (in some particular execution) if, for every layer 0 neuron u, the following hold:350

1. If u ∈ rep(B) then yu(t) = 1.351

2. If u /∈ rep(B) then yu(t) = 0.352

That is, all of the layer 0 neurons in rep(B) fire at time t, and no other layer 0 neuron fires at time t.353

4.2 Robust recognition354

Here we define what it means for network N to recognize concept hierarchy C. We assume that355

every concept c ∈ C, at every level, has a unique representing neuron, rep(c); this extends the rep()356

function from level 0 concepts to higher-level concepts. For this definition, we also assume that,357

5The z(t− 1) notation is standard for Oja’s rule, so we use that in the rest of this paper when we analyze
network behavior based on this rule.

9

during the entire recognition process, the engaged flags of all neurons are off, i.e., for every neuron358

u with layer(u) > 0, and every t, eu(t) = 0.359

The following definition uses the two assumed values r1, r2 ∈ [0, 1], with r1 ≤ r2. r2 represents the360

fraction of children of a concept c at any level that should be sufficient to support firing of rep(c). r1361

is a fraction below which rep(c) should not fire.362

Definition 4.2 (Robust recognition problem). Network N (r1, r2)-recognizes a concept c in con-363

cept hierarchy C provided that N contains a unique neuron rep(c) such that the following holds.364

Assume that B ⊆ C0 is presented at time t.365

Then:366

1. When rep(c) must fire: If c ∈ supportedr2(B), then rep(c) fires at time t+ layer(rep(c)).367

2. When rep(c) must not fire: If c /∈ supportedr1(B), then rep(c) does not fire at time368

t+ layer(rep(c)).369

We say that N (r1, r2)-recognizes C provided that it (r1, r2)-recognizes each concept c in C.370

The special case of (1, 1)-recognition is interesting, since it is equivalent to the requirement that all371

level 0 descendants of a concept must be present for recognition:372

Lemma 4.3. Network N (1, 1)-recognizes a concept c in concept hierarchy C if and only if N373

contains a unique neuron rep(c) such that the following holds. If B ⊆ D0 is presented at time t, then374

rep(c) fires at time t+ layer(rep(c)) if and only if leaves(c) ⊆ B.375

Proof. By the definition of the robust recognition problem and Lemma 2.2.376

4.3 Noise-free learning377

In the learning problem, the network does not know ahead of time which particular concept hierarchy378

might be presented in a particular execution. It must be capable of learning any concept hierarchy.379

In our algorithm in Section 5.2, in order for the network to learn a concept hierarchy C, it must receive380

inputs corresponding to all the concepts in C. Here we define how individual concepts are "shown" to381

the network, and then give constraints on the order in which the concepts are shown. Such constraints382

are captured by the notion of a bottom-up training schedule. Then we state our learning guarantees,383

assuming a bottom-up training schedule for C.384

We begin by describing how an individual concept c is "shown" to the network. Recall that leaves(c)385

is defined to be descendants(c) ∩ C0.386

Definition 4.4 (Showing a concept). Concept c is shown at time t provided that the set B =387

leaves(c) is presented at time t. That is, for every input neuron u, yu(t) = 1 if and only if388

u ∈ rep(leaves(c)).389

Learning a concept hierarchy will involve showing all the concepts in the hierarchy. Informally390

speaking, we assume that the concepts are shown "bottom-up". For example, before the network is391

shown the concept of a head, it is shown the lower-level concepts of mouth, eye, etc. And before392

it is shown the concept of a human, it is shown the lower-level concepts of head, body, legs, etc.393

More precisely, to enable network N to learn the concept hierarchy C, we assume that every concept394

in its concept set C is shown at least σ times, where σ is a parameter to be specified by a learning395

algorithm. Furthermore, we assume that any concept c ∈ C is shown only after each child of c has396

been shown at least σ times. We allow the concepts to be shown in an arbitrary order and in an397

interleaved manner, provided that these constraints are observed.398

Definition 4.5 (σ-bottom-up training schedule). A training schedule for C is any finite list399

c0, c1, . . . , cm of concepts in C, possibly with repeats. A training schedule is σ-bottom-up, where400

σ is a positive integer, provided that each concept in C appears in the list at least σ times, and no401

concept in C appears before each of its children has appeared at least σ times.402

Any training schedule c0, c1, . . . , cm generates a corresponding sequence B0, B1, . . . , Bm of sets of403

level 0 concepts to be presented in a learning algorithm. Namely, Bi is defined to be rep(leaves(ci)).404

10

Definition 4.6 ((r1, r2, σ)-learning). Network N (r1, r2, σ)-learns concept hierarchy C provided405

that the following holds. At any time after a training phase in which all the concepts of C are shown406

according to a σ-bottom-up training schedule, network N (r1, r2)-recognizes C.407

5 Algorithms for Recognition and Noise-Free Learning408

We give algorithms for both of the problems described in Section 4.409

5.1 Recognition410

Fix a concept hierarchy C with concept set C, and r1, r2 ∈ [0, 1], with r1 ≤ r2. Recognition can411

be achieved by simply embedding the digraph induced by C in the network N . See Figure 1 for an412

illustration. For every ` and for every level ` concept c of C, we designate a unique representative413

rep(c) in layer ` of the network. Let R be the set of all representatives, that is, R = rep(C) =414

{rep(c) | c ∈ C}. We use rep−1 with support R to denote the corresponding inverse function that415

gives, for every u ∈ R, the unique concept c ∈ C with rep(c) = u.416

If u is a layer ` neuron and v is a layer `+ 1 neuron, then we define the edge weight weight(u, v) by:417

weight(u, v) =

{
1 if rep−1(v) ∈ children(rep−1(u)),

0 otherwise.
.

That is, we define the weights of edges corresponding to child relationships in the concept hierarchy418

to be 1, and the weights of other edges to be 0.419

Finally, we set the threshold τ for every non-input neuron to be (r1+r2)k
2 . It should be clear that the420

resulting network N solves the (r1, r2)-recognition problem:421

Theorem 5.1. Network N (r1, r2)-recognizes C.422

Recall that the definition of recognition, Definition 4.2 says that each individual concepts c in423

the hierarchy is recognized. For a level ` concept c, the definition includes a time bound of424

layer(rep(c)) = level(c) = ` for recognizing concept c.425

We note that our choice of weights in {0, 1} here is for simplicity. Other combinations are possible,426

and in fact, our learning algorithm below results in different weights, approximating 1√
k

and 0.427

5.2 Noise-free learning428

Now we move from the simple recognition problem to the harder problem of learning. Now we429

must design a network N that can learn an arbitrary concept hierarchy C with parameters as listed430

in Section 2 and Section 3, and with `max ≤ `′max. Our algorithm utilizes Winner-Take-All (WTA)431

sub-networks [21, 53, 46, 4, 32, 51, 37, 24].432

Winner-Take-All sub-networks: Our algorithm uses Winner-Take-All sub-networks to select433

which neurons are prepared to learn at different points during the learning process. In this paper,434

we abstract from these sub-networks by simply describing their effects on the engaged flags in the435

non-input neurons. We give the precise requirements in Assumption 5.2.436

While the network is being trained, example concepts are "shown" to the network, one example at437

each time t, according to a σ-bottom-up training schedule as defined in Section 4.3. We assume438

that, for every example concept c that is shown, exactly one neuron at the appropriate layer will439

be engaged; this layer is the one with the same number as the level of c in the concept hierarchy.440

Furthermore, the neuron on that layer that is engaged is the one that has the largest potential potu.441

More precisely, in terms of timing, we assume:442

Assumption 5.2 (Winner-Take-All assumption). If a level ` concept c is "shown" at time t, then at443

time t+ `, exactly one layer ` neuron u has its engaged state component equal to 1, that is, it has444

eu(t+ `) = 1. Moreover, u is chosen so that potu(t+ `) is the highest potential at time t+ ` among445

all the layer ` neurons.446

11

Main algorithm: We assume that the network N starts in a clean state in which, for every neuron447

u in layer 1 or higher, wu(0) = 1
k`max +11, where 1 is the n-dimensional all-one vector. We set the448

threshold τ for all neurons to be (r1+r2)
√
k

2 , and the learning rate η to be 1
4k . The initial condition,449

threshold, learning rate, Assumption 5.2, and the general model conventions for activation and450

learning suffice to determine how the network behaves, when shown a particular series of concepts.451

Our main result is:452

Theorem 5.3 (Noise-Free Learning Theorem). Let N be the network described above, with maxi-453

mum layer `′max. Let b be an arbitrary positive real ≥ 2. Let r1, r2 be reals with 0 < r1 < r2 ≤ 1;454

assume that r1k is not an integer, and r1k − br1kc ≥
√
k

kb−1 . Also assume that r2 and k satisfy the455

inequality 1√
k

+ 1
k ≤

r2
√
k

2 . 6 Let ε = r2−r1
r1+r2

.456

Let C be any concept hierarchy, with maximum level `max ≤ `′max. Let σ = 4
3ηk ((`max +1) log(k))+457

3
ηkε + b log(k)

log(16
15)

. Thus, σ is O
(

1
ηk

(
`max log(k) + 1

ε

)
+ b log(k)

)
.458

Then N (r1, r2, σ)-learns concept hierarchy C.459

That is, unwinding the definition of (r1, r2, σ)-learning, at any time after a training phase in which460

all the concepts of C are shown according to a σ-bottom-up training schedule, network N (r1, r2)-461

recognizes C.462

A rigorous analysis can be found in Appendix A; the main idea of the analysis is as follows. We first463

prove some direct consequences of Oja’s rule (Lemma A.1, Lemma A.2, and Lemma A.3). These464

quantify the weight changes for a single neuron involved in learning a single concept, assuming465

that all of its child concepts have already been learned. In particular, we show that the weights466

change quickly so that they approximate either 1/
√
k or 0, depending on whether or not the weights467

correspond to neurons that represent child concepts.468

We next build on these lemmas to describe, in Lemma A.6, the learning (i.e., weight changes) that469

occur throughout the network in the course of the entire execution. What makes this challenging is470

that we allow "incomparable" concepts to be shown in an interleaved manner; the only constraint is471

that, for every concept c, child concepts of a concept c must be shown sufficiently many times before472

c is shown. In order to prove that all concepts are learned correctly despite these challenges, we use473

an involved yet elegant five-part induction. Finally, in Section A.3 we put everything together and474

show that the network successfully (r1, r2, σ)-learns the concept hierarchy.475

6 Extension to Noisy Learning476

We extend our model, algorithm, and analysis to noisy learning. The idea is that we should be able to477

learn a concept even if we do not see all the child concepts at every time. For example, we could478

expect to learn the concept of a "human" even if we sometimes see only the "legs" and "body", and479

other times see only the "head" and "legs" etc.480

To model this, we assume that, in order to show a concept c, we show a random p-fraction of its481

sub-concepts. Formally, we use the following recursive marking procedure to determine which inputs482

should be presented to the network: We begin by marking c. Then, proceeding recursively, for any483

marked concept, we mark a random p-fraction of the sub-concepts. The recursion terminates when a484

subset of the leaves of c are marked. The inputs presented to the network are the representations of485

the marked leaves of c.486

6.1 Modifications to the model487

Formally, our model is as follows. Recall that in Definition 4.4, we assumed that when a concept c is488

shown, that all reps of the leaves of c fire. We now weaken this assumption, as follows.489

Definition 6.1 (p-noisy-showing a concept). Concept c is p-noisy-shown at time t, where p ∈ (0, 1],490

provided that a subset B ⊆ leaves(c) produced by the random function mark(c, p) is presented at491

6This last assumption can be satisfied by a variety of different combinations of assumptions on r2 and k
individually, such as r2 ≥ 1

2
and k ≥ 6, or r2 ≥ 1

4
and k ≥ 11.

12

time t.492

Random function mark(c, p) is defined recursively based on the level of c: If level(c) = 0, then493

mark(c, p) = {c}. If level(c) ≥ 1, then choose a subset C ′ consisting of exactly dpke children of c,494

uniformly at random, and let mark(c, p) =
⋃
c′∈C′ mark(c′, p).495

In the noisy case, we need an upper bound (σ2 in the following definition) on the number of times a496

concept is noisy-shown. See the discussion in the footnote before Theorem 6.4 for more details.497

Definition 6.2 ((σ1, σ2)-bottom-up training schedule). A training schedule is (σ1, σ2)-bottom-up,498

where σ1 and σ2 are positive integers, σ1 ≤ σ2, provided that each concept in C appears in the list499

at least σ1 times and no more than σ2 times, and no concept in C appears before each of its children500

has appeared at least σ1 times.501

Definition 6.3 ((r1, r2, σ1, σ2, p)-noisy learning). Network N (r1, r2, σ1, σ2, p)-noisy-learns con-502

cept hierarchy C provided that the following holds. At any time after a training phase in which all the503

concepts of C are p-noisy-shown according to a (σ1, σ2)-bottom-up training schedule, network N504

(r1, r2)-recognizes C.505

6.2 Noisy Learning Algorithm506

The algorithm is exactly the same as in Section 5.2, except that here we use p-noisy showing507

(Definition 6.1) instead of ordinary showing (Definition 4.4). We prove that our modified algorithm508

is robust in that it works even for our notions of noisy showing and noisy learning.509

Our theorem for noisy learning, Theorem 6.4, differs from Theorem 5.3 in that we guarantee510

"correctness" only in cases where each concept is noisy-shown at most n6 times, that is, in cases511

where the network (r1, r2, σ, n
6, p)-noisy learns the concept hierarchy. 7 Let w̄ = 1/

√
pk + 1− p.512

Our algorithm uses the learning rate η =
(δpw̄20)3

64Tk2p3 and the firing threshold τ = r2k(w̄ − 2δ), where513

δ = w̄(r2 − r1)/50.514

We now state our main theorem in the noisy-learning setting.515

Theorem 6.4 (Noisy-Learning Theorem). Let N be the network described in Section 3, with516

maximum layer `′max. Let r1, r2 be reals with 0 < r1 < r2 ≤ 1; assume that r2 − r1 ≥ 1/k and517

k ≥ 2. Let C be any concept hierarchy, with maximum level `max ≤ `′max and a total of |C| concepts.518

Let σ = c′ k
6

p6δ3 (`max log(k) + log(|C|n/δ)), for some large enough constant c′.519

Then, w.h.p., N (r1, r2, σ, n
6, p)-noisy-learns concept hierarchy C.8520

6.3 Proof idea521

In the presence of noise, many of the properties of the noise-free case no longer hold, rendering522

the proof significantly more involved. Here we give a rough outline of our proof; details appear in523

Appendix B.524

In the analysis we only consider the learning of one concept, as the interleaving of different concepts525

is no different than in the noise-free case and hence we do not repeat that analysis. Therefore, in the526

reminder we fix one concept.527

First, we bound the worst-case change of potential during a period of T rounds (where the concept is528

shown), provided it is initially within certain bounds. We later show that it will stay throughout the529

first n6 rounds where the concept is shown.530

We aim to derive bounds on the change of the weight of a single edge during such a period. It531

turns out that the way the weights change depends highly on the other weights, which makes532

7Note that we assume that every concept is shown at most n6 times. This is natural since if we consider a
number T of rounds that is of order exponential in n, then at some point t ≤ T it is very likely that the weights
will be unfavorable for recognition. This can happen since in such a large time frame, it’s very likely that there
will be a long sequence of runs in which the same representatives are simply (due to bad luck) not shown. The
network will forget about their importance. This is also partly the reason why the learning rate in the following
theorem is smaller than the one of the noise-free counterpart: the smaller learning rate guarantees that during the
first n6 rounds no unlikely sequence occurs that is very ‘bad’.

8We define w.h.p in this paper to be 1− 1
n

.

13

the analysis non-trivial. For this reason, we refrain from showing convergence of each weight533

separately. Instead we use the following potential function ψ. to show that the max and min weight534

convergence towards w̄ = 1√
pk+1−p and 0 respectively. Fix an arbitrary time t and let wmin(t) and535

wmax(t) be the minimum and maximum weights among w1(t), wk(t), . . . , wk(t), respectively. Let536

ψ(t) = max
{
wmax(t)

w̄ , w̄
wmin(t)

}
.537

Note that, in contrast to the noise-free case, weights belonging to representatives of sub-concepts538

converge to w̄ instead to 1/
√
k.539

Our goal is to show that the above potential decreases quickly until it is very close to 1. Showing540

that the potential decreases is involved, since one cannot simply use a worst-case approach, due to541

the terms in Oja’s rule being non-linear and potentially having a high variance, depending on the542

distribution of weights. Instead, the key to showing that ψ decreases is to carefully use the randomness543

over the input vector and to carefully bound the non-linear terms. Bounding these non-linear terms544

tightly presents a major challenge. To overcome it, we show that the changes of the weights form a545

Doob martingale allowing us to use Azuma-Hoeffding inequality to get asymptotically almost tight546

bounds on the change of the weights during the T rounds. The proof can be found in Appendix B.547

7 A Lower Bound548

Our results so far demonstrate how concept hierarchies with `max levels can be represented robustly549

by networks with the same number of layers, and how such representations can be learned, even in550

the presence of noise. We would also like lower bound theorems saying that `max layers are necessary551

for robust representation, under suitable restrictions.552

In this section, we give a first step toward such a result, Theorem 7.1. It says that a network N553

with maximum layer 1 cannot recognize a concept hierarchy C with maximum level 2. This bound554

depends only on the requirement that N should recognize C according to our definition for noisy555

recognition in Definition 4.2. That definition says that the network must tolerate bounded noise, as556

expressed by the ratio parameters r1 and r2. Our result assumes reasonable constraints on the values557

of r1 and r2. Note that the bound does not involve learning, only recognition.558

A preliminary generalization of this result to more levels and layers appears in [26]. However,559

in addition to the basic definition of noisy recognition, this generalization uses a strong technical560

assumption about disjointness of certain sets of triggered neurons. This assumption might be561

reasonable, in that it is guaranteed by our learning algorithms in Section 5.2; however, we think it is562

too strong and would prefer to weaken it to, say, a simple limitation on the number of neurons at each563

layer in the network. We leave this task for future work.564

7.1 Assumptions for the lower bound565

Here we list explicitly the assumptions that we use for our lower bound result, Theorem 7.1. We566

state these assumptions in a general way, in terms of a particular concept hierarchy C with concept567

set C and any number `max of levels, and an arbitrary network N with any number `′max of layers.568

However, our lower bound result, Theorem 7.1, refers to just the special case of two levels and one569

layer. These assumptions capture the idea that concept hierarchy C is (r1, r2)-recognized by network570

N .571

1. Every concept c ∈ C has a unique designated neuron rep(c) in the network. (In general, it572

might be in any layer, regardless of the level of c.)573

2. Let B be any subset of C0. If c ∈ supportedr2(B), then presentation of B at time t results574

in firing of rep(c) at time t+ layer(rep(c)).575

3. Let B be any subset of C0. If c /∈ supportedr1(B), then presentation of B at time t does576

not result in firing of rep(c) at time t+ layer(rep(c)).577

Throughout this section, we assume the model presented in Section 2 and Section 3. Furthermore,578

since we are considering recognition only, and not learning, we assume that the engaged state579

components are always equal to 0. Also throughout this section, we assume that r1 and r2 satisfy580

the following constraints:581

14

1. 0 ≤ r1 ≤ r2 ≤ 1.582

2. r1k is not an integer; define r′1 so that r′1k = br1kc.583

3. Define r′2 so that r′2k = dr2ke.584

4. (r′2)2 ≤ 2r′1 − (r′1)2.585

we think these constraints are reasonable. For example, for k = 10, r1 = .51 and r2 = .8 satisfy586

these conditions. Or r1 = 1
3 and r2 = 2

3 .587

7.2 Impossibility for recognition for two levels and one layer588

We consider an arbitrary concept hierarchy C with maximum level 2 and concept set C. We assume589

a (static) network N with maximum layer 1, and total connectivity from layer 0 neurons to layer 1590

neurons. For such a network and concept hierarchy, we get a contradiction to the noisy recognition591

problem in Section 4.2, for any values of r1 and r2 that satisfy the constraints given in Section 7.1.592

For the problem requirements, we use only Assumptions 1-3 from Section 7.1.593

Theorem 7.1. Assume that C has maximum level 2 and N has maximum layer 1. Assume that594

r1, r2, r
′
1, r
′
2 satisfy the constraints in Section 7.1. Then N does not recognize C, according to595

Assumptions 1-3.596

Proof. Assume for contradiction that N recognizes C. Let c denote any one of the concepts in C2,597

i.e., a level 2 concept in C. Then c has k children, each of which has k children of its own, for a total598

of k2 grandchildren.599

Each of the k2 grandchildren must have a rep in layer 0, but neither c nor any of its k children do,600

because layer 0 is reserved for level 0 concepts. So in particular, rep(c) is a layer 1 neuron. By the601

structure of the network, this means that the only inputs to rep(c) are from layer 0 neurons. Since we602

assume total connectivity, we have an edge from each layer 0 neuron to rep(c). We define:603

• W (b), for each child b of c in the concept hierarchy: The total weight of all edges (u, rep(c)),604

where u is a layer 0 neuron that is the rep of a child of b.605

• W : The total weight of all the edges (u, rep(c)), where u is a layer 0 neuron that is a rep of606

a grandchild of c. In other words, W = Σb∈children(c)W (b).607

We consider two scenarios. In Scenario A (the "must-fire scenario"), we choose input set B to consist608

of enough leaves of c to force rep(c) to fire, that is, we ensure that c ∈ supportedr2(B), while trying609

to minimize the total weight incoming to rep(c). Specifically, we choose the r′2k ≥ r2k children b of610

c with the smallest values of W (b). And for each such b, we choose its r′2k children with the smallest611

weights. Let B be the union of all of these r′2k sets of r′2k grandchildren of c. Since r′2k ≥ r2k, it612

follows that c ∈ supportedr2(B).613

Claim 1: In Scenario A, the total incoming potential to rep(c) is at most (r′2)2W .614

In Scenario B (the "can’t-fire scenario"), we choose input set B to consist of leaves of c that force615

rep(c) not to fire, that is, we ensure that c /∈ supportedr1(B), while trying to maximize the total616

weight incoming to rep(c). Specifically, we choose the r′1k < r1k children b of c with the largest617

values of W (b), and we include all of their children in B. For each of the remaining (1 − r′1)k618

children of c, we choose its r′1k < r1k children with the largest weights and include them all in B.619

Since r′1k is strictly less than r1k, it follows that c /∈ supportedr1(B).620

Claim 2: In Scenario B, the total incoming potential to rep(c) is at least (r′1)W + (1− r′1)r′1W =621

(2r′1 − (r′1)2)W .622

Proof of Claim 2: We define:623

• W1: The total of the weights W (b) for the r′1k children b of c with the largest values of624

W (b).625

• W2 = W −W1: The total of the weights W (b) for the remaining (1− r′1)k children of c.626

15

• W3: We know that W1 ≥ r′1W , since W1 gives the total weight for the r′1k children of c627

with the largest weights, out of k children. Define W3 = W1 − r′1W ; then W3 must be628

nonnegative.629

Then the total incoming potential to rep(c) is

≥W1 + r′1W2,

= r′1W +W3 + r′1(W −W1),

= r′1W +W3 + r′1(W −W3 − r′1W),

= 2r′1W − (r′1)2W + (1− r′1)W3,

≥ 2r′1W − (r′1)2W,

= (2r′1 − (r′1)2)W,

as needed.630

End of proof of Claim 2631

Now, Claim 1 implies that the threshold τ of neuron rep(c) must be at most (r′2)2W , since it must be632

small enough to permit the given B to trigger firing of rep(c). On the other hand, Claim 2 implies633

that the threshold must be strictly greater than (2r′1 − (r′1)2)W , since it must be large enough to634

prevent the given B from triggering firing of rep(c). So we must have635

(2r′1 − (r′1)2)W < τ ≤ (r′2)2W,

which implies that636

2r′1 − (r′1)2 < (r′2)2.

But this contradicts our assumption that (r′2)2 ≤ 2r′1 − (r′1)2.637

8 Conclusions and Future Work638

In this paper, we have proposed a theoretical model for recognizing and learning hierarchically-639

structured concepts in synchronous, feed-forward layered Spiking Neural Networks. Our networks640

use Oja’s learning rule for adjusting synapse weights. Based on this model, we have presented two641

learning algorithms, one for noise-free learning and one that allows bounded noise. Both algorithms642

learn concepts in a bottom-up manner, but allow arbitrary interleaving in learning of incomparable643

concepts. We have analyzed both algorithms in detail.644

The representations produced by these algorithms are certain types of embeddings of the hierarchical645

concept structure in the neural network. These representations support robust concept recognition,646

even when some of the inputs are missing. We have also provided a preliminary lower bound on the647

number of layers, saying that two-level concepts cannot be recognized robustly in one-level networks.648

This paper represents a first step towards a theory of representation and learning for hierarchically-649

structured concepts in SNNs. In the longer term, we are interested in theoretical models that capture650

key features of real computer vision algorithms and brain networks. Our current model is highly651

abstract and makes many simplifying assumptions: for instance, we assume that concepts are strictly652

tree-structured, that every concept has the same number of children, that the number of network653

layers is at least as large as the number of concept levels, that the networks are feed-forward, and that654

the learning rule is applied without error. To make the results more realistic, one should loosen all of655

these these assumptions, systematically.656

The results in this paper suggest numerous directions for future research:657

Extensions to our results: One can consider more flexible orders in which concepts in a hierarchy658

can be learned, based on a larger class of training schedules. Is it possible to learn higher-level659

concepts before learning low-level concepts? How does the order of learning affect the time required660

to learn? Another interesting issue is robustness of the networks, for example, to presentation of a few661

"extraneous" inputs that are not part of the concept being shown, to noise in calculating potentials, or662

to failures of neurons or synapses.663

16

Also, our algorithms use some auxiliary capabilities, such as Winner-Take-All, in order to select664

neurons for learning; it would be interesting to combine our algorithms with network implementations665

of these auxiliary capabilities in order to obtain complete, self-contained networks that solve the666

learning problem "from scratch". Finally, we would like to strengthen the lower bound results to667

apply to many levels and layers.668

Variations in the network model: Our networks have a simple layered structure; it would be669

interesting to consider some natural variations. For example, instead of all-to-all connections between670

consecutive layers, what happens to the results if one assumes a smaller number of randomly-671

determined connections between layers? Also, in our networks, all edges go from one layer ` to the672

next higher layer ` + 1. How do the results change if one allows edges to go from layer ` to any673

higher layer?674

What would be the impact on the results of allowing feedback edges from each layer ` to the next-675

lower layer ` − 1? How would the costs of recognizing and learning concepts change based on676

feedback from representations of higher-level concepts?677

What would be the effect on the results of using other incremental learning rules besides Oja’s678

rule? In an extreme case, what happens to the results if learning occurs all at once, rather than679

incrementally? In general, how can we compare the computational power of incremental learning680

models vs. one-shot learning models such as the one in [52, 20]?681

Variations in the data model: Another interesting research direction is to consider variations on682

the structure of concept hierarchies. How do the results change if we allow different numbers of683

children for different concepts? It is not clear how one can set the firing thresholds in this case.684

Perhaps these thresholds could be ’learned’. Another interesting extension is to allow a level `685

concept to have children at any level smaller than `, rather than just level `− 1? What happens if a686

concept hierarchy need not be a tree, but may include a bounded amount of overlap between the sets687

of children of different concepts?688

It would be interesting to understand more generally what kinds of logical structures can be learned689

by synchronous SNNs. In our concept hierarchies, each level `+ 1 concept corresponds to the "and"690

of several level ` concepts. What if we allow concepts that correspond to "ors", or "nors", of other691

concepts? Similar questions were suggested by Valiant [47], in terms of a different model. Also, in692

addition to learning individual concepts, it would be interesting to consider learning relationships693

between concepts, such as association, causality, or sequential order.694

Different forms of representation: In this paper, each concept c is represented by just one neuron695

rep(c). An interesting extension, which may be more biologically plausible, would be to allow696

the representation of each concept c to be a more elaborate "code" consisting of a particular set of697

neurons that fire. Important examples here are representations based on "cell assemblies" [38, 39].698

What are the theoretical advantages and costs of such codes, compared to simpler single-neuron699

representations? Another type of extension would be to "time-share" the network, allowing the same700

layer of the network to represent different levels of the concept hierarchy at different times. Ideas701

from [6, 19] on state machine simulations in neural networks may be useful here.702

Experimental work: All the ideas we have presented in this paper are purely theoretical. It would703

be valuable to complement this work with experiments to evaluate the performance and robustness of704

the algorithms presented here, as well as future algorithms.705

References706

[1] Alain Artola, S Bröcher, and Wolf Singer. Different voltage-dependent thresholds for induc-707

ing long-term depression and long-term potentiation in slices of rat visual cortex. Nature,708

347(6288):69, 1990.709

[2] Alain Artola and Wolf Singer. Long-term depression of excitatory synaptic transmission and its710

relationship to long-term potentiation. Trends in neurosciences, 16(11):480–487, 1993.711

[3] Elie L Bienenstock, Leon N Cooper, and Paul W Munro. Theory for the development of712

neuron selectivity: orientation specificity and binocular interaction in visual cortex. Journal of713

Neuroscience, 2(1):32–48, 1982.714

17

[4] Robert Coultrip, Richard Granger, and Gary Lynch. A cortical model of winner-take-all715

competition via lateral inhibition. Neural Networks, 5(1):47–54, 1992.716

[5] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of717

randomized algorithms. Cambridge University Press, 2009.718

[6] Rebecca Fay, Ulrich Kaufmann, Andreas Knoblauch, Heiner Markert, and Günther Palm.719

Combining visual attention, object recognition and associative information processing in a720

neurobotic system. In Biomimetic neural learning for intelligent robots, pages 118–143.721

Springer, 2005.722

[7] Daniel J Felleman and DC Essen Van. Distributed hierarchical processing in the primate cerebral723

cortex. Cerebral cortex (New York, NY: 1991), 1(1):1–47, 1991.724

[8] Peter Földiák and Peter Fdilr. Adaptive network for optimal linear feature extraction. 1989.725

[9] Wulfram Gerstner and Werner M. Kistler. Spiking neuron models: Single neurons, populations,726

plasticity. Cambridge University Press, 2002.727

[10] Wulfram Gerstner, Marco Lehmann, Vasiliki Liakoni, Dane Corneil, and Johanni Brea. Eli-728

gibility traces and plasticity on behavioral time scales: experimental support of neohebbian729

three-factor learning rules. Frontiers in neural circuits, 12:53, 2018.730

[11] Stefan Habenschuss, Zeno Jonke, and Wolfgang Maass. Stochastic computations in cortical731

microcircuit models. PLoS Computational Biology, 9(11):e1003311, 2013.732

[12] D. O. Hebb. The Organization of Behavior. Wiley and Sons, New York, 1949.733

[13] Yael Hitron, Nancy A. Lynch, Cameron Musco, and Merav Parter. Random sketching, clustering,734

and short-term memory in spiking neural networks. In 11th Innovations in Theoretical Computer735

Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, pages 23:1–736

23:31, 2020. URL: https://doi.org/10.4230/LIPIcs.ITCS.2020.23, doi:10.4230/737

LIPIcs.ITCS.2020.23.738

[14] D. Hubel and T. Wiesel. Receptive fields, binocular interaction, and functional architecture in739

the cat’s visual cortex. Journal of Physiology, 160:106–154, 1962.740

[15] D. H. Hubel and T. N. Wiesel. Receptive fields of single neurones in the cat’s741

striate cortex. The Journal of Physiology, 148(3):574–591, 1959. URL: https:742

//physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1959.sp006308,743

arXiv:https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1113/jphysiol.744

1959.sp006308, doi:10.1113/jphysiol.1959.sp006308.745

[16] JM Hupé, AC James, BR Payne, SG Lomber, P Girard, and J Bullier. Cortical feedback746

improves discrimination between figure and background by v1, v2 and v3 neurons. Nature,747

394(6695):784, 1998.748

[17] Eugene M. Izhikevich. Which model to use for cortical spiking neurons? IEEE Transactions on749

Neural Networks, 15(5):1063–1070, 2004.750

[18] Richard Kempter, Wulfram Gerstner, and J Leo Van Hemmen. Hebbian learning and spiking751

neurons. Physical Review E, 59(4):4498, 1999.752

[19] Andreas Knoblauch, Heiner Markert, and Günther Palm. An associative cortical model of753

language understanding and action planning. In International work-conference on the interplay754

between natural and artificial computation, pages 405–414. Springer, 2005.755

[20] Andreas Knoblauch, Günther Palm, and Friedrich T Sommer. Memory capacities for synaptic756

and structural plasticity. Neural Computation, 22(2):289–341, 2010.757

[21] John Lazzaro, Sylvie Ryckebusch, Misha Anne Mahowald, and Carver A. Mead. Winner-take-758

all networks of o(n) complexity. Technical report, DTIC Document, 1988.759

[22] Robert A. Legenstein, Wolfgang Maass, Christos H. Papadimitriou, and Santosh S. Vempala.760

Long term memory and the densest k-subgraph problem. In 9th Innovations in Theoretical761

Computer Science (ITCS 2018), pages 57:1–57:15, Cambridge, MA, January 2018.762

[23] S. Lowel and W. Singer. Selection of intrinsic horizontal connections in the visual cortex by763

correlated neuronal activity. Science Magazine, 255(5041):209–212, January 1992.764

[24] Nancy Lynch, Cameron Musco, and Merav Parter. Computational tradeoffs in biological neural765

networks: Self-stabilizing winner-take-all networks. In ITCS 2017, 2017. Full version available766

at https://arxiv.org/abs/1610.02084.767

18

https://doi.org/10.4230/LIPIcs.ITCS.2020.23
http://dx.doi.org/10.4230/LIPIcs.ITCS.2020.23
http://dx.doi.org/10.4230/LIPIcs.ITCS.2020.23
http://dx.doi.org/10.4230/LIPIcs.ITCS.2020.23
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1959.sp006308
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1959.sp006308
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1959.sp006308
http://arxiv.org/abs/https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1113/jphysiol.1959.sp006308
http://arxiv.org/abs/https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1113/jphysiol.1959.sp006308
http://arxiv.org/abs/https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1113/jphysiol.1959.sp006308
http://dx.doi.org/10.1113/jphysiol.1959.sp006308
https://arxiv.org/abs/1610.02084

[25] Nancy Lynch, Cameron Musco, and Merav Parter. Winner-take-all computation in spiking768

neural networks, April 2019. arXiv:1904.12591.769

[26] Nancy A. Lynch and Frederik Mallmann-Trenn. Learning hierarchically structured concepts.770

CoRR, abs/1909.04559v3, 2019. URL: http://arxiv.org/abs/1909.04559v3, arXiv:771

1909.04559v3.772

[27] Nancy A. Lynch and Cameron Musco. A basic compositional model for spiking neural networks.773

CoRR, abs/1808.03884, 2018. URL: http://arxiv.org/abs/1808.03884, arXiv:1808.774

03884.775

[28] Nancy A. Lynch, Cameron Musco, and Merav Parter. Computational tradeoffs in biological776

neural networks: Self-stabilizing winner-take-all networks. In 8th Innovations in Theoretical777

Computer Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, pages 15:1–778

15:44, 2017. URL: https://doi.org/10.4230/LIPIcs.ITCS.2017.15, doi:10.4230/779

LIPIcs.ITCS.2017.15.780

[29] Wolfgang Maass. On the computational power of noisy spiking neurons. In NIPS1996, 1996.781

[30] Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.782

Neural Networks, 10(9):1659–1671, 1997.783

[31] Wolfgang Maass. Neural computation with winner-take-all as the only nonlinear operation. In784

NIPS 1999, pages 293–299, 1999.785

[32] Wolfgang Maass. On the computational power of winner-take-all. Neural Computation, 2000.786

[33] Nikola T Markov, Julien Vezoli, Pascal Chameau, Arnaud Falchier, René Quilodran, Cyril787

Huissoud, Camille Lamy, Pierre Misery, Pascale Giroud, Shimon Ullman, et al. Anatomy788

of hierarchy: feedforward and feedback pathways in macaque visual cortex. Journal of789

Comparative Neurology, 522(1):225–259, 2014.790

[34] Hrushikesh Mhaskar, Qianli Liao, and Tomaso Poggio. Learning functions: when is deep better791

than shallow. arXiv preprint arXiv:1603.00988, 2016.792

[35] Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of mathematical793

biology, 15(3):267–273, 1982.794

[36] Erkki Oja. Principal components, minor components, and linear neural networks. Neural795

networks, 5(6):927–935, 1992.796

[37] Matthias Oster and Shih-Chii Liu. Spiking inputs to a winner-take-all network. In NIPS 2006,797

page 1051, 2006.798

[38] Günther Palm. Neural assemblies: An alternative approach to artificial intelligence, volume 7.799

Springer Science & Business Media, 2012.800

[39] Günther Palm, Andreas Knoblauch, Florian Hauser, and Almut Schüz. Cell assemblies in the801

cerebral cortex. Biological cybernetics, 108(5):559–572, 2014.802

[40] Christos H. Papadimitriou and Santosh S. Vempala. Cortical learning via prediction. Proceedings803

of Machine Learning Research (PMLR), 40:1402–1422, 2015.804

[41] Christos H. Papadimitriou and Santosh S. Vempala. Random projection in the brain and805

computation with assemblies of neurons. In 10th Innovation in Theoretical Computer Science806

(ITCS 2019), pages 57:1–57:19, San Diego, CA, January 2019.807

[42] Christos H. Papadimitriou, Santosh S. Vempala, Daniel Mitropolsky, Michael Collins,808

and Wolfgang Maass. Brain computation by assemblies of neurons, December 2019.809

bioRxiv:10.1101/869156v1.810

[43] Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object recognition in811

cortex. Nature neuroscience, 2(11):1019–1025, 1999.812

[44] Sven Schrader, Markus Diesmann, and Abigail Morrison. A compositionality machine realized813

by a hierarchic architecture of synfire chains. Frontiers in Computational Neuroscience, 4:154,814

2011. URL: https://www.frontiersin.org/article/10.3389/fncom.2010.00154,815

doi:10.3389/fncom.2010.00154.816

[45] Lili Su and Chia-Jung Chang amd Nancy Lynch. Spike-based winner-take-all computation:817

Fundamental limits and order-optimal circuits. Neural Computation, 31(12), December 2019.818

Published online. Also, arXiv:1904.10399.819

19

http://arxiv.org/abs/1909.04559v3
http://arxiv.org/abs/1909.04559v3
http://arxiv.org/abs/1909.04559v3
http://arxiv.org/abs/1909.04559v3
http://arxiv.org/abs/1808.03884
http://arxiv.org/abs/1808.03884
http://arxiv.org/abs/1808.03884
http://arxiv.org/abs/1808.03884
https://doi.org/10.4230/LIPIcs.ITCS.2017.15
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.15
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.15
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.15
https://www.frontiersin.org/article/10.3389/fncom.2010.00154
http://dx.doi.org/10.3389/fncom.2010.00154

[46] Simon J. Thorpe. Spike arrival times: A highly efficient coding scheme for neural networks.820

Parallel Processing in Neural Systems, pages 91–94, 1990.821

[47] Leslie G. Valiant. Circuits of the Mind. Oxford University Press on Demand, 2000.822

[48] Leslie G. Valiant. A neuroidal architecture for cognitive computation. Journal of the ACM823

(JACM), 47(5):854–882, 2000.824

[49] Leslie G. Valiant. Memorization and association on a realistic neural model. Neural Computa-825

tion, 17(3):527–555, 2005.826

[50] Leslie G. Valiant. The hippocampus as a stable memory allocator for cortex. Neural Computa-827

tion, 24(11):2873–2899, 2012.828

[51] Wei Wang and Jean-Jacques E. Slotine. k-winners-take-all computation with neural oscillators.829

arXiv preprint q-bio/0401001, 2003.830

[52] David J Willshaw, O Peter Buneman, and Hugh Christopher Longuet-Higgins. Non-holographic831

associative memory. Nature, 222(5197):960–962, 1969.832

[53] Alan L. Yuille and Norberto M. Grzywacz. A winner-take-all mechanism based on presynaptic833

inhibition feedback. Neural Computation, 1(3):334–347, 1989.834

[54] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.835

In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, Computer Vision –836

ECCV 2014, pages 818–833, Cham, 2014. Springer International Publishing.837

[55] Bolei Zhou, David Bau, Aude Oliva, and Antonio Torralba. Interpreting deep visual representa-838

tions via network dissection. IEEE Transactions on Pattern Analysis and Machine Intelligence,839

41(9):2131–2145, September 2019.840

A Analysis of Noise-free Learning841

Here we present our analysis for the noise-free learning algorithm in Section 5. In Section A.1, we842

describe how incoming weights change for a particular neuron when it is presented with a consistent843

input vector. In Section A.2, we prove our main invariant, saying how neurons get bound to concepts,844

when neuron firing occurs, and how weights change, during the time when the network is learning. In845

Section A.3, we use that invariant to prove Theorem 5.3.846

A.1 Weight Change for Individual Neurons847

In this subsection we give a series of three lemmas that describe how incoming weights change for a848

particular neuron when it is presented with a consistent input vector during execution of our noise-free849

learning network. Throughout this subsection, we consider a single neuron u with layer(u) ≥ 1.850

We begin by considering how weights change in a single round. Lemma A.1 describes how the851

weights change for firing neighbors, and for non-firing neighbors. In this lemma, we consider a852

neuron u with weight vector w(t − 1) and input vector x(t − 1), both at time t − 1 ≥ 0. Write853

z(t − 1) for the dot product of w(t − 1) and x(t − 1), which represents the incoming potential in854

round t. We assume that the engaged component, e(t), is equal to 1. We give bounds on the new855

weights for u at time t, given by w(t).856

Lemma A.1. Let F ⊆ {1, . . . , n}, with |F | = k. Assume that:857

1. xi(t − 1) = 1 for every i ∈ F and xi(t − 1) = 0 for every i /∈ F . That is, exactly the858

incoming neighbors in F fire at time t− 1.859

2. All weights wi(t− 1), i ∈ F are equal, and all weights wi(t− 1), i /∈ F are equal.860

3. For every i ∈ F , 0 < wi(t− 1) < 1√
k

.861

4. For every i /∈ F , wi(t− 1) > 0.862

5. 0 < η ≤ 1
4k .863

Then:864

20

1. All weights wi(t), i ∈ F are equal, and all weights wi(t), i /∈ F are equal.865

2. For every i ∈ F , wi(t) > wi(t− 1).866

3. For every i ∈ F , wi(t) < 1√
k

.867

4. For every i /∈ F , wi(t) < wi(t− 1).868

5. For every i /∈ F , wi(t) > 0.869

Proof. Note that z(t− 1) < k 1√
k

=
√
k, because of the assumed upper bound for each wj(t− 1)870

and the fact that |F | = k. Similarly, we have that z(t− 1) > 0.871

Part 1 is immediate by symmetry—all components for i ∈ F are changed by the same rule, based on872

the same information.873

For Part 2, consider any i ∈ F . Since z(t − 1) <
√
k and wi(t − 1) < 1√

k
, the product z(t −874

1) wi(t− 1) < 1. Then by Oja’s rule:875

wi(t) = wi(t− 1) + ηz(t− 1)(1− z(t− 1)wi(t− 1)) > wi(t− 1) + ηz(t− 1) · 0 = wi(t− 1),

as needed.876

For Part 3, again consider any i ∈ F . Since wi(t− 1) < 1√
k

, we may write wi(t− 1) = 1√
k
− λ for

some λ > 0. Then by symmetry, for every j ∈ F , we have wi(t− 1) = 1√
k
− λ. We thus have that

wi(t) = wi(t− 1) + ηz(t− 1)(1− z(t− 1)wi(t− 1))

= wi(t− 1) + ηk ·
(

1√
k
− λ

)(
1− k

(
1√
k
− λ

)2
)

= wi(t− 1) + ηk ·
(

1√
k
− λ

)(
1− k

(
1

k
− 2λ√

k
+ λ2

))
< wi(t− 1) + ηk ·

(
1√
k

)
2λ
√
k

≤ wi(t− 1) +
λ

2

< 1/
√
k,

as needed.877

For Part 4, consider any i /∈ F . We have

wi(t) = wi(t− 1) + ηz(t− 1)(0− z(t− 1)wi(t− 1))

= wi(t− 1)(1− ηz(t− 1)2)

< wi(t− 1),

as needed.878

Finally, for Part 5, again consider any i /∈ F . We then have:

wi(t) = wi(t− 1) + ηz(t− 1)(0− z(t− 1)wi(t− 1))

= wi(t− 1)(1− ηz(t− 1)2)

> wi(t− 1)(1− ηk), since z(t− 1) <
√
k

≥ wi(t− 1)(1− k

4k
), since η ≤ 1

4k

=
3

4
wi(t− 1)

> 0,

as needed.879

21

Lemma A.2 extends Lemma A.1 to any number of steps. This lemma assumes that the same x inputs880

are given to the given neuron u at every time. When we apply this later, in the proof of Lemma A.6,881

it will be in a context where these inputs may occur at separated times, namely, the particular times at882

which u is actually engaged in learning. At the intervening times, u will not be engaged in learning883

and therefore will not change its weights.884

Lemma A.2. Let F ⊆ {1, . . . , n}, with |F | = k. Assume that:885

1. For every t ≥ 0, xi(t) = 1 for every i ∈ F and xi(t) = 0 for every i /∈ F .886

2. All weights wi(0) are equal.887

3. 0 < wi(0) < 1√
k

for every i.888

4. 0 < η ≤ 1
4k .889

Then for any t ≥ 1:890

1. All weights wi(t), i ∈ F are equal, and all weights wi(t), i /∈ F are equal.891

2. 0 < wi(t) <
1√
k

for every i.892

3. For every i ∈ F , wi(t) > wi(0).893

4. For every i /∈ F , wi(t) < wi(0).894

Lemma A.3 gives quantitative bounds on the amount of weight increase and weight decrease over895

many rounds, again for a single neuron u involved in learning a single concept. We use notation896

w(t), x(t), z(t) as before. We assume that x(t) is the same at all times t = 0, 1, . . ., and assume that897

the engaged component e(t) is equal to 1 at all times t.898

Lemma A.3 (Learning Properties). Let F ⊆ {1, . . . , n} with |F | = k. Let ε ∈ (0, 1].899

Let b be a positive integer. Let σ = 4
3ηk ((`max +1) log(k)) + 3

ηkε + b log(k)

log(16
15)

. Thus, σ is900

O
(

1
ηk

(
`max log(k) + 1

ε

)
+ b log(k)

)
. Assume that:901

1. For every t ≥ 0, xi(t) = 1 for every i ∈ F , xi(t) = 0 for every i /∈ F , and e(t) = 1.902

2. All weights wi(0) are equal to 1
k`max

.903

3. η = 1
4k .9904

Then for every t ≥ σ, the following hold:905

1. For any i ∈ F , we have wi(t) ∈ [1
(1+ε)

√
k
, 1√

k
].906

2. For any i /∈ F , we have wi(t) ∈ [0, 1
k`max +b].907

Proof. We first show Part 1. Lemma A.2 implies the upper bound of 1√
k

, so it remains to show the908

lower bound. We do this is two steps, first increasing the weight to an intermediate target value 1
2
√
k

909

and then to the real target value 1
(1+ε)

√
k

. These two steps use different arguments.910

For the first step, we begin with Claim 1, which bounds the number of rounds required to double the911

weight wi, for i ∈ F , when wi is not "too close" to the target weight 1√
k

.912

Claim 1: Assume that i ∈ F . For any positive integer j, the number of rounds needed to increase wi913

from 1
2j+1

√
k

to 1
2j
√
k

is at most 4
3ηk .914

9This is a very precise assumption but it could be weakened, at a corresponding cost in running time.

22

Proof of Claim 1: Since all the weights are the same and 1
2j+1

√
k
≤ wi(t− 1) ≤ 1

2
√
k

, we get:

wi(t) = wi(t− 1) + ηz(t− 1) · (1− z(t− 1) · wi(t− 1))

= wi(t− 1) + ηkwi(t− 1)(1− kw2
i (t− 1))

≥ wi(t− 1) +
ηk

2j+1
√
k

(1− k 1

4k
)

= wi(t− 1) +
ηk

2j+1
√
k

(3/4).

Increasing wi from 1
2j+1

√
k

to 1
2j
√
k

means we must increase it by an additive amount of 1
2j+1

√
k

. We915

have just shown that each round increases wi by at least ηk 1
2j+1

√
k

(3/4). Thus, the number of rounds916

required to double wi from 1
2j+1

√
k

to 1
2j
√
k

is at most 1
2j+1

√
k

divided by ηk 1
2j+1

√
k

(3/4), which is917

4
3ηk .918

End of proof of Claim 1.919

Now we can prove the first step, bounding the number of rounds required for the weight to reach at920

least 1
2
√
k

:921

Claim 2: For i ∈ F , the number of rounds required to increase wi from the starting value 1
k`max

to922

the intermediate target value 1
2
√
k

is at most 4
3ηk ((`max +1) log(k)).923

Proof of Claim 2: By applying Claim 1 (`max +1) log(k) times.924

End of Proof of Claim 2.925

Next, for the second step, we bound the number of rounds required to increase wi, i ∈ F , from 1
2
√
k

926

to 1
(1+ε)

√
k

. This time, of course, depends on ε.927

Claim 3: For i ∈ F , the number of rounds required to increase wi from the intermediate target value928
1

2
√
k

to the final target value 1
(1+ε)

√
k

is at most 3
ηkε .929

Proof of Claim 3: The argument is generally similar to that for Claim 1, but now using the fact that930
1

2
√
k
≤ wi(t− 1) ≤ 1

(1+ε)
√
k

:931

wi(t) = wi(t− 1) + ηz(t− 1)(1− z(t− 1)wi(t− 1))

= wi(t− 1) + ηkwi(t− 1)(1− kw2
i (t− 1))

≥ wi(t− 1) +
ηk

2
√
k

(
1− 1

(1 + ε)2

)
= wi(t− 1) +

η
√
k

2

(
1− 1

(1 + ε)2

)
≥ wi(t− 1) +

η
√
k

2

ε

3
,

= wi(t− 1) +
η
√
kε

6
,

where we used the fact that (1− 1/(1 + x)2) ≥ x/3 for 0 ≤ x ≤ 1. It follows that the total time to932

increase wi from its initial value 1
2
√
k

to the target value 1
(1+ε)

√
k

is at most933

(
1

(1 + ε)
√
k
− 1

2
√
k

)
· 6

η
√
kε

=
1− ε

2(1 + ε)
√
k
· 6

η
√
kε

=
6(1− ε)

2(1 + ε)ηkε
≤ 3

ηkε
.

End of Proof of Claim 3.934

23

It follows that the total number of rounds for Part 1 is at most the sum of the bounds from Claims 2935

and 3, or936

4

3ηk
((`max +1) log(k)) +

3

ηkε
,

which is O
(

1
ηk (`max log(k) + 1

ε)
)

.937

Note that once the weights for indices in F reach their target values, they never decrease below those938

values. This follows from strict monotonicity shown in Lemma A.2.939

We now turn to proving Part 2. Lemma A.2 implies the lower bound, so it remains to show the upper940

bound.941

We consider what happens after the increasing weights (for indices in F) have already reached the942

level 1
2
√
k

, and then bound the number of rounds for the decreasing weights to decrease to the desired943

target 1
k`max +b . The reason we choose the level 1

2
√
k

for the increasing weights is that this is enough944

to guarantee that z is "large enough" to produce a sufficient amount of decrease. For this part, we use945

our assumed lower bound on η.946

Claim 4: For i /∈ F , the number of rounds required to decrease wi from the starting weight 1
k`max +1947

to 1
k`max +b is at most b log2 k

log2
16
15

, which is O(b log(k)).948

Proof of Claim 4: Considering a single round, we get:

wi(t) = wi(t− 1)(1− ηz(t− 1)2)

≤ wi(t− 1)

1− 1

4k

(√
k

2

)2

= wi(t− 1)

(
1− 1

16

)
= wi(t− 1)

15

16
.

The inequality uses the facts that η ≥ 1
4k and z(t− 1) ≥ k(1

2
√
k

) =
√
k

2 .949

Thus, the weight decreases by a factor of 15/16 at each round. Now consider the number of rounds950

needed to reduce from 1
k`max +1 to the target weight 1

k`max +b . This number is bounded by b log2 k

log2
16
15

,951

which is O(b log(k)), as claimed.952

End of Proof of Claim 4.953

Summing the bounds for Part 1 (increasing) and Part 2 (decreasing), we see that the total number of954

rounds to complete all the needed increases and decreases is at most955

4

3ηk
((`max +1) log(k)) +

3

ηkε
+
b log2 k

log2
16
15

,

which is O
(

1
ηk (`max log(k) + 1

ε) + b log(k)
)

, as needed.956

957

A.2 Main Invariants958

In this section, we give a key lemma, Lemma A.6, which describes key properties of the algorithm959

with respect to engagement, weight settings, and firing. This lemma deals with the network as a960

whole, and draws upon the lemmas in Section A.1 for properties involving learning by individual961

neurons. Lemma A.6 relies on assumptions about the input, captured by our σ-bottom-up training962

definition, and also about the settings of engagement flags.963

For the rest of Appendix A, we use the following assumptions about the various parameter settings:964

1. The concept hierarchy consists of `max levels.965

2. The network consists of `′max levels, with `max ≤ `′max.966

24

3. b is a positive real ≥ 2.967

4. r1, r2 satisfy 0 < r1 < r2 ≤ 1, and r1k is not an integer; more strongly, we assume the968

technical condition that r1k−br1kc ≥
√
k

kb−1 . Furthermore, we assume that 1√
k

+ 1
k ≤

r2
√
k

2 .969

5. ε = r2−r1
r1+r2

.970

6. τ = (r1+r2)
√
k

2 .971

7. η = 1
4k .972

8. σ, for the σ-bottom-up training schedule definition, is equal to 4
3ηk ((`max +1) log(k)) +973

3
ηkε + b log(k)

log(16
15)

. Thus, σ is O
(

1
ηk

(
`max log(k) + 1

ε

)
+ b log(k)

)
.974

We use the following assumption about the settings of the engagement flags.975

Assumption A.4. For every time t and layer `, a neuron u on layer ` ≥ 1 is engaged (i.e.,976

u.engaged = 1) at time t, if and only if both of the following hold:977

1. A level ` concept was shown at time t− `.978

2. Neuron u is selected by the WTA at time t.979

Recall that, by Assumption 5.2, the WTA selects exactly one layer ` neuron at time t. This, together980

with Assumption 5.2, implies that exactly one layer ` neuron will be engaged at time t.981

We also define the point at which a particular layer ` neuron u gets "bound" to a particular level `982

concept c. Namely, we say that a layer ` neuron u, ` ≥ 1, "binds" to a level ` concept c at time t if c983

is presented for the first time at time t− `, and u is the neuron that is engaged at time t. At that point,984

we define rep(c) = u.985

Here is a simple auxiliary lemma, about unbound neurons.986

Lemma A.5. Let u be a neuron with layer(u) ≥ 1. Then for every t ≥ 0, the following hold:987

1. If u is unbound at time t, then all of u’s incoming weights at time t are the initial weight988
1

k`max +1 .989

2. If u is unbound at time t, then u does not fire at time t.990

We are now ready to prove our main lemma. It has five parts, whose proofs are intertwined.991

Lemma A.6. Consider any particular execution of the network in which inputs follow a σ-bottom-up992

training schedule. For any t ≥ 0, the following properties hold.993

1. The rep() mapping from the set C of concepts to the set N of neurons a is one-to-one994

mapping; that is, for any two distinct concepts c and c′ for which rep(c) and rep(c′) are995

both defined by time t, we have rep(c) 6= rep(c′).996

2. For every concept c with level(c) ≥ 1, every showing of c at a time ≤ t− level(c), leads to997

the same neuron u = rep(c) becoming engaged at time t.998

3. For every concept c with level(c) ≥ 1, and any t′ ≥ 1, if c is shown at time t− level(c) for999

the t′-th time, then the following are true at time t:1000

(a) Neuron u = rep(c) has weights in
(

1
k`max +1 ,

1√
k

)
for all neurons in rep(children(c)),1001

and weights in
(
0, 1

k`max +1

)
for all other neurons.1002

(b) If t′ ≥ σ, then u with u = rep(c) has weights in
[

1
(1+ε)

√
k
, 1√

k

]
for all neurons in1003

rep(children(c)), and weights in
[
0, 1

k`max +b

]
for all other neurons.1004

4. For every concept c, if a proper ancestor of c is shown at time t− level(c), then rep(c) is1005

defined by time t, and fires at time t.1006

5. For any neuron u, the following holds. If u fires at time t, then there exists c such that1007

u = rep(c) at time t, and an ancestor of c is shown at time t − layer(u). (This ancestor1008

could be c or a proper ancestor of c.)1009

25

Proof. First observe that, by Assumption A.4, every representative rep(c) is on the layer equal to1010

level(c). We prove the five-part statement of the lemma by induction on t.1011

Base: t = 0.1012

For Part 1, the only concepts for which reps are defined at time 0 are level 0 concepts, and these all1013

have distinct reps by assumption. For Parts 2 and 3, note that level(c) ≥ 1 implies that the times1014

in question are negative, which is impossible; so these are trivially true. For Part 4, it must be that1015

level(c) = 0 (to avoid negative times), and a proper ancestor of c is shown at time 0. Then the layer1016

0 neuron rep(c) fires at time 0, by the definition of "showing".1017

For Part 5, first note that at time 0 no neurons at layers ≥ 1 are bound, so by Lemma A.5, they cannot1018

fire at time 0. Since we assume that u fires at time 0, it must be that layer(u) = 0, which implies1019

that u = rep(c) for some level 0 concept c. Then, since u fires at time 0, by definition of "showing",1020

an ancestor of c must be shown at time 0.1021

Inductive step: Assume the five-part claim holds for time t− 1 and consider time t. We prove the1022

five parts one by one.1023

For Part 1, let c and c′ be any two distinct concepts for which rep(c) and rep(c′) are both defined1024

by time t. We must show that rep(c) 6= rep(c′). If both rep(c) and rep(c′) are defined by time1025

t − 1, then by the inductive hypothesis, Part 1, rep(c) 6= rep(c′) at time t − 1. Since the reps do1026

not change, this is still true at time t, as needed. So the only remaining possibility for conflict is that1027

one of these two concepts, say c′, already has its rep defined by time t− 1 and the other concept, c,1028

does not, and rep(c) becomes defined at time t, to be the same neuron as rep(c′). But we claim that,1029

because of the weight settings, rep(c) must be defined at time t to be a neuron that is unbound at1030

time t− 1.1031

So suppose that u is the neuron that gets defined to be rep(c) at time t; we argue that u must be1032

unbound at time t − 1. Write ` = level(c); then also layer(u) = `. By Assumption A.4, the1033

engaged flag gets set at time t for u, and for no other layer ` neurons. Since c is shown at time t− `,1034

by the σ-bottom-up assumption, each child of c must have been shown at least σ times prior to time1035

t− `. Then by the inductive hypothesis, Parts 4 and 5, the layer `− 1 neurons "fire correctly" at time1036

t − 1, that is, all neurons in the set rep(children(c)) fire and no other layer ` − 1 neuron fires, at1037

time t− 1. This firing pattern implies that every layer ` neuron that is already bound strictly prior to1038

time t has incoming potential in round t that is strictly less than k times the initial weight, by the1039

inductive hypothesis Part 3(a) and by the disjointness of the concepts. On the other hand, every layer1040

` neuron that is unbound at time t− 1 has incoming potential equal to k times the initial weight, by1041

Lemma A.5. By assumption, there must be at least one unbound neuron available. It follows that1042

the neuron u that is chosen by the WTA is unbound at time t− 1, and so cannot be the same as the1043

already-bound neuron rep(c′).1044

1045

For Part 2, let c be any concept with level(c) ≥ 1, and write ` = level(c). We must prove that any1046

showing of c at any time ≤ t− ` leads to the same neuron u = rep(c) becoming engaged. If c is not1047

shown at time precisely t− `, then the claim follows directly from the inductive hypothesis, Part 2.1048

So assume that c is shown at time t− `. If t− ` is the first time that c is shown, then rep(c) first gets1049

defined at time t, so the conclusion is trivially true (since there is only one showing to consider).1050

It remains to consider the case where rep(c) is already defined by time t− 1. Then, by the inductive1051

hypothesis, Part 2, we know that any showing of c at a time ≤ t − 1 − ` leads to neuron rep(c)1052

becoming engaged. We now argue that the same rep(c) is also selected at time t. As in the proof of1053

Part 1, the engaged flag is set at time t for exactly one layer ` neuron; we claim that this chosen1054

neuron is in fact the previously-defined rep(c). As in the proof for Part 1, we claim that all neurons1055

in the set rep(children(c)) fire and no other layer `− 1 neuron fires at time t− 1. Then rep(c) has1056

incoming potential in round t that is strictly greater than k times the initial weight, by the inductive1057

hypothesis, Part 3(a). On other hand, every other layer ` neuron has incoming potential that is at1058

most k times the initial weight, again by the inductive hypothesis, Part 3(a). It follows that rep(c)1059

has a strictly higher incoming potential in round t than any other layer ` neuron, and so is the chosen1060

neuron at time t.1061

1062

26

For Part 3, let c be any concept with level(c) ≥ 1, and write ` = level(c). Let t′ ≥ 1. Assume that c1063

is shown at time t− ` for the t′-th time. We must show:1064

(a) Neuron u = rep(c) has weights in
(

1
k`max +1 ,

1√
k

)
for all neurons in rep(children(c)), and1065

weights in
(
0, 1

k`max +1

)
for all other neurons.1066

(b) If t′ ≥ σ, then u with u = rep(c) has weights in
[

1
(1+ε)

√
k
, 1√

k

]
for all neurons in1067

rep(children(c)), and weights in
[
0, 1

k`max +b

]
for all other neurons.1068

For both parts, we use Part 2 (for t, not t− 1) to infer that every showing of c at a time ≤ t− level(c)1069

leads to the same neuron u = rep(c) being engaged. Thus, neuron u has been engaged t′ times as a1070

result of showing c, up to time t.1071

For Part (a), fix any t′ ≥ 1. Then we may apply Lemma A.2, with F = rep(children(c)), to1072

conclude that the incoming weights for u are in the claimed intervals. Here we use the fact that the1073

initial settings wi(0) are equal to 1
k`max +1 For Part (b), assume that t′ ≥ σ. Then we may apply1074

Lemma A.3, with F = rep(children(c)), to conclude that the incoming weights for u are in the1075

claimed intervals.1076

1077

For Part 4, let c be any concept, and assume that c∗, a proper ancestor of c, is shown at time1078

t− level(c). We must show that rep(c) is defined by time t, and that it fires at time t.1079

Since c∗ is shown at time t − level(c), by the definition of a σ-bottom-up schedule, that means c1080

was shown at least σ times by time t − level(c) − 1. This implies that rep(c) is defined by time1081

t − 1, and so, by time t. Moreover, since c was shown at least σ times by time t − level(c) − 1,1082

by the inductive hypothesis, Part 3(b), at time t − 1, rep(c) has incoming weights at least1083
1

(1+ε)
√
k

for all neurons in rep(children(c)). By the inductive hypothesis, Part 4, the neurons1084

in rep(children(c)) fire at time t − 1 since c∗ is also a proper ancestor of all children of c.1085

Therefore, in round t, the potential of rep(c) is at least k · 1
(1+ε)

√
k

, which by our assumptions1086

on the values of the parameters means that the potential is at least τ , which implies that u fires at time t.1087

1088

For Part 5, fix an arbitrary neuron u and suppose that u fires at time t. We must show that there is1089

some concept c such that u = rep(c) at time t, and a (not necessarily proper) ancestor of c is shown1090

at time t− layer(c). Since u fires at time t, by Lemma A.5, we know that u is bound at time t; let c1091

be the (unique) concept such that u = rep(c). The firing of u at time t is due to the showing of some1092

concept, say c∗, at time t− layer(u).1093

Let R be the subset of rep(children(c)) that fire at time t − 1. We claim that |R| ≥ 2; that is, at1094

least two reps of children of c must fire at time t− 1. For, if at most one rep(c′) for a child of c fires1095

at time t− 1, then by the inductive hypothesis, Part 3(a), the total potential incoming to u in round t1096

would be at most1097

1√
k

+
k`max

k`max +1
=

1√
k

+
1

k
≤ r2

√
k

2
≤ τ,

where τ is the threshold for firing.1098

Therefore, |R| ≥ 2; let u′ and u′′ be any two distinct elements of R. Since u′ and u′′ fire at time1099

t − 1, by Lemma A.5, we know that both are bound at time t − 1; let c′ and c′′ be the respective1100

concepts such that u′ = rep(c′) and u′′ = rep(c′′). We know that c′ 6= c′′ because each concept gets1101

only one rep neuron, by the way that rep is defined. Note that the firing of both u′ and u′′ must be1102

due to the showing of the same concept c∗ at time (t− 1)− (layer(u)− 1) = t− layer(u). Then1103

by the inductive hypothesis, Part 5, applied to both u′ and u′′, we see that c∗ must be an ancestor of1104

both c′ and c′′. Therefore, c∗ must be an ancestor of the common parent c of c′ and c′′, as needed.1105

This completes the overall proof of the lemma.1106

A.3 Proof of Theorem 5.31107

Now we use Lemma A.6 to prove our main theorem about noise-free learning, Theorem 5.3.1108

27

Proof. By assumption, all the concepts in the hierarchy are shown according to a σ-bottom-up1109

training schedule. This implies, by Assumption A.4, that after the schedule, all the concepts in the1110

hierarchy have reps in the corresponding layers, that is, for each c ∈ C, layer(rep(c)) = level(c).1111

Also, by Lemma A.6, Part 3(b), the weights after the schedule are set as as follows: For every concept1112

c with level(c) ≥ 1, all incoming weights of rep(c) from the reps of its children, i.e., the neurons1113

in rep(children(c), are in the range [1
(1+ε)

√
k
, 1√

k
], and weights from all other neurons (on layer1114

level(c)− 1) are in the range [0, 1
k`max +b].1115

We must argue that the resulting networkN (r1, r2)-recognizes the concept hierarchy C, according to1116

Definition 4.2. This has two directions, saying that certain neurons must fire and certain neurons must1117

not fire, at certain times, when a particular subset B ⊆ C0 is presented. So suppose that a particular1118

subset B ⊆ C0 is presented at time t.1119

Neurons that must fire: We must show that the rep of any concept c in supportedr2(B) fires at time1120

t+ level(c) (see Definition 2.1 for the definition of supported). We prove this by induction on the1121

level number `, 1 ≤ ` ≤ `max, showing that the rep of each level ` concept in supportedr2(B) fires1122

at time t+ level(c).1123

For the base case, consider a level 1 concept c ∈ supportedr2(B); then rep(c) is in layer 1. Since1124

c ∈ supportedr2(B), it means that |children(c) ∩B| ≥ r2k, that is, at least r2k children of c are in1125

B. As noted above, the rep of each of these children is connected to rep(c) by an edge with weight1126

at least 1
(1+ε)

√
k

, which yields a total incoming potential for rep(c) in round 1 of at least1127

r2k

(1 + ε)
√
k

=
r2

√
k

1 + ε
.

To show that rep(c) fires at time t+ 1, it suffices to show that the right-hand side is at least as large1128

as the firing threshold τ = (r1+r2)
√
k

2 . That is, we must show that r2
1+ε ≥

r1+r2
2 . Plugging in the1129

expression for ε, we get that:1130

r2

1 + ε
=

r2

1 + r2−r1
r1+r2

=
r1 + r2

2
,

as needed.1131

For the inductive step, consider ` ≥ 2 and assume by induction that the rep of any level `− 1 concept1132

in supportedr2(B) fires at time t+ `− 1. Consider a level ` concept c ∈ supportedr2(B). Since1133

c ∈ supportedr2(B), it means that |children(c) ∩B`−1| ≥ r2k, using notation from Definition 2.1,1134

that is, at least r2k children of c are in supportedr2(B). By the inductive hypothesis, the reps of1135

all of these children of c fire at time t+ `− 1. As noted above, the rep of each of these children is1136

connected to rep(c) by an edge with weight at least 1
(1+ε)

√
k

, which yields a total incoming potential1137

for rep(c) in round t+ ` of at least1138

r2k

(1 + ε)
√
k

=
r2

√
k

1 + ε
.

Arguing as in the base case, this is at least as large as the firing threshold τ , as needed to guarantee1139

that rep(c) fires at time t+ `.1140

Neurons that must not fire: We must show that the rep of any concept c that is not in supportedr1(B)1141

does not fire at time t+ level(c). Again we prove this by induction on the level number `, 1 ≤ ` ≤1142

`max, showing that the rep of each level ` concept that is not in supportedr1(B) does not fire at time1143

t+ level(c).1144

For the base case, consider a level 1 concept c /∈ supportedr1(B); then rep(c) is in layer 1. Since1145

c /∈ supportedr1(B), it means that |children(c)∩B| < r1k, which implies that |children(c)∩B| ≤1146

br1kc. As noted above, the rep of each of these children is connected to rep(c) by an edge with1147

weight at most 1√
k

. Also, there are at most k`max +1 other level 0 firing neurons, since B ⊆ C0,1148

and all the weights on edges connecting these to rep(c) are at most 1
k`max +b . Therefore, the total1149

incoming potential for rep(c) in round t+ 1 is at most1150

br1kc√
k

+
k`max +1

k`max +b
=
br1kc√

k
+

1

kb−1
.

28

Now we use the technical assumption that r1k − br1kc ≥
√
k

kb−1 . Then the right hand side of the last1151

inequality is at most1152

r1k −
√
k

kb−1√
k

+
1

kb−1
= r1

√
k <

(r1 + r2)
√
k

2
= τ,

which implies that rep(c) does not fire.1153

For the inductive step, consider ` ≥ 2 and assume by induction that the rep of any level ` − 11154

concept that is not in supportedr1(B) does not fire at time t + ` − 1. Consider a level ` concept1155

c /∈ supportedr1(B). Since c /∈ supportedr1(B), it means that |children(c) ∩ B`−1| < r1k, that1156

is, the number of children of c that are in supportedr1(B) is less than r1k. As noted above, the rep1157

of each of these children is connected to rep(c) by an edge with weight at most 1√
k

.1158

Now consider the rest of the incoming edges to rep(c). They may come from the reps of children of1159

c that are not in supportedr1(B), from layer `− 1 neurons that are bound to concepts that are not1160

children of c, and from unbound layer `− 1 neurons. However, the reps of children of c that are not1161

in supportedr1(B) do not fire, by the inductive hypothesis, and the unbound neurons do not fire, by1162

Lemma A.5. So that leaves us to consider the layer `− 1 neurons that are bound to concepts in C1163

that are not children of c. There are at most k`max + 1 such neurons. Since the weights of the edges1164

connecting them to rep(c) are at most 1
k`max +b , the total incoming potential for rep(c) in round t+ `1165

is at most1166

br1kc√
k

+
k`max +1

k`max +b
=
br1kc√

k
+

1

kb−1
.

As in the base case, this is strictly less than τ . Therefore, rep(c) does not fire at time t+ level(c).1167

B Analysis of Noisy Learning1168

Here we present our analysis for the noisy learning algorithm in Section 6. In Lemma B.1, we1169

describe how incoming weights change for a particular neuron when it is noisy-shown. The proof can1170

be found in Section B.4. Once we understand the weight changes of one neuron, we are able to use1171

essentially the same invariants as in the noise-free case (Lemma A.6), describing how neurons get1172

bound to concepts, when neuron firing occurs, and how weights change, during the time when the1173

network is learning. In Section B.3, we put everything together to prove Theorem 6.4.1174

We start by giving a slightly more detailed proof overview than the one in Section 6.3.1175

B.1 Proof Overview1176

The overall proof of Theorem 6.4 is at its core similar to the proof of Theorem 5.3 presented in1177

Appendix A. The main difference is that the weights of the neurons after learning are slightly different:1178

following the notation of Lemma A.1, Lemma A.2 and Lemma A.3, we show that, for every i ∈ F ,1179

the weight will eventually approximate1180

w̄ =
1√

pk + 1− p
,

and for every i 6∈ F, the weight will eventually be in the interval [0, 1/k2 `max]. Note that, in this1181

section, we set the parameter b, governing the desired decrease of unrelated weights, to be b = `max.1182

Also note that we can recover the noise-free case by setting p = 1.101183

The main difficulty in the noisy case is to establish a noisy version of Lemma A.3, which we do in1184

Lemma B.1. Then, proving the main theorem is analogous to the noise-free case. This is because the1185

behavior of this network is the same as that of the noise-free algorithm, except for how the weights of1186

individual neurons are updated. Nonetheless, the same arguments as in the proof Lemma A.6 still1187

hold. Therefore, the core of this section is to prove Lemma B.1. Due to the noise, main structural1188

properties of the noise-free case, such as weights of neurons in F changing monotonically, do not1189

hold anymore. To make matters worse, we cannot simply use Chernoff bounds and assume the1190

10In this case the probabilistic guarantees become deterministic guarantees.

29

worst-case distribution of the weight changes, since assuming worst-case in each round prevents the1191

weights from converging. Instead, we use a fine-grained potential analysis.1192

We first bound the worst-case change of any weight wi during a period of T rounds (Lemma B.2),1193

assuming that the weight at the beginning of the period, wi(t), is in the interval [
√
p

4k ,
4√
p]. Namely,1194

we show that for some small δ1 (defined in Section B.2), we have (1 − δ1)wi(t) ≤ wi(t + T) ≤1195

(1 + δ1)wi(t). We later show that this assumption holds w.h.p. throughout the first n6 rounds. It1196

turns out that the way an individual weight changes depends strongly on the other weights in F and1197

on the neurons of the previous layer that fire. More precisely, it depends on z(t), which can change1198

dramatically between rounds, rendering the analysis non-trivial. In order to show that the weights1199

converge to w̄, we use the potential function ψ(·). For any time t, let wmin(t) and wmax(t) be the1200

minimum and maximum weight, respectively, among {wi(t) | i ∈ F}. Let1201

ψ(t) = max

{
wmax(t)

w̄
,

w̄

wmin(t)

}
.

Our goal is to show that this potential decreases quickly until it is very close to 1. Showing that the1202

potential decreases is involved, since one cannot simply use a worst-case approach, due to the terms1203

in Oja’s rule being non-linear and potentially having a high variance, depending on the distribution of1204

weights. Instead, we consider the terms w̄/wmin(t) and wmax(t)/w̄ of the potential and consider1205

four cases depending on whether these terms are small or large.1206

First, if the term w̄/wmin(t) is large and the term wmax(t)/w̄ is small, then the minimum weight1207

wmin increases and since the maximum weight wmax increases by at most a factor of (1 + δ), the1208

potential decreases. The second case, where the term wmax(t)/w̄ is large and the term w̄/wmin(t) is1209

small, can be bounded analogously. Finally, if w̄/wmin(t) and wmax(t)/w̄ are both large and close1210

to each other, then we show that both terms decrease. Note that if both terms are small, then the1211

potential is small and we are done.1212

For example, to prove the first case, we first show that, for every i ∈ F with wi(t) ≥ (1 + 2δ1)wmin,1213

we have wi(t+T) ≥ (1 + δ/2)wmin, using the previously established bounds. As mentioned before,1214

in order to prove that any such neuron i∗ increases its weight, we cannot use worst-case bounds.1215

Instead, we carefully use the randomness over the input vector x. To this end we define, for every1216

t′ ≥ 0,1217

X(t′) = z(t+ t′) · (xi∗(t+ t′)− z(t+ t′) · wi∗(t+ t′))

and1218

S =
T∑
t′=1

X(t′). (2)

Based on these terms we construct a Doob martingale (Lemma B.4), which allows us to get asymptot-1219

ically almost tight bounds on S, To do this, we use the Azuma-Hoeffding inequality (Theorem C.1).1220

Putting everything together, we see that ψ(·) decreases. This then allows us to prove Theorem 6.4.1221

B.2 Convergence of the Weights1222

We use the following assumptions about the various parameters:1223

1. δ = w̄(r2 − r1)/50,1224

2. δ1 = δpw̄
20 ,1225

3. T = 7 log(|C|n)
100p3δ2

1
,1226

4. The learning rate η =
δ3
1

64Tk2p .1227

5. The firing threshold τ = r2k(w̄ − 2δ)1228

6. b = `max.1229

The following lemma is the noisy counterpart to Lemma A.3.1230

30

Lemma B.1 (Learning Properties, Noisy Case). Let F ⊆ {1, . . . , n} with |F | = k. Let ε ∈ (0, 1].1231

Let σ = c′ k
6

p6δ3 (`max log(k) + log(|C|n/δ), for some large enough constant c′.1232

Assume that:1233

1. For every t ≥ 0, xi(t) = 0 for every i /∈ F , and e(t) = 1.1234

2. All weights wi(0) are equal to 1
k .1235

3. η is defined above.111236

Then for every t ∈ [σ, n6], the following with high probability:1237

1. For any i ∈ F , we have wi(t) ∈ [w̄ − 2δ, w̄ + 2δ].1238

2. For any i /∈ F , we have wi(t) ≤ 1
k2 `max

.1239

Proving Lemma B.1 is the main goal of the section and we need a series of properties to prove it.1240

We give the proof in Section B.5. We now proceed by showing how Theorem 6.4 follows from this1241

lemma.1242

B.3 Proof of Theorem 6.4, assuming Lemma B.11243

As mentioned at the beginning of this section, it suffices to consider the learning of one concept.1244

Generalizing to a concept hierarchy is analogous to the noise-free case (in particular the proof of1245

Lemma A.6).1246

We now argue how the learning of one concept follows from Lemma B.1. By Lemma B.1, all1247

weights in F are at least w̄ − 2δ and most w̄ + 2δ. Hence, if c ∈ supportedr2(B), then we can1248

show by a similar induction as in the proof of Theorem 5.3 that each rep fires since, the potential1249

is at least r2k(w̄ − 2δ) = τ , which means that the corresponding rep fires. On other other hand,1250

if c 6∈ supportedr1(B), then there will be a neuron that does not fire since all weights are, by1251

Lemma B.1, at most w̄ + 2δ.1252

Note that, by definition of δ,

r1(w̄ + 2δ) = (r2 − 50δ/w̄)(w̄ + 2δ)

≤ r2w̄ + 2δr2 − 50δ

≤ r2w̄ − 2δr2 − 46δ,

since r2 ≤ 1. Therefore, the potential for rep(c) will be at most1253

r1k(w̄ + 2δ) + k`max
1

k2 `max
< r2k

(
w̄ − 2δ − 46δ

r2

)
+

1

k
≤ r2k(w̄ − 2δ) = τ,

since k46δ = k 46
50 w̄(r2 − r1) ≥ 46

50
√
k
≥ 1/k, due to w̄ ≥ 1/

√
k, r2 − r1 ≥ 1/k and k ≥ 2. Thus,1254

the neuron does not fire.1255

B.4 Towards Lemma B.11256

In this subsection, we define a key property Et that says that the weights remain within certain1257

multiplicative bounds, for during the interval [t, t+ T] rounds. We show in Lemma B.2 that Et holds1258

with probability 1. Then we assume E and show Lemma B.3, which bounds the expected change1259

of the terms in Oja’s rule. To derive bounds on the actual change we first show how the changes1260

form a Doob-martingale (Lemma B.4). Using this, we are finally able to show in in Lemma B.5 and1261

Lemma B.6 that the potential decreases.1262

Let Et be the event that for every t′ ∈ [t, t+ T], we have1263

(1− δ1)wi(t) ≤ wi(t′) ≤ (1 + δ1)wi(t).

11This is a very precise assumption but it could be weakened, at a corresponding cost in run time.

31

Lemma B.2. Assume wi(t) ∈ [
√
p

4k ,
4√
p]. Then, Et holds.1264

Proof. Let wmax(t) denote the maximum weight at time t. We have wmax(t + 1) ≤1265

wmax(t) + ηz(t) ≤ wmax(t) + ηwmax(t)kp. Thus, wmax(t + t′) ≤ wmax(t)(1 + ηkp)T =1266

wmax(t)
(

1 + ηkpT
T

)T
= wmax(t)ex for x = ηkpT . Since p ≥ 1/k, we have x < 1, we have1267

wmax(t+ t′) ≤ wmax(t)ex ≤ wmax(t)(1 + x+ x2) ≤ wmax(t)(1 + 2x).

this completes the upper bound of Et since 2ηkpT ≤ δ1.1268

We now consider the lower bound of Et. Similarly, if wmin(t) denotes the minimum weight at time t,1269

then1270

wmin(t+1) ≥ wmin(t)−ηz2(t) ≥ wmin(t)−ηw2
max(t)k2p2 ≥ wmin(t)−η16k2p. Thuswmin(t+1271

1) ≥ wmin(t)−Tη16k2p ≥ wmin(t)−Tη16k2p 1√
p/(4k)wmin(t) ≥ wmin(t)

(
1− 64ηTk2√p

)
≥1272

wmin(t)(1− δ1), since wmin(t) ≥
√
p

4k .1273

1274

We define the following potential function1275

φ(t) =
∑
i∈F

wi(t).

The following bounds the expected change of the weights.1276

Lemma B.3. Suppose Et holds. Then, we have1277

1. E [z(t+ t′) | w(t+ t′),Ft] = pφ(t+ t′)1278

2. E
[
z(t+ t′)2wi∗(t+ t′) | Ft

]
≤ (1 + δ1)3pφ(t) ((1− p)wmax(t)wi∗(t) + pwi∗(t)φ(t))1279

1280

3. E
[
z(t+ t′)2wi∗(t+ t′) | Ft

]
≥ (1− δ1)3pφ(t) ((1− p)wmin(t)wi∗(t) + pwi∗(t)φ(t)) .1281

Proof. In the following, the randomness is over xi(t+ t′). We have,

E [z(t+ t′) | w(t+ t′),Ft] = p
∑
i∈F

E [xi(t+ t′)]wi(t+ t′) = p
∑
i∈F

wi(t+ t′) = pφ(t+ t′).

Moreover,

E
[
z(t+ t′)2 | w(t+ t′),Ft

]
=
∑
i∈F

pwi(t+ t′)2 + p2wi(t+ t′)
∑

j∈F,j 6=i

wj(t+ t′)

=
∑
i∈F

(
pwi(t+ t′)2 − p2wi(t+ t′)2 + p2wi(t+ t′)φ(t+ t′)

)
= (p− p2)

∑
i∈F

wi(t+ t′)2 + p2φ(t+ t′)2.

We suppose Et holds, thus in every obtainable configuration it must hold that (1 − δ1)wi(t) ≤1282

wi(t+ t′) ≤ (1 + δ1)wi(t). Therefore, (1− δ1)φ(t) ≤ φ(t+ t′) ≤ (1 + δ1)φ(t). Thus,1283

32

E
[
z(t+ t′)2wi∗(t+ t′) | Ft

]
=

=
∑

w′ ∧ w′ obtainable

E
[
z(t+ t′)2wi∗(t+ t′) | w(t+ t′) = w′,Ft

]
P [w(t+ t′) = w′]

=
∑

w′ ∧ w′ obtainable

w′i∗(t+ t′)E
[
z(t+ t′)2 | w(t+ t′) = w′,Ft

]
P [w(t+ t′) = w′]

≤ (1 + δ1)wi∗(t)
∑

w′ ∧ w′ obtainable

(
(p− p2)

∑
i∈F

w′i(t+ t′)2 + p2φ(t+ t′)2

)
P [w(t+ t′) = w′]

≤ (1 + δ1)3wi∗(t)

(
(p− p2)

∑
i∈F

wi(t)
2 + p2φ(t)2

)
≤ wi∗(t)(1 + δ1)3

(
(p− p2)wmax(t)φ(t) + p2φ(t)2

)
≤ (1 + δ1)3pφ(t) ((1− p)wmax(t)wi∗(t) + pwi∗(t)φ(t)) .

Similarly,1284

E
[
z(t+ t′)2wi∗(t+ t′) | Ft

]
≥ (1− δ1)3pφ(t) ((1− p)wmin(t)wi∗(t) + pwi∗(t)φ(t)) .

1285

In the following, we define a sequence of random variables Y1, Y2, . . . and show it forms a Doob1286

martingale.1287

Lemma B.4. Fix neuron i∗. Let Xi be the random choices of the pk children that fire1288

in round i (in the definition of the noisy learning). Recall that S =
∑
t′≤T z(t + t′) ·1289

(Xi∗(t+ t′)− z(t+ t′) · wi∗(t+ t′)) . Let Yi = E [S | Xi, . . . , X1]. Then the following holds1290

1. The sequence Y0, Y1, . . . , YT is a (Doob) martingale with respect to the sequence1291

X0, X1, . . . XT .1292

2. For all i, |Yi − Yi+1| ≤ 8k2√p.1293

3. S = E [S | XT , . . . , X1] = YT .1294

Proof. For the first part, we have, using the tower rule,1295

E [Yi | Xi−1, . . . , X1] = E [E [S | Xi, . . . , X1] | Xi−1, . . . , X1] = E [S | Xi−1, . . . , X1] = Yi−1.

For the second part, note that wi ≤ 2/
√
p. Thus, |Yi − Yi+1| ≤ z2

t+iwi∗ ≤ k2p223/
√
p3.1296

The third part follows trivially.1297

1298

Let1299

δ2 =

(
k

√
p

2k

)
p2

(
20δ1
p

)
= 10p3/2δ1

The following lemma shows that if the potential is large due to wmin being small, then the weight of1300

the smallest neurons increases.1301

Lemma B.5. Suppose Et holds. Consider the neurons i∗ with wi∗(t) ∈ [wmin, (1 + 2δ1)wmin] and
w̄ − wi∗(t) ≥ δ. Assume

w̄

wmin(t)
≥ (1− 2δ1)

wmax(t)

w̄
. (3)

Then, with probability at least 1− 1/n6,1302

wi∗(t+ T) ≥ wi∗(t) + Tηδ2/2

33

Proof. By the second part of Lemma B.3, for t′ ≤ T

E
[
z(t+ t′)2wi∗(t+ t′)

]
≤ (1 + δ1)3pφ(t) ((1− p)wmax(t)wi∗(t) + pwi∗(t)φ(t)) .

We now bound the terms in the parentheses. First note that1303

wi∗(t)wmax(t) ≤ (1 + 2δ1)wmin(t)wmax(t) ≤ 1 + 2δ1
1− 2δ1

w̄2 ≤ (1 + 4.5δ1)w̄2,

since δ1 ∈ [0, 1/18]. Furthermore, for δ1 ∈ [0, 1/9] we have (1 + 4.5δ1)(1 + δ1) ≤ (1 + 6δ1). Thus,

wi∗(t)φ(t) ≤ (k − 1)(1 + δ1)wi∗(t)wmax + (1 + δ1)wi∗(t)wi∗(t)

≤ (k − 1)(1 + δ1)(1 + 4.5δ1)w̄2 + (1 + δ1)wi∗(t)wi∗(t)

≤ (1 + 6δ1)
(
(k − 1)w̄2 + wi∗(t)

2
)

= (1 + 6δ1)
(
kw̄2 + wi∗(t)

2 − w̄2
)
.

Note that (1− p)w̄2 + pkw̄2 = 1. Thus,

(1− p)wmax(t)wi∗(t) + pwi∗(t)φ(t) ≤ (1 + 6δ1)
(
(1− p)w̄2 + pkw̄2 + p(wi∗(t)

2 − w̄2)
)

= (1 + 6δ1)
(
1− p(w̄2 − wi∗(t)2)

)
.

Therefore,

E
[
z(t+ t′)2wi∗(t+ t′)

]
≤ (1 + 10δ1)pφ(t)

(
1− p(w̄2 − wi∗(t)2)

)
,

where we used that (1 + 6x)(1 + x)3 ≤ (1 + 10x) for x ≤ 0.045.1304

Note that

w̄2 − wi∗(t)2 ≥ w̄2 − wi∗(t)w̄ = w̄(w̄ − wi∗(t)) ≥ w̄δ = w̄
20

w̄p
δ1. (4)

Finally, using the definition of S (Equation 2) and combining the above with the first part of
Lemma B.3,

E [S] ≥ T
(
E [z(t+ t′)]− E

[
z(t+ t′)2wi∗(t+ t′)

])
≥ Tφ(t)p

(
1− (1 + 10δ1)

(
1− p(w̄2 − wi∗(t)2)

))
≥ Tφ(t)p2 w̄

2 − wi∗(t)2

2
,

where we used that 1− (1+z)(1−x) = 1− (1−x+z−zx) = x−z+zx ≥ x/2 for z ≤ x/2. We1305

define the sequence Y1, Y2, . . . of variabels as defined in Lemma B.4. By Lemma B.4, this sequence1306

is a Doob martingale. Thus, we can apply Theorem C.1 to the Doob martingale YT , YT−1, . . . , Y11307

with |Yi − Yi+1| ≤ δ3 for δ3 = 8k2√p.1308

We derive using the lower bounds on the weights and Equation 4.

P
[
|S − E [S] | ≥ E [S]

2

]
≤ 2 exp

−2
(

E[S]
2

)2

Tδ2
3

 ≤ 2 exp

−2
(
Tφ(t)p2 w̄

2−wi∗ (t)2

2

)2

Tδ2
3

≤ 2 exp

(
−
T
(
φ(t)p2

(
w̄2 − wi∗(t)2

))2
4δ2

3

)
≤ 2 exp (−7 `max log(|C|n)) ≤ 1

|C|n6
,

where the last inequality follows from

T
(
φ(t)p2

(
w̄2 − wi∗(t)2

))2 ≥ Tδ2
2 = 100Tp3δ2

1 = 7 log(|C|n).

Thus

wi∗(t+ T) ≥ wi∗(t) + ηS ≥ wi∗(t) + ηE [S] /2 ≥ wi∗(t) + Tηδ2/2

1309

34

The following lemma is analogous to the previous one, with the difference that we analyse the case1310

where ψ is dominated by large weights (rather than small) and show that these large weights decrease.1311

Lemma B.6. Suppose Et holds. Consider the neurons i∗ with wi∗(t) ∈ [wmax(1− 2δ1), wmax] and
wi∗(t)− w̄ ≥ δ. Assume

wmax(t)

w̄
≥ (1− 2δ1)

w̄

wmin(t)
(5)

Then, with probability at least 1− 1/n6,1312

wi∗(t+ T) ≤ wi∗(t)− Tηδ2/2

Proof. We have for all i ∈ F with wi(t) ≥ (1 + 2δ1)wmin, we have wi(t+ T) ≥ (1 + δ1/2)wmin,
since each weight can only decrease by a factor of (1−δ1) and since (1+2δ1)(1−δ1) = 1+δ1−2δ1 ≥
(1 + δ/2). Thus, we only consider the neurons i∗ with wi∗(t) ∈ [wmin, (1 + 2δ1)wmin]. By the third
part of Lemma B.3, for t′ ≤ T

E
[
z(t+ t′)2wi∗(t+ t′)

]
≥ (1− δ1)3pφ(t) ((1− p)wmin(t)wi∗(t) + pwi∗(t)φ(t)) .

We now bound the terms in the parentheses. First note that1313

wi∗(t)wmin(t) ≥ (1− 2δ1)wmin(t)wmax(t) ≥ (1− 2δ1)2w̄2 ≥ (1− 4δ1)w̄2,

since δ1 ≥ 0.1314

Thus,

(1− p)wmin(t)wi∗(t) + pwi∗(t)φ(t) ≥ (1− 4δ1)
(
(1− p)w̄2 + pkw̄2 + p(wi∗(t)

2 − w̄2)
)

= (1− 4δ1)
(
1− p(w̄2 − wi∗(t)2)

)
Therefore,

E
[
z(t+ t′)2wi∗(t+ t′)

]
≥ (1− 10δ1)pφ(t)

(
1− p(w̄2 − wi∗(t)2)

)
,

where we used that (1− 4x)(1− x)3 ≥ (1− 10x) for x ≥ 0.1315

Note that

w̄(wi∗(t)− w̄) ≥ w̄δ = w̄
20

w̄p
δ1 (6)

Finally, using the definition of S (Equation 2) and combining the above with the first part of
Lemma B.3,

E [S] ≤ T
(
E [z(t+ t′)]− E

[
z(t+ t′)2wi∗(t+ t′)

])
≤ Tφ(t)p

(
1− (1− 10δ1)

(
1− p(w̄2 − wi∗(t)2)

))
≤ 2Tφ(t)p2w̄2 − wi∗(t)2 = −2Tφ(t)p2(wi∗(t)

2 − w̄2)

≤ −2Tφ(t)p2w̄(wi∗(t)− w̄),

where we used that 1− (1− z)(1− x) = 1− (1− x− z + zx) = x− z + zx ≤ 2x for z ≤ 1.1316

This allows us to apply Theorem C.1 and the rest is analogous.1317

Thus

wi∗(t+ T) ≤ wi∗(t) + ηS ≤ wi∗(t) + ηE [S] /2 ≤ wi∗(t)− Tηδ2/2

1318

We have for all i ∈ F withwi(t) ≥ (1+2δ1)wmin, we havewi(t+T) ≥ (1+δ1/2)wmin, since each1319

weight can only decrease by a factor of (1−δ1) and since (1+2δ1)(1−δ1) = 1+δ1−2δ1 ≥ (1+δ/2).1320

Note that if neither Equation 3 nor Equation 5 applies, then both wmin(t) and wmax(t) must be close1321

to w̄ and the claim follows easily.1322

35

B.5 Proof of Lemma B.11323

We argue by induction on j, that ψ(j · T) ≤ max (ψ(0)− jTηδ2/2, w̄ + 2δ) with probability at1324

least 1− j/(|C|n6). The base case is trivial. Assume the claim holds up to j − 1. We have1325

wi((j − 1)T) ∈ [
√
p

4k ,
4√
p]. Therefore, by Lemma B.2 E(j−1)T,T holds. This allows us to apply1326

Lemma B.5 and Lemma B.6.1327

Consider the following equations

w̄

wmin(t)
≥ (1− 2δ1)

wmax(t)

w̄
. (7)

wmax(t)

w̄
≥ (1− 2δ1)

w̄

wmin(t)
(8)

We consider four cases based on whether or not the two equations Equation 7 and Equation 8 hold.1328

In the first case Equation 7 holds and Equation 8 does not. In this case we can bound the drop of ψ()1329

by considering the the increase of wmin() and we can disregard the increase of wmax(), since even if1330

it increases by a factor of (1 + δ1), we have1331

wmax(jT)

w̄
≤ (1+δ1)

wmax((j − 1)T)

w̄
≤ (1+δ1)(1−2δ1)

w̄

wmin((j − 1)T)
≤ (1−δ1)

w̄

wmin((j − 1)T)
.

In the second case Equation 8 holds and Equation 7 does not. This case is analogous to the first case.1332

In the third case Equation 7 and Equation 8 hold. Here, one can show that both the minimum weight1333

increases, and the maximum weight decreases.1334

In the fourth case, none of the equations hold. This yields a contradiction1335

w̄

wmin(t)
< (1− 2δ1)

wmax(t)

w̄
< (1− 2δ1)2 w̄

wmin(t)
.

Thus we can disregard this case.1336

W.l.o.g. we assume the first case holds.1337

Consider the neurons i∗ with wi∗(t) ∈ [wmin, (1 + 2δ1)wmin] and w̄ − wi∗(t) ≥ δ. Then, by1338

Lemma B.5, with probability at least 1− 1/n6,1339

wi∗(t+ T) ≥ wi∗(t) + Tηδ2/2 ≥ wi∗(t) + wi∗(t)
Tηδ2

2(4
√
p))

.

Note that in the analogous cases two and three we have for any neurons i∗ with wi∗(t) ∈ [wmax(1−1340

2δ1), wmax] that1341

wi∗(t+ T) ≤ wi∗(t)− Tηδ2/2 ≤ wi∗(t)− wi∗(t)
Tηδ2

2(4
√
p))

.

Let δ4 = Tηδ2/(8
√
p). Thus, either way1342

ψ(jT) ≤ (1− δ4)ψ((j − 1)T).

Using the fact that log(1 + x) ≥ 2x for x ∈ (−1/2, 0), we get that after1343

j∗ = log1−δ4(δ/ψ(0)) =
log(δ/ψ(0))

log(1− δ4)
≤ log(δ/ψ(0))

−2δ4
=

log(ψ(0)/δ)

2δ4

intervals of length T the ψ() is within an error of at most 2δ and stays there by assumption for n61344

rounds. Thus the total number of rounds is Tj∗. The bound from the claim follows by observing that1345

term ηT/δ4 is a small polynomial in p and w and δ.1346

36

Finally, we consider the time required for weights i 6∈ F to decreases below k−2 `max . After the1347

weights in F are close to there target, we have that z(t) ≥ pkw̄/2. Thus at this point, the weights1348

decrease changes as follows every round1349

wi(t) = wi(t− 1)(1− ηz(t− 1)2) ≥ wi(t− 1)(1− ηp2k2w̄2/4)).

Thus, the potential halves every 20/(ηp2k2w̄2) rounds. Since the potential only needs to drop by a1350

factor of k2 `max , the bound follows.1351

C Auxiliary Content1352

The following is a slightly modified version of Theorem 5.2 in [5], which we use in Lemma B.5 and1353

Lemma B.6.1354

Theorem C.1 (Azuma-Hoeffding inequality - general version [5]). Let Y0, Y1, . . . be a martingale1355

with respect ot the sequence X0, X1, Suppose also that Yi satisfies ai ≤ Yi − Yi−1 ≤ bi for all1356

i. As an example, the engaged flag could be used to ensure that, in any round, only one neuron in the1357

network is prepared to learn.1358

P [|Yn − Y0| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

37

	Introduction
	Data Model
	Network Model
	Problem Statements
	Algorithms for Recognition and Noise-Free Learning
	Extension to Noisy Learning
	A Lower Bound
	Conclusions and Future Work
	Analysis of Noise-free Learning
	Analysis of Noisy Learning
	Auxiliary Content

